Vector meson production and DVCS at HERA

Robert Ciesielski (Warsaw University)

on behalf of

XXXII Symposium on Multiparticle Dynamics, Alushta, 7-13 September 2002

R. Ciesielski, Warsaw University

Vector meson production and DVCS at HERA

Motivation

- Understand the VM & DVCS dynamics in QCD
- Test QCD in the transition region (soft \rightarrow hard)
- Measure the non-perturbative quantities (generalised) pdfs

 Q^2 - γ^* virtuality

- W CM energy of $\gamma^* p$ system ($x = Q^2/W^2$)
- t 4-mom. transfer squered at p vertex
- VM vector meson

 $0 < Q^{2} < 100 \, GeV^{2}$ 20 < W < 290 GeV 0 < |t| < 20 GeV² ρ, ω, φ, J/ψ, ψ(2S), Υ

 $\gamma^{(*)}p \rightarrow Vp$ - elastic, $\gamma^{(*)}p \rightarrow VY$ - proton dissociative (dominates at high |t|)

VM Production Mechanisms

Soft Pomeron exchange:

$$\alpha_P(t) = \alpha_0 + \alpha' t$$
, ($\alpha_0 = 1.08$, $\alpha' = 0.25$)

 $d\sigma/dt \propto e^{b_0 t} (W/W_0)^{4(lpha_{
m I\!\!R}(t)-1)}$

Expected:

- slow rise: $\sigma(W) \simeq W^{\delta}$, $\delta \simeq 0.22$
- shrinkage: $b(W) = b_0 + 4\alpha' ln(W/W_0)t$
- SCHC: $(\gamma_L^* \to V_L, \gamma_T^* \to V_T)$
- $\sigma_L \propto 1/Q^2$, $\sigma_T \propto 1/Q^4$

pQCD Approach (hard)

two-gluon exchange (LO) (small $q\bar{q}$ size: γ^* or $V = c\bar{c}$ or $b\bar{b}$)

 $\sigma_L \propto lpha_S(Q^2) [xG(x,Q^2)]^2/Q^6$

Expected:

- fast rise: $\sigma(W) \simeq W^{\delta}$, $\delta \simeq 0.8$
- little shrinkage:, $\alpha'\simeq 0$
- $b_{2g} \simeq 4 5 GeV^{-2}$, (at high |t|: $d\sigma/dt \simeq |t|^{-n}$)
- SCHC violation
- $\sigma_L \propto 1/Q^6$, with $lpha_S(Q^2)$, $G(Q^2)$ suppresion

[gluon density rises at low x]

Hard scale: $f(Q^2, M^2, t)$?

Vector meson production and DVCS at HERA

R. Ciesielski, Warsaw University

Deeply Virtual Compton Scattering (DVCS)

DVCS - diffractive scattering of the virtual photon off a proton ($\gamma^* p \rightarrow \gamma p$).

In QCD: Production mechanism similiar to VM, except:

- Final state particle is point-like photon:
 - avoid theoretical complications and uncertainties with VM wave function. \rightarrow easier access to SPD (Skewed Parton Distributions, $x_1 \neq x_2$)
- cannot distinguish from Bethe-Heitler process ($ep \rightarrow ep\gamma$) on an event by event basis:
 - sensitive to ReA_{QCD} via QCD-QED interference.

First measurement of $\gamma^* p \rightarrow \gamma p$ at HERA (2 < Q^2 < 100 GeV^2 , 30 < W < 140 GeV^2 , $|t| < 1GeV^2$)

 ρ photoproduction (no hard scale)

Proton fully reconstructed with Forward Proton Spectrometer (H1).

 $d\sigma/dt \propto e^{bt}$, $b = 10.31 \pm 0.77 \pm 0.52 GeV^{-2}$

Consistent with Regge phenomenology $\rightarrow \rho$ photoproduction is 'soft'.

VM in photoproduction (scale: M_{VM}^2)

Steeper W dependence for heavy VMs.

Change of regime (soft \rightarrow hard).

ZEUS

pQCD describes a steep rise of cross section with $M_{J/\psi}$ as a hard scale. Sensitivity to gluons. ρ electroproduction (scale: Q^2)

$$\sigma_{\gamma^*p
ightarrow
ho p} \propto W^{\delta}$$
 at different Q^2 values

Transition: 'soft' \rightarrow 'hard' scattering

J/ψ electroproduction, (scales: Q^2 and $M_{J/\psi}^2$)

 $\delta \simeq$ 0.8,

consistant with little or no Q^2 dependence 'hard' regime

scale: $Q^2 + M^2$

if flavour independence $\Rightarrow \sigma_{\rho} : \sigma_{\omega} : \sigma_{\phi} : \sigma_{J/\psi} : \sigma_{\Upsilon} = 9 : 1 : 2 : 8 : 2$ After correction for $\gamma^* q$ coupling:

SU(3) – restored with the scale $Q^2 + M^2$

SU(4) – not (VM wave function effects?)

Scaling works for light quarks (u,d,s), but not for heavy (c,b).

W (GeV)

Regge trajectory ($\alpha_{I\!P}(t) = \alpha_0 + \alpha' t$).

