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Basis of the Bethe-Salpeter Equation

The Bethe-Salpeter equation for the two-particle Green func-
tion is solved in the case of the generalized local kernel with
the help of the operator method using the modified perturbation
theory in exponent. The scalar particle scattering amplitude in the
ladder approximation is found and its asymptotic in the region of
high energies and fixed momentum transfers is investigated. The
eikonal representation of the scattering amplitude with the phase
corresponding to superposxtlon of the Yukawa quasipotentials is
obtained.
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§1. Introduction

As 1s well known the problems of the quantized field theory
may be reduced to finding the Green funotions of the interacting
particles. For this purpose the functional integration methods
are widely used /1’2’3/. The oalculation of the functional in-
tegrals however may be performed only in the case of the Gauss
type funotions.

On this account it is of considerable interest to find the
two~particle Green funotion directly from the Bethe-Salpeter
equation using the operator method and modified perturbation
theory/J/. Such an attempt was undertaken in the paper/‘/. Here
the Bethe-Salpeter equation 18 solved with the help of the mentio-
ned methods in the case of the scalar particles and the generali-
zed local kernel.

In the second paragraph the Green function’s representation
through coeffiotent functions  1n (X,&,/) 1s found and the
equations for the latter are written out.

In the third paragraph the Green funoction in the first
order of the modified perturbation theory is calculated. It must
be noted that this approximation is nothing else than the so-

called * K}f?==0 approximation" introduced in the bcpcrs/2’3’?/



In the fourth paragraph the scattering amplitude is derived
in the above mentioned approximation, which corresponds to the
sum of the ladder—graphs with the propagators in which the terms
of the I'C(;/S-‘ ~type are rejected.
The fifth paragraph is devoted to the investigation of the
asymptotic behaviour of the found scattering amplitude in the
region S--»>o9 , 't ~ fixed. The eikonal type representation for
the .ladder approximation is obtained and examples of 85 equati-
on's kernels ocorresponding to the smooth quasipotentials are given. ’D
Note that recently the straight—line paths approximation was
suggested for the investigation of the asymptotic of the sums of
the -ladder—~type graphs with crossings/6’7’8/. Ths essence of
the method is following: in the scattering process the nucleons
conserve their "individuality" because of the "softness™ of the
virtual mesons. In the case of sqalar,particle exchange an assump-
tion of "softness” appears to be essential for the correct rep—
roduction of the asymptotics‘of ment;oned diagrams with the help
of the eikonal formula/ls/ ) ‘
On. the other hand.the oondition of "softness" does not

change the asymptotic of the pure ladder-type graphs/ll/

§2. The Operator Method of Solving the Bethe—Salpeter -
Equation e /D

On account of the translatioh invariance the' Green function

in the momentum space depends only upon three independent variab-

les b ) 7 E e whiich are connebted with the external -

momenta by the followiﬁg relations

—L—-ﬁ—[’ i——ﬁ—“ = E=/:),+?,,
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where I,b, and % are the momenta of the incoming particles, 'b,z,
and 74, — the momenta of the outgoing ones,

In this case the 85 equation is

[(p+ £)2m* il[(p- £)2 m% e ]Gp,g1£) =
1)

- 5%+ {_/JF Kippie) Clpigle).
D

We shall consider only the kernels f((/b,lb/F) which
depend upon the difference /b /‘D

the following form ) £
[p% ,f_‘sm‘)*,(ﬁ;/:)‘;,u& 6951 Z§ -mY ] G(/b, 7/5) =
= 8 lp-9) » g Slb K (p-p1£) 61159 18)

and performing the Fourier transformation

« Writing the equation (1) in

(2)

G(/b 9/E) = fa’.xa’je 7‘76[3((715) )

Kppre)-fdwe P “Kiare) |,

. We can rewrite our equation in the coordinate apace
[(-0+ ———m)" (E/“a) v 2le(“o+ £ m}]G(:r(y/E)

a5 g - K 1)

