The LIE Package

Carsten and Franziska Schöbel The Leipzig University, Computer Science Dept. Augustusplatz 10/11, O-7010 Leipzig, Germany Email: cschoeb@aix550.informatik.uni-leipzig.de

22 January 1993

LIE is a package of functions for the classification of real n-dimensional Lie algebras. It consists of two modules: **liendmc1** and **lie1234**.

liendmc1

With the help of the functions in this module real n-dimensional Lie algebras L with a derived algebra $L^{(1)}$ of dimension 1 can be classified. L has to be defined by its structure constants c_{ij}^k in the basis $\{X_1, \ldots, X_n\}$ with $[X_i, X_j] = c_{ij}^k X_k$. The user must define an ARRAY LIENSTRUCIN(n, n, n) with n being the dimension of the Lie algebra L. The structure constants LIENSTRUCIN $(i, j, k) := c_{ij}^k$ for i < j should be given. Then the procedure LIENDIMCOM1 can be called. Its syntax is:

LIENDIMCOM1(<number>).

<number> corresponds to the dimension n. The procedure simplifies the structure of L performing real linear transformations. The returned value is a list of the form

```
(i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or
(ii) {HEISENBERG(k),COMMUTATIVE(n-k)}
```

with $3 \le k \le n$, k odd.

The concepts correspond to the following theorem (LIE_ALGEBRA(2) $\rightarrow L_2$, HEISENBERG(k) $\rightarrow H_k$ and COMMUTATIVE(n-k) $\rightarrow C_{n-k}$):

Theorem. Every real n-dimensional Lie algebra L with a 1-dimensional derived algebra can be decomposed into one of the following forms:

(i) $C(L) \cap L^{(1)} = \{0\}$: $L_2 \oplus C_{n-2}$ or (ii) $C(L) \cap L^{(1)} = L^{(1)}$: $H_k \oplus C_{n-k}$ $(k = 2r - 1, r \ge 2)$, with 1. $C(L) = C_j \oplus (L^{(1)} \cap C(L))$ and dim $C_j = j$, 2. L_2 is generated by Y_1, Y_2 with $[Y_1, Y_2] = Y_1$, 3. H_k is generated by $\{Y_1, \ldots, Y_k\}$ with $[Y_2, Y_3] = \cdots = [Y_{k-1}, Y_k] = Y_1.$

(cf. [2])

The returned list is also stored as LIE_LIST. The matrix LIENTRANS gives the transformation from the given basis $\{X_1, \ldots, X_n\}$ into the standard basis $\{Y_1, \ldots, Y_n\}$: $Y_j = (\text{LIENTRANS})_i^k X_k$.

A more detailed output can be obtained by turning on the switch TR_LIE:

ON TR_LIE;

before the procedure LIENDIMCOM1 is called.

The returned list could be an input for a data bank in which mathematical relevant properties of the obtained Lie algebras are stored.

lie1234

This part of the package classifies real low-dimensional Lie algebras L of the dimension $n := \dim L = 1, 2, 3, 4$. L is also given by its structure constants c_{ij}^k in the basis $\{X_1, \ldots, X_n\}$ with $[X_i, X_j] = c_{ij}^k X_k$. An ARRAY LIESTRIN(n, n, n) has to be defined and LIESTRIN $(i, j, k) := c_{ij}^k$ for i < j should be given. Then the procedure LIECLASS can be performed whose syntax is:

LIECLASS(<number>).

<number> should be the dimension of the Lie algebra L. The procedure stepwise simplifies the commutator relations of L using properties of invariance like the dimension of the centre, of the derived algebra, unimodularity etc. The returned value has the form:

```
{LIEALG(n),COMTAB(m)},
```

where *m* corresponds to the number of the standard form (basis: $\{Y_1, \ldots, Y_n\}$) in an enumeration scheme. The corresponding enumeration schemes are listed below (cf. [3],[1]). In case that the standard form in the enumeration scheme depends on one (or two) parameter(s) p_1 (and p_2) the list is expanded to:

```
{LIEALG(n),COMTAB(m),p1,p2}.
```

This returned value is also stored as LIE_CLASS. The linear transformation from the basis $\{X_1, \ldots, X_n\}$ into the basis of the standard form $\{Y_1, \ldots, Y_n\}$ is given by the matrix LIEMAT: $Y_j = (\text{LIEMAT})_j^k X_k$.

By turning on the switch TR_LIE:

ON TR_LIE;

before the procedure LIECLASS is called the output contains not only the list LIE_CLASS but also the non-vanishing commutator relations in the standard form. By the value m and the parameters further examinations of the Lie algebra are possible, especially if in a data bank mathematical relevant properties of the enumerated standard forms are stored.

