Turtle Graphics Interface for REDUCE
Version 3

Caroline Cotter
Konrad—Zuse—Zentrum fiur Informationstechnik Berlin
E-mail: cotter@zib.de

October 1998

1 Introduction

This program is a simple implementation of the “Turtle Graphics” style of
drawing graphs in REDUCE. The background and ideas of “Turtle Graphics”
are outlined below.

1.1 Turtle Graphics

Turtle Graphics was originally developed in the 1960’s as part of the LOGO
system, and used in the classroom as an introduction to graphics and using
computers to help with mathematics.

The LOGO language was created as part of an experiment to test the idea
that programming may be used as an educational discipline to teach children. It
was first intended to be used for problem solving, for illustrating mathematical
concepts usually difficult to grasp, and for creation of experiments with abstract
ideas.

At first LOGO had no graphics capabilities, but fast development enabled
the incorporation of graphics, known as “Turtle Graphics” into the language.
“Turtle Graphics” is regarded by many as the main use of LOGO.

Main Idea: To use simple commands directing a turtle, such as forward,
back, turnleft, in order to construct pictures as opposed to drawing lines con-
necting cartesian coordinate points.

The ‘turtle’ is at all times determined by its state {x,y,a,p}- where x,y de-
termine its position in the (x,y)-plane, a determines the angle (which describes
the direction the turtle is facing) and p signals whether the pen is up or down
(i. e. whether or not it is drawing on the paper).

2 Implementation

Some alterations to the original “Turtle Graphics” commands have been made
in this implementation due to the design of the graphics package gnuplot used
in REDUCE.



e It is not possible to draw lines individually and to see each seperate line
as it is added to the graph since gnuplot automatically replaces the last
graph each time it calls on the plot function.

Thus the whole sequence of commands must be input together if the
complete picture is to be seen.

e This implementation does not make use of the standard turtle commands
‘pen-up’ or ‘pen-down’ . Instead, ‘set’ commands are included which allow
the turtle to move without drawing a line.

e No facility is provided here to change the pen-colour, but gnuplot does
have the capability to handle a few different colours (which could be
included later).

e Many of the commands are long and difficult to type out repeatedly,
therefore all the commands included under ‘Turtle Functions’ (below) are
listed alongside an equivalent abbreviated form.

e The user has no control over the range of output that can be seen on the
screen since the gnuplot program automatically adjusts the picture to fit
the window. Hence the size of each specified ‘step’ the turtle takes in any
direction is not a fixed unit of length, rather it is relative to the scale
chosen by gnuplot.

3 Turtle Functions

As previously mentioned, the turtle is determined at all times by its state
{z,y,a}: its position on the (x,y)-plane and its angle(a) - its heading - which
determines the direction the turtle is facing, in degrees, relative anticlockwise
to the positive x-axis.

3.1 User Setting Functions

setheading Takes a number as its argument and resets the heading to this
number. If the number entered is negative or greater than or equal to 360
then it is automatically checked to lie between 0 and 360.

Returns the turtle position {z,y}
SYNTAX: setheading(6)
Abbreviated form: sh(#)
leftturn The turtle is turned anticlockwise through the stated number of de-

grees. Takes a number as its argument and resets the heading by adding
this number to the previous heading setting.

Returns the turtle position {z,y}
SYNTAX: leftturn(a)
Abbreviated form: slt(a)



rightturn Similar to leftturn, but the turtle is turned clockwise through the

setx

sety

stated number of degrees. Takes a number as its argument and resets the
heading by subtracting this number from the previous heading setting.

Returns the turtle position {z,y}

SYNTAX: rightturn(3)

Abbreviated form: srt(3)

Relocates the turtle in the x direction. Takes a number as its argument
and repositions the state of the turtle by changing its x-coordinate.
Returns {}

SYNTAX: setx(x)

Abbreviated form: sx(z)

Relocates the turtle in the y direction. Takes a number as its argument
and repositions the state of the turtle by changing its y-coordinate.
Returns {}

SYNTAX: sety(y)

Abbreviated form: sy (y)

setposition Relocates the turtle from its current position to the new cartesian

coordinate position described. Takes a pair of numbers as its arguments
and repositions the state of the turtle by changing the x and y coordinates.

Returns {}
SYNTAX: setposition(z,y)
Abbreviated form: spn(z,y)

setheadingtowards Resets the heading so that the turtle is facing towards

the given point, with respect to its current position on the coordinate
axes. Takes a pair of numbers as its arguments and changes the heading,
but the turtle stays in the same place.

