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§ 1. Introduction

In the recent time the eikonal approximation of small angle
scattering amplitude which is well known from nonrelativistic quantum
mechanics has been intensively employed for the description of high
energy hadron scattering,

In this connection the problem arises to prove the validity of
the eikonal description in relativistic quantum field theory,

Recently in papers/ Y2 an approach to the study of high energy
particle scattering was developed which is based on the Logunov-
Tavkhelidze quasipotential equation for scattering amplitude in quan-
tum field theory/3'4/. It was shown that under reciuirement of smooth
behaviour of the local quasipotential the amplitude of high-energy
particle scattering at small angles satisfies the eikonal or the Glauber
representation/5/. Notice, that the first application of the eikonal
representation in the framework of phenomenological optical potential
description to the high energy scattering was given in papers of
D.LBlokhintsev et al. /617 ’8/.

Among recent works we mention papers/ 9,10, where the eiko-
nal approximation is applied to the phenomenological analysis of
high energy hadron scattering on the basis of nonrelativistic Schro-
diﬁger equation with smooth effective potential. In paper /11/ the
Glauber representation is generalized to the case of spin particle

scattering at high energies.



It is of great interest to explore field-theoretical models to stu-
dy the problem of the. validity of eikonal representation in relativistic
region and the structure of effective quasipotential of two particles
at high energies,

We should mention papersliz’ 131 where the problem of the va-
lidity of eikonal description was investigated is some lowest orders
of perturbation theory,

In the present paper we demonstrate the efficacy  of the
functional integration method in quantum field theory/ 14/ jn studying
the problems mentioned above, As an example we consider a model
of scalar "nucleons" and "mesons" with interaction lagrangian

Loy =800 (0 $(x):
(1.1)

By means of the functional integration method we have obtained

for amplitude of scattering of two spinless particles or "nucleons"
the closed analytic relativistic invariant expression, In obtaining the
results we have neglected the vacuum polarization effects, the ra-
diation corrections to the nucleon lines as well as the k; k; -terms
{i#j) in the nucleon propagators in inner lines of Feinmann diag-
rams. The validity of these approximations at high energies will be
discussed below, ‘

The expression obtained here in the limit of high energies

S » o0 at fixed momentum transfers t takes the form
of the Glauber representation with effective Yukawa potential of
interaction between "nucleons". -

Notice, however, that the appearance of the Yukawa potential
is due to the simple model we have considered. In principle by the
same method one can consider a more complicated model, where
the interaction between nucleons is due to the exchange of a set
of mesons with various masses and spins. In the framework of such
a model it is possible to construct the smooth effective potential by

choosing in an appropriate manner the density of the propagators.
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The plan of presentation is as follows, In§'2 the functional
integration method is used to find the two-particle Green function.
In the next paragraph employing the two-particle Green function the
scattering amplitude is constructed and the procedure of transition
to the mass shell is developed for it. Here use is made of the appro-
ximate method of calculation of functional integrals which is equiva-
lent to the neglect in perturbation theory of the Kkk; —terms (i#j)
in the expressions for the Feynmann propagators,

§4 is devoted to the obtaining of an integral representation in
the Glauber form for the scattering amplitude in the asymptotic re-

' gion of high energies and fixed momentum transfers,

§2. Two~Particle Green Function in the Model
L =8: ¢ (06 (x)

The one-particle Green function of the quantum field ¥ (x)

in the external field #(X) satisfies the equation/ 14/,

[i’az -m%4g d ()]G (xy|d)=—5 ‘x-y), (2.1)

the solution for which can be written in the form of the functional

integral/ 15/
o —ls\m2 ¢ s 2
G(xy|¢)=iof ds e C,6Ja vexp{-iofdé'[u#(f)—

. (2.2)

- g¢(X—26fV(rl)dn)] N (x=y=2 [ v(7)dn) .

