
R/I SOLVE: Rational/Integer Polynomial Solvers

Francis J. Wright
School of Mathematical Sciences

Queen Mary and Westfield College
University of London

Mile End Road, London E1 4NS, UK.
E-mail: F.J.Wright@QMW.ac.uk

27 January 1995

Abstract
This package provides the operators r/i_solve that compute respec-

tively the exact rational or integer zeros of a single univariate polynomial
using fast modular methods.

1 Introduction

This package provides operators that compute the exact rational zeros of a sin-
gle univariate polynomial using fast modular methods. The algorithm used is
that described by R. Loos (1983): Computing rational zeros of integral poly-
nomials by p-adic expansion, SIAM J. Computing, 12, 286–293. The operator
r_solve computes all rational zeros whereas the operator i_solve computes
only integer zeros in a way that is slightly more efficient than extracting them
from the rational zeros. The r_solve and i_solve interfaces are almost iden-
tical, and are intended to be completely compatible with that of the general
solve operator, although r_solve and i_solve give more convenient output
when only rational or integer zeros respectively are required. The current im-
plementation appears to be faster than solve by a factor that depends on the
example, but is typically up to about 2.

I plan to extend this package to compute Gaussian integer and rational zeros
and zeros of polynomial systems.

2 The user interface

The first argument is required and must simplify to either a univariate poly-
nomial expression or equation with integer, rational or rounded coefficients.
Symbolic coefficients are not allowed (and currently complex coefficients are
not allowed either.) The argument is simplified to a quotient of integer poly-
nomials and the denominator is silently ignored.

Subsequent arguments are optional. If the polynomial variable is to be
specified then it must be the first optional argument, and if the first optional

1

argument is not a valid option (see below) then it is (mis-)interpreted as the
polynomial variable. However, since the variable in a non-constant univariate
polynomial can be deduced from the polynomial it is unnecessary to specify it
separately, except in the degenerate case that the first argument simplifies to
either 0 or 0 = 0. In this case the result is returned by i_solve in terms of
the operator arbint and by r_solve in terms of the (new) analogous operator
arbrat. The operator i_solve will generally run slightly faster than r_solve.

The (rational or integer) zeros of the first argument are returned as a list
and the default output format is the same as that used by solve. Each distinct
zero is returned in the form of an equation with the variable on the left and the
multiplicities of the zeros are assigned to the variable root_multiplicities
as a list. However, if the switch multiplicities is turned on then each zero
is explicitly included in the solution list the appropriate number of times (and
root_multiplicities has no value).

Optional keyword arguments acting as local switches allow other output
formats. They have the following meanings:

separate|: assign the multiplicity list to the global variable
root_multiplicities (the default);

expand| or multiplicities|: expand the solution list to include multiple
zeros multiple times (the default if the multiplicities switch is on);

together|: return each solution as a list whose second element is the multi-
plicity;

nomul|: do not compute multiplicities (thereby saving some time);

noeqs|: do not return univariate zeros as equations but just as values.

3 Examples

r_solve((9x^2 - 16)*(x^2 - 9), x);

{
x =

−4
3
, x = 3, x = −3, x =

4
3

}
i_solve((9x^2 - 16)*(x^2 - 9), x);

{x = 3, x = −3}

See the test/demonstration file rsolve.tst for more examples.

4 Tracing

The switch trsolve turns on tracing of the algorithm. It is off by default.

2

	Introduction
	The user interface
	Examples
	Tracing