Returns the turtle position {z,y}
SYNTAX: setheadingtowards(x,y)
Abbreviated form: shto(x,y)

setforward Relocates the turtle from its current position by moving forward

(in the direction of its heading) the number of steps given. Takes a number
as its argument and repositions the state of the turtle by changing the x
and y coordinates.

Returns {}
SYNTAX: setforward(n)
Abbreviated form: sfwd(n)



setback As with setforward, but moves back (in the opposite direction of its
heading) the number of steps given.

Returns {}
SYNTAX: setback(n)
Abbreviated form: sbk(n)

3.2 Line-Drawing Functions

forward Moves the turtle forward (in the direction its heading) the number
of steps given. Takes a number as its argument and draws a line from its
current position to a new position on the coordinate plane. The x and y
coordinates are reset to the new values.

Returns the list of points { {old z,0ld y}, {new x,new y} }
SYNTAX: forward(s)
Abbreviated form: fwd(s)
back As with forward except the turtle moves back (in the opposite direction
to its heading) the number of steps given.
Returns the list of points { {old z,0ld y}, {new x,new y} }
SYNTAX: back(s)
Abbreviated form: bk(s)
move Moves the turtle to a specified point on the coordinate plane. Takes a
pair of numbers as its arguments and draws a line from its current position

to the position described. The x and y coordinates are set to these new
values.

Returns the list of points { {old z,0ld y}, {new x,new y} }
SYNTAX: move(z,y)
Abbreviated form: mv(x,y)

3.3 Plotting Functions

draw This is the function the user calls within REDUCE to draw the list of
turtle commands given into a picture. Takes a list as its argument, with
each seperate command being seperated by a comma, and returns the
graph drawn by following the commands.

SYNTAX: draw{command(command_args), . .., command(command-args)}
Note: all commands may be entered in either long or shorthand form, and
with a space before the arguments instead of parentheses only if just one
argument is needed. Commands taking more than one argument must be
written in parentheses and arguments seperated by a comma.

fdraw This function is also called in REDUCE by the user and outputs the same
as the draw command, but it takes a filename as its argument. The file



which is called upon by fdraw must contain only the turtle commands and
other functions defined by the user for turtle graphics. (This is intended
to make it easier for the user to make small changes without constantly
typing out long series of commands.)

SYNTAX: fdraw{"filename"} Note: commands may be entered in long
or shorthand form but each command must be written on a separate
line of the file. Also, arguments are to be written without parentheses
and separated with a space, not a comma, regardless of the number of
arguments given to the function.

3.4 Other Important Functions

info This function is called on its own in REDUCE to tell user the current state
of the turtle. Takes no arguments but returns a list containing the current
values of the x and y coordinates and the heading variable.

Returns the list {z_coord,y_coord,heading}
SYNTAX: info() or simply info

clearscreen This is also called on its own in REDUCE to get rid of the last
gnuplot window, displaying the last turtle graphics picture, and to reset
all the variables to 0. Takes no arguments and returns no printed output
to the screen but the graphics window is simply cleared.

SYNTAX: clearscreen() or simply clearscreen

Abbreviated form: cls() or cls

home This is a command which can be called within a plot function as well
as outside of one. Takes no arguments, and simply resets the x and y
coordinates and the heading variable to 0. When used in a series of turtle
commands, it moves the turtle from its current position to the origin and
sets the direction of the turtle along the x-axis, without drawing a line.

Returns {0,0}
SYNTAX: home() or simply home

3.5 Defining Functions

It is possible to use conditional statements (if ... then ... else ...) and ‘for’
statements (for i:=...collect{...}) in calls to draw. However, care must be
taken - when using conditional statements the final else statement must return
a point or at least {x_coord,y_coord} if the picture is to be continued at that
point. Also, ‘for’ statements must include ‘collect’ followed by a list of turtle
commands (in addition, the variable must begin counting from 0 if it is to be
joined to the previous list of turtle commands at that point exactly, e. g. for
1:=0:10 collect {...}).
SYNTAX: {(For user-defined Turtle functions)}



procedure func_name(func_args);
begin [scalar additional variables];

(the procedure body containing some turtle commands)

return (a list, or label to a list, of turtle commands
as accepted by draw)
end;

For convenience, it is recommended that all user defined functions, such as those
involving if...then...else... or for i:=...collect{...} are defined together in
a separate file, then called into REDUCE using the in "filename" command.



4 Examples
The following examples are taken from the turtle.tst file. Examples 1,2,5 & 6 are simple
calls to draw. Examples 3 & 4 show how more complicated commands can be built

(which can take their own set of arguments) using procedures. Examples 7 & 8 show
the difference between the draw and fdraw commands.

