Experimental Approaches to low *x* **at HERA**

Forward jets in NLO QCD $O(\alpha_s^2)$

Approaches to the dynamics at small x

suppression of DGLAP (Q^2) evolution, but not BFKL (x) evolution, selecting jets/particles close to p direction with small x_{bj} , $p_t^2 \approx Q^2$, large $x_{jet} \equiv E_{jet}/E_{proton}$ (Mueller - Navelet jets)

Forward jet or particle production in DIS

high p_t forward jets and forward particles are sensitive to underlying partons dynamics

Jet measurements

- + better parton correlation
- + higher rates
- ambiguities of jet algoriths
- exp. difficult in very forward (p) region

forward particle detection π^0

- fragmetation effects more significant
- smaller rate
- + identification possible in more forward region

ISMD 02, low x

Selection of DIS forward jets and π^0

forward jets

 $egin{aligned} 5 < Q^2 < 75 \ {
m GeV}^2 \ 7 < heta_{jet} < 20^\circ \ 0.5 < p_{t\,jet}^2/Q^2 < 2 \ x_{jet} = E_{jet}/E_p > 0.035 \end{aligned}$

inclusive k_t algorithm

similar event selections for forward jets and π^0

forward π^0 detection

$$egin{aligned} 2 < Q^2 < 70 \; {
m GeV^2} \ 5 < heta_{\pi^0} < 25^\circ \ p_{t\pi^0}^* > 2.5 \; {
m GeV} \;\; ({
m hCMS}) \ x_{\pi^0} = E_{\pi^0}/E_p > 0.01 \;
ightarrow \; E_{\pi^0} > 8 GeV \end{aligned}$$

 $\pi^0
ightarrow 2\gamma$ reconstructed as one narrow cluster in H1 LAr calorimeter

Forward jets vs. x

DGLAP too small, but what needed ? x ordering or resolved γ ?

ISMD 02, low x

Forward jets $d\sigma/dp_t$ and $d\sigma/dx_{jet}$

patterns of (dis)agreement same as for $\mathrm{d}\sigma/\mathrm{dx}$

CDMo.k.DGLAP (RG dir)lowDGLAP + resolved γ^* o.k.CASCADEhigh

H1 Forward Jet Data

H1 Forward Jet Data

0.07

 $\mathbf{X}_{\mathsf{JET}}$

80

Former HERA results in present context

forward π^0 : H1, Phys. Lett. B 462 (1999) 440 improved by present analysis forward jets: H1, Nucl. Phys. B 538 (1999) 3 improved by present analysis **Forward jets** $0.5 < E_T^2/Q^2 < 2$ Phys. Lett. B474 (2000) 223 ZEUS 1995 dơ/dx [nb] 140 120 ZEUS Data RAPGAP, dir+res RAPGAP, dir 100 LEPTO 6.5 80 60 40 • DGLAP direct γ below the data 20 + resolved γ o.k. 0 10^{-2} 10⁻³ Х

Comparisons of p_t dependence at different Q^2

Transverse energy flow around π^0 in 3 ranges of η^*_{π}

Conclusions

- data on forward (close to p remnant) jets and π^0 s in DIS shown
- NLO $(O(\alpha_s^2))$ calculations problematic in this region where phase space for DGLAP evolution small
- **DGLAP MC models** with **direct** γ^* interactions : too small cross sections
- with resolved γ^* interactions good description of the data
- Coulour Dipole Model (CDM) describes the jet data very well (resembling the BFKL approach in the non ordered p_t production)
- CASCADE MC, based on the CCFM equation, predicts too small cross sections at $x \leq 0.001$.
- possible progress :
- ∇ further experimental studies of ladder
- ∇ more complete CCFM calculations
- ∇ NLO $(O(\alpha_s^2)$ for presented data
- ∇ NLO $(O(\alpha_s^2)$ MC with hadrons