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The problem of the asymptotic behaviour of high-energy elastic and inelastic amplitudes is studied by
means of the functional methods of quantum field theory. The straight-line paths approximation (SLPA),
making it possible to effectively calculate the functional integrals which arise, is formulated.

In a number of recent papers {1-11] the problem of the validity of the eikonal approximation for the
two-particle elastic scattering amplitude at high energies was considered in the framework of various
models of quantum field theory. In these papers the asymptotic behaviour of the sum of the Feynman
diagrams of the ladder type (when all the possible crossings of "meson" lines between two "nucleons”
are taken into account) was essentially investigated in the limit of high energies and fixed momentum
transfers. One of the important results of these investigations is the fact that the principle logarithmic
terms cancel in the sum of the ladder type diagrams in the asymptotic limit S = <, ¢ = fixed. Further,
the sum of the ladder type diagrams tends asymptotically to the sum of quasipotential graphs for the
two-particle scattering amplitude {12-13] and coincides with the Glauber-type eikonal expansion of the
scattering amplitude at high energies and small angles.

In ref. {1] the functional integration methods in quantum field theory were used in studying this pro-
blem. As has been shown in these papers the functional integration methods present an effective tool
for investigating the asymptotic behaviour of the scattering amplitudes. In subsequent papers [14,15]
the functional integration methods have been used for studying the important problem of radiative cor-
rections to the ladder type graphs for two-particle elastic scattering (see also papers [16,17]) and in
investigating the inelastic scattering processes.

In this letter we present some results of investigation of the model of scalar nucleons interacting
with neutral vector mesons [11]. We find closed analytic expressions for the two-nucleon elastic scatter-
ing amplitude and for the amplitudes of inelastic processes of meson production in nucleon collisions.

The asymptotic behaviour of these amplitudes in the high energy limit is studied in the framework of
the straight~line paths approximation (SLPA) formulated below.

It is shown that the principal logarithmic terms in the scattering amplitudes cancel in the asymptotic
limit S — <, ¢ - fixed when the diagrams with nucleon closed loops are neglected. It is shown then that
the contributions of the radiative corrections to the ladder type graphs in the straight-line paths appro-
ximation are factorized and are determined by the quantity H({), which depends only upon the square of
momentum transfers. In the region [t] < m2 the quantity H(f) has an exponential dependence on ¢ and
produces the diffraction peak in elastic scattering in accordance with the hypothesis of smoothness of
the local quasipotential of two particles at high energies [18-20].

Such a behaviour of the elastic scattering amplitude was predicted recently in paper [21] and cor-
responds, in some sense, to the coherent interaction of virtual mesons which belong to the nuicleon
clouds.

Further the differential cross section of inelastic processes were obtained. Under the requirement
of "softness" of secondary mesons the Poisson distributions in the number of particles emitted in col-
lision is found.

We note that the total differential cross section summed over all the secondary mesons may have,
generally speaking, no pronounced diffraction peak in the region uz = |t| < me.
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Such a behaviour is due to the cancellation under certain conditions of two exponential factors, which
correspond to the radiative correction contributions in the elastic scattering amplitude and to the total
contributions from multi-meson production.

We would like to point out the analogy of such a regularity with the automodel behaviour [22] of deep
inelastic processes of high energy hadron interaction. We choose an interaction Lagrangian of the fol-
lowing form

Lint = g¥2@)18Wr) Ay (0): + g2:A2 (1) Y * @)y (x): 1)

where g is some dimensionless coupling constant.
The one-particle Green function of the quantum field in the external field A,(x) satisfies the equation

{[i% +8A02 - m2} G, 3|4) = -64(x-3) @)

The formal solution of eq. (2) for the Fourier transform of the Green function can be represented by
means of the functional integral
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where
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is a normalized volume element of the functional space of the four-dimensional function v,(7) deter-
mined on the interval 74 S 7 < Tg.