Soft Pomeron exchange: α_0 =1.08, α' =0.25 (ρ photoproduction)

Little shrinkage: $\alpha'_{J/\psi}, \alpha'_{\rho} < 0.25 GeV^{-2}$

Trajectory depends on VM mass and γ^* virtuality - no universal pomeron.

t dependence

ρ electroproduction

b decreases with Q^2

for both elastic and pdiss. processes.

 $(b_{pdiss.}$ is small at high Q^2)

As a function of Q^2 , in two bins of t: consistant with no dependence on Q^2 \rightarrow test of vertex factorisation.

18 20

high |t| photoproduction

0:

 ϕ :

dơ.,p/dt [nb GeV⁻²] ප්

1

10

$$\gamma p \rightarrow VY$$
 , $V = \rho, \phi, J/\psi$

In agreement with LO BFKL (Forshaw, Poludniowski)

t provides a hard scale

15

20 |t| [GeV²]

At high |t| - power law behaviour:

 $d\sigma/dt \propto |t|^{-n}$ (not exponential)

 J/ψ : $n = 1.7 \pm 0.2 \pm 0.3$

 $n = 3.21 \pm 0.04 \pm 0.15$

 $n = 2.7 \pm 0.1 \pm 0.2$

• H1 Preliminary

pQCD (ā_s=0.221)

(normalization uncertainties: α_S)

10

R. Ciesielski, Warsaw University

Vector meson production and DVCS at HERA

5

 $b_{\psi(2S)} \le b_{J/\psi} \quad (+)$

W dependence

QCD:

 \rightarrow suppression: $R=\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}}$ =0.17 $\rightarrow \sigma(W) \propto W^{\delta} \delta_{\psi(2S)} \geq \delta_{J/\psi}$

Data consistant with QCD calculations \rightarrow Sensitivity to the wave function of charmonium.

Decay angular distributions

Angular distribution \rightarrow spin density matrix elements $r_{kl}^{ij} \rightarrow$ helicity amplitudes $T_{\lambda_{\gamma},\lambda_{\rho}}$

15 independent combinations of SDME.

observed in soft regime:

S-channel helicity conservation hypothesis: (SCHC + natural parity exchange)

VM retains γ^* helicity.

only $\gamma_L
ightarrow
ho_L$ ($T_{00}
eq 0$),

 $\gamma_T \rightarrow \rho_T \ (T_{11} \neq 0)$

transitions allowed.

 $(T_{01} = T_{10} = T_{1-1} = 0)$

expected in a hard regime (pQCD):

quantitative SCHC violation:

Hierarchy at high Q^2 :

 $\to |T_{00}| > |T_{11}| > |T_{01}| > |T_{10}| > |T_{1-1}|$

 $ightarrow \sigma_L$ dominates ($R = \sigma_L / \sigma_T$ increaces with Q^2)

|t| dependence:

 $\rightarrow T_{11}, T_{00}$: const. with t (no helicity flip)

 $\rightarrow T_{01}, T_{10} \propto T_{00} \sqrt{t}$ (single flip)

 $ightarrow T_{1-1} \propto T_{00} t$ (double flip)

ρ electroproduction

$$r_{00}^{04} = \sigma_L / \sigma_{TOT} \propto |T_{00}|^2 + |T_{01}|^2$$

$$|(|T_{00}| \gg |T_{01}|) \Rightarrow R = \frac{\sigma_L}{\sigma_T} \simeq \frac{r_{00}^{04}}{\epsilon(1 - r_{00}^{04})}$$

 $R = \sigma_L / \sigma_T$ increases with Q^2 . ($|T_{00}| > |T_{11}|$) σ_T has the same W dependence as σ_L .

high $|t| \ \rho$ electroproduction ($\gamma^* p \rightarrow \rho Y$)

 r_{00}^{04} – independent of t (as expected)

 $r_{00}^{5} + 2r_{11}^{5} \propto T_{00}T_{01}^{\dagger} + 2T_{11}T_{10}^{\dagger} - 2T_{10}T_{1-1}^{\dagger} \propto \sqrt{t} \Rightarrow$ dominated by single flip

 $r_{00}^{1} + 2r_{11}^{1} \propto -|T_{01}|^{2} + 2T_{11}T_{1-1}^{\dagger} + 2T_{1-1}T_{11}^{\dagger} \propto -t \Rightarrow \text{single flip and double flip contributes,}$ but negative sign $\Rightarrow |T_{01}| > |T_{1-1}|$

 \rightarrow Frankfurt, Freund, Strikman (FFS) – QCD based model

 \rightarrow Donnachie, Dosch (DD) – semiclassical dipole model

Normalisation uncertainty $\rightarrow 5 < b < 9GeV^{-2}$.

Normalisation uncertainty $\rightarrow 4.5 < b < 7 GeV^{-2}$.

Similiar W and t dependence as J/ψ meson. DVCS seems to be a hard process.

Data has potential to constrain SPD's.

Freund and McDermott: calculations using PDF's (LO - solid, NLO - dashed).

Summary and Outlook

Progress at HERA

- high precision data
- spanning transition (soft \rightarrow hard) in a wide kinematic range
- Q^2, M^2, t serve as a hard scale
- SU(3) restored using $Q^2 + M^2$ as a scale, SU(4) not
- at high values of scales, pQCD successfully describes VMs and DVCS
- In the future HERA II
 - expend Q^2 range, study Υ
 - constrain generalized PDF's