QCD and FSI at LEP

e⁺e⁻ ® hadrons data

Nigel Watson / Birmingham

Measurements

- Select hadronic final states, rejecting
 - 4-fermion-like
 - Hard ISR
- Observables formed from charged particles, neutrals, or energy flow objects
 - ▶ 1-T, M_H , B_W , B_T , y_3 , C-parameter
- 4-fermion background subtracted
- Bin-by-bin corrections
 - Acceptance
 - Resolution
 - ISR contamination
- OK description of data by MCs

a_s Fits

I NLO $O(\mathbf{a}_s^2)$ pQCD prediction for event shape variables, y

$$\frac{1}{s}\frac{ds}{dy} = \boldsymbol{a}_{S}(\boldsymbol{m}^{2})A(\boldsymbol{y}) + \boldsymbol{a}_{S}^{2}(\boldsymbol{m}^{2})B(\boldsymbol{y},\boldsymbol{m}^{2})$$

■ NLLA (resummed) prediction $R(y) = \mathcal{F}(\boldsymbol{a}_{S}) \exp(Lg_{1}(\boldsymbol{a}_{S}L) + g_{2}(\boldsymbol{a}_{S}L))$ $L = \ln\left(\frac{1}{y}\right) \quad R(y) = \int_{s}^{1} \frac{ds}{dy} dy$

LogR and R matching avoids double counting of terms Use modified matching schemes, ensures L=0 for $y=y_{max}$ $L = \ln\left(\frac{1}{y}\right) \otimes L \cong \bigotimes_{k=1}^{\infty} \left(\frac{1}{y}\right)^{p} - \left(\frac{1}{y_{max}}\right)^{p} + 1 = 1$

■ pQCD predictions corrected for hadronisation using MC Nigel Watson / Birmingham ISMD'02, Sept. 2002

Nigel Watson / Birmingham

Systematic Uncertainties

- Experimental (little correlation, full covariance)
 - Event selection, particle reconstruction, detector corrections: vary cuts or models
 - Background subtraction (4-f criteria, s_{gg} , etc.)
 - ISR corrections (LEP2)
 - Typically around 1%

Hadronisation (moderate correlation, on-diagonal covariance)

- Model comparisons: string (Pythia), cluster (Herwig), colour dipole+string (Ariadne)
- Model parameter variation (Pythia)
- typically around 0.7-1.5 %

Theoretical, pQCD (large correlation, on-diagonal only)
 LEP QCD WG devised new prescription...

Theoretical Uncertainty

Uncertainty band obtained (for fixed a_s), varying:

- Renormalisation scale
- Rescaling factor $L = 1/\ln(y.x_I)$
- Kinematic limit y_{max}
- Modification degree
- For fixed reference prediction (lnR) find a_s variation which covers this band (within the fit range)

```
■ Typically 3.5 - 5%
```

Combined Result

ISMD'02, Sept. 2002

all LEP

Power Law Corrections

4-jet rate

ISMD'02, Sept. 2002

Nigel Watson / Birmingham

Motivation: W Boson Mass

- LEP gives best measurement
- Agreement, direct/indirect

Nigel Watson / Birmingham

D(W+-W-) decay vertices ~ 0.1 fm hadronic scale ~ 1 fm
Large spacetime overlap
Colour exchangeW+« WDM_W bias ~ 25-300 MeV ISMD'02, Sept. 2002

Single dominant uncertainty:

WW®qqqq only

"Final state interactions"

and the second second

Charged Particle Multiplicity

Nigel Watson / Birmingham

Particle Flow

Motivated by simple string picture of CR

- Regions of interest
 - Define 4 planes
 - ▶ Pair jet-jet Û W
 - Minimise $\Sigma \angle (j^2 j^3) + \angle (j^4 j^1)$
- Project particles ® planes
 - Compare intra-W / inter-W
 - ~ "string effect"
 - Define R_N
 òintra-W
 òinter-W

