Experimental study of rapidity gaps in gluon jets

BIII GARY

Department of Physics U. California, Riverside

OPAL Collaboration, CERN

email: bill.gary@ucr.edu

Rapidity
$$y=rac{1}{2}\ln\left(rac{E+p_{\parallel}}{E-p_{\parallel}}
ight)$$

- A standard variable to characterize the phase space distribution of particles
- lacktriangleright p calculated with respect to the jet, thrust, or beam axis

Of recent interest ---- events with a rapidity gap

A signal for the exchange of a strongly interacting color singlet object, e.g. ep scattering at HERA

(from H1 Collab., EPJ C24 (2002) 517)

Another source of rapidity gaps Color reconnection

A manifestation of higher order QCD

1: Planar (unsuppressed) diagrams, $e^+e^- o q \bar q g$ 3-jet events

2: "Reconnected" diagrams, suppressed by $\mathcal{O}(\frac{1}{N_c^2})$, $N_c=3$

- There is a <u>reduction</u> in particle production in the central rapidity region of reconnected events
- An increase in the probability for a rapidity gap

Rapidity gaps in gluon jets provide a sensitive means to search for manifestations of color reconnection

Rapidity gaps & glueballs

Gluon jets with a rapidity gap represent an environment which may favor the creation of glueballs

[P. Minkowski and W. Ochs, PLB485 (2000) 139]

- An isolated hard gluon with a rapidity gap might build up an extended color octet field with the qq pair
- Analogy to the color triplet strings which connect a quark with an antiquark

The most natural mechanism to neutralize an octet field is through gg pair production from the vacuum, resulting in glueballs

[See F. Mandl, Proceedings of the 31st ISMD (Datong, 2001), and DELPHI note 2002-053 CONF 587]

QCD models in this study

- Models without color reconnection:
 - Herwig 6.2: Parton shower & cluster hadronization
 - Jetset 7.4: Parton shower & string hadronization
- Models <u>With</u> color reconnection:
 - Rathsman model [J. Rathsman, PLB452(1999)364]
 - Implemented in Pythia (Jetset)
 - Provides a good description of rapidity gap measurements in ep and $p\overline{p}$ scattering [e.g. R. Enberg,G.Ingelman & N.Timneanu, PRD64(2001)114015]
 - --- Referred to here as the Rathsman-CR model
 - Gustafson-Häkkinen-Lönnblad model

[G. Gustafson & J. Häkkinen, ZP<u>C64</u>(1994)659;L. Lönnblad, ZP<u>C70</u>(1996)107]

- --> Implemented in Ariadne
- All five models provide an equally good description of global event properties in inclusive hadronic Z⁰ decay events

Inclusive hadronic Z⁰ decays: Thrust

$$T = \max\left(rac{\sum_i ec{p_i} \cdot \hat{n}}{\sum |ec{p_i}|}
ight) \quad i = particles$$

Inclusive hadronic ${\sf Z}^0$ decays: y_{23}

 y_{23} : the value of the resolution parameter y_{cut} at which an event changes from being classified as a 2-jet event to a 3-jet event, using the k_{\perp} jet finder

Inclusive hadronic ${f Z}^0$ decays: p_{out}

Pout: the distribution of particle momentum along the thrust minor direction (out of the 3-jet event plane)

Inclusive hadronic ${\sf Z}^0$ decays: χ^2

(Nr. bins)	1 – T (35)	A (15)	B _W (28)	$-\ln(y_{23})$ (27)	<i>y_T</i> (21)	Pout (17)	Total (143)
Jetset	53	69	55	41	30	1887	2135
Rathsman-CR	54	105	127	52	57	1606	2001
Herwig	415	45	283	83	120	195	1141
Ariadne	20	69	24	15	79	888	1095
Ariadne-CR	33	84	40	20	90	612	879

- The largeness of the χ^2 values reflects the smallness of the experimental uncertainties
- The systematic differences between the model predictions and data are, in general, not large
- The χ^2 results are intended to be used only as a relative measure of the description of the data by the models
- Correlations between distributions are not taken into account
- The total χ^2 result from the Rathsman-CR is <u>about the same</u> as from Jetset; <u>same thing</u> for Ariadne-CR with respect to Ariadne.

