
EDS
A package for exterior differential systems

David Hartley
Physics and Mathematical Physics
University of Adelaide SA 5005

Australia
DHartley@physics.adelaide.edu.au

Version 2.1

May 3, 1999

Abstract
EDS is a REDUCE package for symbolic analysis of partial differ-

ential equations using the geometrical approach of exterior differential
systems. The package implements much of exterior differential systems
theory, including prolongation and involution analysis, and has been
optimised for large, non-linear problems.

1



CONTENTS 2

Contents

1 Introduction 5

2 EDS data structures and concepts 6

2.1 Coframings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Exterior differential systems . . . . . . . . . . . . . . . . . . . 7

2.3 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Background coframing . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Integral elements . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Cobasis transformations . . . . . . . . . . . . . . . . . . . . . 10

2.9 Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 Normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.11 Standard cobasis . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Constructing EDS objects 13

3.1 coframing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 eds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 pde2eds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 set coframing . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Inspecting EDS objects 19

4.1 cobasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 structure equations . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



CONTENTS 3

4.5 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.6 independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.7 properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.8 one forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.9 zero forms, nought forms . . . . . . . . . . . . . . . . . . . . 22

5 Manipulating EDS objects 22

5.1 augment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 cross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 pullback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 restrict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5 transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.6 lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Analysing exterior systems 27

6.1 cartan system . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 cauchy system . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4 closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.5 derived system . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.6 dim grassmann variety . . . . . . . . . . . . . . . . . . . . . . 31

6.7 dim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.8 involution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.9 linearise, linearize . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.10 integral element . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.11 prolong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.12 tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.13 torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



CONTENTS 4

6.14 grassmann variety . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Testing exterior systems 38

7.1 closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 involutive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3 pfaffian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.4 quasilinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.5 semilinear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.6 frobenius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.7 equiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Switches 42

8.1 edsverbose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.2 edsdebug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.3 edssloppy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.4 edsdisjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.5 ranpos, genpos . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Auxiliary functions 43

9.1 invert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.2 linear divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.3 exfactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.4 index expand . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.5 pde2jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.6 mkdepend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.7 disjoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.8 cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.9 reorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



1 INTRODUCTION 5

10 Experimental facilities 49

10.1 poincare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.2 invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.3 symbol relations . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.4 symbol matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.5 characteristic variety . . . . . . . . . . . . . . . . . . . . . . . 52

A Command tables 52

1 Introduction

Exterior differential systems give a geometrical framework for partial differ-
ential equations and more general differential geometric problems. The geo-
metrical formulation has several advantages stemming from its coordinate-
independence, including superior treatment of nonlinear and global prob-
lems. There is not sufficient space in this manual for an introduction to
exterior differential systems beyond the scant details given in section 2, but
there are a number of up-to-date texts on the subject (eg [2, 10]).

EDS provides a number of tools for setting up and manipulating exterior
differential systems and implements many features of the theory. Its main
strengths are the ability to use anholonomic or moving frames and the care
taken with nonlinear problems.

There has long been interest in implementing the theory of exterior differ-
ential systems in a computer algebra system (eg [1, 3, 4]). The EDS package
owes much to these earlier efforts, and also to related packages for PDE anal-
ysis (eg [6, 7, 9]), as well as to earlier versions of EDS produced at Lancaster
university with R W Tucker and P A Tuckey. Finally, EDS uses the exterior
calculus package EXCALC of E Schrüfer [8] and the exterior ideals package
XIDEAL [5]. XIDEAL and EXCALC are loaded automatically with EDS.

This work has been supported by the Graduate College on Scientific Com-
puting, University of Cologne and GMD St Augustin, funded by the DFG
(Deutsche Forschungsgemeinschaft). I would like to express my thanks to
R W Tucker, E Schrüfer, P A Tuckey, F W Hehl and R B Gardner for helpful
and encouraging discussions.



2 EDS DATA STRUCTURES AND CONCEPTS 6

2 EDS data structures and concepts

This section presents the various structures used for expressing exterior sys-
tems quantities in EDS. In addition, some the concepts used in EDS to aid
computation are described.

2.1 Coframings

Within the context of EDS, a coframing means a real finite-dimensional
differentiable manifold with a given global cobasis. The information about
a coframing required by EDS is kept in a 〈coframing〉 object. The cobasis
is the identifying element of an EDS 〈coframing〉: distinct cobases for the
same differentiable manifold are treated as distinct 〈coframing〉 objects in
EDS. The cobasis may be either holonomic or anholonomic, allowing some
manifolds with non-trivial topology (eg. group manifolds) to be treated.

In addition to the cobasis, an EDS 〈coframing〉 can be given coordinates,
structure equations and restrictions. The coordinates may be an incomplete
or overcomplete set. The structure equations express the exterior derivative
of the coordinates and cobasis elements as needed. All coordinate differen-
tials must be expressed in terms of the given cobasis, but not all cobasis
differentials need be known. The restrictions are a set of inequalities (at
present using just 6=) describing point sets not in the manifold.

The 〈coframing〉 object is, of course, by no means a full description of a
differentiable manifold. For example, there is no topology and there are no
charts. However, the 〈coframing〉 object carries sufficient information about
the underlying manifold to allow a range of exterior systems calculations to
be carried out. As such, it is convenient to accept an abuse of language and
think of the 〈coframing〉 object as a manifold.

A 〈coframing〉 is constructed or selected using the coframing operator.

Examples:

• R3 with cobasis {dx, dy, dz} and coordinates {x, y, z}.
• R2\{0} with cobasis {e1, e2}, a single coordinate {r}, “structure equa-

tions” {dr = e1, de1 = 0,de2 = e1 ∧ e2/r} and restrictions {r 6= 0}.
• R2\{0} with cobasis {dx, dy}, coordinates {x, y} and restrictions {x2+



2 EDS DATA STRUCTURES AND CONCEPTS 7

y2 6= 0}.
• S1 with cobasis {ω} and structure equations {dω = 0}.
• S2 cannot be encapsulated by an EDS 〈coframing〉 since there is no

global cobasis.

2.2 Exterior differential systems

A simple 〈EDS 〉, or exterior differential system, is a triple (S,Ω,M), where
M is a 〈coframing〉 (section 2.1), S is a 〈system〉 (section 2.3) on M , and Ω is
an independence condition: either a decomposable 〈p-form〉 or a 〈system〉 of
1-forms on M (exterior differential systems without independence condition
are not treated by EDS).

More generally, an 〈EDS 〉 is a list of simple 〈EDS 〉 objects where the vari-
ous coframings are all disjoint. This last requirement in not enforced within
EDS unless the edsdisjoint switch is on (section 8.4). These more general
〈EDS 〉 objects are represented as a list of simple 〈EDS 〉 objects. All op-
erators which take an 〈EDS 〉 argument accept both simple and compound
types.

The trivial 〈EDS 〉, describing an inconsistent problem with no solutions, is
defined to be ({1},{},{}).

An 〈EDS 〉 is represented by the eds operator (section 3.2), and can addi-
tionally be generated using the contact and pde2eds operators (sections
3.3, 3.4).

The solutions of (S,Ω,M) are integral manifolds, or immersions (cf section
2.7) on which S vanishes and the rank of Ω is preserved. Solutions at a
single point are described by integral elements (section 2.5).

2.3 Systems

In EDS, the label 〈system〉 refers to a list

{〈p-form expr〉,· · ·}

of differential forms. This is distinct from an 〈EDS 〉 (section 2.2), which has
additional structure. However, many EDS operators will accept either an
〈EDS 〉 or a 〈system〉 as arguments. In the latter case, any extra information



2 EDS DATA STRUCTURES AND CONCEPTS 8

which is required is taken from the background coframing (section 2.4).

The 〈system〉 of an 〈EDS 〉 can be obtained with the system operator (section
4.5).

2.4 Background coframing

The information encapsulated in a coframing operator is usually inactive.
However, when operations are performed on a 〈coframing〉 or an 〈EDS 〉 ob-
ject (sections 2.1, 2.2), this information is activated for the duration of those
operations. It is possible to activate the rules and orderings of a coframing
operator globally, by making it the background coframing. All subsequent
EXCALC operations will be governed by those rules. Operations on 〈EDS 〉
objects are unaffected, since their coframings are still activated locally. The
background coframing can be set and changed with the set coframing com-
mand, and inspected using coframing.

2.5 Integral elements

An integral element of an exterior system (S,Ω,M) is a subspace P ⊂ TpM
of the tangent space at some point p ∈ M such that all forms in S vanish
when evaluated on vectors from P . In addition, no non-zero vector in P
may annul every form in Ω.

Alternatively, an integral element P ⊂ TpM can be represented by its anni-
hilator P⊥ ⊂ T ∗pM , comprising those 1-forms at p which annul every vector
in P . This can also be understood as a maximal set of 1-forms at p such
that S ' 0 (mod P⊥) and the rank of Ω is preserved modulo P⊥. This
is the representation used by EDS. Further, the reference to the point p is
omitted, so an 〈integral element〉 in EDS is a distribution of 1-forms on M ,
specified as a 〈system〉 of 1-forms.