Enumeration schemes for lie1234

returned list LIE_CLASS $$	the corresponding commutator relations
LIEALG(1), COMTAB(0)	commutative case
LIEALG(2), COMTAB(0)	commutative case
LIEALG(2), COMTAB(1)	$[Y_1, Y_2] = Y_2$
LIEALG(3), COMTAB(0)	commutative case
LIEALG(3), COMTAB(1)	$[Y_1, Y_2] = Y_3$
LIEALG(3), COMTAB(2)	$[Y_1, Y_3] = Y_3$
LIEALG(3), COMTAB(3)	$[Y_1, Y_3] = Y_1, [Y_2, Y_3] = Y_2$
LIEALG(3), COMTAB(4)	$[Y_1, Y_3] = Y_2, [Y_2, Y_3] = Y_1$
LIEALG(3), COMTAB(5)	$[Y_1, Y_3] = -Y_2, [Y_2, Y_3] = Y_1$
LIEALG(3), COMTAB(6)	$[Y_1, Y_3] = -Y_1 + p_1 Y_2, [Y_2, Y_3] = Y_1, p_1 \neq 0$
LIEALG(3), COMTAB(7)	$[Y_1, Y_2] = Y_3, [Y_1, Y_3] = -Y_2, [Y_2, Y_3] = Y_1$
LIEALG(3), COMTAB(8)	$[Y_1, Y_2] = Y_3, [Y_1, Y_3] = Y_2, [Y_2, Y_3] = Y_1$
LIEALG(4).COMTAB(0)	commutative case
LIEALG(4), COMTAB(1)	$[Y_1, Y_4] = Y_1$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2)	$\begin{split} &[Y_1,Y_4]=Y_1\\ &[Y_2,Y_4]=Y_1 \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3)	$\begin{split} & [Y_1, Y_4] = Y_1 \\ & [Y_2, Y_4] = Y_1 \\ & [Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(4)	$\begin{split} &[Y_1, Y_4] = Y_1 \\ &[Y_2, Y_4] = Y_1 \\ &[Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \\ &[Y_1, Y_3] = -Y_2, [Y_2, Y_4] = Y_2, \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(4)	$\begin{split} & [Y_1, Y_4] = Y_1 \\ & [Y_2, Y_4] = Y_1 \\ & [Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \\ & [Y_1, Y_3] = -Y_2, [Y_2, Y_4] = Y_2, \\ & [Y_1, Y_4] = [Y_2, Y_3] = Y_1 \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(4) LIEALG(4),COMTAB(5)	$\begin{split} &[Y_1, Y_4] = Y_1 \\ &[Y_2, Y_4] = Y_1 \\ &[Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \\ &[Y_1, Y_3] = -Y_2, [Y_2, Y_4] = Y_2, \\ &[Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_2, [Y_1, Y_4] = [Y_2, Y_3] = Y_1 \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(5) LIEALG(4),COMTAB(5)	$\begin{split} &[Y_1, Y_4] = Y_1 \\ &[Y_2, Y_4] = Y_1 \\ &[Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \\ &[Y_1, Y_3] = -Y_2, [Y_2, Y_4] = Y_2, \\ &[Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_2, [Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_1, [Y_3, Y_4] = Y_2 \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(4) LIEALG(4),COMTAB(5) LIEALG(4),COMTAB(6) LIEALG(4),COMTAB(7)	$\begin{split} &[Y_1, Y_4] = Y_1 \\ &[Y_2, Y_4] = Y_1 \\ &[Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \\ &[Y_1, Y_3] = -Y_2, [Y_2, Y_4] = Y_2, \\ &[Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_2, [Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_1, [Y_3, Y_4] = Y_2 \\ &[Y_2, Y_4] = Y_2, [Y_3, Y_4] = Y_1 \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(5) LIEALG(4),COMTAB(5) LIEALG(4),COMTAB(6) LIEALG(4),COMTAB(7) LIEALG(4),COMTAB(8)	$\begin{split} &[Y_1, Y_4] = Y_1 \\ &[Y_2, Y_4] = Y_1 \\ &[Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \\ &[Y_1, Y_3] = -Y_2, [Y_2, Y_4] = Y_2, \\ &[Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_2, [Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_1, [Y_3, Y_4] = Y_2 \\ &[Y_2, Y_4] = Y_2, [Y_3, Y_4] = Y_1 \\ &[Y_1, Y_4] = -Y_2, [Y_2, Y_4] = Y_1 \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(4) LIEALG(4),COMTAB(5) LIEALG(4),COMTAB(6) LIEALG(4),COMTAB(7) LIEALG(4),COMTAB(8) LIEALG(4),COMTAB(9)	$\begin{split} &[Y_1, Y_4] = Y_1 \\ &[Y_2, Y_4] = Y_1 \\ &[Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \\ &[Y_1, Y_3] = -Y_2, [Y_2, Y_4] = Y_2, \\ &[Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_2, [Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_1, [Y_3, Y_4] = Y_2 \\ &[Y_2, Y_4] = Y_2, [Y_3, Y_4] = Y_1 \\ &[Y_1, Y_4] = -Y_2, [Y_2, Y_4] = Y_1 \\ &[Y_1, Y_4] = -Y_1 + p_1 Y_2, [Y_2, Y_4] = Y_1, p_1 \neq 0 \end{split}$
LIEALG(4),COMTAB(1) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(2) LIEALG(4),COMTAB(3) LIEALG(4),COMTAB(4) LIEALG(4),COMTAB(5) LIEALG(4),COMTAB(6) LIEALG(4),COMTAB(7) LIEALG(4),COMTAB(8) LIEALG(4),COMTAB(9) LIEALG(4),COMTAB(10)	$\begin{split} &[Y_1, Y_4] = Y_1 \\ &[Y_2, Y_4] = Y_1 \\ &[Y_1, Y_3] = Y_1, [Y_2, Y_4] = Y_2 \\ &[Y_1, Y_3] = -Y_2, [Y_2, Y_4] = Y_2, \\ &[Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_2, [Y_1, Y_4] = [Y_2, Y_3] = Y_1 \\ &[Y_2, Y_4] = Y_1, [Y_3, Y_4] = Y_2 \\ &[Y_2, Y_4] = Y_2, [Y_3, Y_4] = Y_1 \\ &[Y_1, Y_4] = -Y_2, [Y_2, Y_4] = Y_1 \\ &[Y_1, Y_4] = -Y_1 + p_1 Y_2, [Y_2, Y_4] = Y_1, p_1 \neq 0 \\ &[Y_1, Y_4] = Y_1, [Y_2, Y_4] = Y_2 \end{split}$

