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In the note we have attempted to apply a simplified
version of the straight-line paths approximation to the
4{? case of a wider class of Feynmann graphs. It is shown

/g1t in the framework of the approximation used the scat-
--ring amplitude has the eikonal form.
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1. Owing to the fact that the eikonal representation
‘dﬁ for the scattering amplitude is found to be a convenient
tool for theoretical analysis of experimental data on
high-energy hadron scattering/1/, numerous attempts have
been made to derive an eikonal formula from a set of Feyn-
man graphs of a certain class.
The first step towards this are some papers devoted
to the summation of the set of s -channel ladder diagrams
for multy-meson exchange

e z + H +— X + ..‘(1)

in electrodynamics/z/ as well as in certain simplest
field theory models/3,4/.

{} In investigating this problems a rich '"tool kit",

> from direct summation of leading perturbation series
terms to methods of continuous integration, has been used.
All these methods are, to a certain extent, approximate
and imply the supposition that "high-energy individuality"
of incident particles is kept in the process of their
interaction. In spite of a large number of attempts to
give grounds for this supposition (e.g., refs. §5) it is



not well-founded. Nevertheless, it is easy to see that in
this case the eikonal tormula reproduces correctly the
asymptotic at high energies and fixed momentum transfers,
at least, in some first perturbation orders.

It would be very valuable to obtain a rigorous proof
for the eikonal methods of summing the Feynman graphs. At
the same time, it is also interesting to attempt to extend
these methods to a wider class of graphs and to obtain on
their basis various predictions on the high-energy beha-
viour for the amplitudes of elastic collisions of hadrons.
The necessary condition is that the approximations and
assumptions leading to an eikonal picture of the high-
énergy particle scattering should be formulated as clear as
possible.

Thus, the second step towars studying the relativistic
eikonal approximation is a large series of papers in which
the mentioned methods were used for summing different
s -channel diagrams taking into account radiational correc-
tions/6/, vacuum polarization effects and closed nucleon
loops/7/. The predictions made on this basis concern both
elastic and inelastic processes.

To study the behaviour of the high-energy hadron in-
teraction amplitude the Dubna group has used methods of
functional integration in quantum field theory. The adwan-
tage of these methods consists in that they make it possible

to explore the structure of the scattering amplitude in a‘#‘

closed form/8/,

The straight-line path approximation developed on the
basis of functional integration methods makes it possible
to take into account the contribution of Feynman paths,
which are located most closely to the classic(straight-line
fOor s - s and fixed : ) particle trajectory, to the
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continuous integral for the scattering amplitude.Note that
the assumption on the dominance of the contribution of
these paths together with other results (e.g., refs./3’9/)
leads simply to an eikonal representation for the scattering
amplitude which is defined by the sum of the multi-meson
exchange diagrams including the radiative corrections.

In the present note we have attempted to apply a
simplified version of the straight-line path approximation
to the case of a wider class of Feynman graphs for which

this approximation can not, generally speaking, be consi-
Q‘ dered a priori to be valid. It is shown that in the frame-
work of the approximation used the scattering amplitude

has the form of the eikonal representation

(2)

IT. We consider the scattering of scalar 'nucleons"
(field ¢,mass m ) exchanging of vector "mesons'" (field Ay,
mass ¢ ) in a model with the interaction Lagrangian

L e =80 (2)i g9 (2)A (=) 4.5 24 (xp*(2)Y (2): (3)

The two-particle scattering amplitude is determined

by the formula

0‘(2 )48 4( Vi | )= L i (pi=m3)gq*~m?)
Wi(2n P,+P,—9,~9,/f(p,p, 19,4, =, bm o L (pgmmley .
Ppraprmt = (€3]

~Lagx Da—Bt x AB+H(A

)
C,f6%4,e ? G(p,,q,14)G(p,q,14) .

In eq. (4) the following notations are introduced:

M is the vacuum expectation value of the S-matrix

in a field 4 which takes into account the contribution

-
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of closed nucleon loops to the scattering amplitudes,C,

is the normalization factor
Fl

~—l 4

~1 .
a X PgB X AB+H(A)

-1 4

TN R ()
and the symbol x means the operation

A xB=[ d*xA(x)-B(x). (6)

The one-particle nucleon Green function G( x,y|4) in the mo-
del under consideration obeys the equation K’

{lid +gdg ()1 -m?}C(x,y|4)=-8%(x-y) (7)

and for its Fourier transform the following representation
in the form of a functional integral over trajectories/9/

G(p,qld)=1i f dse“(p —m) dy e’(P—q)y .
° (22)*
(8)
8 s t
.f[34v]o expt2ig [ d&ly (E)ep JA ly+2p€s2 fu(n)dn]
° 0

