
GNUPLOT Interface for REDUCE
Version 4

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

E–mail: Melenk@zib.de

1 Introduction

The GNUPLOT system provides easy to use graphics output for curves or surfaces which are defined
by formulas and/or data sets. GNUPLOT supports a variety of output devices such as VGA screen,
postscript, pic TEX, MS Windows. The REDUCE GNUPLOT package lets one use the GNU-
PLOT graphical output directly from inside REDUCE, either for the interactive display of curves/surfaces
or for the production of pictures on paper.

REDUCE supports GNUPLOT 3.4 (or higher). For DOS, Windows, Windows 95, Windows NT, OS/2
and Unix versions of REDUCE GNUPLOT binaries are delivered together with REDUCE 1 . However,
this is a basic set only. If you intend to use more facilities of the GNUPLOT system you should pick up
the full GNUPLOT file tree from a server, e.g.

• dartmouth.edu (129.170.16.4)

• monu1.cc.monash.edu.au (130.194.1.101)

• irisa.irisa.fr (131.254.2.3)

2 Command PLOT

Under REDUCE GNUPLOT is used as graphical output server, invoked by the command PLOT(...).
This command can have a variable number of parameters:

• A functions to plot; a function can be

– an expression with one unknown, e.g. u ∗ sin(u) ∗ ∗2
– a list of expressions with one (identical) unknown, e.g. {sin(u), cos(u)}
– an expression with two unknowns, e.g. u ∗ sin(u) ∗ ∗2 + sqrt(v)
– a parametic expression of the form point(< u >,< v >) or point(< u >,< v >,< w >)

where < u >, < v > and < w > are expressions which depend of one or two parameters;
if there is one parameter, the object describes a curve in the plane (only < u > and < v >)
or in the 3D space; if there are two parameters, the object describes a surface in 3D. The

1The GNUPLOT developers have agreed that GNUPLOT binaries can be distributed together with REDUCE. As GNU-
PLOT is a package distributed without cost, the GNUPLOT support of REDUCE also is an add-on to the REDUCE kernel
system without charge. We recommend fetching the full GNUPLOT system by anonymous FTP from a file server.

1

parameters are treated as independent variables. Example:
point(sint, cost, t/10)

– an equation with a symbol on the left-hand side and an expression with one or two unknowns
on the right-hand side, e.g.
dome = 1/(x ∗ ∗2 + y ∗ ∗2)

– an equation with an expression on the left–hand side and a zero on right–hand side describing
implicitly a one dimensional variety in the plane (implicitly given curve), e.g.
x^3+x∗y^2−9x = 0, or a two dimensional surface in the 3 dimensional Euclidean space,

– an equation with an expression in two variables on the left–hand side and a list of numbers
on the right–hand side; the contour lines corresponding to the given values are drawn, e.g.
x^3− y^2 + x ∗ y = {−2,−1, 0, 1, 2},

– a list of points in 2 or 3 dimensions e.g.
{{0, 0}, {0, 1}, {1, 1}} representing a curve,

– a list of lists of points in 2 or 3 dimensions e.g.
{{{0, 0}, {0, 1}, {1, 1}}, {{0, 0}, {0, 1}, {1, 1}}} representing a family of curves.

• A range for a variable; this has the form
variable = (lower_bound .. upper_bound) where lower_bound and upper_bound must be ex-
pressions which evaluate to numbers. If no range is specified the default ranges for independent
variables are (−10 .. 10) and the range for the dependent variable is set to maximum number of
the GNUPLOT executable (using double floats on most IEEE machines and single floats under
DOS). Additionally the number of interval subdivisions can be assigned as a formal quotient
variable = (lower_bound .. upper_bound)/ < it > where < it > is a positive integer. E.g.
(1..5)/30 means the interval from 1 to 5 subdivided into 30 pieces of equal size. A subdivision
parameter overrides the value of the variable points for this variable.

• A plot option, either as fixed keyword, e.g. hidden3d or as equation e.g. term=pictex; free
texts such as titles and labels should be enclosed in string quotes.

Please note that a blank has to be inserted between a number and a dot - otherwise the REDUCE trans-
lator will be mislead.

If a function is given as an equation the left-hand side is mainly used as a label for the axis of the
dependent variable.

In two dimensions, PLOT can be called with more than one explicit function; all curves are drawn in
one picture. However, all these must use the same independent variable name. One of the functions can
be a point set or a point set list. Normally all functions and point sets are plotted by lines. A point set is
drawn by points only if functions and the point set are drawn in one picture.

In three dimensions only one surface can be shown per call. Also an implicilty given curve must be the
sole object for one picture.

The functional expressions are evaluated in rounded mode. This is done automatically - it is not
necessary to turn on rounded mode explicitly.

