TWO-PHOTON COLLISIONS AT L3 AT LEP

Bertrand Echenard

University of Geneva

XXXII ISMD, Alushta, 7-13 September 2002

Outline

- Introduction to two-photon physics
- Inclusive charged hadron production
- □ Inclusive charm and bottom production
- □ Exclusive baryon pair production
- Summary

Two-photon collisions are the dominant source of hadrons production at LEP 2 energies.

 \Rightarrow Many tests of perturbative QCD.

The $\gamma\gamma$ kinematic

$$W_{\gamma\gamma}^2 = (\sum_i E_i)^2 - (\sum_i \vec{p_i})^2 = (q_1 + q_2)^2$$

For each virtual photon:

$$Q^2 = -q^2 = 2EE'(1 - \cos\theta)$$

$\gamma\gamma \rightarrow \textit{hadron processes}$

HARD:

Direct process: photons couple to a $q\overline{q}$ pair.

VDM process: photon fluctuates into vector meson (ρ, ω, ϕ)

Single Resolved process: a parton from one photon interact with the other photon.

Double Resolved process: partons from both photons interact.

Energy: $E_{tot} < 0.4 \sqrt{s}$ to suppress annihilation events.

- □ Multiplicity: at least 6 particles to reject $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ background.
- **Anti-tag**: no cluster with E > 70 GeV in the detector \rightarrow quasi-real photons.

INCLUSIVE SINGLE HADRON PRODUCTION

Data set $\sqrt{s}=$ 189 - 202 GeV , $\mathcal{L}=$ $414~\mathrm{pb^{-1}}$ π^0 and K^0_S published in PLB524 (2001) π^\pm and K^\pm preliminary

Monte Carlo Phojet v.1.05c and Pythia v.5.722

 π^0 and K^0_S reconstruction

 \Rightarrow well identified π^0 and K^0_S

Exponential $Ae^{-p_t/\langle p_t \rangle}$ $\langle p_t \rangle = 230 \pm 11$ MeV for π^0 218 ± 8 MeV for π^{\pm} 329 ± 4 MeV for K_S^0 296 ± 8 MeV for K^{\pm} Power law Ap_t^{-B} B = 4.1 ± 0.2 MeV for π^0 4.1 ± 0.1 MeV for π^{\pm} 4.5 ± 1.2 MeV for K_S^0 4.4 ± 0.2 MeV for K^{\pm}

- □ For $p_t < 1.5$ GeV, exponential behaviour ⇒ characteristic of soft interaction.
- □ For $p_t > 1.5$ GeV, power law behaviour ⇒ direct and resolved processes.

 \Rightarrow good agreement between experiments.

Two-phothon collisions at L3 at LEP (page 9)

Low p_t : Agreement for $p_t \leq 3$ GeV. High p_t : \blacktriangle Pythia too high \checkmark Phojet too low

7-13 September 2002 XXXII ISMD

Two-phothon collisions at L3 at LEP (page 10)

Bertrand ECHENARD University of Geneva

 $\frac{d\sigma}{dp_t}$ comparison with NLO QCD *

Clear excess in π^0 and π^{\pm} data for $p_t > 5$ GeV !

* J. Binnewies, **B.A. Kniehl** and G. Kramer, Phys. Rev. D53 (1996) 6110

7-13 September 2002 XXXII ISMD

Two-phothon collisions at L3 at LEP (page 11)

The pseudo-rapidity shape is well reproduced.

INCLUSIVE CHARM & BOTTOM PRODUCTION $c\bar{c} X, b\bar{b} X$

Data set $\sqrt{s} = 183$ - 209 GeV , $\mathcal{L} = 683 \text{ pb}^{-1}$ published in PLB503 (2001), PLB514 (2001) PLB535 (2002) preliminary L3 Note 2761

Monte Carlo Pythia v.5.722

Charm identification

□ D*+

 $\Box \quad \text{lepton tagging } (c \to l^{\pm} X, l^{\pm} = e^{\pm}, \mu^{\pm})$

Bottom identification

 $\Box \quad \text{lepton tagging (} b \to l^{\pm} X, l^{\pm} = e^{\pm}, \mu^{\pm} \text{)}$

7-13 September 2002 XXXII ISMD

Bertrand ECHENARD University of Geneva

Inclusive *D*^{*+} production

 $\sigma(e^+e^- \rightarrow e^+e^-c\overline{c}X) = 1120 \pm 90 \pm 160^{+540}_{-250} \text{ pb}$

L3

Two-phothon collisions at L3 at LEP (page 16)

- Good agreement with NLO QCD predictions with $m_c = 1.2$ GeV.
- Direct process not sufficient, need resolved component.
- $\Box \quad \text{Steeper rise with energy than } \sigma(\gamma\gamma \to hadrons)$

Lepton tagging: identify b quark by its semileptonic decays into an electron or muon.