;
holds, where[&‘v]é denotes the functional averaging with

Gaussian weight ’y
-1 vimyan
4 T2 S‘V e 71
6" vl - —_— g _ (9
T W -:ffzuzm)dq
fﬁ v e . “\. l

Taking into account (8) the scattering amplitude (4)

takes the form

2
i(2ﬂ)45(pl+p2—q1—q2)f(p1,pzlql,q2)= lim (Pzﬂ—”'z)(q;_mz)

pf. q2€-’m2€=1

. tyolpp—ap) i(pz—qz)a s (0,s,) (0,8, )
. 2P % [ A ) - **1 '
ffd‘yg e j'fdsz e ff[54v]oﬂ m(jl +i, ),



where the functional
_._'.-Aa x D;;;g X AB+n(A)+Ua x A,

M(j)=C, [6°4,¢ * (11)

depends upon the sum of the currents of two nucleons

.(0, 8 . (0,8,)
A ARG EAT N CE (12)
in this case
(0s2p) 2 g [ 1%y, +2 2 i ()dn =] (13)
I‘H Joe  (%l7g)=26 of A€ lvg, +ppq 18 Lyp +2pg &4+ of velpddp—=1.

i In order to go over to the mass shell in expression
(10) one should make a substraction corresponding to the
propagation of two particles without 1nteract10n/10 8/.
It is obvious that this procedure reduces to the replace-

ment in expression (10) of m(;f'"’+.;f"20 by
WOt ) n TG
(14)
I R i IO 10 NG R A S D P

Further it is convenient to employ the following re-

presentation

(0.1) (On

',2) 1= ] % J )2 2(x2)xF(x1,x li, i, ) (15)

m.ﬁ) (0

.f. .r‘(

the validity of which follows from expansion of

F(ﬂv"lﬂi;m‘fU—l in a power series in ]”” > and j{2’
0.0,) (0, (.89 [(Oueg) Oy (0,8 ,)
l_‘(]1( .,)( -,} 1= % 5z s 2 ¢2 xF; ) (16)
VENLELY PN A S s
ng,n, 1
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and which, as is easily seen, corresponds to the expansion
of the scattering amplitude in a series in the coupling
constant.

It should be noted that, due to the energy-momentum
conservation law the functional F possesses the property
of translation invariance with respect to x .

When eq. (13) is taken into account, eq. (15) takes the
following form

L3
(m-) (0,5, ) 1

)-1= f dn, fdn [2pm Ay )][2pzﬁ+2 28 (n )1.

' (17) 'Q
(0,5 ,)

(0,s
. aB[y +2p,n, +2 fV (n)dn;y,+2p,n,+2 f:/(n)dnl, *ia .

r{

Inserting eq. (17) in expression for the scattering
amplitude (10) we make the following replacements of va-

riables
Ty

a) J’z *}'e _2pe772_2 I Vg(ﬂ)drl"
0

b) ve(rfe) -»vg—(pe—qz)e(ng—fg);

o) spmsgrmy

e) Vg(ﬂz+£z)" Ve (§ ) ),' h“‘\‘.'}

Y1 +Y,

f) X > x + 7

Then taking into account translation invariance the two-

particle scattering amplitude reads



2
4 4 .
i(2m)° 8 (p, +py=9,m 9, )f(pyap 19, 9,)=  lim A (pg—m*Nqm? ).
=1
Pe.qe"m

2 2
1 (p, — )y oo l(pl—qz)az M
Cffdtyy e T pd sy e [ristv, 1t .
00 _"a

(=Tgreg ) (19)
-m(]e [4 )ffdﬂz[zpe +2Vza(7le)]'

Y1— Y2 Y1 — Y2
( =
aﬁ 2 2 ljx

% where
‘e

j(—ﬂz"z)[x,(_,)l—( —y,)/2)=g [ dE[2vy)(€) +ap(£)].

- 8 [(-1) (y,—y, /2 +a2(f)+2 Jve@dn -x1,
o

(~7, 7-, (—7]2,- )
2

ag(E)=2pp 061+ 29,0(-¢)
Making a translation to the mass shell p;,q;-vmz(sz,ql-w)

as it was done in refs./3:8/ angd integrating the expression

over y(y-= y‘;y’ vy = y’;” ) we finally get
; 1 ( - 00, 00
[(p opylaa,)m =g fdly e 0 T a4, 0 v )T M T
(2n) (21)
(=00 y ~00,00) (=00, 00)
Jﬂ(, )[2v (0)+a (0)][2u 0)+a (0)]F ﬁ( “'71 'Y, ).

