The LIE Package

Carsten and Franziska Schöbel

The Leipzig University, Computer Science Dept. Augustusplatz 10/11, O-7010 Leipzig, Germany Email: cschoeb@aix550.informatik.uni-leipzig.de

22 January 1993

LIE is a package of functions for the classification of real n-dimensional Lie algebras. It consists of two modules: liendmc1 and lie1234.

liendmc1

With the help of the functions in this module real n-dimensional Lie algebras L with a derived algebra $L^{(1)}$ of dimension 1 can be classified. L has to be defined by its structure constants $c_{i j}^{k}$ in the basis $\left\{X_{1}, \ldots, X_{n}\right\}$ with $\left[X_{i}, X_{j}\right]=c_{i j}^{k} X_{k}$. The user must define an $\operatorname{ARRAY} \operatorname{LIENSTRUCIN}(n, n, n)$ with n being the dimension of the Lie algebra L. The structure constants LIENSTRUCIN $(i, j, k):=c_{i j}^{k}$ for $i<j$ should be given. Then the procedure LIENDIMCOM1 can be called. Its syntax is:

```
LIENDIMCOM1(<number>).
```

<number> corresponds to the dimension n. The procedure simplifies the structure of L performing real linear transformations. The returned value is a list of the form
(i) \{LIE_ALGEBRA (2), COMMUTATIVE(n-2)\} or
(ii) \{HEISENBERG(k), COMMUTATIVE(n-k)\}
with $3 \leq k \leq n, k$ odd.
The concepts correspond to the following theorem (LIE_ALGEBRA (2) $\rightarrow L_{2}$, HEISENBERG(k) $\rightarrow H_{k}$ and COMMUTATIVE (n-k) $\rightarrow C_{n-k}$):

Theorem. Every real n-dimensional Lie algebra L with a 1-dimensional derived algebra can be decomposed into one of the following forms:
(i) $C(L) \cap L^{(1)}=\{0\}: L_{2} \oplus C_{n-2}$ or
(ii) $C(L) \cap L^{(1)}=L^{(1)}: H_{k} \oplus C_{n-k} \quad(k=2 r-1, r \geq 2)$, with

1. $C(L)=C_{j} \oplus\left(L^{(1)} \cap C(L)\right)$ and $\operatorname{dim} C_{j}=j$,
2. L_{2} is generated by Y_{1}, Y_{2} with $\left[Y_{1}, Y_{2}\right]=Y_{1}$,
3. H_{k} is generated by $\left\{Y_{1}, \ldots, Y_{k}\right\}$ with $\left[Y_{2}, Y_{3}\right]=\cdots=\left[Y_{k-1}, Y_{k}\right]=Y_{1}$.
(cf. [Z] $]$
The returned list is also stored as LIE_LIST. The matrix LIENTRANS gives the transformation from the given basis $\left\{X_{1}, \ldots, X_{n}\right\}$ into the standard basis $\left\{Y_{1}, \ldots, Y_{n}\right\}$: $Y_{j}=(\text { LIENTRANS })_{j}^{k} X_{k}$.
A more detailed output can be obtained by turning on the switch TR_LIE:
```
ON TR_LIE;
```

before the procedure LIENDIMCOM1 is called.
The returned list could be an input for a data bank in which mathematical relevant properties of the obtained Lie algebras are stored.

lie1234

This part of the package classifies real low-dimensional Lie algebras L of the dimension $n:=\operatorname{dim} L=1,2,3,4 . L$ is also given by its structure constants $c_{i j}^{k}$ in the basis $\left\{X_{1}, \ldots, X_{n}\right\}$ with $\left[X_{i}, X_{j}\right]=c_{i j}^{k} X_{k}$. An $\operatorname{ARRAY} \operatorname{LIESTRIN}(n, n, n)$ has to be defined and LIESTRIN $(i, j, k):=c_{i j}^{k}$ for $i<j$ should be given. Then the procedure LIECLASS can be performed whose syntax is:

```
LIECLASS(<number>).
```

<number> should be the dimension of the Lie algebra L. The procedure stepwise simplifies the commutator relations of L using properties of invariance like the dimension of the centre, of the derived algebra, unimodularity etc. The returned value has the form:

```
\{LIEALG(n), COMTAB(m)\},
```

where m corresponds to the number of the standard form (basis: $\left\{Y_{1}, \ldots, Y_{n}\right\}$) in an enumeration scheme. The corresponding enumeration schemes are listed below (cf. [B],[T]]). In case that the standard form in the enumeration scheme depends on one (or two) parameter(s) p_{1} (and p_{2}) the list is expanded to:
\{LIEALG(n), COMTAB(m), p1, p2\}.
This returned value is also stored as LIE_CLASS. The linear transformation from the basis $\left\{X_{1}, \ldots, X_{n}\right\}$ into the basis of the standard form $\left\{Y_{1}, \ldots, Y_{n}\right\}$ is given by the matrix LIEMAT: $Y_{j}=(\text { LIEMAT })_{j}^{k} X_{k}$.