Fit the P_t distribution of the lepton with respect to the nearest jet to extract the $b\overline{b}X$ signal. Leptons from bottom decays have a higher P_t .

 $\begin{array}{lll} \text{Electron:} & \sigma_{\rm b\overline{b}} = 12.6 \pm 2.4 \pm 2.3 \ \text{pb} \\ \text{Combined:} & \sigma_{\rm b\overline{b}} = 12.8 \pm 1.7 \pm 2.3 \ \text{pb} \end{array}$

- □ $b\overline{b}$ in excess of the QCD predictions^{*} by a factor of three !
- * M. Drees et al., Phys. Lett **B 301** (1993) 371.

EXCLUSIVE BARYON PAIR PRODUCTION

Exclusive baryon pair production

Measure $\gamma \gamma \to p\overline{p}, \Lambda \overline{\Lambda}, \Sigma^0 \overline{\Sigma}^0$ cross section to test:

 Diquark model baryon = quark + diquark
 Three quark model baryon = quark + quark + quark

$\gamma\gamma \rightarrow p\overline{p}$ reaction

Data set $\sqrt{s}=$ 183 – 209 GeV , $\mathcal{L}=686~\mathrm{pb}^{-1}$ preliminary results

Monte Carlo EGPC v.2.07

 $\gamma\gamma\to\Lambda\overline\Lambda$ and $\gamma\gamma\to\Sigma^0\overline\Sigma{}^0$ reactions

Data set $\sqrt{s}=$ 91 - 209 GeV , $\mathcal{L}=844~\mathrm{pb^{-1}}$ published in PLB536 (2002)

Monte Carlo EGPC v.2.07

 $\gamma\gamma
ightarrow \mathrm{p}\overline{\mathrm{p}}$ event

□ Antiproton tag with dE/dx and electromagnetic calorimeter.

- □ Reconstruct secondary vertex.
- □ Antiproton tag to reject background.

(1) CLEO collaboration, M. Artuso et al., Phys. Rev. D 50 (1994) 5484.

- (2) L3 collaboration, P. Achard et al., Phys. Lett. B 536 (2002) 24.
- (3) CLEO collaboration, S. Anderson et al., Phys. Rev. D 56 (1997) 2485.

Good agreement with the diquark model, standard DA.

➡ Three quark model (G. Farrar *et al.**) excluded.

* G. Farrar et al., Nucl. Phys. **B 259** (1985) 702.

7-13 September 2002 XXXII ISMD

Two-phothon collisions at L3 at LEP (page 24)

Bertrand ECHENARD University of Geneva

Summary

- Two-photon physics is a nice tool to study QCD.
- \Box Inclusive single hadron production: π^{\pm} , π^{0} , K^{\pm} and K^{0}

 ${\rm soft}: \ p_t < 1.5 \ {\rm GeV}$

- $rac{l}{l}$ Exponential decrease of $d\sigma/dp_t$ seen, as expected.
- hard : $p_t > 5 \text{ GeV}$
 - LO Monte Carlo predictions disagree with data.
 - $\Rightarrow d\sigma/dp_t$ NLO QCD predictions disagree with data.
- □ Inclusive charm and bottom production
 - $\Rightarrow \text{ Charm production is in agreement with QCD predictions} \\\Rightarrow \text{ clear evidence of gluon content of the photon :} \\ \gamma g \rightarrow c\overline{c} \text{ is needed.}$
 - ➡ Bottom production is in disagreement with NLO QCD predictions: ~5 standard deviations higher than expected.
- □ Exclusive baryon pair production
 - ➡ Data are in agreement with the diquark model.
 - ➡ Three quark model is strongly disfavoured.