In specifying an integral element for a particular 〈EDS 〉, it is possible to
omit the Pfaffian component of the 〈EDS 〉, since these 1-forms must be part
of any integral element.

Examples:

• With M = R3 = {(x, y, z)}, S = {dx∧dz} and Ω = {dx, dy}, the inte-



2 EDS DATA STRUCTURES AND CONCEPTS 9

gral element P = {∂x+∂z, ∂y} is equally determined by its annihilator
P⊥ = {dz − dx}.
• For S = {dz−ydx} and Ω = {dx}, the integral element P = {∂x+y∂z}

can be specified simply as {dy}.

2.6 Properties

For large problems, it can require a great deal of computation to establish
whether, for example, a system is closed or not. In order to save recomputing
such properties, an 〈EDS 〉 object carries a list of 〈properties〉 of the form

{〈keyword〉 = 〈value〉,· · ·}

where 〈keyword〉 is one of closed, quasilinear, pfaffian or involutive,
and 〈value〉 is either 0 (false) or 1 (true). These properties are suppressed
when an 〈EDS 〉 is printed, unless the nat switch is off. They can be
examined using the properties operator (section 4.7).

Properties are usually generated automatically by EDS as required, but may
be explicitly checked using the operators in section 7. If a property is not
yet present on the list, it is not yet known, and must be checked explicitly
if required.

In addition to the properties just described, an 〈EDS 〉 object carries a num-
ber of hidden properties which record the results of previous calculations,
such as the closure or information about the prolongation of the system.
These hidden properties speed up many operations which contain common
sub-calculations. The hidden properties are stored using internal LISP data
structures and so are not available for inspection.

Properties can be asserted when an 〈EDS 〉 is constructed with the eds op-
erator (section 3.2). Care is needed since such assertions are never checked.
Properties can be erased using the cleanup operator (section 9.8).

2.7 Maps

Within EDS, a map f : M → N is given as a 〈map〉 object, a list

{〈coordinate〉 = 〈expr〉,· · ·,〈expr〉 neq 〈expr〉,· · ·}



2 EDS DATA STRUCTURES AND CONCEPTS 10

of substitutions and restrictions. The substitutions express coordinates on
the target manifold N in terms of those on the source manifold M . The
restrictions describe point sets not contained in the source manifold M .
The ordering of substitutions and restrictions in the list is unimportant. It
is not necessary that the restrictions and right-hand sides of the substitutions
be written entirely in M coordinates, but it must be possible by repeated
substitution to produce expressions on M (see the examples below). Any
denominators in the substitutions are automatically added to the list of
restrictions. It is not necessary to include trivial equations for coordinates
which are present on both M and N . Note that projections cannot be
represented in this fashion (but see the cross operator, section 5.2).

Maps are applied using the pullback and restrict operators (sections 5.3,
5.4).

Examples:

• The map R2\{0} → R3, (x, y) 7→ (x, y, z = x2 + y2) is represented
{z = x2 + y2, z 6= 0}.

• {x = u+v, y = u−v}might represent the coordinate change R3 → R3,
(u, v, z) 7→ (x = u+ v, y = u− v, z).

• {x = u+ v, y = 2u− x} is the same map again.

• {x = 2v + y, y = 2u − x} is unacceptable since x and y cannot be
eliminated from the right-hand sides by repeated substitution.

2.8 Cobasis transformations

A cobasis transformation is given in EDS by a 〈transform〉, a list

{〈cobasis element〉 = 〈1-form expr〉,· · ·}

of substitutions. When applying a transformation to a 〈p-form〉 or 〈system〉,
it is necessary to specify the forward transformation just as for a sub substi-
tution. For 〈EDS 〉 and 〈coframing〉 objects, it is also possible to specify the
inverse of the desired substition: EDS will automatically invert the trans-
formation as required. For a partial change of cobasis, it is not necessary
to include trivial equalities. Cobasis transformations are applied by the
transform operator (section 5.5).



2 EDS DATA STRUCTURES AND CONCEPTS 11

Examples:

• {ω1 = xdy − ydx, ω2 = xdx + ydy} gives a transformation between
Cartesian and polar cobases on R2\{0}.

• On J1(R2,R) with cobasis {du,dp, dq, dr,ds,dt, dx,dy}, the list {θ1 =
du− pdx− qdy, θ2 = dp− rdx− sdy, θ3 = dq − sdx− tdy} specifies a
new cobasis in which the contact system is simply {θ1, θ2, θ3}.

2.9 Tableaux

For a quasilinear Pfaffian exterior differential system ({θa}, {ωi},M), the
tableau A = [πai ] is a matrix of 1-forms such that

dθa + πai ∧ ωi ' 0 (mod {θa, ωi ∧ ωj})

The πai are not unique: if {θa, πρ, ωi} is a standard cobasis for the system
(section 2.11), the EDS 〈tableau〉 is a matrix containing linear combinations
of the πρ only. Zero rows are omitted.

The tableau of an 〈EDS 〉 is generated by the tableau operator (section
6.12), or can be entered using the mat operator. The Cartan characters of
a tableau are found using characters (section 6.3).

2.10 Normal form

Parts of the theory of exterior differential systems apply only at points on
the underlying manifold where the system is in some sense non-singular.
To ensure the theory applies, EDS automatically works all exterior systems
(S,Ω,M) into a normal form in which

1. The Pfaffian (degree 1) component of S is in solved form, where each
expression has a distinguished term with coefficient 1, unique to that
expression.

2. The independence condition Ω is also in solved form.

3. The distinguished terms from the 1-forms in S have been eliminated
from the rest of S and from Ω.

4. Any 1-forms in S which vanish modulo the independence condition
are removed from the system and their coefficients are appended as
0-forms.



2 EDS DATA STRUCTURES AND CONCEPTS 12

Conditions 1 and 2 ensure the 1-forms have constant rank, while 3 is con-
venient for many tests and calculations. In bringing the system into solved
form, divisions will be made only by coefficients which are constants, pa-
rameters or functions which are nowhere zero on the manifold. The test for
nowhere-zero functions uses the restrictions component of the 〈coframing〉
structure (cf section 2.1) and is still primitive: facts such as x2 + 1 6= 0 on a
real manifold are overlooked. See also the switch edssloppy (section 8.3).

This “normal form” has, of course, nothing to do with the various normal
forms (eg Goursat) into which some exterior systems may be brought by
cobasis transformations and choices of generators.

Examples:

• On M = {(u, v, w) ∈ R3 | u 6= v}, the Pfaffian system

{udu+ vdv + dw, (u2 + u− v2)du+ udv + dw}

has the solved form

{dv + (u+ v)du, dw + (−uv + u− v)du}.

• Since the independence condition is defined only modulo the system,
the system

S = {du− dx− uydy}, Ω = dx ∧ dy

has an equivalent normal form

S = {dx− du+ uydy}, Ω = du ∧ dy.

2.11 Standard cobasis

Given an 〈EDS 〉 (S,Ω,M) in normal form (section 2.10), the cobasis of the
〈coframing〉 M can be decomposed into three sets: {θa}, the distinguished
terms from the 1-forms in S, {ωi}, the distinguished terms from the 1-
forms in Ω, and the remainder {πρ}. Within EDS, {θa, πρ, ωi} is called
the standard cobasis, and all expressions are ordered so that θa > πρ > ωi.
The ordering within the three sets is determined by the REDUCE 〈kernel〉
ordering.



3 CONSTRUCTING EDS OBJECTS 13

Examples:

• For the system S = {du− dx− uydy}, Ω = dx ∧ dy, the decomposed
standard cobasis is {du} ∪ {duy} ∪ {dx, dy}.

• For the contact system

S =


du− uxdx− uydy
dux − uxxdx− uxydy
duy − uxydx− uyydy,

the standard cobasis is {du, dux, duy} ∪ {duxx, duxy, duyy} ∪ {dx, dy}.

3 Constructing EDS objects

Before analysing an exterior system, it is necessary to enter it into EDS
somehow. Several means are provided for this purpose, and are described
in this section.

3.1 coframing

An EDS 〈coframing〉 is constructed using the coframing operator. There
are several ways in which it can be used.

The simplest syntax

coframing({〈expr〉,· · ·})

examines the argument for 0-form and 1-form variables and deduces a full
〈coframing〉 object capable of supporting the given expressions. This in-
cludes recursively examining the exterior derivatives of the variables ap-
pearing explicitly in the argument, taking into account prevailing let rules.
In this form, the ordering of the final cobasis elements follows the prevailing
REDUCE ordering. Free indices in indexed expressions are expanded to a
list of explicit indices using index expand (section 9.4).

A more basic syntax is

coframing(〈cobasis〉 [,〈coordinates〉] [,〈restrictions〉]
[,〈structure equations〉] )

where 〈cobasis〉 is a list of 〈kernel〉 1-forms, 〈coordinates〉 is a list of 〈kernel〉
0-forms, 〈restrictions〉 is a list of inequalities (using only 6= at present), and



3 CONSTRUCTING EDS OBJECTS 14

〈structure equations〉 is a list of rules giving the exterior derivatives of the
coordinates and cobasis elements. All arguments except the cobasis are
optional, and the order of arguments is unimportant. As in the first syntax,
missing parts are deduced. The ordering of the final cobasis elements follows
the ordering specified, rather than the prevailing REDUCE ordering.