By turning on the switch TR_LIE:
ON TR_LIE;
before the procedure LIECLASS is called the output contains not only the list LIE_CLASS but also the non-vanishing commutator relations in the standard form. By the value m and the parameters further examinations of the Lie algebra are possible, especially if in a data bank mathematical relevant properties of the enumerated standard forms are stored.

Enumeration schemes for lie1234

returned list LIE_CLASS	the corresponding commutator relations
LIEALG(1),COMTAB(0)	commutative case
LIEALG(2),COMTAB(0)	commutative case
LIEALG(2),COMTAB(1)	$\left[Y_{1}, Y_{2}\right]=Y_{2}$
LIEALG(3),COMTAB(0)	commutative case
LIEALG(3),COMTAB(1)	$\left[Y_{1}, Y_{2}\right]=Y_{3}$
LIEALG(3),COMTAB (2)	$\left[Y_{1}, Y_{3}\right]=Y_{3}$
LIEALG(3),COMTAB(3)	$\left[Y_{1}, Y_{3}\right]=Y_{1},\left[Y_{2}, Y_{3}\right]=Y_{2}$
LIEALG(3),COMTAB(4)	$\left[Y_{1}, Y_{3}\right]=Y_{2},\left[Y_{2}, Y_{3}\right]=Y_{1}$
LIEALG(3),COMTAB(5)	$\left[Y_{1}, Y_{3}\right]=-Y_{2},\left[Y_{2}, Y_{3}\right]=Y_{1}$
LIEALG(3),COMTAB(6)	$\left[Y_{1}, Y_{3}\right]=-Y_{1}+p_{1} Y_{2},\left[Y_{2}, Y_{3}\right]=Y_{1}, p_{1} \neq 0$
LIEALG(3),COMTAB(7)	$\left[Y_{1}, Y_{2}\right]=Y_{3},\left[Y_{1}, Y_{3}\right]=-Y_{2},\left[Y_{2}, Y_{3}\right]=Y_{1}$
LIEALG(3),COMTAB(8)	$\left[Y_{1}, Y_{2}\right]=Y_{3},\left[Y_{1}, Y_{3}\right]=Y_{2},\left[Y_{2}, Y_{3}\right]=Y_{1}$
LIEALG(4),COMTAB(0)	$\operatorname{commutative~case~}$
LIEALG(4),COMTAB(1)	$\left[Y_{1}, Y_{4}\right]=Y_{1}$
LIEALG(4),COMTAB(2)	$\left[Y_{2}, Y_{4}\right]=Y_{1}$
LIEALG(4),COMTAB(3)	$\left[Y_{1}, Y_{3}\right]=Y_{1},\left[Y_{2}, Y_{4}\right]=Y_{2}$
LIEALG(4),COMTAB(4)	$\left[Y_{1}, Y_{3}\right]=-Y_{2},\left[Y_{2}, Y_{4}\right]=Y_{2}$,
	$\left[Y_{1}, Y_{4}\right]=\left[Y_{2}, Y_{3}\right]=Y_{1}$
LIEALG(4),COMTAB(5)	$\left[Y_{2}, Y_{4}\right]=Y_{2},\left[Y_{1}, Y_{4}\right]=\left[Y_{2}, Y_{3}\right]=Y_{1}$
LIEALG(4),COMTAB(6)	$\left[Y_{2}, Y_{4}\right]=Y_{1},\left[Y_{3}, Y_{4}\right]=Y_{2}$
LIEALG(4),COMTAB(7)	$\left[Y_{2}, Y_{4}\right]=Y_{2},\left[Y_{3}, Y_{4}\right]=Y_{1}$
LIEALG(4),COMTAB(8)	$\left[Y_{1}, Y_{4}\right]=-Y_{2},\left[Y_{2}, Y_{4}\right]=Y_{1}$
LIEALG(4),COMTAB (9)	$\left[Y_{1}, Y_{4}\right]=-Y_{1}+p_{1} Y_{2},\left[Y_{2}, Y_{4}\right]=Y_{1}, p_{1} \neq 0$
LIEALG(4),COMTAB (10)	$\left[Y_{1}, Y_{4}\right]=Y_{1},\left[Y_{2}, Y_{4}\right]=Y_{2}$
LIEALG(4),COMTAB(11)	$\left[Y_{1}, Y_{4}\right]=Y_{2},\left[Y_{2}, Y_{4}\right]=Y_{1}$