The quantum two-particle Green function is connected with

. the one-particle function as follows/ 16/
G(x, % 1x,%x,)=Cq fodepi-+ [$(ID” ()b(-q)dq} x

x[6(x, %, [$) G (x ;x,1&) +G(x, x,16)6 (x,x,[$)18, (), (2.3)
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where 5 (¢) is the average of the S -matrix over the ¢ (x) -
field vacuum, As was already mentioned, we do not take into account
the closed loops of the field ¥ (x) and put S (¢#)=1 .,

Inserting (2.2) in (2.3) and performing the functional integration
over ¢ which is reduced in this case to simple Gaussian quadra-
tures we get/ 17/

00 oo —lm2(s|+52)
G(x,Xxy|xgx,)=i’ [ ds,of ds, e C, fov, fov, x
0

s
S

51 1 s
xexpi-i [ v?(f)d-f -if L»zz(f)df +vig’ [ d¢, 1352 x
° ¢ ° ° (2.9)

) %1
xD[x, -x,+2 v, (n)dyg =2 [v (n)d 5 1}
Tt g

" 1 4 2
x & (x, ~-x, -2 6{ v, (mdn) & (x,-x, —20_[ v (mMdn)+(x, ox ).

We note that eq. (2.4) allows to take into account only diagrams
of the following type

I+ E+:Z:+...

since the terms resulting in radiational corrections to each of the
both nucleon lines have been neglected in receiving eq. (2.4).

Going over to the momentum space

1 —lqlxl-lq2x2+lptx3+lv X4
fdtx fdtx,l d*xg [ d*x, G(xx,lx,x)e (2.5) ?

G( qqq 2‘ P, pg)" ?2”—)8
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we carry out easily an integration over x,,x, taking into account

4
the 8" —functions in (2.4 ). By replacing then the functional variab, - .

les
vi(n) v (n)=p, 5 vy (n) svy(n)-p,
(2.6)
we have
i2 . . tx y(p —a) +ix by =ay)
G (q,9, I p,p,)= = dx,fd x, e %
(2n)
00 o0 lSl(P?—mz)-f'lsz(;)22—m2)
xof dslof ds, e CV f3v1 f3V2 X
Sy s (2.7)

sl 52 2
xe { —i [ wl(n)dy =i [ v2(p)dn +ig [ 46 [d& x
0 0 2 0 10 2
81

x DIx,=x; +2p; (s, =&, )-2p, (s ,— {-‘2)+26f2l/2 (n)dr;—2£ﬁ’l(7))dq]}+
2 1
+(p,~p,).

After passing to the variables

y=X_+X_; X=X =X (2-8)

in eq. (2.7), an integration over y can be performed which gives
the 5* ~function ensuring the four-momentum conservation law.

G(q,9, ) =
1921 P P2 (2)*

4 = 00
& (p +p, =4, =q,) J ds, [ds,x

2 2 2 2
fs (py~m )+isy(py —m ) ix{py~aqp) (2.9)

x e [ d'x e C, fov, [v,x



sy s, s Sg
A DL B A O L LRI ) J 46 x

Sg st
x D [x +2p1£l+2p2§2 +2 [ v, (n)dn-2 f v, (mdgl} &

S2763 2176

+ (py+p,)

Let us discuss eq, (2.9) in more detail.

Making an expansion in the coupling constant g2 and carry-
ing out the functional integration over v which by the Fourier trans-
formation reduces to simple Gaussian quadratures, we get the per-
turbation series for G( 9, 9,/p,pP,y). In doing so, the integration over
the functional variable v in the argument of the D -function leads
to a quadratic dependence on the meson momentum k .

The elimination of v from the D -function argument in (2.9)
thus means, in the language of the Feynmann graphs, the neglect
of the quadratic dependence on k in the nucleon propagator,i.e.

1 1

-

2 2
(p+§k,) —-m 2p 3k,

Such an approximation is, as is known/ 15’16'17/, valid for
the infrared asymptotics in quantum electrodynamics, Its validity for
the study of the high energy behaviour of the Scattering amplitude
is, however, not proven, Therefore we shall use the approximate
method of calculation of the intfegrals owver ¥ which allows one to
retain the quadratic dependence of the propagators on k, ,
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§3. The Scattering Amplitude

Using the expression for the two-particle Green function (2.9)
we now find the two-nucleon scattering amplitude by the well-known

formula:

(2m* 8 (p,+p, —q,-a,)f(q,a,lp,p,) =

. . 3.1
= fim  (q7-m?)(q%-m2)(p2-m? )(p? ~m"’)-G(q,q.,.|p,p2).( )
?;Q; -Dzl-l-’zz"'ﬂ2