Examples:

plot(cos x);
plot(s=sin phi,phi=(-3 .. 3));
plot(sin phi,cos phi,phi=(-3 .. 3));
plot (cos sqrt(x**2 + y**2),x=(-3 .. 3),y=(-3 .. 3),hidden3d);
plot {{0,0},{0,1},{1,1},{0,0},{1,0},{0,1},{0.5,1.5},{1,1},{1,0}};

% parametric: screw

on rounded;
w:=for j:=1:200 collect {1/j*sin j,1/j*cos j,j/200}$
plot w;

% parametric: globe
dd:=pi/15$
w:=for u:=dd step dd until pi-dd collect

for v:=0 step dd until 2pi collect
{sin(u)*cos(v), sin(u)*sin(v), cos(u)}$

plot w;

% implicit: superposition of polynomials
plot((x^2+y^2-9)*x*y=0);

Piecewise defined functions: A composed graph can be defined by a rule–based operator. In that case
each rule must contain a clause which restricts the rule application to numeric arguments, e.g.

operator my_step1;
let {my_step1(~x) => -1 when numberp x and x<-pi/2,

my_step1(~x) => 1 when numberp x and x>pi/2,
my_step1(~x) => sin x

when numberp x and -pi/2<=x and x<=pi/2};
plot(my_step2(x));

Of course, such a rule may call a procedure:

procedure my_step3(x);
if x<-1 then -1 else if x>1 then 1 else x;

operator my_step2;
let my_step2(~x) => my_step3(x) when numberp x;
plot(my_step2(x));

The direct use of a produre with a numeric if clause is impossible.

Plot options: The following plot options are supported in the PLOT command:

• points =< integer >: the number of unconditionally computed data points; for a grid points2

grid points are used. The default value is 20. The value of points is used only for variables for
which no individual interval subdivision has been specified in the range specification.

• refine =< integer >: the maximum depth of adaptive interval intersections. The default is 8.
A value 0 switches any refinement off. Note that a high value may increase the computing time
significantly.

The following additional GNUPLOT options are supported in the PLOT command:

• title = name: the title (string) is put on top of the picture.

• axes labels: xlabel = ”text1”, ylabel = ”text2”, and for surfaces zlabel = ”text3”. If omitted
the axes are labeled by the independent and dependent variable names from the expression. Note
that the axes names xlabel, ylabel and zlabel here are used in the usual sense, x for the horizontal
and y for the vertical axis under 2-d and z for the perpendicular axis under 3-d – these names do
not refer to the variable names used in the expressions.

plot(1,X,(4*X**2-1)/2,(X*(12*X**2-5))/3,
x=(-1 .. 1), ylabel="L(x,n)",
title="Legendre Polynomials");

• terminal = name: prepare output for device type name. Every installation uses a default
terminal as output device; some installations support additional devices such as printers; consult
the original GNUPLOT documentation or the GNUPLOT Help for details.

• output = ”filename”: redirect the output to a file.

• size = ”sx, sy”: rescale the graph (not the window) where sx and sy are scaling factors for the
size in x or y direction. Defaults are sx = 1, xz = 1. Note that scaling factors greater than one
will often cause the picture to be too big for the window.

plot(1/(x**2+y**2),x=(0.1 .. 5),
y=(0.1 .. 5), size="0.7,1");

• view = ”rx, rz”: set viewpoint for 3 dimensions by turning the object around the x or z axis; the
values are degrees (integers). Defaults are rx = 60, rz = 30.

plot(1/(x**2+y**2),x=(0.1 .. 5),
y=(0.1 .. 5), view="30,130");

• contour resp nocontour: in 3 dimensions an additional contour map is drawn (default:
nocontour) Note that contour is an option which is executed by GNUPLOT by interpolating
the precomputed function values. If you want to draw contour lines of a delicate formula, you
better use the contour form of the REDUCE PLOT command.

• surface resp nosurface: in 3 dimensions the surface is drawn resp suppressed (default:
surface).

• hidden3d: hidden line removal in 3 dimensions.

3 Paper output

The following example works for a postscript printer. If your printer uses a different communication,
please find the correct setting for the terminal variable in the Gnuplot documentation.

For a postscript printer, add the options terminal = postscript and output = ”filename” to your
plot command, e.g.

plot(sin x,x=(0 .. 10),terminal=postscript,output="sin.ps");

4 Mesh generation for implicit curves

The basic mesh for finding an implicitly given curve, the x, y plane is subdivided into an initial set of
triangles. Those triangles which have an explicit zero point or which have two points with different signs

are refined by subdivision. A further refinement is performed for triangles which do not have exactly
two zero neighbours because such places may represent crossings, bifurcations, turning points or other
difficulties. The initial subdivision and the refinements are controlled by the option points which is
initially set to 20: the initial grid is refined unconditionally until approximately points * points
equally distributed points in the x, y plane have been generated.

The final mesh can be visualized in the picture by setting

on show_grid;

5 Mesh generation for surfaces

By default the functions are computed at predefined mesh points: the ranges are divided by the number
associated with the option points in both directions.

For two dimensions the given mesh is adaptively smoothed when the curves are too coarse, especially
if singularities are present. On the other hand refinement can be rather time consuming if used with
complicated expressions. You can control it with the option refine. At singularities the graph is
interrupted.

In three dimensions no refinement is possible as GNUPLOT supports surfaces only with a fixed regular
grid. In the case of a singularity the near neighborhood is tested; if a point there allows a function
evaluation, its clipped value is used instead, otherwise a zero is inserted.

