The Final Result on Direct CP Violation from the NA48 Experiment

Giacomo Graziani (LAL, Orsay) on behalf of the NA48 collaboration

International Symposium on Multiparticle Dynamics Alushta, Ukraine September 11, 2002

Outline

- Short history of direct CP violation in the Neutral Kaon System
- **Solution** The peculiar NA48 method
- \bigcirc The 2001 data and the FINAL result

$$\mathbb{N}$$
 Not only ε'/ε ...

CP Violation in the Neutral Kaon System

CP conserved
$$\implies K_L = K_2 \equiv \frac{1}{\sqrt{2}}(K^0 - \overline{K^0})$$
 (CP=-1) $\implies K_L \not \Rightarrow \pi\pi$

<u>1964</u>: K_L decay to $\pi^+\pi^-$ observed with B.R. = $2 \cdot 10^{-3}$

Indirect CP Violation

Direct CP Violation

$$\begin{array}{lll} \langle I,0|T|K^0 \rangle &=& A_I e^{i\delta_I} \\ \langle I,0|T|\bar{K^0} \rangle &=& A_I^* e^{i\delta_I} \end{array} \qquad \qquad \varepsilon' \equiv \frac{i}{\sqrt{2}} Im\left(\frac{A_2}{A_0}\right) e^{i(\delta_2 - \delta_0)} \quad (Im(A_0) \equiv 0)$$

Superweak Model by Wolfenstein : CP violation due to a new force in $\Delta S = 2$ transitions $\implies \varepsilon' = 0$

<u>1973</u>: Kobayashi and Maskawa show that CP violation can be accomodated in the Standard Model by increasing the number of quark generations.

Direct CP Violation in the Standard Model

→ within the Standard Model ε' can be computed as a function of the CKM matrix elements...

$$\frac{\varepsilon'}{\varepsilon} = \frac{Im(\lambda_t)}{0.074} \left(\frac{110 \text{ MeV}}{m_s(2GeV)}\right)^2 \left[0.75 B_6 - 0.4 B_8 \left(\frac{m_t}{165 \text{ GeV}}\right)^{2.5}\right] \frac{\Lambda_{\overline{MS}}}{340 \text{ MeV}}$$

("pedagogical" formula by A.Buras)

→ but errors are dominated by long distance contributions to the penguin diagram terms B_6 and B_8

Current theoretical predictions: ε'/ε in the range -10 to 30×10^{-4}

Breakthrough from Lattice QCD computations?

→ A precision measurement of ε'/ε can test SM predictions against other possibilities, as the Superweak Model ($\varepsilon' = 0$) or SUSY contributions

Measurements of ε'/ε

So far all experiments used the Double Ratio method: $\mathbf{R} = \frac{\Gamma(K_L^0 \to \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^+ \pi^-)} \frac{\Gamma(K_S^0 \to \pi^+ \pi^-)}{\Gamma(K_S^0 \to \pi^0 \pi^0)} \simeq 1 - 6 \times \operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right)$

Evolution of World Average:

Year	Average (10^{-4})	χ^2/ndf	χ^2 prob.
1993	$14.4~\pm~4.4$	3.2/1	7%
1999	$19.2~\pm~2.5$	10.4/3	2%
2001	$17.3~\pm~1.7$	5.6/3	13%

The NA48 Recipe

Minimize systematic errors on the double ratio

$$\mathbf{R} = \frac{\Gamma(K_L^0 \to \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^+ \pi^-)} \frac{\Gamma(K_S^0 \to \pi^+ \pi^-)}{\Gamma(K_S^0 \to \pi^0 \pi^0)} \simeq 1 - 6 \operatorname{Re}(\varepsilon'/\varepsilon)$$

through

The Central Detector

ISMD 2002

Event Reconstruction

- → Momentum resolution: $\sigma(P)/P = 0.45 \% \oplus 0.009 P[\text{GeV}/c] \%$
- → Vertex resolution:
 longitudinal ~ 50 cm
 transverse ~ 2 mm
- → $\pi^+\pi^-$ invariant mass resolution:

Backgrounds (3 $\pi^0, K_{e3}, K_{\mu 3}$ decays from K_L) reduced to < 0.2 % !!

Telling K_S from K_L

K_L Weighting and Acceptance Correction

70 < Kaon Energy < 170 GeV

ISMD 2002

Analysis Strategy

- → identify K_S and K_L by tagging in time the K_S beam protons (correct event counts for mistagging using vertex identification for $\pi^+\pi^-$)
- → the main K_S / K_L differences are minimized offline: energy spectra: perform analysis in 20 energy bins from 70 to 170 GeV lifetime: weight K_L events according to the theoretical K_S to K_L ratio

of proper time distributions:

- compute the double ratio in each energy bin
- → apply small (< 0.3 % by first principles) corrections for remaining biases (backgrounds, mistagging, reconstruction and intensity effects...)