The two-particle elastic scattering amplitude is defined as a vacuum average of the product of two
Green functions [11]. Below, for simplicity, we shall neglect the vacuum polarization effects as well as
the diagrams with closed nucleon loops. The propagator of the free vector field (Daﬁ is determined by
the expression

Dap = Bap = Kakp/u2/(k2 - u2) ' (5)

Taking into account eq. (3) and eq. (5) we obtain the following closed expression for the two-particle
scattering amplitude f
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is a conserving transition current. Obviously, an exact functional integration in expression (2.9) is not
possible. Therefore, we use below the approximate method of calculating the integrals over vp and vy
[23,24], called by us SLPA. The functional variables v and v2 formally introduced in eq. (3) for ob-
taining the solution for the Green function, describe the deviation of a particle trajectory from the
straight-line paths. In fact, if we put v = 0 in formula (7) for the transition current, we would obtain

T In eq. (6) the mass renormalization m% = 2 + Om® has been made. It removes divergences appearing in the inte-
gration over the variables &1 and &g [14].
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the classical current of the nucleon, moving with momentum p at £ > 0 and with momentum q at§ < 0

We note. however, that the approximation v = 0 is known to be inapplicable at values of the proper
time of the particle close to zero, when the particle classical trajectory changes its direction. In the
language of Feynman graphs the approximation means that the quadratic kK -dependence in the nucleon
propagator is neglected. It can lead, generally speaking, to the appearence of divergences of the inte-
grals over d°k at the upper limit.

A better approximation is given by averaging the nucleon current (7) over the functional variable v,
i.e.

2p. + K 2q.,-
( 7/ 7/ - L o (8)
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For this reason, in seeking the two-particle elastic scattering amplitude we shall use the SLPA, which
consists in substituting in the exponential exponent in eq. (6) the current product averaged over the func-
tional variables vy and vy [11].

Thus. in SLPA the expression for the elastic scattering amplitude takes the form
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It is interesting to note that the contribution of the radiative correction is fagtorlzed in a form of the

factor H(t) depending only on the square of the momentum transfer ¢ = (pl q¢)", as in the scalar field

interaction model [14]. The analogous phenomena of the factorization of the radlatlve correction contri-
bution in quantum electrodynamics was found in the articles [25-27].

In the high energy limit S — = at fixed momentum transfers f limited by the condition |t < m? the
expression for the elastic scattering amplitude has the form
F(s, ) =i(s - u) v(?) exp (at) (13)
where 9
- &
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and K is the Kelvin function of zero order.

The amplitudes of inelastic processes of meson production in two-nucleon collisions [11] at high
energies can be determined by means of a generating function f(pl,pz, 41,99 ]AeXt) having a meaning of
the scattering amplitude of two nucleons in the presence of the external f1eldA

In what follows we will consider the case in which the momenta of the secondary meson in the center
of mass system satisfy the requirement of "softness"” [15]:

T We note that taking into account the identity of nucleons leads on symmetrization of eq. (13) to terms vanishing in
the limit S — % with fixed .
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where the momenta of the initial nucleons are chosen along the Z-axis.
Under this requirement the amplitude of N-meson production is factorized and can be written in the
following form:
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where Ea(x) is the polarization vector of a meson with the momentum «.
We find also the asymptotic expression for differential cross sections of "soft" meson production,
when the meson momenta satisfy eq. (16). It has the form:
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The integration region Qp over secondary meson momenta is determined by the condition
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Consider now an approximation, in which the total momentum of the secondary mesons can be neglected
in accordance with the requirement of "softness” (16). In this approximation eq. (19) takes the form of
the Poisson distributions

w,,(s,2) = ;llTexp{Z(lt} [1(s, )] (21)

where the quantltyT
(s, t) = -5 f \; ppapl? (22)

is the average number of secondary particles produced in the two-nucleon collision at S = « and fixed £.
Using eq. (8) for j,, we find for !tT < m? that

n(s,t) = -bt (23)
The parameter b depends, in general, on a special form of cut-off of the mtegral in e% (22) over the
meson momentum. In the particular case when R2 m2, 1 el uz/m , In (m? /u?) > 1n(1/a)?
where a = R, /p, we get

b = {2g2/3(2m2m®} {1n(m2/u?) + 1} (24)
which coincides with the double slope parameter of the diffraction exponential (15). Notice that the
equality 2a = bis true also in the infrared asymptotic limit g — 0.

For this case, after summing in eq. (19) over the number of secondary mesons, we find that the

dependence on the variable ¢ cancels and the diffraction peak in the total differential cross section dis-
appears.

T The integration region in eq. (22) is effectively limited by |KZf Rg, ]M_L|
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This regularity was mentioned in paper [20] and is in analogy with the automodel behaviour of deep-
inelastic processes of hadron interactions at high energy [22].

The straight-line paths approximation, used in this work corresponds to a physical picture in which
colliding high energy nucleons at the act of interaction receive a small recoil connected with the emis-
sion of "soft"” mesons and retain their individuality.

The authors express their deep gratitude to Profs. N. N. Bogolubov, D. L. Blokhintsev and A. A. Logunov
for stimulating discussions.
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