When plotting surfaces in three dimensions you have the option of hidden line removal. Because of an
error in Gnuplot 3.2 the axes cannot be labeled correctly when hidden3d is used ; therefore they aren’t
labelled at all. Hidden line removal is not available with point lists.

6 GNUPLOT operation

The command PLOTRESET; deletes the current GNUPLOT output window. The next call to PLOT
will then open a new one.

If GNUPLOT is invoked directly by an output pipe (UNIX and Windows), an eventual error in the
GNUPLOT data transmission might cause GNUPLOT to quit. As REDUCE is unable to detect the broken
pipe, you have to reset the plot system by calling the command PLOTRESET; explicitly. Afterwards
new graphic output can be produced.

Under Windows 3.1 and Windows NT, GNUPLOT has a text and a graph window. If you don’t want
to see the text window, iconify it and activate the option update wgnuplot.ini from the graph
window system menu - then the present screen layout (including the graph window size) will be saved
and the text windows will come up iconified in future. You can also select some more features there and
so tailor the graphic output. Before you terminate REDUCE you should terminate the graphic window
by calling PLOTRESET;. If you terminate REDUCE without deleting the GNUPLOT windows, use the
command button from the GNUPLOT text window - it offers an exit function.

7 Saving GNUPLOT command sequence

If you want to use the internal GNUPLOT command sequence more than once (e.g. for producing a
picture for a publication), you may set

ON TRPLOT,PLOTKEEP;

TRPLOT causes all GNUPLOT commands to be written additionally to the actual REDUCE output.
Normally the data files are erased after calling GNUPLOT, however with PLOTKEEP on the files are
not erased.

8 Direct Call of GNUPLOT

GNUPLOT has a lot of facilities which are not accessed by the operators and parameters described
above. Therefore genuine GNUPLOT commands can be sent by REDUCE. Please consult the GNU-
PLOT manual for the available commands and parameters. The general syntax for a GNUPLOT call
inside REDUCE is

gnuplot(< cmd >,< p1 >,< p2 > · · ·)

where < cmd > is a command name and < p1 >,< p2 > · · · are the parameters, inside REDUCE
separated by commas. The parameters are evaluated by REDUCE and then transmitted to GNUPLOT
in GNUPLOT syntax. Usually a drawing is built by a sequence of commands which are buffered by
REDUCE or the operating system. For terminating and activating them use the REDUCE command
plotshow. Example:

gnuplot(set,polar);
gnuplot(set,noparametric);
gnuplot(plot,x*sin x);
plotshow;

In this example the function expression is transferred literally to GNUPLOT, while REDUCE is respon-
sible for computing the function values when PLOT is called. Note that GNUPLOT restrictions with
respect to variable and function names have to be taken into account when using this type of operation.
Important: String quotes are not transferred to the GNUPLOT executable; if the GNUPLOT syntax
needs string quotes, you must add doubled stringquotes inside the argument string, e.g.

gnuplot(plot,"""mydata""","using 2:1");

9 Examples

The following examples pictures are taken from a collection of sample plot (gnuplot.tst) and a set of
tests for plotting special functions (will be published in the REDUCE electronic library).

The pictures are taken directly form the X screen by xv or produced by the Gnuplot postscript driver
directly.

A simple plot for sin(1/x) :

plot(sin(1/x),x=(-1 .. 1),y=(-3 .. 3));

Some implicitly defined curves.

plot(x^3+y^3 -3*x*y ={0,1,2,3},x=(-2.5 .. 2),y=(-5 .. 5));

A test for hidden surfaces:

plot (cos sqrt(x**2 + y**2),x=(-3 .. 3),y=(-3 .. 3),hidden3d);

This may be slow on some machines because of a delicate evaluation context.

plot(sinh(x*y)/sinh(2*x*y),hidden3d);

on rounded;
w:= {for j:=1 step 0.1 until 20 collect {1/j*sin j,1/j*cos j,j},

for j:=1 step 0.1 until 20 collect
{(0.1+1/j)*sin j,(0.1+1/j)*cos j,j} }$
plot w;

An example taken from: Cox, Little, O’Shea: Ideals, Varieties and Algorithms

plot(point(3u+3u*v^2-u^3,3v+3u^2*v-v^3,3u^2-3v^2),hidden3d,title="Enneper Surface");

The following examples use the specfn package to draw a collection of Chebyshev’s T polynomials and
Bessel Y Functions. The special function package has to be loaded explicitely to make the operator
ChebyshevT and BesselY available.

load_package specfn;
plot(chebyshevt(1,x),chebyshevt(2,x),chebyshevt(3,x),chebyshevt(4,x),

chebyshevt(5,x),x=(-1 .. 1),title="Chebyshev t Polynomials");

plot(bessely(0,x),bessely(1,x),bessely(2,x),x=(0.1 .. 10)
,y=(-1 .. 1), title="Bessel functions of 2nd kind");

	Introduction
	Command PLOT
	Paper output
	Mesh generation for implicit curves
	Mesh generation for surfaces
	GNUPLOT operation
	Saving GNUPLOT command sequence
	Direct Call of GNUPLOT
	Examples