(%



Here we have introduced /\: and ) I“
dx!
To solve the equation (5) we shall use the method of the

Fock?’s fifth parameter

Ga,g18) = L) B(9) ©
where ¢(Q) 1s determined by the symbolic relation
D) = exp -V [0 Fom) (E)/“zgu) .
. . 2 2 5(4 x-y)
v iAK(xjE) + 2ie (-7 + E-mY ]} 7;7)&67-

and satisfies the following differential equation with the boun-

dary conditions

“aqsm-[( o £ s (E79,)'s (AK(xjE)+
v piefome £ T Y[ D0), | )

We shall seek 9—'3(1)) in the following form
1 (4 . f o,
| @(V)=(27‘_)£‘/cﬁc Utf L[T(:t,k.‘,l))*- K(av-J)—f
+ [(kE)™ (k™ -q.ﬁz--m“'}f Zie (k% f"—i m’“)_]t)} : (8)




T, 3
It is obvious that the function / (l,K,Q) satisfies the

boundary condition
— .
['(x,5,V=0) =0 (9)

Calculations, as simple as they are cumbrous, result in the follow-

ing equation for 7(x K,V)

%\; =~ 0% Z(D 0, T)* 4(2/"77)/03 T)+ (aT)
* 4 M(02,7) + 44@#77(0%)(72 7). ¢(4,</',( -

- EI'E ")(a %)+ 8kl (¥r) (3,2, T) + za(m’/f’o,v*
+ 1L/b+—--m+ Lé}(DT)vL 44("'(9 77([77") (D ﬁ" 1
= (4ete?- EFEY )(’a T2, T) - z[/c £° mue)(b )=
= 9670, T)E 4 (e —~fnrze)/c/'(b/,,‘7’) +

+ L[EK)E/"/? T)- iA H(x/E).

Now we seek the solution of the equation (10) 1in the form

of the power series
T(xk,0)= 2 A T (2, 6,0). (1)
n=4

For the coefficient function 77 we obtain the following

@ equation
Ao, 4/c"'(D?, T)e i(4x"s" EMEY)
(’B VT )+ 2¢(b+7~m +4¢)(D7;')- e 4§2-'— (12)
-mi le) /(/'/”?,, T)+ 2(£x) E’"/’D/,, 7)- L‘R{.’r/é‘)
and
T (x€V=0)<0. (13)

7



It i1s not difficult to derive an equation for the arbitrary cosf-
Ly a2 )

ficient funotion 7, (X, k,/) . Keeping in mind the possible

future applications we shall write down the equation for 7Y&K 0)

2R=- DT, hMNOUT )+ o (hicle®- EFE)(3,T, )+

P2t £t )T~ 4t £ m e fy Than
“ 2(Ex) EC2, T, )~ i S(x0,0)

and

T, (x & V=0) =0, (15)
where
Stae 9] (BT 4 0, 7) (AT
=8kl (T )9, ) 4k m/ar)— (16>

‘(Zj;ﬁkfi£§/2;ﬂ”ﬁ3~77)/ﬁ%,77)—,2(4( - -Z—"-I7l¢ ZE}/?;,7:)f}‘.

Let us note that the equations (22) and (14) differ only in fun-

otions _K(x/E) and 6’(:1;1(, V).

§3. The Green Function of the Bethe—Salpeter Equation

At first we shall solve the equations (12) and (14).

Passing to the momentum space

Tlne) = g Jdp e T i),

S (69 = 2 folo 0 TS (g0),

/
(27)*

8
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we obtain the equation
~

3T ] phagep] Al eIk £ e )-

- (5 per) s (BT - 050500, o

from which ) ]
@@ !: (/P, l)) =z - l"o_/({')",sl(’f;’ V- 0) é’/(/) 2'{._ ey i [JU’; z(kf)Jz:
£°