Gluon jet analysis

- OPAL Z⁰ hadronic decay sample: ~ 2.7 Mevents
- Standard track & event selection
- Apply the k_⊥ jet algorithm, adjust the resolution scale
 y_{cut} separately for each event so three jets are always reconstructed
- Identify the GLUON JET in the $\,{
 m e^+e^-}
 ightarrow q \overline{q} g \,$ events
 - Require a displaced 2ndary vertex BOTH in the highest energy jet and in ONE of the two lower energy jets
 - Displaced 2ndary vertices tag b quarks
 - At LEP, b quarks are produced almost exclusively through the electroweak decay of the Z⁰:

The gluon jet is the lower energy jet WITHOUT the 2ndary vertex

Gluon jet scale κ_{jet} = E $_{jet}\sin\left(rac{ heta_{\min}}{2} ight)$

More appropriate than E_{jet} for jets defined using a jet finder [See, e.g. DELPHI Collab., Phys. Lett. <u>B449</u> (1999) 383]

- We require K_{jet} ≥ 8 GeV to select hard acolinear gluon jet and E_{jet} < 35 GeV because the gluon jet purity drops rapidly for larger energies
- \longrightarrow 10,357 gluon jets with $\langle E_{\it jet} \rangle \sim$ 23 GeV and purity 94%

Rapidity gap analysis

Select gluon jets with a large rapidity gap:

- Rapidity is calculated with respect to the gluon jet axis
- Study the properties of the leading parts of the gluon jets to test the models with Color Reconnection

Rapidity gap analysis, cont.

(Detector level)

Distributions of y_{min} and Δy_{max} in the gluon jets:

In total, 409 gluon jets with a rapidity gap are selected, about 4% of the entire gluon jet sample

Charged particle multiplicity $n_{leading}^{ch}$ and total electric charge $Q_{leading}$

(Detector level)

Preliminary

(Normalized to the number of gluon jets before the rapidity gap requirement)

- The isolated, electrically neutral system in the leading part of gluon jets in reconnected events decays into an <u>even</u> <u>number</u> of charged particles
- A very sensitive signal for color reconnection

Charged particle multiplicity $n_{leading}^{ch}$ and total electric charge $Q_{leading}$

(Corrected for detector acceptance & resolution)

Herwig, Jetset & Ariadne (models without CR)

In general agreement with the data

Rathsman-CR & Ariadne-CR

A large excess of events with a large rapidity gap, for which the leading part of the jet is electrically neutral

No evidence for color reconnection

[L3 note 2728, February 2002: similar conclusion for the Rathsman-CR model based on particle flow asymmetries <u>between</u> jets]

Invariant mass distributions for gluon jets with $Q_{leading}=0$

(Detector level)

 M_{leading}: Mass of the leading part of the gluon jets (based on charged particles only)

M^{2-particle}: Mass of all 2-particle combinations of oppositely charged particles

No evidence for an anomalous feature at $\sim 1-2~{\rm GeV}/c^2$

No clear evidence for glueballs

[P. Minkowski & W. Ochs, PLB485 (2000) 139; see also DELPHI note 2002-053 CONF 587]

Parameter tuning

Can the Rathsman-CR or Ariadne-CR model be tuned to describe our data on gluon jets with a rapidity gap
WHILE CONTINUING to provide a reasonable description of inclusive Z⁰ decays ??

Strategy

• Define $\Delta Q_{leading}^{MC-data}$ to be the difference between the Monte Carlo prediction and the data for $Q_{leading} = 0$

 Vary the principal parameters of the models by large amounts to see if it is possible to obtain

$$\Delta Q_{leading}^{MC-data} \approx 0$$

and the correct result: $\langle n_{ch.} \rangle_{inclusive Z} = 21.15 \pm 0.29$

• Monitor the consequences for the description of global event shape distributions 1-T, etc., from inclusive Z^0 events

$\Lambda_{QCD}, Q_0, a, b, \sigma_q$: the Rathsman-CR model

The principal parameters controlling the multiplicity and momentum distributions of hadrons

- Solid dots: <u>standard values</u> of the parameters
- Horizontal error ranges: <u>uncertainties</u> attributed to the parameters (too small to be visible for some parameters)
- Curves: results for $\Delta Q_{leading}^{MC-data}$ as each parameter is varied with the others held at their standard values

 $\longrightarrow \Delta Q_{leading}^{MC-data} pprox 0 ext{ for } \Lambda_{QCD} pprox 1.3 ext{ GeV or for } Q_0 pprox 3.5 ext{ GeV/}c^2$

(representing very large excursions from their standard values)

Tuning procedure

Attempt a series of two-parameter adjustments:

- (1) Vary Q_0 and b:
 - \longrightarrow Set $Q_0 = 3.5 \text{ GeV}/c^2$
 - \longrightarrow Adjust b to yield $\langle n_{ch.} \rangle = 21.15$
 - Iterate the adjustment of Q_0 and b to simultaneously obtain $\Delta Q_{leading}^{MC-data} \approx 0$ and $\langle n_{ch.} \rangle = 21.15$
 - $\longrightarrow Q_0 = \underline{4.7~{\rm GeV/}c^2}, \quad b = \underline{0.30~{\rm GeV}}$ versus OPAL defaults, $Q_0 = 1.9~{\rm GeV/}c^2$, b = 0.52
 - --> The "Re-tuned" Rathsman-CR model
 - \longrightarrow Yields $\Delta Q_{leading}^{MC-data} = 1.4 \times 10^{-4}$