‘ Inserting (2.9) into (3.1) we get

4
(27) (a4, p,p,) = fim (qf—mz)(q";—m2)(p"’l—m2)(p22—m2)x
Qf-Q;.D?.D;-’mz
is oo o0 |Bl(l)2r'm2)+laz(p22—m2) B i(pl-q‘)X
g (211)4"[ dslgdsz € fdxe C, fév, [bv, x
s, 1,2 d* &
(=ig") fdn, fdn, [ . ——— exp Likx +2ik(p, 7, -p,n, -
-p+ie
(3.2)
8 sg 1 . 8y s,
~fvi(mdn + [ v (m)dp )i J drepl-ig Afd&, J & x
*rh "2 =2
Bl -‘2
x D(x+2p & -2p &, -2 £vl(n)dn +2 fv (n)dy)i +
17 S84 Sg

.' +(p ~p,).



In this expression the operation of subtraction of the unity
from the exponential whose exponent contains D —function is per-
formed by the formula

gb(x) 1 AgD(x)
—1= A .
e g ofd D(x)e (3.3)

It results in the exclusion of the terms corresyponding to the
propagation of the both particles wihtout interaction,

We make in (3.2) the expansion of the last exponential in a
series in g2 which permits us, integrating over x to get
(2m) 8" (b, ~q, 4k + 3k, ). |

i=1
Now it is easy to integrate the obtained expression over k.
Then reducing again the series to the exponential and making the

change of the functional variables

v.i(n) - v (n) +(P,=4,)0(n-(s =9

(3.4)
Yo () = v (1) + (P, =4,) 0 (7-(s =)
we get the following expression
f(q.q2|P,P2) =i21”~)4' fim (q2l_m2xq§_m2xp21_m2xp22_m2)x
af.q,f.pf.pg-»mz
oo . lsl(pz’l—mz)i- laz(pf‘;— m? s1, Sg
xofds,ofdsze C, fov f&uzexpl-iofv!(q)dq—iofv:(rl)dr]lx
®1 2 ~ix(p —q )+i7 (qz—p2)+l7] a2 -p3)
<(g") fdn, fdn, fa'x D (xye 10T (3.5)

1 sl 52
x JAdr e lig?a Jd¢, Jd&, Dl-x +2p (£ ,=n,)-2p, (£ 59 ,) -

s,~1
“2(p,= 9, X£,=1,00 (1, £ )=2(p, ~q, X&,-n, )e(nz—f,,)—zj_?in)dn .
1 1

83~7y
*2 S v(n)dalie (pep,) .
’2—62
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In order to pass to the mass shell it is necessary to pick out
2 2 2
the pole terms cancelling the zeros (Py —m° ) and (qf—m ) .
Now it is easy to remark that the integration limits in eq. (3.5)

may be changed in the following manner

(-] = oG .} -] o0 o0 00

1 2
[ ds fdn,f ds,fdn, = [ dn, f ds, [ dn, [ds, . (3.6)
o o o 0 0 7, 0 M,

Making the change of the wvariables

Sy + S, +7,; S, S 4+ 7, (3.7)

we get the expression

%2

i oo 00 1
f(a,q,lpp,)=—r  fm 2*("ﬁ—m”)( qZ—m2)(p,2—m”Xpi—mz)ode,JdSz{dm Jdm2 x

(2 ﬂ)‘ q'f “9g PPy

1810}~ m?) 4189003 ~m? ) + 07 (aF~m® + 1) Catm ?)

j'1+7h2
x € C [8v, fov, ewi-i of vl(q)dq -
"2t ~ix(p =a ), Syt sy 4],
S A tGe) 4% D (e fanemtigh [ de, T ag, x
(3.8)

x DI-x +2p,(&, -7, )—'2(pl—qlel—’71 V0(n, < )28, (‘fa"’2)‘2(P,‘q1)(‘52"13)q'la‘fa)~

b Sg
=2 fvi(mdyg + 2 [ v, (n)dp )} +(p,wp,).
’x“’h"fnl s )€y ? 1 ?