. ‘.é)[fﬁ L(kf)/"(€f+k)°'; /Ek)?] ' i

(k%

v
If we substitute S(F)I)-l)')for K(F/E) and take into ac—
count that the kernel _[.{ does not depend upon l) s (18) turns into
v

the solution for the function '7;()2) v)
'f,'('Jo, v) =~ L'fvdv’ Kigi) exp {- ir’f[fﬁ Z(Kf)/ﬁ

- 2Kk A,EL’ mH [é)[fﬁz(kf)]“/f)f)"ﬁ)i(Ek)f}j a9
i

7

9

Let us denote
Clkp)=/p" z('kf)]‘u
* z('k % "5;- m'“)['f“l Z(KP)]‘(E,ch")L-f (EK)L

and

| I(f,/c) = Zé[f:'» 2(tf)/.

9



Then (19) takes the form

~W[R(pk)+iIlpe)] ,

7\?@,9)= K(p,E) <

r  (20)

Rlpr)+ i I(px)

and we obtain
} 7 l‘p\‘
- IR eﬂa[e(ﬁb)ﬂ (Ed]_ 1
(2,4, V)=(;)4fc/f€ f{(ﬁ/E) (21)
Q[ﬁ k‘)-l- { ](ﬁ k:)

Consider ‘T;(OL')/(‘, l)) a3 a funotion of the complex variadble
V= 1)14- { )); o Integral (21) converges if

Re(-ih+9) [ Ripie)+il(pe)] <0
for P>oco &
Since .Q(P)lc)= f’ll-* O(Pa) and .[(f, b) = O(f’)whon Preo ,
T:(x,k V) 18 defined by the formula (21) in the lower half-
prlane V‘< O of the complex variable \) « To obtain the funotion
7-4' (3(, A:) l)) one must perform an analytic oontinuation to the

real axes. Hence we have ')}y'
' e_,,'(u~15)[2+ iI]{

i (x,,0-i8) = =% [ds K(piE)e £ 1,

(%, %,0-(5) (u)'rj)" (/’ ) PN

Replacing P by f)-! = -TLOL- » where o >O1s a small quantity,

we obtain

L™

10




i V-i8)s ({-ca) 4 i) i idpa
l (%, ,0-i3) T Sl K (p, (- i2)ig) o 2
=i(V-i3) [‘B(p,('{« (<))t ZI(//D,(?- i:x))]
€ - 1

Q(f,(/— () 4 I(f,(/~ )

Since the expression in square brackets takes the forp
W ﬁ4[(,_dz)f4¢€ 4ia({- «*)]  when £, tends toovand we have
Ke (-0~ 5)[(1- <)% 4’ foa(1-a¥] -
== 8[4- 6t a’] - Vet(1-aY <0,
when ]mp,"# O and O 1s arbitrarily small, we can deformate

the integration path a/to the real axis and put §=0 .
Finally we have

K ({Txﬁﬁ)‘/ dp E (p(r-iaie) o
e.-tlt)[g(f’(f—[a))k] +11I(f('/- [q}l t‘)]_ j

(22)
'Q(Jo(/“ L), €]+ C[(}D(/-~ () &)

In the formula (22) of 1s infinitely small, We can put a=0

everywhere except for the term which makes the integral converge.,
) Thus Y

) < [ [0 K (pre) e P
ALt 2l sl phatep] e £
St ie) - (6 pee) s (<))

In the first order of the modified rerturbation theory the
function 7'(:)() «©, l)} in the formula (8) 1s replaced by

11



{:t, l:,_l)) defined by the formula (23)« Then using the equa~

tions (6) and {3) we find in this approximation the Gresn functi-
on of the 85 egustion

G, (rg18) = 5 [
jd‘)e-tl)[(?-ﬁ I-)"' m btt][(?-f.)" m +‘,3J

xp f oy fd} f v K (pre)e” “"‘%o[- AR
. g .-.) m +££:][(J>+ )fh’l‘:‘ ‘.6]‘[(?“ f)fmi‘é_] @l
[(7" ‘5)*#’1 * tE_Z/j}I.