Data Samples for ε'/ε

(Eur.Phys.J.C22(2001),231)

- All four chambers damaged after beam pipe implosion in nov. 1999
- 2000 run only for neutral events (cross-checks and rare K_s decays)
- \rightarrow Chambers rebuilt in time for the 2001 data-taking FINAL RESULT (INCLUDING 2001) TODAY

The 1998+1999 Result

Event Statistics (millions) 1998+1999									
$\mathrm{K_L} \rightarrow \pi^0 \pi^0$	3.29	$\mathrm{K}_\mathrm{S} \ o \pi^0 \pi^0$	5.21	KL	$ ightarrow \pi^+\pi^-$	14.45	$K_S \rightarrow \pi^+\pi^-$	22.22	
D before connection 0.00720 ± 0.00101 (stat.)									

R before correction = 0.98739 ± 0.00101 (stat.)

Corrections and systematic errors on R

$\pi^0\pi^0$ reconstruction	—	\pm 0.00058	
Acceptance	+0.00267	\pm 0.00057	
$\pi^+\pi^-$ trigger inefficiency	-0.00036	\pm 0.00052	\leftarrow rate effects
Accidental activity	-	\pm 0.00044	\leftarrow rate effects
Accidental tagging	+0.00083	\pm 0.00034	\leftarrow rate effects
Tagging inefficiency	-	\pm 0.00030	\leftarrow rate effects
Background to $\pi^+\pi^-$	+0.00169	\pm 0.00030	
$\pi^+\pi^-$ reconstruction	+0.00020	\pm 0.00028	
Beam scattering	-0.00096	\pm 0.00020	
Background to $\pi^0\pi^0$	-0.00059	\pm 0.00020	
Long term K_S /KL variations	-	\pm 0.00006	
Total Systematic	+0.00359	\pm 0.000126	

 $\operatorname{Re}(\varepsilon'/\varepsilon) = (1-R)/6 = (15.0 \pm 1.7 \text{ (stat.)} \pm 2.1 \text{ (syst.)}) \times 10^{-4}$

The 2001 Run

→ Different Beam conditions:

duty cycle $2.4/14.4 \text{ s} \rightarrow 5.2/16.8 \text{ s}$ proton energy 450 GeV \rightarrow 400 GeV \rightarrow New spectrometer's instantaneous intensity $\sim 30 \%$ lower

drift chambers

Comparing 2001 with 1998/1999

	1998 + 1999	2001			
$\# K_L \rightarrow \pi^0 \pi^0$	3.29×10^{6}	$1.54{ imes}10^6$			
statistical error on R	10.1×10^{-4}	14.7×10^{-4}			
DCH overflow rate	21.5 %	11.7 $\%$			
Mistagging prob. α_{LS}	10.6 %	8.1 %			
L2 charged trigger efficiency	98.3 %	99.2 %			

- \rightarrow lower average intensity
- → but wider intensity range...
- better monitors of instantaneous rate
- \Rightarrow lower systematic uncertainty related to rate effects

The Result

Corrections and uncertainties on R (Units = 10^{-4}) errors are pure stat or pure syst

	2001				1998/1999					
statistical error		±	14.7				\pm	10.1		
$\pi^0\pi^0$ reconstruction				\pm	5.3				\pm	5.8
Acceptance	21.9	\pm	3.5	\pm	4.0	26.7	\pm	4.1	\pm	4.0
$\pi^+\pi^-$ trigger inefficiency	5.2	\pm	8 3.6 8 €			-3.6	± छ	5.2		
Accidentals: intensity diff.				$\pm \delta$	₿ 1.1				\pm \mathbb{R}	\$ 3.0
illumination diff.		\pm	3.0				\pm	3.0		
$ m K_S$ in-time activity				\pm	1.0				\pm	1.0
Accidental tagging	6.9	\pm	8 2.8 €			8.3	± 🖾	3 .4		
Tagging inefficiency				\pm	3.0				\pm	3.0
$\pi^+\pi^-$ background	14.2			\pm	3.0	16.9			\pm	3.0
$\pi^+\pi^-$ reconstruction				\pm	2.8				\pm	2.8
beam scattering	-8.8			\pm	2.0	-9.6			\pm	2.0
$\pi^0\pi^0$ background	-5.6			\pm	2.0	-5.9			\pm	2.0
AKS inefficiency	1.2			\pm	0.3	1.1			\pm	0.4
Total systematic	+35.0	\pm	6.5	\pm	9.0	+35.9	\pm	8.1	\pm	9.6

 $\mathbf{R} = 0.99181 \pm 0.00147_{stat} \pm 0.00110_{syst}$

ε'/ε vs Year

2001 RESULT:

different beam conditions and new drift chambers

very good agreement with previous years

The Final Result

combining the 2001 result with the 97+98+99 one $\left[(15.3\pm2.6)\times10^{-4}\right]$

we get the final result

$$\operatorname{Re}(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4}$$

→ 5 years of data-taking
 → 5.3 × 10⁶ K_L → π⁰π⁰ collected
 → proposal goal successfully reached

Not only ε'/ε ...