returned list LIE_CLASS	the corresponding commutator relations
LIEALG(4),COMTAB(12)	$\begin{split} & [Y_1,Y_4] = Y_1 + Y_2, [Y_2,Y_4] = Y_2 + Y_3, \\ & [Y_3,Y_4] = Y_3 \end{split}$
LIEALG(4),COMTAB(13)	$[Y_1, Y_4] = Y_1, [Y_2, Y_4] = p_1 Y_2, [Y_3, Y_4] = p_2 Y_3,$ $p_1, p_2 \neq 0$
LIEALG(4),COMTAB(14)	$\begin{split} & [Y_1,Y_4] = p_1 Y_1 + Y_2, [Y_2,Y_4] = -Y_1 + p_1 Y_2, \\ & [Y_3,Y_4] = p_2 Y_3, p_2 \neq 0 \end{split}$
LIEALG(4), COMTAB(15)	$ [Y_1, Y_4] = p_1 Y_1 + Y_2, [Y_2, Y_4] = p_1 Y_2, [Y_3, Y_4] = Y_3, p_1 \neq 0 $
LIEALG(4),COMTAB(16)	$\begin{split} & [Y_1, Y_4] = 2Y_1, [Y_2, Y_3] = Y_1, \\ & [Y_2, Y_4] = (1+p_1)Y_2, [Y_3, Y_4] = (1-p_1)Y_3, \\ & p_1 \ge 0 \end{split}$
LIEALG(4),COMTAB(17)	$\begin{split} & [Y_1,Y_4] = 2Y_1, [Y_2,Y_3] = Y_1, \\ & [Y_2,Y_4] = Y_2 - p_1Y_3, [Y_3,Y_4] = p_1Y_2 + Y_3, \\ & p_1 \neq 0 \end{split}$
LIEALG(4),COMTAB(18)	$\begin{split} & [Y_1,Y_4] = 2Y_1, [Y_2,Y_3] = Y_1, \\ & [Y_2,Y_4] = Y_2 + Y_3, [Y_3,Y_4] = Y_3 \end{split}$
LIEALG(4), COMTAB(19)	$[Y_2, Y_3] = Y_1, [Y_2, Y_4] = Y_3, [Y_3, Y_4] = Y_2$
LIEALG(4), COMTAB(20)	$[Y_2, Y_3] = Y_1, [Y_2, Y_4] = -Y_3, [Y_3, Y_4] = Y_2$
LIEALG(4), COMTAB(21)	$[Y_1, Y_2] = Y_3, [Y_1, Y_3] = -Y_2, [Y_2, Y_3] = Y_1$
LIEALG(4), COMTAB(22)	$[Y_1, Y_2] = Y_3, [Y_1, Y_3] = Y_2, [Y_2, Y_3] = Y_1$

References

- M.A.H. MacCallum. On the classification of the real four-dimensional lie algebras. 1979.
- [2] C. Schoebel. Classification of real n-dimensional lie algebras with a lowdimensional derived algebra. In Proc. Symposium on Mathematical Physics '92, 1993.
- [3] F. Schoebel. The symbolic classification of real four-dimensional lie algebras. 1992.