The darived formula defines the Green funstion Gf(f’) 7/5)
only for auch /J and q whea all the integrals convergs. For examp—
1ls, with the interaction taken off /\»O wa odtaia from (24)

-dlfy+ £) msielliG-E)-r x;l

-9 e
Cs (P71E)= f‘” - *iie]
~tl(g+ £)2mie flg- £Fm*sie]

where l)-poo +The integrals scnvergs (or, what is the same, there
exists & limit) when

fm[(i Jé') m* e Jl(9-£)Zm" e [<o ¢

or7+—~4m o

In this region

S(&)
G;f (P: ? /E} =

(p-¢) '
[(9+ £)=m3eefle- £)imie]

12




Now the derived expression oan be analytically oontinued to the
whole real axis and the usual two—particle Green funoction in the

absence of interaction can be obtained.

§4. The Soattering Amplitude

It is known that to find a soattering amplitude with the
help of Green funotion (24) it is necessary to piok out four pole

terms, corresponding to the free ends and then to proceed to the

i'o limit

fppegog) = Lom  (ptmd(gm)

1)71"'?

(pu- mY( 4. - m)iG(p gl E) .

Let us write the expression for the &Green funotion (24)

using new variables /J, ?4 , /9,, and ?z

(R -pa)x -u)[/a,, mue][?:, "’”‘6] (AT ().,
-7 )4 £ fde " jdu
Note that when Y->0° and /:v, ) G t e m”

T, (%,9,9) = Ti (=) =

‘3 o -dp” k
gt K(pE)
&”_)41: f@/fe L[(f’*qx,) m+t€][(f"/bb)"m+lé]

We can put ol =0 sinoe the written integral oconverges, for example,

for the kernels K(f)deoreasing when SD-* oo ,

13
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Denote
‘ _ 4 kA Lo Cc,
P(a) =_z(T/F)7‘ Jdee “CK(e16)D k4 9)D(kp,). (2

Using the following formula

ks l) * - ' A']; ©o
i [V € -0 a-ie)(p te) AT/») 0" (=)
«s0 L @hwé)/lsf-té) (26) ‘
ﬁ >0

-
which 1s fair for /¢(oe)< 0 and X*B < O , we odbtain

:f;}’(})’}/b¢, C/’; ?‘J - (WL (/bf - :.)(711_ m")

1,7’1-)

e PP enp Daidpr ]

Subtraoting 7’(): O), we shall find the formula for the soatter-
ing amplitude, 1in which the two pole terms are already picked out
and cancelled.

, . ) a4 z( ;2 4

(b g) = Gom (a5

L L
1;?1 —’m (27)

25 [y o PR e MO g dpra). ¢
(Zr]
Note that (:L) does not contain momenta /C), and q, , and the

expression ¢(/a, P 50(3_) has the necessary pole singula-—
rities,'-vjv-hioh will be shown further. Hence (27) can be rewritten

in the following form

14



1)

€

iAo
f(/b':‘ff: 9 = (z) A ———ﬂ‘ﬁo(a) (28)

where

2 g '/b")k
P ,f;”“ (iem gt e PP g0

Using the definition of the funotion f(a.) (see (25)), we obtain

L( ¢ Al ,;,):X'
PP o)

[d% ('/c*,@—,bdx

z(z;)" K(e/8)D ) D - -

<= L [doe I K(p-p plE)DTp-)Dp-p)-

2 (23)"

folfe px H{(p-pi+p:lE)

Z(zr) (f ”_f*/-"#/b, m+¢e){f+zf7,+7, m+l£)

Let us denote o = f zf/b, , /3 ‘-’fb-* 2j7?4 and
£z = /b, Smle = ?1 -+ LE
We note that the main contribution to the limit (29) 1s given
by the integrals over the regions near gzero, 80 ol and /g mey be
considered arbitrarily small. The limit (29) 1s equal to the
coefficient C-.b in the Loran expansion of the fumotion
o C(Pr-p2)x y(x) in Z . As 1s known, this coefficient is

15



given by the formula

z 2re

G Pdz e é()o"h)x}”(:r) Z =
¥

1. 4 l.FQ.A _ y; d .
.- d bipeE) -t dE z

where of and /3 are so small that they fall into the contourX.