ITI. In what follows we shall be interested in expres-
sion (21) in the asymptotic domain s -+« and for fixed te-
Since an exact calculation of the functional integrals over

2 in eq. (21) seems to be impossible, we use an
. approximation according to which in the functional FaB
one neglects the dependence upon the variables v», andv,,

v, sV



which describe the deflection of the particle path from the
classical one, as well as the dependence upon the momentum
transfer P, -4, -

Making the replacement of the variables

Y=o +2p,7,-2p,7, (22)

and considering the domain in which the condition/3/

(p,—a/)y =(p,~q)yL (23) “~
PR G
holds, we obtain for the scattering amplitude the following -~
expression :
. , (—00,00) (=00, 00) l
zm{/l )m(jz ) « vt —ap ‘
flpgp,le,.9, )= p [ dye PiaP2B”
(2n)
(= 00, 00) (=00,.00)
(o imy, IR, )
.F ) - i) =
af 'z ERE Py
2 fueimag) 7L e
s fd e fdy,dy, pzapzﬁFaB(T+nyz “PaYar Ty (24)
(~00, 00) (—00, 00)
- - M W(; ) tyy (p,—a,)
_ Cos 1 2 a2 dx It W |
Py ¥+, ¥y i) (2m)4 sfd’y e fdx, 5\@ l
. : . X;— % X; ~X - -
o dx,jra0%,+ 71-)/:/3(":—?'.1) .FaB( 12 2 12 2 |l,-1, )
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where

fpg (®)=26 [ d€py 8%x-2p &) g —tap?( Ple , ) (25)
= Pgo Peo

is the classical current of the particle.

In expression (24) the factor m(j,)m(g ) corres-
ponds to the contribution of the radiative corrections
and is independent of s , and the stroke means the
averaging over the functional variables v, and v,

rﬁ Owing to translation invariance of the functional F
we have
- - s - -
F( x;—x,,_ x,z—xz |]'1,j2)‘9F(x1,x2[j1,j2). (26)

Now taking into account (17) we obtain for the two-
particle scattering amplitude an expression in the eikonal

form
imom -
f(P p |q .q )= 1" 2 sfd2y elyL(P, ql).l(e (Ix(yL)_I), (27)
1’2 1”12 (2 )4 L
w
where
j’-,,,i ix=WT(y | j.j,)=tW(j,+j). (28)

In the representation derived the phase contains the
functional over the field 4 (see (II)) which can be per-
formed in an explicit form after expanding the polariza-
tion operator T(4) in a power series in 4 up to terms of
an order not higher than 4° . An analysis of the eikonal
vphase structure (28) is given in Appendix.

11



On the basis of expression (27) one can study the
asymptotic behaviour of the scattering amplitudes corres-
ponding to a certain class of Feynman graphs withclosed
nucleon loops. The choice of the class is realized by the
choice of the appropriate terms in the expression for the
phase written in the form of a series. An example of the
so-called '"exchange of tower'" in the framework of this
approach

| . y
s > + + o0 (29)

?l.Q)
ce 4 b‘ ?

is considered in the paper by Barbashov and Nesterenko/7/,

In conclusion we would like,however,to note that the
problem of validity of the used approximations leading to
the eikonal representation for the scattering amplitude,
taking into account the so complicated classes of Feynman
graphs,remains still open. In spite of numerous attempts
to advance along these lines it is not clear yet what is
the range of application of the eikonal formulas obtained
in the framework of field theory models. zfq

e
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Appendix

Here we present a method of approximate calculation
of the phase (28) which allows to take into account, in
addition to multi-meson exchange between nucleon lines and
closed loops (or '"blocks" containing such loops), the con-
necting blocks internal meson lines the maximum of which
is defined by the number of blocks.

nucleon €ine

,“)
(1)
We write down the expression for the phase
ix=WN(j, +i,), (11
where
1 -1 1
. ~— 4, XDaB xAB+ (A)+ua X 4,
W(j)=C, [6%4, e © (IID)
by
‘ Performing in (III) the replacement of variables
A-4+j xD (1IV)

we get

13



i
—J X DX}

2 ‘
M(j)=-e C, /8 A, e )

1 -~
-——4g X DaB x Aﬂ+ﬂ(A+l X D)

To calculate the functional integral in (III) it is
necessary to expand N(4+j x D) in a power series
in 4

(A +j xD)=N(j xD)+4 x N,(j x D)+4 x M, (j xD) xA+..
(VI)

where the index for 1 denotes the number of integral
meson lines going out from each nucleon loop (block).

Taking into account, for example, the first two terms
of expansion in (VI) we get an expression for Xx,, which
allows to take into account the set of diagrams with a
maximum number of internal meson lines equal to four

Xgp === 7 xD xj+M(jxD)+M;(jxD)-

» -1 (VIiD)
{p +2ill,(j x D )] 0,(j xd) -

-1

L det {14200, (j x D) - 01D N1,

where 1 is the unit matrix, 1 is the first

now o

term of the expansion IN(4) =4 x My x
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