
SETS: A Basic Set Theory Package

Francis J. Wright
School of Mathematical Sciences

Queen Mary and Westfield College
University of London

Mile End Road, London E1 4NS, UK.
Email: F.J.Wright@QMW.ac.uk

May 3, 1999

Abstract
The SETS package for REDUCE3.5 and later versions provides

algebraic-mode support for set operations on lists regarded as sets (or
representing explicit sets) and on implicit sets represented by identi-
fiers. It provides the set-valued infix operators (with synonyms) union,
intersection (intersect) and setdiff (\, minus) and the Boolean-
valued infix operators (predicates) member, subset eq, subset, set eq.
The union and intersection operators are n-ary and the rest are binary.
A list can be explicitly converted to the canonical set representation by
applying the operator mkset. (The package also provides an operator
not specifically related to set theory called evalb that allows the value
of any Boolean-valued expression to be displayed in algebraic mode.)

1 Introduction

REDUCE has no specific representation for a set, neither in algebraic mode
nor internally, and any object that is mathematically a set is represented in
REDUCE as a list. The difference between a set and a list is that in a set the
ordering of elements is not significant and duplicate elements are not allowed
(or are ignored). Hence a list provides a perfectly natural and satisfactory
representation for a set (but not vice versa). Some languages, such as Maple,
provide different internal representations for sets and lists, which may allow
sets to be processed more efficiently, but this is not necessary.

1

2 INFIX OPERATOR PRECEDENCE 2

This package supports set theoretic operations on lists and represents the
results as normal algebraic-mode lists, so that all other REDUCE facilities
that apply to lists can still be applied to lists that have been constructed
by explicit set operations. The algebraic-mode set operations provided by
this package have all been available in symbolic mode for a long time, and
indeed are used internally by the rest of REDUCE, so in that sense set theory
facilities in REDUCE are far from new. What this package does is make
them available in algebraic mode, generalize their operation by extending
the arity of union and intersection, and allow their arguments to be implicit
sets represented by unbound identifiers. It performs some simplifications on
such symbolic set-valued expressions, but this is currently rather ad hoc and
is probably incomplete.

For examples of the operation of the SETS package see (or run) the test
file sets.tst. This package is experimental and developments are under
consideration; if you have suggestions for improvements (or corrections) then
please send them to me (FJW), preferably by email. The package is intended
to be run under REDUCE3.5 and later versions; it may well run correctly
under earlier versions although I cannot provide support for such use.

2 Infix operator precedence

The set operators are currently inserted into the standard REDUCE prece-
dence list (see page 28, §2.7, of the REDUCE 3.7 manual) as follows:

or and not member memq = set_eq neq eq >= > <= < subset_eq
subset freeof + - setdiff union intersection * / ^ .

3 Explicit set representation and mkset

Explicit sets are represented by lists, and this package does not require any
restrictions at all on the forms of lists that are regarded as sets. Nevertheless,
duplicate elements in a set correspond by definition to the same element and
it is conventional and convenient to represent them by a single element, i.e.
to remove any duplicate elements. I will call this a normal representation.
Since the order of elements in a set is irrelevant it is also conventional and
may be convenient to sort them into some standard order, and an appro-

4 UNION AND INTERSECTION 3

priate ordering of a normal representation gives a canonical representation.
This means that two identical sets have identical representations, and there-
fore the standard REDUCE equality predicate (=) correctly determines set
equality; without a canonical representation this is not the case.

Pre-processing of explicit set-valued arguments of the set-valued operators to
remove duplicates is always done because of the obvious efficiency advantage
if there were any duplicates, and hence explicit sets appearing in the values of
such operators will never contain any duplicate elements. Such sets are also
currently sorted, mainly because the result looks better. The ordering used
satisfies the ordp predicate used for most sorting within REDUCE, except
that explicit integers are sorted into increasing numerical order rather than
the decreasing order that satisfies ordp.

Hence explicit sets appearing in the result of any set operator are currently
returned in a canonical form. Any explicit set can also be put into this form
by applying the operator mkset to the list representing it. For example

mkset {1,2,y,x*y,x+y};

{x + y,x*y,y,1,2}

The empty set is represented by the empty list {}.

4 Union and intersection

The operator intersection (the name used internally) has the shorter syn-
onym intersect. These operators will probably most commonly be used
as binary infix operators applied to explicit sets, e.g.

{1,2,3} union {2,3,4};

{1,2,3,4}

{1,2,3} intersect {2,3,4};

{2,3}

They can also be used as n-ary operators with any number of arguments, in
which case it saves typing to use them as prefix operators (which is possible
with all REDUCE infix operators), e.g.

5 SYMBOLIC SET EXPRESSIONS 4

{1,2,3} union {2,3,4} union {3,4,5};

{1,2,3,4,5}

intersect({1,2,3}, {2,3,4}, {3,4,5});

{3}

For completeness, they can currently also be used as unary operators, in
which case they just return their arguments (in canonical form), and so act
as slightly less efficient versions of mkset (but this may change), e.g.

union {1,5,3,5,1};

{1,3,5}

5 Symbolic set expressions

If one or more of the arguments evaluates to an unbound identifier then it is
regarded as representing a symbolic implicit set, and the union or intersec-
tion will evaluate to an expression that still contains the union or intersection
operator. These two operators are symmetric, and so if they remain sym-
bolic their arguments will be sorted as for any symmetric operator. Such
symbolic set expressions are simplified, but the simplification may not be
complete in non-trivial cases. For example:

a union b union {} union b union {7,3};

{3,7} union a union b

a intersect {};

{}

In implementations of REDUCE that provide fancy display using mathe-
matical notation, such as PSL-REDUCE 3.6 for MS-Windows, the empty
set, union, intersection and set difference are all displayed using their con-
ventional mathematical symbols, namely ∅, ∪, ∩, \.

