Hard Scattering at RHIC: Where We've Been, Where We're Going

> John Lajoie Iowa State University

- Hard scattering as a probe of dense matter
- Results from RHIC Run-1 and Run-2
 - suppression of high- p_T spectra
 - particle correlations
- Future directions

9/9/2002

Hard Scattering in RHI Collisions

- Produced early in the collision (τ<1fm/c)
- Evolution is sensitive to QCD medium, primarily through energy loss
- Not possible to observe jets directly in RHI collisions – large overall particle density
- Identify jets through leading particles and correlations.

9/9/2002

Parton Energy Loss

Jet Quenching Signals

 Energy loss will modify the high-p_T spectra of produced particles (compared to pp)

• Angular correlations between particles will show a suppression of the jet signal compared to pp collisions.

π⁰ Spectra PHENIX Preliminary

Nuclear Modification Factor

Multiparticle Dynamics

Combined Suppression Results

- All RHIC experiments show suppression, details remain to be worked out.
- PHENIX uses pp reference; STAR, BRAHMS and PHOBOS use UA1 reference

Suppression - Theory

E. Wang and X.N. Wang, hep-ph/0202105

15 times that in cold nuclear matter!

9/9/2002

Collision Geometry, Anisotropy

Bulk (Hydrodynamic) Matter (low p_T)

Jet Evolution (high p_T)

Pressure gradient converts position space anisotropy to momentum space anisotropy. Energy loss results anisotropy based on location of hard scattering in collision volume.

9/9/2002

Particle Correlations

• Characterize particle correlations by a Fourier decomposition:

$$\frac{dN}{d\Delta\phi} \propto \left(1 + 2v_2^2 \cos(2\Delta\phi)\right) \qquad \begin{array}{l} \Delta\phi = \phi_i - \phi_j \\ \text{OR} \\ \Delta\phi = \phi_{lab} - \psi_{plane} \end{array}$$

At low p_T v₂ is dominated by bulk hydrodynamics, at high p_T a nonzero v₂ may be an indication of energy loss

- Correlate particles in $\Delta \phi$, $\Delta \eta$ space, look for jet signal

9/9/2002

Elliptic Flow at High-p_T

- STAR charged hadron elliptic flow out to p_T = 12 GeV/c !
 - finite $v_2 p_T = \sim 6 \text{ GeV/c}$
 - Absolute v₂ too high to be just jet quenching (Shuryak)?

More Elliptic Flow

9/9/2002

$\Delta \phi, \Delta \eta$ Correlations

 near-side correlation of charged tracks (STAR)

- $\gamma(\pi^0)$ triggered events (**PHENIX**)
 - trigger photon $p_T > 2.5 \text{ GeV/c}$
 - $\Delta \phi$ distribution for p_T = 2-4 GeV/c

9/9/2002

Systematics

- Near-side jet consistent with pp (plus flow)
- Far-side correlation suppressed for more central collisions

9/9/2002

Near Side Correlation Width

PHENIX Preliminary

The dashed line (not a fit) corresponds to a constant $j_1=400$ MeV. (transverse momentum with respect to "jet" axis)

9/9/2002

Jet Quenching – Quarks vs. Gluons

Gluons expected to suffer larger energy loss than quarks.

Use leading particle to tag the flavor of the jet:

K⁻, pbar produced by gluon fragmentation.

Need extended PID capabilities!

9/9/2002

Photon Tagged Jets

- Photon sets energy scale, measure effective fragmentation function of jet
- Issues of rate, acceptance and background

9/9/2002

Energy Loss of Heavy Quarks

- Reduced quenching for heavy quarks - "dead zone" effect
- PHENIX measured e⁺e⁻ spectra from non-photonic sources – charm!
- Level and p_{T} dependence consistent with e⁺e⁻ from scaled PYTHIA

Summary

- Intriguing evidence that we have created a dense medium at RHIC!
- All RHIC experiments show evidence of jet suppression
- Direct evidence for jets in STAR, PHENIX
- Much work remains to be done!
 - > quantitative measure of suppression, pp reference
 - d+Au reference data (Run-3)
 - \succ particle composition at high p_T
 - gamma-jet correlations
 - energy loss of heavy quarks

9/9/2002