Now after obvious substitutions

& o+ & + s &y - £a + 1y (3-9)

11
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we introduce new variables r, (i

7 r
S, = —_— S = ‘3\—
! 2 _ 3 2 .2 2
p[ m P, -~ m
T3 T, (o.lu)
My = T Mo = 7,

the integration over which will Separate the pole terms needed, Per-
forming then the transition to the mass shell we get the amplitude

A+A
e, 9,00, p,)=c 154 [50, opl=i [ vi(n) dy-i [ v dq 1

2
i ~IxCpy ~ 1 A A
x(g;)“fd‘x D (x) e Peey qx)f da expiigzz\fdflfdf,x
(27) 0 —-A —A

(3.11)
x D[ -x +2'f; (p,0 (‘fl) +q19(‘f|))‘2‘52(l’3 0 (&3) + q, ¢ ("'fa )) -

A A
‘2,\!5, “w(n) dp +2 A{f:z('l) dy 11+ (py « p, ),

where A » « at P,z'z;qf_z - m? .

The transition to the limit A » » should be performed only
after the functional integration over vi(n) and vo(7)  and the integ-
ration over &, , €, .

An exact functional integration over vy (1)  ang v2(7) does
not appear to be Possible, therefore this is done approximately
using the method developed in ref/15/, pphie method is based on

the formula

a = 2
Colovepizif v®(gyag et v _
0 .
2.n oy n (3'12)
F s g F~F
=eF(y)f8u exp |—j fvz(q)drlff. M ’
[}] na n!

12
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where

F(y) =Cy [V e)q)l—i[vz(n) dp 1 F (y) . (3.13)

If we restrict ourselves in the sum over n to the first term n=10

then this approximation

321"(y.1/)'s e 521:(:!) (3‘14)

Cof bv exp t=i [ vi(m)dn e
0

means that the exponential exponents in (3.11) depending on
should be replaced by their average value over the Gaussian measu-
re, according to (3.13). It is easily seen that such an integration
of the D -function leads to the appearance of the quadratic depen-
dence on the momentum k in its Fourier transform. .

Indeed, since we have

£,

&
51

tkx+ik ]| YO d 4
[D(K)e éz' PAT gk, (3.15)

D(x+ [ v(n) dy) =
X (

1
2m)4

in (3.13) the integration may be performed

ikx+ik2‘§1—£2| .

—l{)vz(rp an ‘fl 1

C, [ove D(x+[ v(pdp=—m—/D(K) e dk.(3.16)
£, (27)*

When integrating further over & and & the k-~ dependence

appears in the denominator of the nucleon propagator
1

p’+ 2p T ki+ ¥ ki-m
in the propagators no terms of the type ky ky where ki and K;

2 . However, in this approximation we get

are the momenta of different mesons. The subsequent terms in the

sum (3.12) take into account corrections to the approximationx, k k=0

(i) -

x/ This approximation is disci.xssed for the infrared region in quantum
electrodynamizs in refs./15,18/,

13



The applicability of this approach in the region of high ener-

gies/ 18/ at fixed momentum transfers may be cleared up
in perturbation theory, It may be shown in particular that neglecting

the terms k, ki (i #j) in nucleon propagators in the case of ladder

diagrams
it
S —— g g ;... §

does not change the asymptotics at high energies, which at n —me-

sons exckange has the form -fns However it is necessary to
gn~1

note that this abproach sharply effects the asymptotic of the Feyn-

mann draphs in momentum transfers at t » « and g —fixed,
So, making integration over ffl and :52 sy we get the relati-
vistic invariant expression of a closed form,

.42 4 ~ix(p ,)l
(W galeypy)=LB ;' p (e TPy
(2n)

~AX(x;q,a, iPy.pg Y
+
0

(3.17)
+(p, = p,),
where
2 4 —tkx
g d ke 1
X (X359, ,q,5p ,p.) = f { "
P ey k'—p hic (k*+2kp, )(k =2Kkp,)
(3.18)
1 1 1
+ + + L
(k“-qu,)( k®-~2kp,) (k®+2kp )(k? +2kq,) (k*~2kq,) (k ® +2kq 2"