BUT

- The resulting total χ^2 with the inclusive event shape distributions increases from 2001 to 5044
- Most of this increase is contributed by y₂₃ and p_{out}
- \longrightarrow Setting $Q_0 \sim 5$ GeV/ c^2 results in a <u>severe truncation</u> of events with prominent multi-jet structure (4-jet events, etc.), in <u>disagreement</u> with the data.

Tuning procedure, cont.

(2) Vary Λ_{QCD} and b:

- Set $\Lambda_{QCD}=1.3$ GeV, adjust b to yield $\langle n_{ch.}\rangle=21.15$, iterate to minimize $\Delta Q_{leading}^{MC-data}$ while maintaining $\langle n_{ch.}\rangle=21.15$
- The best solution we could find was $\Lambda_{QCD}=1.8~{
 m GeV}$ and b=6.5, which yielded

$$\Delta Q_{leading}^{MC-data}=0.011$$
 (4.6 σ (tot.) above the data) $\chi_{global}^2=3.7\times 10^5$

(3) Vary Λ_{QCD} and Q_0 :

The best solution we could find was $\Lambda_{QCD}=0.6~{\rm GeV}$ and $Q_0=4.9~{\rm GeV}/c^2$, which yielded

$$\Delta Q_{leading}^{MC-data}=0.004$$
 (1.7 σ (tot.) above the data) $\chi_{global}^2=1.2 imes10^4$

Conclusion:

- It is unlikely the Rathsman-CR model can be tuned to describe our gluon jet data and still provide a reasonable description of inclusive Z⁰ events
- Compelling evidence to DISFAVOR color reconnection as it is implemented in this model

$\Lambda_{QCD}, p_{T,min.}, a, b, \sigma_q$: the Ariadne-CR model

(Note: Λ_{QCD} constrained to be smaller than $p_{T,min}$ in Ariadne)

- Iterate the adjustment of $p_{T,min.}$ and b to simultaneously obtain $\Delta Q_{leading}^{MC-data} pprox 0$ and $\langle n_{ch.} \rangle = 21.15$
 - $\longrightarrow p_{T,min.} = \underline{1.8~{
 m GeV/c}}, \quad b = \underline{0.60~{
 m GeV}}$ versus OPAL defaults, $p_{T,min.} = 0.79~{
 m GeV/c}, \ b = 0.82$
 - --> The "Re-tuned" Ariadne-CR model
 - \longrightarrow Yields $\Delta Q_{leading}^{MC-data} = -4 \times 10^{-6}$

BUT

- The resulting total χ^2 with the inclusive event shape distributions increases from 879 to 1885
- Most of this increase is contributed by y₂₃ and p_{out}
- By varying a Λ_{QCD} and $p_{T,min}$ together, we did <u>not</u> find a solution with $\Delta Q_{leading}^{MC-data} \approx 0$, analogous to the situation found for the Rathsman-CR model for Λ_{QCD} and Q_0
- As for the Rathsman-CR model, we conclude it is unlikely the Ariadne-CR model can be tuned describe our gluon jet data and still provide a reasonable description of inclusive Z⁰ events
- The Ariadne color reconnection model is similarly disfavored

Summary

- \longrightarrow Gluon jets from Z⁰ decays $E\sim 23$ GeV, purity 94%
- Select a 4% sub-sample with a large rapidity gap
- Examine the predictions of QCD models for the charged particle multiplicity, total electric charge, and invariant mass, in the leading part of these jets
- The models with color reconnection (Rathsman-CR & Ariadne-CR) predict a large excess of events with a large rapidity gap, for which the leading part is electrically neutral
- --> The analysis is very sensitive to color reconnection
- No evidence for color reconnection is observed
- The analysis is also potentially sensitive to the production of glueballs, for which no evidence is observed
- The Rathsman-CR & Ariadne-CR models can provide a satisfactory description of the gluon jet data and $\langle n_{ch.} \rangle$ in inclusive Z⁰ events only if very large values of the cutoff parameters are used

 $Q_0 \sim 5 \,\mathrm{GeV}/c^2$ $p_{T,min.} \sim 2 \,\mathrm{GeV}/c$

Summary, cont.

- The description of event shapes in inclusive Z⁰ events is then severely degraded
- We conclude that color reconnection as currently implemented in these two models is strongly disfavored.