returned list LIE_CLASS	the corresponding commutator relations
LIEALG(4),COMTAB(12)	$\left[Y_{1}, Y_{4}\right]=Y_{1}+Y_{2},\left[Y_{2}, Y_{4}\right]=Y_{2}+Y_{3}$,
	$\left[Y_{3}, Y_{4}\right]=Y_{3}$
LIEALG(4),COMTAB(13)	$\left[Y_{1}, Y_{4}\right]=Y_{1},\left[Y_{2}, Y_{4}\right]=p_{1} Y_{2},\left[Y_{3}, Y_{4}\right]=p_{2} Y_{3}$,
	$p_{1}, p_{2} \neq 0$
LIEALG(4),COMTAB(14)	$\left[Y_{1}, Y_{4}\right]=p_{1} Y_{1}+Y_{2},\left[Y_{2}, Y_{4}\right]=-Y_{1}+p_{1} Y_{2}$,
	$\left[Y_{3}, Y_{4}\right]=p_{2} Y_{3}, p_{2} \neq 0$
LIEALG(4),COMTAB(15)	$\left[Y_{1}, Y_{4}\right]=p_{1} Y_{1}+Y_{2},\left[Y_{2}, Y_{4}\right]=p_{1} Y_{2}$,
	$\left[Y_{3}, Y_{4}\right]=Y_{3}, p_{1} \neq 0$
LIEALG(4),COMTAB(16)	$\left[Y_{1}, Y_{4}\right]=2 Y_{1},\left[Y_{2}, Y_{3}\right]=Y_{1}$,
	$\left[Y_{2}, Y_{4}\right]=\left(1+p_{1}\right) Y_{2},\left[Y_{3}, Y_{4}\right]=\left(1-p_{1}\right) Y_{3}$,
	$p_{1} \geq 0$
LIEALG(4),COMTAB(17)	$\left[Y_{1}, Y_{4}\right]=2 Y_{1},\left[Y_{2}, Y_{3}\right]=Y_{1}$,
	$\left[Y_{2}, Y_{4}\right]=Y_{2}-p_{1} Y_{3},\left[Y_{3}, Y_{4}\right]=p_{1} Y_{2}+Y_{3}$,
LIEALG(4),COMTAB(18)	$p_{1} \neq 0$
	$\left[Y_{1}, Y_{4}\right]=2 Y_{1},\left[Y_{2}, Y_{3}\right]=Y_{1}$,
LIEALG(4),COMTAB(19)	$\left[Y_{2}, Y_{4}\right]=Y_{2}+Y_{3},\left[Y_{3}, Y_{4}\right]=Y_{3}$
LIEALG(4),COMTAB(20)	$\left[Y_{2}, Y_{3}\right]=Y_{1},\left[Y_{2}, Y_{4}\right]=Y_{3},\left[Y_{3}, Y_{4}\right]=Y_{2}$
LIEALG(4),COMTAB(21)	$\left.\left[Y_{3}\right]=Y_{1},\left[Y_{2}, Y_{4}\right]=-Y_{3}\right]=\left[Y_{3}, Y_{4}\right]=Y_{2},\left[Y_{1}, Y_{3}\right]=-Y_{2},\left[Y_{2}, Y_{3}\right]=Y_{1}$
LIEALG(4),COMTAB(22)	$\left[Y_{1}, Y_{2}\right]=Y_{3},\left[Y_{1}, Y_{3}\right]=Y_{2},\left[Y_{2}, Y_{3}\right]=Y_{1}$

References

[1] M.A.H. MacCallum. On the classification of the real four-dimensional lie algebras. 1979.
[2] C. Schoebel. Classification of real n-dimensional lie algebras with a lowdimensional derived algebra. In Proc. Symposium on Mathematical Physics '92, 1993.
[3] F. Schoebel. The symbolic classification of real four-dimensional lie algebras. 1992.