14
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§4, Eikonal Approximation for the Scattering Amplitude .
We shall consider the scattering amplitude (3.17) asymptotic

behaviour in the region of high energies and fixed momentum trans-
It is convenient for the further consideration to go over to

fers.
the c.m.s.
P, ==Py» 4, ==qp Py = Py = 9y = Ay (4.1)
in which the Mandelstam variables "S, t , u have the form
. 2 42 2
s =(p, +P,) =4(p, + m )
2 2
t =T =-2p, (1 —cos 0 ) (4.2)
w =U%=-282(1 +o0s6),
where
T =(p, =9,) =(a,=p,)
U =(p,-q,) = (g,—-p,) - (4.3)

and fixed momentum transfers t it is

s
is perpendi~

At high energies
not difficult to show that the momentum transfers T
19/

cular to P, and P,
t
: (4.9)

|
)l" T =—(,-p) + A,
1

where
(4.5)

(Ap,) =(Ap,) =0.

15



We choose the direction of the momentum § along the z -axis

P[ '(Po,ovo'pz)
(1.6)
Pq =(po|0|01"P")

and get

A=(0, A0 ) . (4.7)

For studying the scattering amplitude asymptotic behaviour in
the considered region we shall make an analysis of the phase fun-
ction (3.18), which we shall represent in the form :

X (X39,,9,3 P0P,) =X+ X, » (4.8)

where

2 d(k . EX S X 1 1
xl = : 4 2 ez [ 2 2 + 32 2 K4,9)
(27) k'=p rie (k- +2p,)(k =2kp) (k =2q)(k +2%q,)

g 2 d4ke-ikx 1
$ 2 2 2 3 * 2 2 ](4'10)
(2n) kK —p bie (k"-2kqy(k " ~2p;) (W +2kp (k" +2kqy)

L

It is not difficult to see that the account of only y, corres-
pords to the Feynmann ladder diagrams in perturbation theory, but
the function X, is responsible for the appearance of the nonplane
graphs with crossed mesons lines,

Let us consider in more detail the phase function x, . It
may be (ound , in principle, with the help of residue theory, Howe-
ver, it is more easy to make use of the analytical properties of the
function x, in the variable s . Its discontinuity on the cut

16
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. which goes along the real positive s -semi-axis is determined accord-.

ing to the well-known rules/zol and is equal

- 1kx

—g2 d‘ke

- [6(k” +2k p,)8(k>—2kp, ) +
(2")2 ki-p rie ' :

A, x,

+8 (k* =2kq, )5(k+ 2kq, )] = (4.12)
rd - ix _;2
R ik_L xl z 2p0 21 x, Po
2 d%k, e
g 1 e e
= y I f — T T
4(27) po ,/poz _T‘i PEIN i:, ( 1 ) I +kJ_+( po)
4 2po
We note that eq. (4.11) for the X function discontinuity on

the cut does not depend on X, and therefore does not contain
the retardation,

In the high energy limit, when p, = 41;-' o0 , eq. (4.12)

as x] non-zero has the following form

g2 dz.l’(le igz
Ay x1 = I — 2 Ko(rlXy])
* (27)%s K} +u? 2ns  ° ol (4.12)
where K (z) is the Kelwin function of zero order.

_ Using a dispersion relation without subtraction one may restore
the phase function x; at high energies

2 -»
o ds® Agrx g Ko@ixyl) ’
e N bl ALY NS (2.19)
27i o5  (s’-8) 972s S

17



The phase function X may be investigated in a similar
way. The x, function discontinuity on the cut. which goes along
the real negative s -semi-axis, is equal to

3 «. -~
Bexs = (';)’ kde.';ezm [5(k* ~2kq )5 (k" ~2kp, )+
+8(k®+2kp )8 (ks 2kq M . (4.19)
Y o ok
g daklel I . 35, . -3 ixym,
) 4(2n)2po T 1 , . K2 z+ 2 E
5~ ki k| +n -(—;-O-) k +u A2p,)

Eq. (4.14) contains, generally speaking, the dependence on
Xy s however it may be neglected in the high energy limit and at

non-zero X; ., As a result we get
2- !R—’J.:J‘
2 -LB i 2
g 8 -
B,x; = ] = Ko (elx, 1) -
" @e)s By u s ° 4 (4.15)

Now, using a dispersian relation without subtraction we get the f{ol-
lowing expression for the phase function X, at high energies

1 Tt dsTALx, e Kofulxy])

X, =t f = = .
T 2m < (5°-s) 9nZs 5, (4.16)‘

Thus the full phase function at high energies and for X, £0
has the form

2

X=X, +x  =——FKo(ulX,}])

! 2 2n 8 (4.17)

18



It is interesting to note that in the sum of the both parts of
the phase function (4.13) and (4,16) the terms, containing logarithmi-
cal dependence on energy, concealled out, In the given case this
fact is due to the crossing symmetry of eq. (3.18).