% (1) Draw 36 rays of length 100
draw {for i1:=1:36 collect{setheading(i*10), forward 100, back 100} };

REDUCE Plot
100

50 - ~

points
o

.50 | 4

-100 L )
-100 -50 0 50 100

% (2) Draw 12 regular polygons with 12 sides of length 40,each polygon
%forming an angle of 360/n degrees with the previous one.

draw {for i:=1:12 collect
{leftturn(30), for j:=1:12 collect
{forward 40, leftturn(30)}} };

REDUCE Plot

points

150



% (3) A "peak" pattern - an example of a recursive procedure.

procedure peak(r);
begin;
return for i:=0:r collect
{move (x_coord+5,y_coord-10), move(x_coord+10,y_coord+60),
move (x_coord+10,y_coord-60) ,move (x_coord+5,y_coord+10) };
end;

draw {home(), peak(3)};

REDUCE Plot

points

%This procedure can then be part of a longer chain of commands:

draw {home(), move(5,50), peak(3), move(x_coord+10,-100),
peak(2), move(x_coord+10,0)};



REDUCE Plot

points

150 I | L I

% (4) Write a recursive procedure which draws "trees" such that every
%branch is half the length of the previous branch.

procedure tree(a,b); %Here: a is the start length, b is the
Jnumber of levels
begin;
return if fixpb and b>0 %hchecking b is a positive integer
then {leftturn(45), forward a, tree(a/2,b-1),
back a, rightturn(90), forward a, tree(a/2,b-1),
back a, leftturn(45)}
else {x_coord,y_coord}; %hdefault: Turtle stays still
end;

draw {home(), tree(130,7)};



points

250

200

150

100

50

-50

-100

-150

-200

REDUCE Plot

{ A

Hh o

fle ol

50 100 150 200 250

% (5) A 36-point star.

draw {home(), for i:=1:36 collect

100

80

60

points

40

20

{leftturn(10), forward 100, leftturn(10), back 100} };

REDUCE Plot

-60

-40 -20 0 20 40 60

% (6) Draw 100 equilateral triangles with the leading points
%equally spaced on a circular path.

draw {home(), for i:=1:100 collect

{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} 1};

10



REDUCE Plot

points

1 1
-150 -100 -50 0 50 100 150

% (7) Two or more graphs can be drawn together (this is easier
%if the graphs are named). Here we show graphs 2 and 6 on top of one
%another:

gr2:={home(), for i:=1:12 collect
{leftturn(30), for j:=1:12 collect
{forward 40, leftturn(30)}} }$

gr6:={home(), for i:=1:100 collect
{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} }$

draw {gr2, gr6};

11



% (8) Example 7 could have been tackled another way, which makes use of
%the fdraw command.

7By inputting gr2 and gr6 as procedures into reduce, they can then be
%used at any time in the same reduce session in a call to draw and even
%fdraw.

%First save the procedures in a file, say fxp (fdraw example procedures):

procedure gr2;
begin;
return {home, for i:=1:12 collect
{leftturn(30), for j:=1:12 collect
{forward 40, leftturn(30)}} };
end;

procedure gr6;
begin;
return {home(), for i:=1:100 collect
{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} I};
end;

%Then create another file where the functions may be called to fdraw,
he.g. fx:

gr2
gré

%Now in reduce, after loading the turtle package just type the following:

in "pr" ;
fdraw ’"fx";

%..and the graphs will appear.

%This method is useful if the user wants to define many of their own
%functions, and, using fdraw, subtle changes can be made quickly without
%having to type out the whole string of commands to plot each time. It
%is particularly useful if there are several pictures to plot at once and
%it is an easy way to build pictures so that the difference an extra
%command makes to the overall picture can be clearly seen.

%(In the above example, the file called to fdraw was only 2 lines long,
%so this method did not have any advantage over the normal draw command.
%#However, when the list of commands is longer it is clearly advantageous
%to use fdraw)

5 References

1. An Implementation of Turtle Graphics for Teaching Purposes
Zoran 1. Putnik & Zoram d.Budimac

12



2. Mapletech - Maple in Mathematics and the Sciences,
Special Issue 1994
An Implementation of “Turtle Graphics” in Maple V
Eugenio Roanes Lozano & Eugenio Roanes Macias

13



	Introduction
	Turtle Graphics

	Implementation
	Turtle Functions
	User Setting Functions
	Line-Drawing Functions
	Plotting Functions
	Other Important Functions
	Defining Functions

	Examples
	References