Then the contour integral is equal to 1 and we obtain for C-L

C = { fo/‘}oeif?a; _[{‘(f‘ﬁ1+/32’/5)'

Denoting
(e .
fo (=) :‘z/(z/r)* Jdke™ K(xie), (30)
we can write
L) 2

Ny
Plx) = € % () - (31)
In the formula (31) all the momenta are already taken on the mass
shell.
Substituting (31) in (28) we obtain the final expression for
the scattering amplitude
Upepdx d )

(P, 9, ‘n:Z‘-% a‘ie € Fndon) RE
f(P’q)/o";?) (27'_)4/ n }7( )_%(,32)

where the functions SO(:Z) and ‘ﬂ(ﬁ‘)are defined by the formulae

(29 and (30)0 -
16
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Expanding the amplitude (32) in powers of the coupling con-
stant ,\-‘- b, it is not difficult to make sure that we have
obtained a consistent expression corresponding to the sum of the
ladder graphs in the K K;=O approximation with the Beli‘ﬂ‘alized
propagator K (/(/ E). It may be of certain interest the further
analysis of the formula (32) with various kernels __%(/O-/D/E)
of the 8BS equation, and also the account of corrections to the
considered approximation with the help of the coefficient funotion
‘7; (%K, 9) , defined by the equations (16), (18).

§5. The Eikonal Representation of the Scattering Amplitude

In the present paragraph we consider the asymptotic behaviour
of the scattering amplitude defined by the formula (32) in ocase
of the fixed momentum transfers 1' and high energies S —>©9,
The essence of the used method is following. We expand the expres-—
sion (32) in powers of the coupling oonstant /\ and £ind the dis-
continuity A)Ln, of the amplitude in the /L -th order of
perturbation theory in case of S —~>c°, Then the complete am—
plitude is restored with the help of dispersion relations and the
summing of series Z,A”fh_ is performed. _

Thus expanding in a power series f: Z/\ }3("’ , we obtain

r L h, ”( (e B h-
- () [ 0 P gy 0" )

Jn n! ()

- (M) ¢ (_ %)70/}74"'0/})»-1 ﬁ/oob-»/a,—ﬁ---'-- het)’

n!(em)™

‘ .ﬁ‘gg{,/.) B+ 9) D~ o).
Jet

17



The discontinuity of the amplitude fh— follows from this expres-
sion

Afh = ¢ )\ (2 rL) jOl ' d}?h—.{ R'(/Qz,'/‘b—ﬂ— T Joh-i) '

/ 3;7*1
h. (2 (33

K(p) 5(p'+ 20,9.) 3(p~ 2pps)

It 13 not difficult to verify that in the c.m. system with the
-——" .
axis £ along /b'z" we have in the case of 5—>©9 the following o

expressions

FL:{g) O O) VZS—
~ 5 /s
L ) )O’O"E}

—
P{‘lbb:{o) A_L)O}'
In this case it 1s easy to integrate over PJ-O and ﬁfi‘

in (33), whioh brings us to the expression (34) for the discon-

tinuity A4 f,,_

A (ard)™ .
“Jr ~/z /L(Ar)a”*“ ” S d}o 7ures o Press

e fc,,,f«f,;ﬂ-ﬂﬂn-ff«a .
-~ pra=e= gl T () T K(g?).

Jomes

£ 10 fin 15
ﬁ(ﬁ) = {O) )b;'.t >—$‘§L}

18
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- /
It is clear that in the case of the kernel K(k')"'.‘,'z’fe when
K

k' —> ©o the main contribution to the asymptotic of the Afn gives
the first term /2=0 in the formula (34).