The phase function behaviour at impact distances smaller than

the particle wave length

1
Po (4.18)

Xx; <A =

can be determined from eqgs. (4.11) and (4.14).
Fixing A =;— and letting xX; tend to zero, we get
0

X1y Lo 72X, o (4.19)

X

il
The x,(s) value is finite and has the following asymptotic
behaviour at high energies
1 ,2 8
s) ~ — " —.
X, (8) ~ 3 PE (4.20)
Singling out in the x 1 — blane the small € —vicinity of the
zero point it is possible to show that the contribution of this region
to the scattering amplitude vanishes at ¢ -0
In view of the fact that the phase function (4.17) does not
contain x ;- and x . ~dependence in high energy lmit and using
the formula

¢ li‘.l._;.l.
~t( —=)x 2>
z d°k  dk_ e
s ES
J dxg dx_ D° (x)e | . z (k- t_)=
(27) k?+ k% + p? 5,
4 z (4.27)
R, %
. dziie 11
= 2 2 2 2’
@7 LT,
Vs

19



for the first term of the amplitude (3.17) at small scattering

angles -—ts—- -+ 0 we get the expression
lg2
- - K, ( )
is R TRV o ol
£, (s,t)= fm - [ d%x e (e -1),
€0 (2")4 IX._I I>e (4.22)
where 3 2
A.L =i .

The second term of the scattering amplitude obtained with the

aid of the replacements p =P, or Te U has the form

2 1xU ~IAX o )
£ (s,u)=- E _[d*x D (x)e [dXe
(2n)* 0

(a.23)

At small scattering angles and high energies eq. (4.23) containes in
the integrand a rapidly oscillating exponential e txv and decreases
more quickly than f, (s,t) by one degree of _;_. .

Thus, we have got for the high energies and small angles
scattering amplitude the integral representation (4,.22) which coincides
with the guantum-mechanical Glauber type representation. with the

eikonal function:

> g2 N ) —
x(s,x ) == 5—K, (#lel)=—ls-_fw vV (Vx2+Z2yax, (4.29)
where .
2 “I‘l"l
V(s, |x]) =~ e
’ 4z 1v1 (4,25

is the Yukawa two-particle interaction potential.
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§5. Conclusion

Using the functional integration method we have obtained the
closed relativistically invariant and cross-symmetrical analytic expres-
sion for the scattering amplitude of two spinless '"nucleons" in the
model L, =g: gbz;b :  « In the limit of high energies s »»~ and
fixed momentum transfers t this expression takes the form of the
Glauber representation (4.22) with the eikonal function , which cor-
responds to the Yukawa interaction potential between the "nucleons"
(4.24). However, we have taken into account only the usual ladder
graphs and generalized ladder graphs with crossed meson lines
neglecting the wvacuum polarization effects, radiation corrections to
the nucleon lines and the so-called k;k;, —terms (i¥j) in the
nucleon propagators,

The result obtained means essentially that in the framework
of the approximations used the retardation effects disappear in the
limit of high energies at small angles,

Notice, that the n -th term of an expansion of the scattering

amplitude (4.22) in powers of g’ nas the asymptotic behaviour -:—_1
' s

Such an asymptotic behaviour is an agreement with the asymptotic

behaviour of the sum of the corresponding Feynmann graphs up to

the sixth order, as it is shown in paperllz/.

The expression (4.22) coincides with the result of paper/21/,
where the eikonal approximation for the amplitude of scattering of
two particles is investigated by the method of Schwinger variational
derivatives. But in that paper the terms k? are eliminated from
the nucleon propagators what makes covergence of the integrals on
the upper limit worse. Besides the problem of the disappearance of

the retardation effects in the final result remains unclear,

It should be noted, however, that the study of the importance
of the retardation effects for high energy particle appears to be

rather interesting,
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