

XXXII International Symposium on Multiparticle Dynamics September 7-13, 2002 Alushta, Crimea, Ukraine

Strangeness Production in Minimum Bias Events at CDF

Niccolò Moggi University and I.N.F.N., Bologna for the CDF Collaboration

- * Introduction
- * experimental setup
- * data selection and correction
- * K_s^0 and $\Lambda^0/\bar{\Lambda^0}$ inclusive distributions
- * K^0_s and $\Lambda^0/\bar{\Lambda^0}$ correlations
- * conclusions

INTRODUCTION

The analysis of minimum-bias sample at 1800 and 630 GeV :

- $\diamond K_s^0$ and $\Lambda^0/\bar{\Lambda^0}$ multiplicities
- $\diamond~K^0_s$ and $\Lambda^0/\bar{\Lambda^0}~p_T$ inclusive distributions
- \diamond Correlation between $\langle p_T(V^0)\rangle$ and event charged multiplicity
- \diamond Correlation between $\langle N(V^0)\rangle$ and event charged multiplicity
- + MB is splitted in a SOFT and HARD subsamples
- \Rightarrow the analysis is repeated and compared.

The CDF apparatus

VTX: primary vertices CTC: $|\eta| \leq 1.0$ primary tracks $|\eta| \leq 1.5 V^0$ CAL: $|\eta| \leq 4.2 E_T$ clusters BBC: trigger $3.2 \leq |\eta| \leq 5.9$ 0 5.8 m from origin

Data samples:

Offline event selection rejects events with:

- cosmics (out of time CHA deposits)
- ▷ no tracks
- ▷ known calorimeter problems
- ▷ some CTC track but no central CAL tower >100 MeV
- ▷ >1 primary vertex
- \triangleright *Z*^{vertex} >60 cm away from detector center
- ▷ no primary vertex

"Primary" tracks are selected by:

- quality of the track (minimum number of hits and layers in the CTC)
- $|d_0| < 0.5 \text{ cm}$
- $|Z_0^{track} Z^{vertex}| < 5 \text{ cm}$
- full CTC efficiency and acceptance:
 - $\triangleright p_T \geq 0.4 \text{ GeV/c}$
 - \triangleright $|\eta| \leq 1.0$

 \Rightarrow "Multiplicity" of the event = num. of selected tracks.

V^0 RECONSTRUCTION

- vse full sample of reconstructed CTC tracks;
- look for opposite sign track pairs converging to a common secondary vertex;
- ♦ fit secondary vertex with both the hypotheses of K_s^0/Λ^0 decays and keep best fit (in this fit the V^0 candidate is constrained to point to the event primary vertex);
- \diamond do not distinguish $\Lambda^0/\bar{\Lambda^0}$;
- ♦ finally apply selection cuts.

V^0 SELECTION CUTS

- ▷ secondary vertex fit has probability > 5%
- \triangleright fitted mass within $\mathbf{3}\sigma$ from V^0 mass
- \triangleright vertex displacement projected in x y plane $L_{yx} > 1$ cm
- \triangleright decay products in $p_T > 0.250$ GeV/c and $|\eta| < 1.5$
- ▷ $|Z_0(V^0) Z^{vertex}| < 6$ cm
- $\triangleright p_T(V^0) \ge 0.4 \text{ GeV/c}$
- $\triangleright |\eta(V^0)| \leq 1.5$

N. Moggi - I.S.M.D. 2002

EFFICIENCY

Use MC to estimate the efficiency:

- Benerate Pythia MB events
- detector simulation and full event reconstruction
- \triangleright check results by embedding generated V^0 into real events
- efficiency obtained inclusively for each single distribution
- "fake" V⁰ attributed to reconstruction errors are subtracted

EFFICIENCY II

- 1. Efficiency for 1 V^0 is almost constant \simeq 60% in: $|\eta(V^0)| < 1$ $p_T(V^0) > 2$ GeV/c;
- 2. strongly decreasing outside this region, expecially vs: p_T of V^0 number of V^0 in the event.
- 3. overall efficiency \simeq 23% (K_S^0) and \simeq 19% (Λ^0).

MASS DISTRIBUTIONS

Mass distributions after all selection cuts (no correction for efficiency is applied here). Negligible background after selection cuts.

N. Moggi - I.S.M.D. 2002

LIFETIME DISTRIBUTIONS

 K^0_S lifetime distribution. Fit gives: $\langle \tau \rangle = (0.87 \pm 0.05) \times 10^{-10} \ s$

N. Moggi - I.S.M.D. 2002

LIFETIME DISTRIBUTIONS

 $\Lambda^0/\bar{\Lambda^0}$ lifetime distribution. Fit gives: $\langle \tau \rangle = (2.82 \pm 0.15) \times 10^{-10} \ s$

EVENT CLASSIFICATION

MB is splitted in two sub-samples: Hard = events with ≥ 1 energy cluster anywhere in the calorimeter ($|\eta| \leq 4.2$). Soft = anything else

We define a cluster as: two contiguous calorimeter towers of transverse energy 1 + 0.1 GeV in a cone $\sqrt{\Delta\eta^2 + \Delta\phi^2} = 0.7$.OR. track clustering in calorimeter cracks

 \Rightarrow Soft is \sim 46% of MB (1800) and \sim 58% (630)

SOME NUMBERS

	1800 GeV	630 GeV		Raw V^0 countings
full MB	51059	44858	k_s^0	after all selection cuts (no efficiency
	13117	9993	$\Lambda^0/\bar{\Lambda^0}$	corrections).
soft	10220 (20%)	14313 (32%)	k_s^0	Notice that the
	1752 (13%)	2226 (22%)	$\Lambda^0/\bar{\Lambda^0}$	V^0 fraction in
hard	40829	30545	k_s^0	the soft sample increases with
	11365	7767	$\Lambda^0/\bar{\Lambda^0}$	decreasing energy.

N. Moggi - I.S.M.D. 2002

K_s^0 Multiplicity distributions

$\Lambda^0/\bar{\Lambda^0}$ multiplicity distributions

K_S^0 inclusive p_T distrubution

$\Lambda^0/\bar{\Lambda^0}$ inclusive p_T distribution

$K_S^0 p_T$ DISTRIBUTION

$\Lambda^0/\bar{\Lambda^0}$ p_T distribution

$K_S^0 p_T$ DISTRIBUTION

$\Lambda^0/\bar{\Lambda^0}$ p_T distribution

K_S^0 MEAN p_T VS MULTIPLICITY

K_S^0 MEAN p_T VS MULTIPLICITY

K_S^0 MEAN p_T VS MULTIPLICITY

$\Lambda^0/\bar{\Lambda^0}$ mean p_T vs multiplicity

$\Lambda^0/\bar{\Lambda^0}$ Mean p_T vs multiplicity

$\Lambda^0/\bar{\Lambda^0}$ Mean p_T vs multiplicity

K_S^0 production vs multiplicity

K_S^0 production vs multiplicity

$\Lambda^0/\bar{\Lambda^0}$ production vs multiplicity

$\Lambda^0/\bar{\Lambda^0}$ production vs multiplicity

CONCLUSIONS

- * we have analyzed some features of S production in minimum bias;
- * previous measures have been extended in range (p_T inclusive distributions), and some new ones done (multiplicity of V⁰);
- ★ interesting features are showing up in the plots of correlations vs event charged multiplicity.

This is a preliminary analysis. In the more long term the goal of these studies is to compare strangeness production at the two available energies and investigate for new properties and c.m. energy invariances (as was previously done for charged hadron production). PRD 65, 072005, 2002