6 SET DIFFERENCE 5

A symbolic set expression is a valid argument for any other set operator,
e.g.

a union (b intersect c);

b intersection c union a

Intersection distributes over union, which is not applied by default but is
implemented as a rule list assigned to the variable set distribution rule,
e.g.

a intersect (b union c);

(b union c) intersection a

a intersect (b union c) where set_distribution_rule;

a intersection b union a intersection c

6 Set difference

The set difference operator is represented by the symbol \ and is always
output using this symbol, although it can also be input using either of the
two names setdiff (the name used internally) or minus (as used in Maple).
It is a binary operator, its operands may be any combination of explicit or
implicit sets, and it may be used in an argument of any other set operator.
Here are some examples:

{1,2,3} \ {2,4};

{1,3}

{1,2,3} \ {};

{1,2,3}

a \ {1,2};

a\{1,2}

7 PREDICATES ON SETS 6

a \ a;

{}

a \ {};

a

{} \ a;

{}

7 Predicates on sets

These are all binary infix operators. Currently, like all REDUCE predicates,
they can only be used within conditional statements (if, while, repeat) or
within the argument of the evalb operator provided by this package, and
they cannot remain symbolic – a predicate that cannot be evaluated to a
Boolean value causes a normal REDUCE error.

The evalb operator provides a convenient shorthand for an if statement
designed purely to display the value of any Boolean expression (not only
predicates defined in this package). It has some similarity with the evalb
function in Maple, except that the values returned by evalb in REDUCE
(the identifiers true and false) have no significance to REDUCE itself.
Hence, in REDUCE, use of evalb is never necessary.

if a = a then true else false;

true

evalb(a = a);

true

if a = b then true else false;

false

7 PREDICATES ON SETS 7

evalb(a = b);

false

evalb 1;

true

evalb 0;

false

I will use the evalb operator in preference to an explicit if statement for
purposes of illustration.

7.1 Set membership

Set membership is tested by the predicate member. Its left operand is re-
garded as a potential set element and its right operand must evaluate to an
explicit set. There is currently no sense in which the right operand could
be an implicit set; this would require a mechanism for declaring implicit set
membership (akin to implicit variable dependence) which is currently not
implemented. Set membership testing works like this:

evalb(1 member {1,2,3});

true

evalb(2 member {1,2} intersect {2,3});

true

evalb(a member b);

***** b invalid as list

7 PREDICATES ON SETS 8

7.2 Set inclusion

Set inclusion is tested by the predicate subset eq where a subset eq b is
true if the set a is either a subset of or equal to the set b; strict inclusion
is tested by the predicate subset where a subset b is true if the set a is
strictly a subset of the set b and is false is a is equal to b. These predicates
provide some support for symbolic set expressions, but this is not yet correct
as indicated below. Here are some examples:

evalb({1,2} subset_eq {1,2,3});

true

evalb({1,2} subset_eq {1,2});

true

evalb({1,2} subset {1,2});

false

evalb(a subset a union b);

true

evalb(a\b subset a);

true

evalb(a intersect b subset a union b); %%% BUG

false

An undecidable predicate causes a normal REDUCE error, e.g.

evalb(a subset_eq {b});

***** Cannot evaluate a subset_eq {b} as Boolean-valued set
expression

7 PREDICATES ON SETS 9

evalb(a subset_eq b); %%% BUG

false

7.3 Set equality

As explained above, equality of two sets in canonical form can be reliably
tested by the standard REDUCE equality predicate (=). This package also
provides the predicate set eq to test equality of two sets not represented
canonically. The two predicates behave identically for operands that are
symbolic set expressions because these are always evaluated to canonical
form (although currently this is probably strictly true only in simple cases).
Here are some examples:

evalb({1,2,3} = {1,2,3});

true

evalb({2,1,3} = {1,3,2});

false

evalb(mkset{2,1,3} = mkset{1,3,2});

true

evalb({2,1,3} set_eq {1,3,2});

true

evalb(a union a = a\{});

true

8 INSTALLATION 10

8 Installation

The source file sets.red can be read into REDUCE when required using
IN. If the “professional” version is being used this should be done with ON
COMP set, but it is much better to compile the code as a FASL file using
FASLOUT and then load it with LOAD PACKAGE (or LOAD). See the REDUCE
manual and implementation-specific guide for further details.

This package has to redefine the REDUCE internal procedure mk!*sq and a
warning about this can be expected and ignored. I believe (and hope!) that
this redefinition is safe and will not have any unexpected consequences for
the rest of REDUCE.

9 Possible future developments

• Unary union/intersection to implement repeated union/intersection on
a set of sets.

• More symbolic set algebra, canonical forms for set expressions, more
complete simplification.

• Better support for Boolean variables via a version (evalb10?) of evalb
that returns 1/0 instead of true/false, or predicates that return 1/0
directly.

	Introduction
	Infix operator precedence
	Explicit set representation and mkset
	Union and intersection
	Symbolic set expressions
	Set difference
	Predicates on sets
	Set membership
	Set inclusion
	Set equality

	Installation
	Possible future developments