Thus when $->°owe hﬂ.ve

s b)\ (-ZrL 2,
Ajh .‘/2:/(21)3”;1 fdﬂ",.o/fh‘{i .
~ h-L ~
. - - -y . - N
K- g ne- f’n.u)ﬂ K(p.),
where the following notation is adopted

ﬁ(ﬂ)-:f{—()o) when }o={0,ﬁ,0}- (37)

(36)

Defining the function

L’f?.i}’ ~
.. 1/ 23 B R -
S (%)= 7 ldp € (@),
° (27) |
we can rewrite the expression (36) in the form
. -9 oo
Af = ;, 1 ) S >
where

A (1‘ L) L_, (,A—)J? - N "
L

Note that if the kernel K(k) is given by the representation

LZ\/(K) ]_ﬂ,ﬂ_- .

o KX+ (e

19



(%)=~ L [da p2) Kol 7,1), o

where .h/o i1s the well known MoDonald function.

Using now the dispersion relation

oo oo ,
fos g [LS4fal() o Co [dS____GLF
ime s sts 2ri J s'"4(s%s)

<

we obtain the leading asymptotic term

e G bes (42)

ame gt '

,
jn

Since our formulae for the discontinuity are fair in the
asymptotic region of high energies S-—» oo , §_, 1is a big quantity
X4

5 SH-L
oconsidering that they decrease more rapidly than the 1e°a.d1ng term.

and we have rejected in (42) the terms of the type

Let us also note that the formula (42) 1s fair when /2 >Z.
Taking into account the definition (39) of the quantity Cn,
n
we can sum the power series in A and we can obtain the socattering

amplitude in the eikonal form.

§= fu-iZ (S28) SLE) Y & S5 g (2,)] "

2t @acn !

(43)
L <X
4 vy, ~AX Y- BE) "
o s TR A d )]

where @o is defined by the formula (38) and in the speoial case
by the formula (40).

In the formula (43) the quantity f(,) 1s the scattering
amplitude in the first order in )\ and i1s defined by the evident

expressions
20



__ i N 7 A Ty N ~ibA T
f(”"(frf)"' K sz"P{)-"<i;)‘h K4 )-'é;)qjd S R TCAIC

The formula (43) 1is the generalization of the eikonal repre-
sentation for the ladder graphs with the modified propagators. The
presence of the nextra® term ———3—" in square brackets

. Zs (a,) »
ys connected with the fact that f(,) does not depend at all on S,
and the dependence of the phase is thus that S , which appears
in the all following o:t"ders, canrby no means ve cancelled (how 1t
ocours if we consider the cross-diggrams/g/). Let us also note
that in the case of the scalar 973 ~theory(i.e. f)(ae):@awt 5(2*}4)
in the formula (40)) the obtained expression (43) gives the ocorrect
asymptotioc for the ladder graphs in each order (see for example/ll's.
This fact confirms once more the validity of the k; €/ =0
approximation for a certain class of diagrams in fhe considered
a.symptotio region. '

Sinoce the expreésion (43) has as its quantum—mechanical ana-
lpgj., the m(.}la.uber representation, we can find the corresponding ;

snteraction potential V(.S)’Z‘,) ". Really,
A » ) = 2 (Ui =DAR
re &, (%) = S.o{, V(V, ate A olx, - (s

“In the case described by the formula (40) we obtain ihe

£ollowing equation for-the Anteraction potential. ... .,

- &%}{ !F('Z)Rc (2/&1/)(12;1 V(ml") g - (46)

Using the well-known representation

21



R

@

RO

- . , 2
W“’I(f-e'%'j [ eoa(sea) L=< i
2}2‘+a,z" L © _ _. y ® > %L—'r

~ a0
z+a" O 7 ) ')e<é

t f+th+

(2% a’ﬁ geJ;(c'Ll/:ge’ié”)., x >8

e _. | | /o® 3) ooﬁ(_dz/éae)‘
P .

807v&t'f?f- » £

In conclusion we want to note that we have mainly considered
the kernsls decreasing as _[( /C”*
for the comparison with the models of the 973—type and whioh is
notable for its simplicity and olearness., However the suggested
method oan also be applied to the nondecreasing kernels, which

correspond to the more realistio models.
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