(away from jet cores)

ISMD'02, Sept. 2002

Nigel Watson / Birmingham

Event Selection

- Topological
 - ▶ 4 distinct jets, y₃₄>0.01
 - ▶ 2 angles < 100°</p>
 - ▶ 100° < angles < 140°</p>
- < 100° < Large/small not adjacent
 - ▹ Good jet-jet Û W
 - Efficiency ~ 15%
 - Correct" pairing ~ 90%
 - W mass
 - Minimise SD(j2-j3)+D(j4-j1)
 - Pairing integral to selection
 - Efficiency ~ 85% (A), 40% (O)
 - "Correct" pairing ~ 75% (A), 90% (O)

Particle Flow

Quantitative Measure

Quantify using ratio of sums, R_N

$$R_{N} = \frac{\int_{0.2}^{0.8} \frac{1}{N_{event}}}{\int_{0.2}^{0.8} \frac{1}{N_{event}}} \frac{\mathrm{d}n}{\mathrm{d}?_{\mathrm{R}}} \mathrm{d?_{R}} (\text{intra - W regions})}{\frac{\mathrm{d}n}{\mathrm{d}?_{\mathrm{R}}}}$$

Different experimental acceptances, normalise to shared no-CR MC sample before comparison

Very different selections, weight by sensitivity for each CR model, i:

$$w_i = \frac{\left(R_N^i - R_N^{\text{no-CR}}\right)^2}{\left(dR_N^{\text{stat.}}\right)^2 + \left(dR_N^{\text{syst.}}\right)^2}$$

Nigel Watson / Birmingham

Combination Systematics

- Each expt. evolves their data to single Ös point and averages
- Systematics considered correlated or uncorrelated between expts.
- WW signal
 - \Rightarrow Hadronisation model, spread in predictions of Koralw + {Jt,Hw,Ar}
 - \Rightarrow BEC, **D**{intra-W no-BE}
- (4-jet) Background subtraction <u>د</u> z ۱.2 189-207 GeV (preliminary) \Rightarrow Z \otimes qq, vary $s_{aa} \pm 10\%$ \Rightarrow Z \otimes qqqq, vary $s_{ZZ} \pm 15\%$ \Rightarrow Z \otimes qq hadronisation models I Energy dependence 0.8 \Rightarrow Model dependence of $\ddot{\mathbf{0}}_{\mathbf{s}}$ evolution L3 data 0.6 SKI $(k_1=3)$ **Detector effects** SKI 100% 200 205 185 190 195

ISMD'02, Sept. 2002

[no evidence for inter-W BEC]

LEP CR Combination: SK-I model

- Vary reconnected fraction in combination
- Preferred P_{reco} ~ 49% in data
- Increases Dm_w from LEP

Ariadne and Herwig CR models ALEPH ALEPH AR2 DELPHI DELPHI L3 L3 OPAL OPAL LEP 0.959±0.014 LEP 0.95±0.015 1.2 1.2 $r^{o}R_{N}(x)/R_{N}(no-CR)$ $r^{o}R_{N}(x)/R_{N}(no-CR)$ r("Ar-2")=0.989 r(data)=0.959±0.014 2.1σ r("Herwig-CR")=0.987 r(data)=0.950±0.014 22.6σ

ISMD'02, Sept. 2002

Nigel Watson / Birmingham

Summary

as

- New LEP average, LEP1+LEP2 event shapes
- Improved prescription for theoretical uncertainties
- V. precise a_s from 4-jet rate, mean values+power corrections

Colour Reconnection

- First combination, Summer 2002, all data
- Extreme case "SKI 100%" excluded (favour P_{reco} = 49%)
- Limited sensitivity to Ariadne, Herwig CR models
- Data compatible models, with/without CR
- Effect on W mass from Ariadne CR large, not understood!
- ▶ Impact of qqqq channel on LEP m_w: 9%!