Finally,

coframing(〈EDS 〉)

returns the coframing argument of an 〈EDS 〉, and

coframing()

returns the current background coframing (section 2.4).

Examples:

coframing {x,y,z};

coframing({d x,d y,d z},{x,y,z},{},{})

coframing({e 1,e 2},{r},{r neq 0},
{d r=>e 1,d e 1=>0,d e 2=>e 1^e 2/r});

1 2
1 2 1 2 e ^e 1

coframing({e ,e },{r},{d e => 0,d e => -------,d r => e },
r

{r neq 0})

coframing({e 2}) where {d r=e 1,d e 1=0,d e 2=e 1^e 2/r};

1 2
1 2 1 2 e ^e 1

coframing({e ,e },{r},{d e => 0,d e => -------,d r => e },
r

{r neq 0})



3 CONSTRUCTING EDS OBJECTS 15

3.2 eds

A simple 〈EDS 〉 is constructed using the eds operator.

eds(〈system〉,〈indep. condition〉 [,〈coframing〉] [,〈properties〉] )

(cf sections 2.3, 2.1, 2.6). The 〈indep. condition〉 can be either a decompos-
able 〈p-form〉 or a 〈system〉 of 1-forms. Free indices in indexed expressions
are expanded to a list of explicit indices using index expand (section 9.4).

The 〈coframing〉 argument can be omitted, in which case the expressions
from the 〈system〉 and 〈indep. condition〉 are fed to the coframing operator
(section 3.1) to construct a suitable working space.

The 〈properties〉 argument is optional, allowing the given properties to be
asserted. This can save considerable time for large systems, but care is
needed since the assertions are never checked.

The 〈EDS 〉 is put into normal form (section 2.10) before being returned.

On output, only the 〈system〉 and 〈indep. condition〉 are displayed, unless
the nat switch is off, in which case the 〈coframing〉 and 〈properties〉 are
shown too. This is so that an 〈EDS 〉 can be written out to a file and read
back in.

The parts of an 〈EDS 〉 are obtained with the operators system, cobasis,
independence and properties (sections 4.5, 4.1, 4.6 and 4.7).

Examples:

pform {x,y,z,p,q}=0,{e(i),w(i,j)}=1;

indexrange {i,j,k}={1,2},{a,b,c}={3};

eds({d z - p*d x - q*d y, d p^d q},{d x,d y});

EDS({d z - p*d x - q*d y,d p^d q},{d x,d y})

OMrules :=
index_expand {d e(i)=>-w(i,-j)^e(j),w(i,-j)+w(j,-i)=>0}$

eds({e(a)},{e(i)}) where OMrules;



3 CONSTRUCTING EDS OBJECTS 16

3 1 2
EDS({e },{e ,e })

coframing ws;
3 2 1 2 1 2 2

coframing({e ,w ,e ,e },{},{d e => - e ^w ,
1 1

2 1 2
d e => e ^w },{})

1

3.3 contact

Many PDE problems are formulated as exterior systems using a jet bundle
contact system. To facilitate construction of these systems, the contact
operator is provided. The syntax is

contact(〈order〉,〈source manifold〉,〈target manifold〉)

where 〈order〉 is a non-negative integer, and the two remaining arguments
are either 〈coframing〉 objects or lists of 〈p-form〉 expressions. In the lat-
ter case, the expressions are fed to the coframing operator (section 3.1).
The contact system for the bundle Jr(M,N) of r-jets of maps M → N is
thus returned by contact(r,M,N). Source and target spaces may have an-
holonomic cobases. Indexed names for the jet bundle fibre coordinates are
constructed using the identifiers in the source and target cobases.

Examples:

pform {x,y,z,u,v}=0,{e i,w a}=1;
indexrange {i}={1,2},{a}=1;
contact(1,{x,y,z},{u,v});

EDS({d u - u *d x - u *d y - u *d z,
x y z

d v - v *d x - v *d y - v *d z},{d x,d y,d z})
x y z

contact(2,{e(i)},{w(a)})



3 CONSTRUCTING EDS OBJECTS 17

where index_expand{d e(1)=>e(1)^e(2),d e(2)=>0,d w(a)=>0};

1 1 1 1 2
EDS({w - w *e - w *e ,

1 2
1 1 1 1 2

d w - w *e - w *e ,
1 1 1 1 2

1 1 1 1 1 2 1 2
d w + ( - w + w )*e - w *e },{e ,e })

2 1 2 1 2 2

3.4 pde2eds

A PDE system can be encoded into an 〈EDS 〉 using pde2eds. The syntax
is

pde2eds(〈pde〉 [,〈dependent〉,〈independent〉] )

where 〈pde〉 is a list of equations or expressions (implicitly assumed to van-
ish) specifying the PDE system using either the standard REDUCE df op-
erator, or the EXCALC @ operator. If the optional variable lists 〈dependent〉
and 〈independent〉 are not given, pde2eds infers them from the expressions
in 〈pde〉. The order of each dependent variable is determined automatically.

The result returned by pde2eds is an 〈EDS 〉 based on the contact system
of the relevant mixed-order jet bundle. Any of the 〈pde〉 members which
is in solved form is used to pull back this contact system. Any remaining
expressions or unresolved equations are simply appended as 0-forms: before
many of the analysis tools (section 6) can be applied, it is necessary to
convert this to a system generated in positive degree using the lift operator
(section 5.6).

The automatic inference of dependent and independent variables is gov-
erned by the following rules. The independent variables are all those with
respect to which derivatives appear. The dependent variables are those for
which explicit derivatives appear, as well as any which have dependencies
(as declared by depend or fdomain) or which are 0-forms. To exclude a vari-
able from the dependent variable list (for example, because it is regarded as
given) or to include extra independent variables, use the optional arguments



3 CONSTRUCTING EDS OBJECTS 18

to pde2eds.

One of the awkward points about pde2eds is that implicit dependence is
changed globally. In order for the df and @ operators to be used to express
the PDE, the 〈dependent〉 variables must depend (via depend or fdomain)
on the 〈independent〉 variables. On the other hand, in the 〈EDS 〉, these
variables are all completely independent coordinates. The pde2eds operator
thus removes the implicit dependence so that the 〈EDS 〉 is correct upon
return. This means that the 〈pde〉 will no longer evaluate properly until
such time as the dependence is manually restored, whereupon the 〈EDS 〉
will no longer be correct, and so on.

To assist with this difficulty, pde2eds saves a record of the dependencies it
has removed in the shared variable dependencies. The operator mkdepend
can be used to restore the initial state.

See also the operators pde2jet (section 9.5) and mkdepend (section 9.6).

Example:

depend u,x,y; depend v,x,y;
pde2eds({df(u,y,y)=df(v,x),df(v,y)=y*df(v,x)});

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x y x

d u - u *d x - v *d y,
y y x x

d v - v *d x - v *y*d y},d x^d y)
x x

dependencies;

{{u,y,x},{v,y,x}}



4 INSPECTING EDS OBJECTS 19

3.5 set coframing

The background coframing (section 2.4) is set with set coframing. The
syntax is

set coframing 〈arg〉

where 〈arg〉 is a 〈coframing〉 or an 〈EDS 〉 and the previous background
coframing is returned. All rules, orderings etc pertaining to the previ-
ous background coframing are removed and replaced by those for the new
〈coframing〉. The special form

set coframing()

clears the background coframing entirely and returns the previous one.

4 Inspecting EDS objects

Given an 〈EDS 〉 or some other EDS structure, it is often desirable to in-
spect or extract some part of it. The operators described in this section do
just that. Many of them accept various types of arguments and return the
relevant information in each case.

4.1 cobasis

cobasis 〈arg〉

returns the cobasis for 〈arg〉, which may be either a 〈coframing〉 or an 〈EDS 〉
(sections 2.1, 2.2). The order of the items in the list gives the 〈kernel〉
ordering which applies when the 〈coframing〉 in 〈arg〉 is active.

4.2 coordinates

coordinates 〈arg〉

returns the coordinates for 〈arg〉, which may be either a 〈coframing〉, an
〈EDS 〉, or a list of 〈expr〉 (sections 2.1, 2.2). The coordinates in a list of
〈expr〉 are defined to be those 0-form 〈kernels〉 with no implicit dependen-
cies.



4 INSPECTING EDS OBJECTS 20

Examples:

coordinates contact(3,{x},{u});

{x,u,u ,u ,u }
x x x x x x

fdomain u=u(x);
coordinates {d u+d y};

{x,y}

4.3 structure equations

structure equations 〈arg〉

returns the structure equations (cf section 2.1) for 〈arg〉, which may be either
a 〈coframing〉, an 〈EDS 〉, or a 〈transform〉 (sections 2.1, 2.2, 2.8). In the
case of a 〈transform〉, it is assumed the exterior derivatives of the right-hand
sides are known, and a list giving the exterior derivatives of the left-hand
sides is returned. This requires inverting the transformation. In case this
has already been done, and was time consuming, an alternative syntax

structure equations(〈transform〉,〈inverse transform〉)

avoids recomputing the inverse.