NA48 is producing many other physics results on K_L , K_S and hyperon rare decays to study indirect CPV and low energy hadron dynamics (tests of χPT)

Notably:

 $BR = (2.78 \pm 0.06 \text{ (stat)} \pm 0.02 \text{ (MC stat)} \pm 0.04 \text{ (syst)}) \times 10^{-6}$ (preliminary) $| \mathbf{K_L} \to \pi^0 \gamma \gamma | BR = (1.36 \pm 0.03 \text{ (stat)} \pm 0.03 \text{ (syst)} \pm 0.03 \text{ (norm)}) \times 10^{-6}$ $a_V = -0.46 \pm 0.03 \text{ (stat)} \pm 0.04 \text{ (syst)}$ Phys.Lett.B536 (2002), 229-240 $|K_S \to \pi^0 \gamma \gamma| BR(m_{\gamma\gamma}^2/m_K^2 > 0.2) < 4.4 \times 10^{-7}$ (90 % conf. level) (preliminary) $|K_{\rm S} \rightarrow \pi^0 e^+ e^-|BR| < 1.4 \times 10^{-7}$ (90 % conf. level) Phys.Lett. B514 (2001), 253-262 $K_L \rightarrow \pi^+ \pi^- e^+ e^ BR = (3.1 \pm 0.1 \text{ (stat)} \pm 0.2 \text{ (syst)}) \times 10^{-7}$ $CPVAsymmetry = (13.9 \pm 2.7 \text{ (stat)} \pm 2.0 \text{ (syst)})\%$ (preliminary) $K_S \rightarrow \pi^+\pi^- e^+ e^ BR = (4.3 \pm 0.2 \text{ (stat)} \pm 0.3 \text{ (syst)}) \times 10^{-5}$ first observation! $CPVAsymmetry = (-0.2 \pm 3.4 \text{ (stat)} \pm 1.4 \text{ (syst)})\%$ (preliminary)

NA48 program extension

The ε' program is finished, but not NA48

NA48/1 PRESENTLY RUNNING!

High–Intensity K_S run : $2 \times 10^{10} ppp$ (ε' intensity \times 600)

- \rightarrow minor modifications of the beam line
- → new DCH read-out (higher rate capability)

Physics goal: reach unprecedented sensitivity for

- $K_S \to \pi^0 e^+ e^- (\sim 2 \times 10^{-10})$
- \bullet other rare K_{S} and hyperon decays
- CPV in $K_S \rightarrow 3\pi$

NA48/2 STARTING IN 2003

Simultaneous K^+/K^- beam

 \rightarrow new beam line for an unseparated K^+/K^- beam

→ new beam spectrometer (KABES)

Physics goal: search for direct CPV in $K^{\pm} \rightarrow 3\pi$ decays (measure A_g with 10^{-4} accuracy), look for QCD vacuum condensate in K_{e4} decays

G. Graziani – The Final Result of NA48

Conclusions

after the succesfull 2001 run, NA48 presented the final result on $\operatorname{Re}(\varepsilon'/\varepsilon)$: $\operatorname{Re}(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4}$

NA48 establishes direct CP violation by more than 6 σ !! Results of similar accuracy expected from KTEV (FNAL) final sample and possibly from KLOE (at DAPHNE ϕ factory)

THEORY is expected to improve its predictive power for $\operatorname{Re}(\varepsilon'/\varepsilon)$ in the Standard Model, mainly through Lattice QCD calculations. Example of recent results (systematic errors not finalized...):

CP-PACS group (hep-lat/0108013): $\operatorname{Re}(\varepsilon'/\varepsilon) = (-8 \div 0) \times 10^{-4}$ RBC group (hep-lat/0110075): $\operatorname{Re}(\varepsilon'/\varepsilon) = (-9 \div -1) \times 10^{-4}$

too early to claim for new physics...

Many new interesting results on Kaon Physics are coming out from the collected data... ... and many more quantitative tests of CPV in the Standard Model (complementary to B physics) and of low-energy hadron dynamics to come in the next futures