Polynomial Ideals

Arithmetic for polynomial ideals supported by Gröbner bases
Version 1.0 May 1992
Herbert Melenk
Konrad-Zuse-Zentrum für Informationstechnik
Takustras̈e 7
D14195 Berlin-Dahlem
Federal Republic of Germany
melenk@zib.de
May 1992

1 Introduction

This package implements the basic arithmetic for polynomial ideals by exploiting the Gröbner bases package of REDUCE. In order to save computing time all intermediate Gröbner bases are stored internally such that time consuming repetitions are inhibited. A uniform setting facilitates the access.

2 Initialization

Prior to any computation the set of variables has to be declared by calling the operator I_setting. E.g. in order to initiate computations in the polynomial ring $Q[x, y, z]$ call

$$
\text { I_setting }(x, y, z) \text {; }
$$

A subsequent call to I_setting allows one to select another set of variables; at the same time the internal data structures are cleared in order to free memory resources.

3 Bases

An ideal is represented by a basis (set of polynomials) tagged with the symbol I, e.g.
$\mathrm{u}:=\mathrm{I}(\mathrm{x} * \mathrm{z}-\mathrm{y} * * 2, \mathrm{x} * * 3-\mathrm{y} * \mathrm{z}) ;$
Alternatively a list of polynomials can be used as input basis; however, all arithmetic results will be presented in the above form. The operator ideal2list allows one to convert an ideal basis into a conventional REDUCE list.

3.1 Operators

Because of syntactical restrictions in REDUCE, special operators have to be used for ideal arithmetic:

```
.+ ideal sum (infix)
.* ideal product (infix)
.: ideal quotient (infix)
./ ideal quotient (infix)
.= ideal equality test (infix)
subset ideal inclusion test (infix)
intersection ideal intersection (prefix,binary)
member test for membership in an ideal
    (infix: polynomial and ideal)
gb Groebner basis of an ideal (prefix, unary)
ideal2list convert ideal basis to polynomial list
    (prefix,unary)
```

Example:

```
I(x+y,x^2) .* I(x-z);
    2 2 2
I(X + X*Y - X*Z - Y*Z,X*Y - Y *Z)
```

The test operators return the values 1 (=true) or 0 (=false) such that they can be used in REDUCE if - then - else statements directly.

The results of sum, product, quotient, intersction are ideals represented by their Gröbner basis in the current setting and term order. The term order can be modified using the operator torder from the Gröbner package. Note that ideal equality cannot be tested with the REDUCE equal sign:

$$
\begin{array}{ll}
I(x, y)=I(y, x) & \text { is false } \\
I(x, y)=I(y, x) & \text { is true }
\end{array}
$$

4 Algorithms

The operators groebner, preduce and idealquotient of the REDUCE Gröbner package support the basic algorithms:
$G B\left(I u_{1}, u_{2} \ldots\right) \rightarrow \operatorname{groebner}\left(\left\{u_{1}, u_{2} \ldots\right\},\{x, \ldots\}\right)$
$p \in I_{1} \rightarrow p=0 \bmod I_{1}$
$I_{1}: I(p) \rightarrow\left(I_{1} \cap I(p)\right) / p$ elementwise
On top of these the Ideals package implements the following operations:
$I\left(u_{1}, u_{2} \ldots\right)+I\left(v_{1}, v_{2} \ldots\right) \rightarrow G B\left(I\left(u_{1}, u_{2} \ldots, v_{1}, v_{2} \ldots\right)\right)$
$I\left(u_{1}, u_{2} \ldots\right) * I\left(v_{1}, v_{2} \ldots\right) \rightarrow G B\left(I\left(u_{1} * v_{1}, u_{1} * v 2, \ldots, u_{2} * v_{1}, u_{2} * v_{2} \ldots\right)\right)$
$I_{1} \cap I_{2} \rightarrow Q[x, \ldots] \cap G B_{l e x}\left(t * I_{1}+(1-t) * I_{2},\{t, x, .\}.\right)$
$I_{1}: I\left(p_{1}, p_{2}, \ldots\right) \rightarrow I_{1}: I\left(p_{1}\right) \cap I_{1}: I\left(p_{2}\right) \cap \ldots$
$I_{1}=I_{2} \rightarrow G B\left(I_{1}\right)=G B\left(I_{2}\right)$
$I_{1} \subseteq I_{2} \rightarrow u_{i} \in I_{2} \forall u_{i} \in I_{1}=I\left(u_{1}, u_{2} \ldots\right)$

5 Examples

Please consult the file ideals.tst.

