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1. Introduction

In paper /v/ devoted to the relativistic-covariant
description of a system of interacting particles a problem
was raised to find the quasipotential Green functions
for composite particles with correct projective proper-
ties.

Note should be made that the hypothesis on projective
properties of the Green functions has been used essen-
tially in a series of papers /4/ instudying various proper-
ties of composite particles within the parton model in the
infinite-momentum frame (p,~ ~ ). In this connection
the investigation of projective properties of the Green
functions within the quasipotential formalism, without
using additional assumptions, is of a fundamental signifi-
cance. Results of the paper /!/ clearly show that this
problem can be considered in a consistent way within the
framework of the relativistic-covariant quasipotential
equations without appealing to the limit p,-» ~ .

Hence it follows that the quasipotential approach is
thus an adequate realization of concepts of the parton
model. We would remind that this method is based on the
relativistic generalization of the concept of equal time
in describing a system of particles.

The present paper deals with studying the structure
of perturbation theory expansion for the quasipotential
Green functions of the system of two scalar particles.
It is shown that for many various types of diagrams the
two-particle quasipotential Green function has the required
projective properties.



2. Definition of the Concept of Equal Time

In quantum field theory information on an interaction
process of two particles can be extracted from the Green
function

G (f'l,tl;Fz,t2 /?{,ti;?é,t'z).

However, as is known, the Green function in the four-
dimensional formalism depends on relative times which
have no direct physical interpretation and besides result
in extra mathematical difficulties. To remove the above
difficulty, A.A.L.ogunov and A.N.Tavkhelidze have sug-
gested a quasipotential method /2/ pased on the consi-
deration of equal-time procedure. Within the framework
of the approach it is possible to formulate the theory in
terms of the two-time Green functions G (¢, —ty=t[ -t; =0)
all the merits of quantum field theory being conserved.
In doing so, wave functions become functions of equal
time, i.e., they have a probabilistic quantum-mechanical
interpretation.

In paper /1/ it has been suggested to perform the
removing of the relative times within the quasipotential
approach via the transition to the space-like surface

(tl—t2)+(zl—22) =0. 0))

For this method of ’’equating of times’’ it is convenient
to introduce the following relative coordinates

Xi.=xoi'x3 . (2)

and their conjugate momenta
Pp=Pgtp

The four-dimensional vectors are parametrized as
follows

z

3)



In this parametrization the scalar products of 4-vectors
p and q have the form
p?=2pp - P’f :
| N )
(pq) =P, q_+pP_4, - (plql) .
In terms of the introduced variables the operation of
"’equating of times’’ (2) can be written as

x, =0. )

In this momentum space condition (5) or transition to the
equal-time functions is realized through integrating over

the variable p_.
Thus, our consideration starts from the two-time
quasipotential Green function

G (p,.p 3 9..9)3(P-Q)

(6)
=fdp_dq_G (p .p_.4q,,9_, q,.p, )3(P-Q),

where P and Q are the total momenta of the system.

As has been shown in /1/ a specific feature of the
consideration is that the function (6) has definite projec-
tive properties when there is no interaction. These are
as follows:

irrO(x—1)0(X)5(P’L"‘T_L)5(X—)') (7

G (x,y,P )6(P-Q) =
0 + o

f)’f*mzl p:2L+ m2

2,..2 2
x(1 x)P+(M 1% )
where
x -1 P
2 P, (8)
1 q.
y = —— +
’ 2 Qv



Following a standard procedure we construct the
quasipotential

45 o ml
V =636,k 6,67 , 9)

where K is the interaction kernel.
Due to definite projective properties of the operator
G o In AVARRY transition is made to the subspace

0<x <1 10)

when constructing the quasipotential.

The operators given in this subspace have the inverse '@
ones, i.e., they possess all properties necessary for
defining the quasi-potential (9).

It will be shown below that at least for some class
of the Feynmann diagrams the projective properties of the
total Green function naturally follow from the above
defined procedure of removing the relative times.

3. Construction of the Quasipotential for
One-Meson Exchange

Proceeding from the quasipotential equation for com-
posite systems written in terms introduced in Sect. 1
(seeref. /1/)

)«/f(x,EL> - an
¢
1

2. g = g -1 -l -
=fdy 44,V (y,x,p,.q ) ¢(y,p; ) P x (1-X)

(P2— . _
X

52 2 52 2
p'l_+ml pL+ m2
1 -

we consider the kernel K in (9) corresponding to the
scalar-meson exchange:
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P
P1=5 +P F+1 =91
P P
Pp=7 -P . 5 -1 =9
T —m

In expression (9) we calculate G, K G, (tilde means
the operation (6)):

"\./
CoK Go(Py:Py39y,99) 8 (P*Py=9; -9, ) =

P 53+m% ie
dp d ¥2P x[p_+ == - — +
=Jdp_da 2 2P x 2P _x

+

P P2+m22 ie
2P (1-x)[-p_+ 5= - —
¢ Pt 2P, (1- x) 2P, (1 -x)

(p, -4,)2+ 4? -
L L 1
2P (x-y)[p -4 - — b —_

* T T 2P _(x-y) 2P (x-y)

q2 +m2 .
L I le
+

' 12
2P,y 2P, y (12)

P

P_ qy+My le 1 -1

2P, AN 1-4_* 5= = Fp (1) * 2P, @)

Integrating over p_ and q_ it is easy to show that
a nonzero contribution comes only from the region

0<x < 1.



