Low Q^2 Physics at HERA

Alice Valkárová

Institute of Particle and Nuclear Physics, Charles University of Prague

On Behalf of the H1 and ZEUS Collaborations

- Introduction
- High E_T dijets in photoproduction $(Q^2 \sim 0)$
- Low E_T dijets in low Q^2 region
- Summary

XXXI ISMD Alushta, 7–13 September , 2002

Deep Inelastic Scattering

 $Q^2 >> 1 GeV^2$: probing proton structure via pointlike virtual photons

 $Q^2 \simeq 0$: probing photon structure via dijet system

direct photon event

resolved photon event

σ_{ep} is convolution of partonic cross sections and pdf's:

 $rac{d\sigma_{ep}}{dQ^2} = \gamma_{flux}(y,Q^2) \otimes PDF_{\gamma}(x_{\gamma},Q^2,\mu) \otimes PDF_p(x_p,\mu) \otimes d\sigma_{ij}(\theta^*,Q^2,\mu)$

• x_{γ} (x_p) - fraction of γ^* 's (proton's) momentum in hard subprocess

- Q^2 virtuality of γ^* and y inelasticity
- E_T , η transverse momentum and pseudorapidity of jets
- θ^* angle of dijet system in 2-jet CMS
- $\mu \rightarrow E_T$ is the hard scale

High E_T dijets \rightarrow motivation

- high E_T jets provide hard scale for perturbative QCD calculations
- soft physics suppressed (hadronization corrections small)
- test perturbative QCD at NLO
- test parametrizations of proton pdf \rightarrow gluon in the proton, $0.05 < x_p < 0.6$
- test parametrizations of photon pdf

 → q/g in the photon, 0.1 < x_γ <1
 gluon poorly constrained by F₂^γ,
 jets at HERA sensitive to gluons already at LO

0.2

-0.2

0.4

0.2

-0.2

0

0.2

0

Dijets in photoproduction: H1

• NLO with GRV and AFG pdf's describe data

0.2

-0.2

0.4

0.2

-0.2

1

 \mathbf{X}_{γ}

0

0.2

0.4

0.6

0.8

1

 \mathbf{X}_{γ}

0

• NLO scale uncertaintes dominate

0.6

0.8

NLO: 0.5< $\mu_{f,r}$ /E_T< 2

0.4

Dijets in photoproduction: ZEUS

• $E_T^{jet1} > 14, E_T^{jet2} > 11 \text{ GeV}$

- NLO describes the data not too bad overall
- neither GRV nor AFG pdf's provide a perfect description everywhere

Dijets in photoproduction: ZEUS

- assymptric E_T^{jet1}/E_T^{jet2} cuts to avoid infrared sensitivity of NLO calculations
- dependence on E_T^{jet2} significantly different for data and NLO prediction, HERWIG describes dependence well
- comparison data & NLO depends on the cut value, theoretical progress needed!!

Different regimes and scales at HERA

• what are possible concepts in the region where $E_T^2 > Q^2 > 0$?

Concepts and questions

- Experimentally more challenging than study of high E_T jets (soft underlying event, hadronization corrections)
- Formally, when $Q^2 < E_T^2$ photon can be considered to have resolved structure
- Possible contribution of longitudinally polarized resolved photons?
- What are the scales in NLO calculations? E_T^2 or $E_T^2 + Q^2$ or Q^2 ? Are the data described by NLO?
- Is the concept of the resolved photons with the photon structure function the only possibility how to describe the data?

CCFM approach, DGLAP \rightarrow BFKL

 $\begin{array}{c} \mathbf{DGLAP} \\ \mathbf{2} \text{ ladders each ordered in } E_T \\ \text{resolved photon} \end{array}$

BFKL CCFM ordered in energy/angle k_t – factorization

Unordered parton evolution allows the two highest E_T jets in an event to come from anywhere along the ladder.