Example:

structure_equations{e 1=d x/x,e 2=x*d y};

1 2 1 2
{d e => 0,d e => e ^e }

4.4 restrictions

restrictions 〈arg〉

returns the restrictions for 〈arg〉, which may be either a 〈coframing〉 or an
〈EDS 〉 (sections 2.1, 2.2). The result is a list of inequalities.



4 INSPECTING EDS OBJECTS 21

4.5 system

system 〈EDS 〉

returns the system component of an 〈EDS 〉 (sections 2.2, 2.3) as a list of
〈p-form〉 expressions. (The PSL-based REDUCE command system operates
as before: the syntax

system "〈command〉"

executes an operating system (eg UNIX) command.)

4.6 independence

independence 〈EDS 〉

returns the independence condition of an 〈EDS 〉 (section 2.2) as a list of
〈1-form〉 expressions.

4.7 properties

properties 〈EDS 〉

returns the currently known properties of an 〈EDS 〉 (sections 2.2, 2.6) as a
list of equations of the form 〈keyword〉 = 〈value〉.

Example:

properties closure contact(1,{x},{u});

{closed=1,pfaffian=1,quasilinear=1}

4.8 one forms

one forms 〈arg〉

returns the 1-forms in 〈arg〉, which may be either an 〈EDS 〉 or a list of
〈expr〉 (sections 2.2, 2.3).

Example:



5 MANIPULATING EDS OBJECTS 22

one_forms {5,x*y - u,d u - x*d y,d u^d x- x*d y^d x};

{d u - d y*x}

4.9 zero forms, nought forms

zero forms 〈arg〉

returns the 0-forms in 〈arg〉, which may be either an 〈EDS 〉 or a list of
〈expr〉 (sections 2.2, 2.3). The alternative syntax nought forms does the
same thing.

Example:

zero_forms {5,x*y - u,d u - x*d y,d u^d x- x*d y^d x};

{5, - u + x*y}

5 Manipulating EDS objects

The abililty to change coordinates or cobasis, or to modify the system or
coframing can make the difference between an intractible problem and a
solvable one. The facilities described in this section form the low-level core
of EDS functions.

Most of the operators in this section can be applied to both 〈EDS 〉 and
〈coframing〉 objects. Where it makes sense (eg pullback, restrict and
transform), they can be applied to a 〈system〉, or list of differential forms
as well.

5.1 augment

augment(〈EDS 〉,〈system〉)

appends the extra forms in the second argument to the system part of the
first. If the forms in the 〈system〉 do not live on the coframing of the 〈EDS 〉,
an error results. The original 〈EDS 〉 is unchanged.



5 MANIPULATING EDS OBJECTS 23

Example:

% Non-Pfaffian system for a Monge-Ampere equation
S := contact(1,{x,y},{z})$
S := augment(S,{d z(-x)^d z(-y)});

s := EDS({d z - z *d x - z *d y,
x y

d z ^d z },{d x,d y})
x y

5.2 cross

The infix operator cross gives the direct product of 〈coframing〉 objects.
The syntax is

〈arg1 〉 cross 〈arg2 〉 [cross · · ·]

The first argument may be either a 〈coframing〉 (section 2.1) or an 〈EDS 〉
(section 2.2). The remaining arguments may be either 〈coframing〉 objects or
any valid argument to the coframing operator (section 3.1), in which case
the corresponding 〈coframing〉 is automatically inferred. The arguments
may not contain any common coordinates or cobasis elements.

If the first argument is an 〈EDS 〉, the result is the 〈EDS 〉 lifted to the direct
product space. In this way, it is possible to execute a pullback under a
projection.

Example:

coordinates(contact(1,{x,y},{u}) cross {v});

{x,y,u,u ,u ,v}
x y

5.3 pullback

Pullbacks with respect to an EDS 〈map〉 (section 2.7) have the syntax



5 MANIPULATING EDS OBJECTS 24

pullback(〈arg〉,〈map〉)

where 〈arg〉 can be any one of 〈EDS 〉, 〈coframing〉, 〈system〉 or 〈p-form〉
expression (sections 2.2, 2.1, 2.3). The result is of the same type as 〈arg〉.

For an 〈EDS 〉 or 〈coframing〉 with anholonomic cobasis, pullback calculates
the pullbacks of the cobasis elements and chooses a cobasis for the source
coframing itself. For a 〈system〉, any zeroes in the result are dropped from
the list.

Examples:

pullback(contact(1,{x,y},{u}),{u(-y) = u*u(-x)});

EDS({d u - u *d x - u *u*d y},{d x,d y})
x x

M := coframing({e 1,e 2},{r},{r neq 0},
{d r=>e 1,d e 1=>0,d e 2=>e 1^e 2/r})$

pullback(M,{r=1/x});
2

2 2 e ^d x
coframing({e ,d x},{x},{d e => --------},{x neq 0})

x

pullback(ws,{x=0});

***** Map image not within target coframing in pullback

pullback({y*d y,d y - d x},{y=x});

{d x*x}

5.4 restrict

Restrictions with respect to an EDS 〈map〉 (section 2.7) have the syntax

restrict(〈arg〉,〈map〉)



5 MANIPULATING EDS OBJECTS 25

where 〈arg〉 can be any one of 〈EDS 〉, 〈coframing〉, 〈system〉 or 〈p-form〉
expression (sections 2.2, 2.1, 2.3). The result is of the same type as 〈arg〉.
The action of restrict is similar to that of pullback, except that only
scalar coefficients are affected: 1-form variables are unchanged.

Examples:

% Bring a system into normal form by restricting the coframing

S := eds({u*d v - v*d u},{d x});

s := EDS({v*d u - u*d v},{d x})

restrict(S,{u neq 0});

v
EDS({d v - ---*d u},{d x})

u

% Difference between restrict and pullback

pullback({x*d x - y*d y},{x=y,y=1});

{}

restrict({x*d x - y*d y},{x=y,y=1});

{d x - d y}

5.5 transform

A change of cobasis is made using the transform operator

transform(〈arg〉,〈transform〉)

where 〈arg〉 can be any one of 〈EDS 〉, 〈coframing〉, 〈system〉 or 〈p-form〉
expression (sections 2.2, 2.1, 2.3) and 〈transform〉 is a list of substitutions
(cf section 2.8). The result is of the same type as 〈arg〉.



5 MANIPULATING EDS OBJECTS 26

For an 〈EDS 〉 or 〈coframing〉, transform can detect whether the tranfor-
mation is given in the forward or reverse direction and invert accordingly.
Structure equations are updated correctly. If an exact cobasis element is
eliminated, its expression in terms of the new cobasis is added to the list of
structure equations, since the corresponding coordinate may still be present
elsewhere in the structure.

Example:

S := contact(1,{x},{u});

s := EDS({d u - u *d x},{d x})
x

new := {e(1) = first system S,w(1) = d x};

1 1
new := {e =d u - d x*u ,w =d x}

x

S := transform(S,new);

1 1
s := EDS({e },{w })

structure_equations s;

1 1
{d e => - d u ^w ,

x
1

d w => 0,

1 1
d u => e + u *w ,

x
1

d x => w }



6 ANALYSING EXTERIOR SYSTEMS 27

5.6 lift

Many of the analysis tools (section 6) cannot treat systems containing 0-
forms. The lift operator

lift 〈EDS 〉

solves the 0-forms in the system and uses the solution to pull back to a
smaller manifold. This may generate new 0-form conditions (in the course
of bringing the pulled-back system into normal form), in which case the
process is repeated until the system is generated in positive degree. In
non-linear problems, the solution space of the 0-forms may be a variety, in
which case a compound 〈EDS 〉 (section 2.2) will result. If edsverbose is on
(section 8.1), the solutions are displayed as they are generated.

Example:

S := augment(contact(2,{x,y},{u}),{u(-y,-y)-u(-x,-x)})$
on edsverbose;
lift S;

Solving 0-forms
New equations:
u =u
y y x x

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x y

d u - u *d x - u *d y},{d x,d y})
y x y x x

6 Analysing exterior systems

This section describes higher level operators for extracting information about
exterior systems. Many of them require a 〈EDS 〉 in normal form (section
2.10) generated in positive degree as input, but some can also analyse a



6 ANALYSING EXTERIOR SYSTEMS 28

〈system〉 (section 2.3) or a single 〈p-form〉. Only trivial examples are pro-
vided in this section, but many of these operators are used in the longer
examples in the test file which accompanies this package.

6.1 cartan system

The Cartan system of a form or system S is the smallest Pfaffian system C
such that Λ(C) contains a set I of forms algebraically equivalent to S. The
Cartan system is also known as the associated Pfaff system or retracting
space. An alternative characterisation is to note that the annihilator C⊥

comprises all vectors V satisfying iV S ' 0 (mod S). Note this is a purely
algebraic concept: S need not be closed under differentiation. See also
cauchy system (section 6.2).