Finally, the required function has the form:

GoK G (P ,Py:9),95)8( P, +Py-9,—4,) =

o 2 2 =2 2
p +m p + M
L 2 L 1 L 2
=(-27i) (2P, x (1-x)[ M2~ - -
m2+q2 m2+p 2 (p—-q,)%pu2
1L 2" FL LT H
-2P+(x—y)[M2— - - 1-
y ' 1-x X -y
2 2 > 2 2
+ m +m -
'2P+Y(1—Y)[M2— _q_E 1 _ qp 2]¥ 1
y l1-y
“0(x) 0(1-x)0(y) 8(1-y) 8 (x—y) + (x> y). (13)

From egs. (9), (7) and (13) we obtain for the quasipoten-
tial the following expression

6(x-y) 6(y) 6(1-y)

V(X’Y1p+) =6(x)0(1—x) +
2.82 m2 0272 g2 2

(x—y) M _m1+qJ_ m+p” (pl_ qL)Hl

y 1-x X-y -
(14)

+(X<—»y).

4. Projective Properties of the Quasipotential
for Ladder-Type Diagrams

Consider the second-order diagrams

and




- NN——
Examining the functions G o K G, corresponding to

these diagrams by the method given in the previous
section one can easily show that only the regions 0 <x < 1
and 0< y <1 contribute there.

Indeed, introducing the following notation for momenta

P-q P-q

the function Go K Gy is written as follows:
T~ 4
G K G (x,y,z,P) =fd*k fdp_dq_(2P )7®-

[x(1-x)(x-2)z(1-2)(z—y) y(1-y)]"

ie -1

: ie -1 ie -1
-(p_—Al+ = ) (P_-p_—A2+1_x) (p_—k_—A3+x:-)

i -1 i -1
(k_—A4+': ) (P_-k_ -Ag+ ;; ) : (15)

. —dq _ e -l _ te -1 -q —A _l_e ~1
(k_-9q_ A6+——--) (q A7+ )" (P-q_ 8+1_y) ,

¢ Z-y y

where Aj_g are the terms independent of integration
momenta, and

RTINS



Let x<0, then poles in the first and second denomi-
nators have the same direction of their contours, and
from the third denominator we obtain the condition
x>z(z<0) for the integral over p_ be nonzero.
In this case the poles in the third, fourth and fifth
denominators again have the same direction of their
contours, and in order that the integral over k._ differ
from zero the condition 2> y(y < 0) is taken. However,
then the integral over q- necessarily becomes zero.
Thus, the region x < 0 gives no contribution.

In a completely analogous way it can be proved that
both for the diagram under consideration and for the
crossed diagram the regionsx>1,y<0,y >1 also make Q
no contribution.

A proof of vanishing of contributions from the regions
x<0, x>1, y<0 will be given below for a ladder type
diagram by mathematical induction.

Consider an arbitrary ladder diagram in the form

k

P-p P-q

Let G, reduce to zero for x< 0

G (x,2)=f G, (P ,x,p,z,k) - (16)

-

. .i( -1 i( -1
(k,_+ Bl + T) (P_ v—k_+B2‘+—1_z ) dp_dk_

»

where B; do not depend on k-, z , p_, x , and
the prime means that in G;_; times are not equating
and this function contains all the coefficients of the latter
denominators, noncontributing to the pole structure.
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Then we shall prove that the function also

G, (x,y,2) =[G (P ,x,p,z,k) -

(k_-q_+B_+ e )7 (q_+B, + =27 - a7
- -3 z-y - y

i -1
(P -q +B, + llfy )dp_dk dq_

becomes zero for x <0 .
Consider the first case, when

fdp_Gn:.](P »X,P,%, k) for x< 0

but then obviously, G, ;=0 as well, for x <0.
The second case, when

fdp_G._[(P,x,p,z,k) 40 for x<0.

In this case we take the 2 variable in a region such that
the integral over k_ be zero as here this is a unique
possibility to satisfy the initial assumption.

There are two possible versions. The first one, when

z< 0, l1-z>0 _
and then, in order that G, , #0 as the integral over
k_ it should be supposed that

z~-y >0, y<1l.
But hence it immediately follows that G,,; = 0 in
integrating over q._ .

The second version, when

z>0,1-z< 0.
Hence, in order that Gh,, # 0 as the integral over
k _ one should assume that

z-y <0, y»>1.
However, in this case integrating over q_ reduces
Gns+i to zero.

Thus, for x< 0 from the assumption that G, = 0 it
follows that G,,; = 0 as well.



Analogously, it can be shown that also in the regions
X>1, y<0,y>1 arbitrary diagrams of the type

T N—
do not contribute to Gy K G, .

5. Conclusion

The very fact of a possibility to establish the projec-
tive properties of the Green functions in the framework
of the quasipotential approach, without using any additio-
nal assumptions is rather interesting. We would like to
emphasize that the projective properties of the Green
functions are very important in numerous investigations
of the parton model or in considerations of composite
particles in the frame p, -~ , but they are only postula-
ted there.

This note presents an argument in favour of further
developing the quasipotential approach to the study of
composite particles, as this approach clearly reflects the
basic properties of elementary systems both in the case
when these really consist of partons and even if the parton
language is simply a suitable guide for describing their
behaviour..

In conclusion the authors are very pleased to thank
N.N.Bogolubov, = R.N.Faustov, V.R.Garsevanishvili ,
S.V.Goloskokov, V.K. Mltryushkm M.A. Smondyrev and
A.N. Tavkhehdze tor useful discussions.
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