Similar to resolved photon but without explicit photon structure

- NLO calculations: without resolved component \rightarrow DISASTER, DISENT, with the resolved component \rightarrow JETVIP
- CASCADE Monte Carlo model with the conception of CCFM approach
- HERWIG, RAPGAP Monte Carlo models (direct + resolved contributions)
- HERWIG with longitudinal component of γ^* pdf

Resolved Processes: Difference between γ_T^* and γ_L^*

• Photon fluxes:

$$f_{\gamma^{T}/e}(y,Q^{2}) = \frac{\alpha}{2\pi} \left[\frac{2(1-y) + y^{2}}{y} \frac{1}{Q^{2}} - \frac{2m_{e}^{2}y}{Q^{4}} \right]$$
$$f_{\gamma^{L}/e}(y,Q^{2}) = \frac{\alpha}{2\pi} \left[\frac{2(1-y)}{y} \frac{1}{Q^{2}} \right]$$

Note that for $Q^2 \gg m_e$:

 $y = 0 \implies f_{\gamma^L/e} = f_{\gamma^T/e}$ $y = 1 \implies f_{\gamma^L/e} = 0$

• adding of longitudinal component \rightarrow different dependence of cross section on inelasticity y

Dijet rates in low Q^2 - H1

- dependence of dijet rate $R_2 = \sigma_{2jets} / \sigma$ on Δ , $E_T^{jet1} > (5 + \Delta) \text{GeV}$
- two scales in NLO calculations: $E_T^2 + Q^2$ and Q^2

- for $\Delta \rightarrow 0$ NLO calculations infrared sensitive
- dijet rate is described by NLO only with Q^2 scale

Alice Valkárová - XXXI ISMD

Dijets in low Q^2 - ZEUS

- $E_T^{jet1} > 7~{
 m GeV}, \, E_T^{jet2} > 5~{
 m GeV}, \, \text{-}2.5 < \eta < 0$
- NLO calculations: scale $E_T^2 + Q^2$

- NLO calculations underestimate the data
- the predictions of JETVIP with resolved comp. are closer to data than DISASTER and JETVIP direct especially for low Q^2 region

- calculations significantly underestimate measured R for $Q^2 < E_T^2$
- JETVIP with resolved component describes data less well than DISASTER (moreover JETVIP slicing method has some problems – see for example DIS2000)

• $E_T^{jet1,2} > 5 \text{ GeV}, \ \bar{E}_T > 6 \text{ GeV}, \ -2.5 < \eta^{jet1,2} < 0$

LO Monte Carlo HERWIG and RAPGAP

• The slope of \boldsymbol{y} dependence is different in data compared to HERWIG or RAPGAP.

Adding Longitudinal Photon - Herwig dir+res_T+res_L H1 Preliminary Herwig dir • Herwig res_T $0 < x_{\gamma} < 0.75$ $0.75 < x_{\gamma} < 1$ $d^{3}\sigma_{qp}/(dQ^{2}dx_{q}dy)$ (pb GeV⁻²) $80 > Q^2 > 25 \text{ GeV}^2$ $25 > Q^2 > 10 \text{ GeV}^2$ $10 > Q^2 > 4.4 \text{ GeV}^2$ $4.4 > Q^2 > 2 \text{ GeV}^2$ 800 **H1** 1500 600 1000 400 500 200 0 800 0 200 600 400 100 200 0 0 80 300 60 200 40 100 20 0 0 E, ^{jet 1,2} > 5 GeV 15 100 $\overline{E}_{t} > 6 \text{ GeV}$ 10 50 5 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0 1 0 0.8 1 у у

- The slope of y distribution in HERWIG comes closer to data γ_L^* is added.

• CASCADE MC (with k_T unordered parton evolution and no concept of photon structure) much closer to data than standard DGLAP direct.

- High E_T dijets in photoproduction:
 - data agree with NLO QCD calculations
 - theoretical uncertainty is dominating!
 - interpretation of results seems to be dependent on the cut of E_T of the second jet
- Dijets in low Q^2 :
 - existing NLO calculations not able to describe data
 - reliable NLO calculations in this region not available
 - LO MC models (HERWIG,RAPGAP) underestimate the data cross sections (addition of longitudinally polarized photons brings HERWIG closer to data)
 - CCFM approach gives better agreement than LO MC models
- \rightarrow theoretical progress needed!