The operator

cartan system 〈arg〉

returns the Cartan system of 〈arg〉, which may be an 〈EDS 〉, a 〈system〉 or
a single 〈p-form〉 expression (sections 2.2, 2.3). For an 〈EDS 〉, the result
is a Pfaffian 〈EDS 〉 on the same manifold, otherwise it is a 〈system〉. The
argument must be generated in positive degree.

Example:

cartan_system{d u^d v + d v^d w + d x^d y};

{d u - d w,d v,d x,d y}

6.2 cauchy system

The Cauchy system C of a form or system S is the Cartan system or re-
tracting space of its closure under exterior differentiation (section 6.1). The
annihilator C⊥ consists of the Cauchy vectors for the S.

The operator

cauchy system 〈arg〉

returns the Cauchy system of 〈arg〉, which may be an 〈EDS 〉, a 〈system〉
or a single 〈p-form〉 expression (sections 2.2, 2.3). For an 〈EDS 〉, the result



6 ANALYSING EXTERIOR SYSTEMS 29

is a Pfaffian 〈EDS 〉 on the same manifold, otherwise it is a 〈system〉. The
argument must be generated in positive degree.

Example:

cauchy_system{u*d v + v*d w + x*d y};

{d u,d v,d w,d x,d y}

6.3 characters

The Cartan characters {s1, ..., sn} of an 〈EDS 〉 or 〈tableau〉 (sections 2.2,
2.9) are obtained with

characters 〈EDS 〉 or characters 〈tableau〉

The zeroth character s0 is not returned, it is simply the number of 1-forms
in the 〈EDS 〉 (cf one forms, section 4.8). The definition used for the last
character: sn = (d − n) − (s0 + s1 + ... + sn−1), where d is the manifold
dimension, allows Cartan’s test to be used even when Cauchy characteristics
are present.

For a nonlinear 〈EDS 〉, the Cartan characters can vary from stratum to
stratum of the Grassmann bundle variety of ordinary integral elements (cf
grassmann variety in section 6.14). Nonetheless, they are constant on
each stratum, so it suffices to calculate them at one point (ie at one integral
element). This is done using the syntax

characters(〈EDS 〉,〈integral element〉)

where 〈integral element〉 is a list of 1-forms (cf section 2.5).

The Cartan characters are calculated from the reduced characters for a fixed
flag of integral elements based on the 1-forms in the independence condition
of an 〈EDS 〉. This can lead to incorrect results if the flag is somehow
singular, so two switches are provided to overcome this (section 8.5). First,
genpos looks at a generic flag by using a general linear transformation to
put the system in general position. This guarantees correct results, but
can be too slow for practical purposes. Secondly, ranpos performs a linear
transformation using a sparse matrix of random integers. In most cases, this
is much faster than using general position, and a few repetitions give some



6 ANALYSING EXTERIOR SYSTEMS 30

confidence in the results.

Example:

S := pullback(contact(2,{x,y},{u}),{u(-x,-y)=0});

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x,
x x x

d u - u *d y},{d x,d y})
y y y

characters S;

{1,1}

on ranpos; characters S;

{2,0}

6.4 closure

closure 〈EDS 〉

returns the closure of the 〈EDS 〉 under exterior differentiation.

Owing to conflicts with the requirements of a normal form (section 2.10),
closure cannot guarantee that the resulting system is closed if the 〈EDS 〉
contains 0-forms.

6.5 derived system

derived system 〈arg〉

returns the first derived system of 〈arg〉, which must be a Pfaffian 〈EDS 〉
or 〈system〉. Repeated use gives the derived flag leading to the maximal



6 ANALYSING EXTERIOR SYSTEMS 31

integrable subsystem.

Example:

pform {p,r,x,y,z}=0; korder z;
derived_system eds({d z - q*d y,d p - e**z*d y,

d r - e**z*p*d y,d x},{d y});

z z
EDS({d p - e *d y,d r - e *p*d y,d x},{d y})

derived_system ws;

1
EDS({d p - ---*d r,d x},{d y})

p

derived_system ws;

1
EDS({d p - ---*d r,d x},{d y})

p

6.6 dim grassmann variety

dim grassmann variety 〈EDS 〉

returns the dimension of the Grassmann bundle variety of ordinary integral
elements for an 〈EDS 〉 (cf grassmann variety, section 6.14). This number
is useful, for example, in Cartan’s test. For a nonlinear 〈EDS 〉, this can vary
from stratum to stratum of the variety, so

dim grassmann variety(〈EDS 〉,〈integral element〉)

returns the dimension of the stratum containing the 〈integral element〉 (cf
section 2.5).



6 ANALYSING EXTERIOR SYSTEMS 32

6.7 dim

dim 〈arg〉

returns the dimension of the manifold underlying 〈arg〉, which can be either
an 〈EDS 〉 or a 〈coframing〉 (sections 2.2, 2.1).

6.8 involution

involution 〈EDS 〉

repeatedly prolongs an 〈EDS 〉 until it reaches involution or inconsistency
(cf prolong, section 6.11). The system must be in normal form (section
2.10) and generated in positive degree. For nonlinear problems, all branches
of the prolongation tree are followed. The result is an 〈EDS 〉 (usually a
compound one for nonlinear problems, see section 2.2) giving the involutive
prolongation. In case some variety couldn’t be resolved during the process,
the relevant branch is truncated at that point and represented by a system
with 0-forms, as with grassmann variety (section 6.14). The result of
involution might then not be in involution.

If the edsverbose switch is on (section 8.1), a trace of the prolongations is
produced. See the Janet problem in the test file for an example.

6.9 linearise, linearize

A nonlinear exterior system can be linearised at some point on the manifold
with respect to any integral element, yielding a constant coefficient exterior
system with the same Cartan characters. In EDS, reference to the point
is omitted, so the result is an exterior system linearised with respect to a
distribution of integral elements. The syntax is

linearise(〈EDS 〉,〈integral element〉)

but linearize will work just as well. See the isometric embeddings example
in the test file.

For a quasilinear 〈EDS 〉 (cf section 7.4),

linearise 〈EDS 〉

returns an equivalent exterior system containing only linear generators.



6 ANALYSING EXTERIOR SYSTEMS 33

Example:

f := d u^d x + d v^d y$
S := eds({f,d v^f},{d x,d y});

s := EDS({d u^d x + d v^d y,d u^d v^d x},{d x,d y})

linearise S;

EDS({d u^d x + d v^d y},{d x,d y})

6.10 integral element

integral element 〈EDS 〉

returns a random 〈integral element〉 of the 〈EDS 〉 (section 2.5). The system
must be in normal form (section 2.10) and generated in positive degree.
This integral element is found using the method described by Wahlquist
[11] (essentially the Cartan-Kähler construction filling in the free variables
from each polar system with random integer values). This method can fail
on non-involutive systems, or 〈EDS 〉 objects whose independence conditions
indicate a singular flag of integral elements (cf the discussion about Cartan
characters, section 6.3).

See the isometric embedding problem in the test file for an example.

6.11 prolong

prolong 〈EDS 〉

calculates the prolongation of the 〈EDS 〉 to the Grassmann bundle variety
of integral elements. The system must be in normal form (section 2.10) and
generated in positive degree. The variety is decomposed using essentially the
REDUCE solve operator. If no solutions can be found, the variety is empty,
and the prolongation is the inconsistent 〈EDS 〉 (section 2.2). Otherwise, the
result is a list of variety components, which fall into three classes:

1. a submanifold of the Grassmann bundle which surjects onto the base
manifold. The result in this case is the pullback of the Grassmann
bundle contact 〈EDS 〉 to this submanifold.



6 ANALYSING EXTERIOR SYSTEMS 34

2. a submanifold of the Grassmann bundle which does not surject onto
the base manifold (ie cannot be presented by solving for Grassmann
bundle fibre coordinates). The result in this case is the pullback of the
original 〈EDS 〉 to the projection onto the base manifold. If 0-forms
arise in bringing the pullback to normal form, these are solved recur-
sively and the system pulled back again until the result is generated
in positive degree (cf lift, section 5.6).

3. a component of the variety which solve was not able to resolve explic-
itly. The result in this case is the Grassmann bundle contact 〈EDS 〉
augmented with the 0-forms which solve couldn’t treat. This can
be extracted from the result of prolong and manipulated further “by
hand”,

The result returned by prolong will, in general, be a compound 〈EDS 〉
(section 2.2). If the switch edsverbose (section 8.1) is on, a trace of the
prolongation is printed.

The 〈map〉s which are generated in a prolong call are available subsequently
in the global variable pullback maps. This facility is still very primitive and
unstructured. It should be extended to the involution operator as well...

Example:

pde := {u(-y,-y)=u(-x,-x)**2/2,u(-x,-y)=u(-x,-x)};

2
(u )

x x
pde := {u =---------,u =u }

y y 2 x y x x

S := pullback(contact(2,{x,y},{u}),pde)$
on edsverbose;
prolong S;

Reduction using new equations:
u =1
x x

Prolongation using new equations:
u =0



6 ANALYSING EXTERIOR SYSTEMS 35

x x x
u =0
x x y

{EDS({d u - u *d x - u *d y,
x y

d u - d x - d y,
x

1
d u - d x - ---*d y},{d x,d y}),

y 2

EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x x

2
(u )
x x

d u - u *d x - ---------*d y,
y x x 2

d u },{d x,d y})}
x x

6.12 tableau

tableau 〈EDS 〉

returns the 〈tableau〉 (section 2.9) of a quasilinear Pfaffian 〈EDS 〉, which
must be in normal form and generated in positive degree.

Example:

tableau contact(2,{x,y},{u});

[d u d u ]



6 ANALYSING EXTERIOR SYSTEMS 36

[ x x x y]
[ ]
[d u d u ]
[ x y y y]

6.13 torsion

For a semilinear Pfaffian exterior differential system, the torsion corresponds
to first-order integrability conditions for the system. Specifically,

torsion 〈EDS 〉

returns a list of 0-forms describing the projection of the Grassmann bundle
variety of integral elements onto the base manifold. If the switch edssloppy
(section 8.3) is on, quasilinear systems are treated as semilinear. A semilin-
ear system is involutive if both the torsion is empty, and Cartan’s test for
the reduced characters is satisfied.

Example:

S := pullback(contact(2,{x,y},{u}),
{u(-y,-y)=u(-x),u(-x,-y)=u});

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u*d y,
x x x

d u - u*d x - u *d y},{d x,d y})
y x

torsion s;

{u - u }
x x y



6 ANALYSING EXTERIOR SYSTEMS 37

6.14 grassmann variety

Given an exterior system (S,Ω,M) with independence condition of rank n,
the Grassmann bundle of n-planes over M contains a submanifold charac-
terised by those n-planes compatible with the independence condition. All
integral elements must lie in this submanifold. The operator

grassmann variety 〈EDS 〉

returns the contact system for this part of the Grassmann bundle augmented
by the 0-forms specifying the variety of integral elements of S. In cases where
prolong (section 6.11) is unable to decompose the variety automatically,
grassmann variety can be used in combination with zero forms (section
4.9) to calculate the variety conditions. Any solutions found “by hand” can
be incorporated using pullback (section 5.3).

Example: Using the system from the example in section 6.11:

zero_forms grassmann_variety S;

{ - u *u + u ,
x x x x x x x y

- u + u }
x x x x x y

solve ws;

Unknowns: {u ,u ,u }
x x x x x y x x

{{u =0,u =0},
x x y x x x

{u =1,u =u }}
x x x x x x x y

The second solution contains an integrability condition.



7 TESTING EXTERIOR SYSTEMS 38

7 Testing exterior systems

The operators in this section allow various properties of an 〈EDS 〉 to be
checked. These checks are done automatically when required on entry to
the routines in sections 5 and 6, but sometimes it is useful to know explic-
itly. The result is either a 1 (true) or a 0 (false), so the operators can be
used in boolean expressions within if statements etc. Since checking these
properties can be very time-consuming, the result of the first test is stored
on the 〈properties〉 record of an 〈EDS 〉 to avoid re-checking. This memory
can be cleared using the cleanup operator.

7.1 closed

closed 〈arg〉

checks whether 〈arg〉, which may be an 〈EDS 〉, a 〈system〉 or a single
〈p-form〉 is closed under exterior differentiation.

Examples:

closed(x*d x);

1

closed {d u - p*d x,d p - p/y*d x};

0

7.2 involutive

involutive 〈EDS 〉

checks whether 〈EDS 〉 is involutive, using Cartan’s test. See the test file for
examples.

7.3 pfaffian

pfaffian 〈EDS 〉



7 TESTING EXTERIOR SYSTEMS 39

checks whether 〈EDS 〉 is a Pfaffian system: generated by a set of 1-forms
and their exterior derivatives. The 〈EDS 〉 must be in normal form (section
2.10) for this to succeed. Systems with 0-forms are non-Pfaffian by definition
in EDS.

Examples:

pfaffian eds({d u - p*d x - q*d y,d p^d x+d q^d y},{d x,d y});

1

pfaffian eds({d u - p*d x - q*d y,d p^d q},{d x,d y});

0

7.4 quasilinear

An exterior system (S,Ω,M) is said to be quasilinear if, when written in
the standard cobasis {θa, πρ, ωi} (section 2.11), its closure can be generated
by a set of forms which are of combined total degree 1 in {θa, πρ}. The
operation

quasilinear 〈EDS 〉

checks whether the closure of 〈EDS 〉 is a quasilinear system. The 〈EDS 〉
must be in normal form (section 2.10) for this to succeed. Systems with
0-forms are not quasilinear by definition in EDS.

Examples:

% A system where pi(rho)={d p,d q}, and which looks non-linear

S := eds({d u - p*d x - q*d y,d p^d q^d y},{d x,d y})$

quasilinear S;

1

linearise closure S;



7 TESTING EXTERIOR SYSTEMS 40

EDS({d u - p*d x - q*d y,
- d p^d x - d q^d y},{d x,d y})

% One which is really non-linear

quasilinear eds({d u - p*d x - q*d y,d p^d q},{d x,d y});

0

7.5 semilinear

Let (S,Ω,M) be such that, written in the standard cobasis {θa, πρ, ωi} (sec-
tion 2.11), its closure is explicitly quasilinear. If the coefficients of {πρ}
depend only on the independent variables, then the system is said to be
semilinear. The operation

semilinear 〈EDS 〉

checks whether closure of 〈EDS 〉 is a semilinear system. The 〈EDS 〉 must
be in normal form (section 2.10) for this to succeed. Systems with 0-forms
are not semilinear by definition in EDS.

For semilinear systems, the expressions determining the Grassmann bundle
variety of integral elements will be linear in the Grassmann bundle fibre
coordinates, with coefficients which depend only upon the independent vari-
ables. This allows alternative, faster algorithms to be used in analysis.

If the switch edssloppy is on (section 8.3), all quasilinear systems are
treated as if they are semilinear.

Examples:

% A semilinear system: @(u,y) = y*@(u,x)
S := eds({d u - p*d x - p*y*d y},{d x,d y})$
semilinear S;

1
% A quasilinear system: @(u,y) = u*@(u,x)
S := eds({d u - p*d x - p*u*d y},{d x,d y})$



7 TESTING EXTERIOR SYSTEMS 41

quasilinear S;

1
semilinear S;

0
on edssloppy;
semilinear S;

1

7.6 frobenius

frobenius 〈arg〉

checks whether 〈arg〉, which may be an 〈EDS 〉 or a 〈system〉, is a completely
integrable Pfaffian system.

Examples:

if frobenius eds({d u -p*(d x+d y)},d x^d y) then yes else no;

no

if frobenius eds({d u -u*(d x+d y)},d x^d y) then yes else no;

yes

7.7 equiv

〈EDS1 〉 equiv 〈EDS2 〉

checks whether 〈EDS1 〉 and 〈EDS2 〉 are algebraically equivalent as exterior
systems (ie generate the same algebraic ideal).

Examples:

S1 := contact(2,{x,y},{u})$
S2 := augment(S1,foreach f in system S1 join {d f,d x^d f})$



8 SWITCHES 42

if S1 equiv S2 then yes else no;

no

if closure S1 equiv S2 then yes else no;

yes

8 Switches

EDS provides several switches to govern the display of information and speed
or reliability of the results.

8.1 edsverbose

If edsverbose is on, a number of operators (eg prolong, involution) will
display additional information as the calculation progresses. For large prob-
lems, this can produce too much output to be useful, so edsverbose is off
by default. This allows only warning (***) and error (*****) messages to
be printed.

8.2 edsdebug

If edsdebug is on, EDS produces copious quantities of information, in ad-
dition to that produced with edsverbose on. This information is for de-
bugging purposes, and may not make much sense without knowledge of the
inner workings of EDS. edsdebug is off by default.

8.3 edssloppy

Normally, EDS will not divide by any expressions it does not know to be
nowhere zero. If an 〈EDS 〉 can be brought into normal form only by restrict-
ing away from the zeroes of some coefficients, then these restrictions should
be made using the restrict operator (section 5.4). However, if edssloppy
is on, then EDS will, as a last resort, divide by whatever is necessary to
bring an 〈EDS 〉 into normal form, invert a transformation, and so on. The



9 AUXILIARY FUNCTIONS 43

relevant restrictions will be made automatically, so no inconsistency should
arise. In addition, with edssloppy on, all quasilinear systems are treated
as if they were semilinear (cf section 7.5). edssloppy is off by default.

8.4 edsdisjoint

When decomposing a variety into (something like) smooth components, EDS
normally pays no attention to whether the components are disjoint. Turn-
ing on the switch edsdisjoint forces EDS to ensure the decomposition is a
disjoint union (cf disjoin, section 9.7). For large problems this can lead to
a proliferation of singular pieces. If some of these turn out to be uninterest-
ing, EDS cannot re-join the remaining pieces into a smaller decomposition.
edsdisjoint is off by default.

8.5 ranpos, genpos

When calculating Cartan characters (eg to check involution), EDS uses the
independence condition of an 〈EDS 〉 as presented to define a flag of integral
elements. Depending on the cobasis and ordering, this flag may be singu-
lar, leading to incorrect Cartan characters. To overcome this problem, the
switches ranpos and genpos provide a means to select other flags. With
ranpos on, a flag defined by taking a random linear transformation of the
1-forms in the independence condition will be used. The results may still be
incorrect, but the likelihood is much lower. With genpos on, a generic (up-
per triangular) transformation is used. this guarantees the correct Cartan
characters, but reduces performance too much to be useful for large prob-
lems. Both switches are off by default, and switching one on automatically
switches the other off. See section 6.3 for an example.

9 Auxiliary functions

This section describes various operators designed to ease working with ex-
terior forms and exterior systems in REDUCE.



9 AUXILIARY FUNCTIONS 44

9.1 invert

invert 〈transform〉

returns a 〈transform〉 which is inverse to the given one (section 5.5). If
the 〈transform〉 given is only partial, the 1-form 〈kernel〉s to eliminate are
chosen based on the prevailing kernel ordering. If a background coframing
(section 2.4) is active, and edssloppy (section 8.3) is off, invert will divide
by nowhere-zero expressions only.

Examples:

set_coframing coframing{u,v,w,x,y,z}$
invert {d u = 3*d x - d y + 5*d z, d v = d x + 2*d z};

{d x=d v - 2*d z,d y= - d u + 3*d v - d z}

% A y coefficient forces a different choice of inverse

invert {d u = 3*d x - y*d y + 5*d z, d v = d x + 2*d z};

{d x=2*d u - 5*d v + 2*d y*y,d z= - d u + 3*d v - d y*y}

9.2 linear divisors

linear divisors 〈pform〉

returns a basis for the space of linear divisors (1-form factors) of a 〈p-form〉.

Example:

f := d p^d q^d u - d p^d q^d x*x + d p^d q^d z*y
- d u^d v^d x*x + d u^d v^d z*y + d u^d x^d y
+ d x^d y^d z*y$

linear_divisors f;

{d u - d x*x + d z*y}



9 AUXILIARY FUNCTIONS 45

9.3 exfactors

exfactors 〈pform〉

returns a list of factors for a 〈p-form〉, consisting of the linear divisors plus
one more factor. The list is ordered such that the original expression is a
product of the factors in this order.

Example:

f := d p^d q^d u - d p^d q^d x*x + d p^d q^d z*y
- d u^d v^d x*x + d u^d v^d z*y + d u^d x^d y
+ d x^d y^d z*y$

exfactors f;

{d p^d q - d v^d x*x + d v^d z*y + d x^d y,
d u - d x*x + d z*y}

f - (part(ws,0) := ^);

0

9.4 index expand

EXCALC caters for indexed variables in which various index names have
been assigned a specific set of values. Any expression with paired indices
is expanded automatically to an explicit sum over the index set (provided
the EXCALC command nosum has not been applied). The EDS operator
index expand is designed to expand an expression with free indices to an
explicit list over the index set, taking some limited account of the possible
index symmetries.

The syntax is

index expand 〈arg〉

where 〈arg〉 can be an expression, a rule or equation or a boolean expression,
or an arbitrarily nested list of these items. The result is a flattened list.

Examples:



9 AUXILIARY FUNCTIONS 46

indexrange {i,j,k}={1,2,3},{a,b}={x,y};
pform {e(i),o(a,b)}=1;
index_expand(e(i)^e(j));

1 2 1 3 2 3
{e ^e ,e ^e ,e ^e }

index_expand{o(-a,-b)+o(-b,-a) => 0};

{2*o => 0,o + o => 0, 2*o => 0}
x x x y y x y y

9.5 pde2jet

A PDE system can be encoded into EDS jet variable notation using pde2jet.
The syntax is as for pde2eds:

pde2jet(〈pde〉 [,〈dependent〉,〈independent〉] )

where 〈pde〉 is a list of equations or expressions (implicitly assumed to van-
ish) specifying the PDE system using either the standard REDUCE df op-
erator, or the EXCALC @ operator. If the optional variable lists 〈dependent〉
and 〈independent〉 are not given, pde2jet infers them from the expressions
in 〈pde〉, using the same rules as pde2eds (section 3.4).

The result of pde2jet is the input 〈pde〉, with all derivatives of dependent
variables replaced by indexed 0-form variables from the appropriate jet bun-
dle. Unlike pde2eds, pde2jet does not disturb the variable dependencies.

Example:

depend u,x,y; depend v,x,y;
pde2jet({df(u,y,y)=df(v,x),df(v,y)=y*df(v,x)});

{u =v ,
y y x

v =v *y}
y x



9 AUXILIARY FUNCTIONS 47

9.6 mkdepend

The mkdepend operator is intended for restoring the dependencies destroyed
by a call to pde2eds (section 3.4). The syntax is

mkdepend {〈list of variables〉,· · ·}

where the first variable in each list is declared to depend on the remaining
ones.

9.7 disjoin

The disjoin operator takes a list of 〈maps〉 (section 2.7) describing a de-
composition of a variety, and returns an equivalent list of 〈maps〉 such that
the components are all disjoint. The background coframing (section 2.4)
should be set appropriately before calling disjoin. The syntax is

disjoin {〈map〉,· · ·}

Example:

set_coframing coframing {x,y};
disjoin {{x=0},{y=0}};

{{y=0,x neq 0},{x=0,y neq 0},{y=0,x=0}}

9.8 cleanup

To avoid lengthy recomputations, EDS stores various properties (section
2.6) and also many intermediate results in a hidden list attached to each
〈EDS 〉. When EDS detects a change in circumstances which could make
the information innacurate, it is discarded and recomputed. Unfortunately,
this mechanism is not perfect, and occasionally misses something which
renders the results incorrect. In such a case, it is possible to discard all the
properties and hidden information using the cleanup operator. The call

cleanup 〈arg〉

returns a copy of 〈arg〉, which may be a 〈coframing〉 or an 〈EDS 〉 which has
been stripped of this auxilliary information. Note that the original input



9 AUXILIARY FUNCTIONS 48

(with possible innacuracies) is left undisturbed by this operation: the result
of cleanup must be used.

Example:

% An erroneous property assertion
S := eds({d u - p*d x},{d x,d y},{closed = 1})$
closure S;

EDS({d u - p*d x},{d x,d y});

S := cleanup S$
properties S;

{}

closure S;

EDS({d u - p*d x, - d p^d x},{d x,d y});

9.9 reorder

All operations with a 〈coframing〉 or 〈EDS 〉 temporarily override the prevail-
ing kernel order with their own. Thus the ordering of the cobasis elements in
a 〈coframing〉 operator remains fixed, even when a REDUCE korder state-
ment is issued. To enforce conformity to the prevailing kernel order, the
reorder operator is available. The call

reorder 〈arg〉

returns a copy of 〈arg〉, which may be a 〈coframing〉 or an 〈EDS 〉 which
has been reordered. Note that the original input is left undisturbed by this
operation: the result of reorder must be used.

Example:

M := coframing {x,y,z};

m := coframing({d x,d y,d z},{x,y,z},{},{})



10 EXPERIMENTAL FACILITIES 49

korder z,y,x;
reorder m;

coframing({d z,d y,d x},{z,y,x},{},{})

10 Experimental facilities

This section describes various operators in EDS which either not algorith-
mically well-founded, or whose implementation is very unstable, or which
have known bugs.

10.1 poincare

The poincare operator implements the homotopy integral found in the proof
of Poincaré’s lemma. The expansion point is the origin of the coordinates
found in the input. The syntax is

poincare 〈p-form〉

If f is a p-form, then poincare f is a (p− 1)-form, and f - poincare d f
is an exact p-form.

Examples:

poincare(3*d x^d y^d z);

d x^d y*z - d x^d z*y + d y^d z*x

d ws;

3*d x^d y^d z

2*x*d y - poincare d(2*x*d y);

d x*y + d y*x



10 EXPERIMENTAL FACILITIES 50

10.2 invariants

The invariants operator implements the algorithm implicit in the inductive
proof of the Frobenius theorem. The syntax is

invariants(〈system〉 [,〈list of coordinate〉] )

where 〈system〉 is a set of 1-forms satisfying the Frobenius condition. The
optional second argument specifies the order in which the coordinates are
projected away to get a trivially integrable system. The CRACK and ODE-
SOLVE packages are used to solve the ODE systems which arise, so the
limitations of these packages constrain the scope of this operator as well.

Examples:

invariants {d x*y + d y*x*z + d z*log(y)*x*y};

z
{ - y *x}

invariants {d y*z**2 - d y*z + d z*y,d x*(1 - z) + d z*x};

x y*(z - 1)
{-------,-----------}
z - 1 z

10.3 symbol relations

The symbol relations operator finds the linear relations between the en-
tries of the tableau matrix for a quasilinear system. The syntax is

symbol relations(〈EDS 〉,〈identifier〉)

where 〈EDS 〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to
create a 2-indexed 1-form which will label the tableau entries.

Example:

S := pde2eds {df(u,y,y) = df(u,x,x)};



10 EXPERIMENTAL FACILITIES 51

s := EDS({d u - u *d x - u *d y,
x y

d u - u *d x - u *d y,
x x x x y

d u - u *d x - u *d y},d x^d y)
y x y x x

symbol_relations(S,pi);

1 2
{pi - pi ,

x y
1 2

pi - pi }
y x

10.4 symbol matrix

The symbol matrix operator returns the symbol matrix for a quasilinear
system in terms of a given variable. The syntax is

symbol matrix(〈EDS 〉,〈identifier〉)

where 〈EDS 〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to
create an indexed 0-form which will parameterise the matrix.

Example:

% With the same system as for symbol_relations:

symbol_matrix(S,xi);

[xi - xi ]
[ x y]
[ ]
[xi - xi ]
[ y x]



A COMMAND TABLES 52

10.5 characteristic variety

The characteristic variety operator returns the equations specifying the
characteristic variety for a quasilinear system in terms of a given variable.
The syntax is

characteristic variety(〈EDS 〉,〈identifier〉)

where 〈EDS 〉 is a quasilinear Pfaffian system and 〈identifier〉 is used to
create an indexed 0-form variable. The result is a list of two lists: the first
being the variety equations and the second the variables involved.

Example:

% With the same system as for symbol_relations:

characteristic_variety(S,xi);

2 2
{{(xi ) - (xi ) },

x y
{xi ,xi }}

x y

A Command tables

The tables in this appendix summarise the commands available in EDS.
More detailed descriptions of the syntax and function of each command are
to be found in the earlier sections. In each case, examples of the command
are given, whereby the argument variables have the following types (see
section 2):



A COMMAND TABLES 53

E, E′ 〈EDS 〉
S 〈system〉
M , N 〈coframing〉, or a 〈system〉 specifying a 〈coframing〉
r 〈integer〉
Ω 〈p-form〉
f 〈map〉
rsx 〈list of inequalities〉
cob 〈list of 1-form variables〉
crd, dep, ind 〈list of 0-form variables〉
drv 〈list of rules for exterior derivatives〉
pde 〈list of expressions or equations〉
X 〈transform〉
T 〈tableau〉
P 〈integral element〉

Command Function

coframing(cob,crd,rsx,drv) constructs a 〈coframing〉 with the given
cobasis cob, coordinates crd, restrictions
rsx and structure equations drv: crd, rsx
and drv are optional

coframing(S) constructs a 〈coframing〉 capable of sup-
porting the given 〈system〉

eds(S,Ω,M) constructs a simple 〈EDS 〉 object with
given system and independence condition:
if M is not supplied, it is deduced from
the rest

contact(r,M,N) constructs the 〈EDS 〉 for the contact sys-
tem of the jet bundle Jr(M,N)

pde2eds(pde,dep,ind) converts a PDE system to an EDS: depen-
dent and independent variables are de-
duced if they are not specified (variable
dependencies are removed)

set coframing(M)
set coframing(E)

sets background coframing and returns
previous one

set coframing() clears background coframing and returns
previous one

Table 1: Commands for constructing EDS objects



A COMMAND TABLES 54

Command Function

coframing(E) extracts the underlying 〈coframing〉
coframing() returns the current background coframing
cobasis(M)
cobasis(E)

extracts the underlying cobasis

coordinates(M)
coordinates(E)

extracts the coordinates

structure equations(M)
structure equations(E)

extracts the rules for exterior derivatives
for cobasis and coordinates

restrictions(M)
restrictions(E)

extracts the inequalities describing the re-
strictions in the 〈coframing〉

system(E) extracts the 〈system〉 part of E
independence(E) extracts the independence condition from

E as a Pfaffian 〈system〉
properties(E) returns the currently known properties

of the 〈EDS 〉 E as a list of equations
〈keyword〉=〈value〉

one forms(E)
one forms(S)

selects the 1-forms from a system

zero forms(E)
zero forms(S)

selects the 0-forms from a system

Table 2: Commands for inspecting EDS objects



A COMMAND TABLES 55

Command Function

augment(E,S) appends the extra forms in S to the sys-
tem in E

M cross N
E cross N

forms the direct product of two cofram-
ings: an 〈EDS 〉 E is lifted to the extended
space

pullback(E,f)
pullback(S,f)
pullback(Ω,f)

pulls back the first argument using the
〈map〉 f

pullback(M,f) returns a 〈coframing〉 N suitable as the
source for f : N →M

restrict(E,f)
restrict(S,f)
restrict(Ω,f)

restricts the first argument to the points
specified by the 〈map〉 f

restrict(M,f) adds the restrictions in f to M
transform(M,X)
transform(E,X)
transform(S,X)
transform(Ω,X)

applies the change of cobasis X to the
first argument: for a 〈coframing〉 M or
an 〈EDS 〉 E, X may be specified in ei-
ther the forward or reverse direction

lift(E) eliminates any 0-forms in E by solving
and pulling back

Table 3: Commands for manipulating EDS objects



A COMMAND TABLES 56

Command Function

cartan system(E)
cartan system(S)
cartan system(Ω)

calculates the Cartan system (associated
Pfaff system, retracting space): no differ-
entiations are performed

cauchy system(E)
cauchy system(S)
cauchy system(Ω)

calculates the Cauchy system: the Car-
tan system of the closure under exterior
differentiation

characters(E)
characters(T)

calculates the (reduced) Cartan charac-
ters {s1, ..., sn} (E quasilinear)

characters(E,P) Cartan characters for a non-linear E at
integral element P

closure(E) calculates the closure of E under exterior
differentiation

derived system(E)
derived system(S)

calculates the first derived system of the
Pfaffian system E or S

dim grassmann variety(E)
dim grassmann variety(E,P)

dimension of the Grassman bundle variety
of integral elements: for non-linear E, the
base element P must be given

dim(M)
dim(E)

returns the manifold dimension

involution(E) repeatedly prolongs E to involution (or
inconsistency)

linearise(E,P) linearise the (non-linear) EDS E with re-
spect to the integral element P

integral element(E) find a random 〈integral element〉 of E
prolong(E) prolongs E, and projects back down to a

subvariety of the original manifold if inte-
grability conditions arise

tableau(E) calculates the 〈tableau〉 of the quasilinear
Pfaffian 〈EDS 〉 E

torsion(E) returns a 〈system〉 of 0-forms specifying
the integrability conditions for the semi-
linear or quasilinear Pfaffian 〈EDS 〉 E

grassmann variety(E) returns the contact 〈EDS 〉 for the Grass-
mann bundle of n-planes over the mani-
fold of E, augmented by the 0-forms spec-
ifying the variety of integral elements of E

Table 4: Commands for analysing exterior systems



A COMMAND TABLES 57

Command Function

closed(E)
closed(S)
closed(Ω)

checks for closure under exterior differ-
entiation

involutive(E) applies Cartan’s test for involution
pfaffian(E) checks if E is generated by 1-forms and

their exterior derivatives
quasilinear(E) tests if the closure of E can be generated

by forms at most linear in the complement
of the independence condition

semilinear(E) tests if the closure of E is quasilinear and,
in addition, the coefficients of the linear
terms contain only independent variables
or constants

E equiv E′ checks whether E and E′ are algebraically
equivalent

Table 5: Commands for testing exterior systems

Switch Function

edsverbose if on, displays additional information as
calculations progress

edsdebug if on, produces copious quantities of inter-
nal information, in addition to that pro-
duced by edsverbose

edssloppy if on, allows EDS to divide by expres-
sions not known to be non-zero and treats
quasilinear systems as semilinear

edsdisjoint if on, forces varieties to be decomposed
into disjoint components

ranpos
genpos

if on, uses a random or generic flag of in-
tegral elements when calculating Cartan
characters: otherwise the independence
condition as presented guides the choice
of flag

Table 6: Switches (all off by default)



A COMMAND TABLES 58

Command Function

coordinates(S) scans the expressions in S for coordinates
invert(X) returns the inverse 〈transform〉 X−1

structure equations(X)
structure equations(X,X−1)

returns exterior derivatives of lhs(X)

linear divisors(Ω) calculates a basis for the space of 1-form
factors of Ω

exfactors(Ω) as for linear divisors, but with the ad-
ditional (non-linear) factor

index expand(any) returns a list of copies of its argument,
with free EXCALC indices replaced by
successive values from the relevant index
range

pde2jet(pde,dep,ind) converts a PDE system into jet bundle
notation, replacing derivatives by jet bun-
dle coordinates (variable dependencies are
not affected)

mkdepend(list) restores variable dependencies destroyed
by pde2eds

disjoin({f, g, ...}) decomposes the variety specified by the
given 〈map〉 variables into a disjoint union

cleanup(E)
cleanup(M)

returns a fresh copy of E or M with all
properties and stored results removed

reorder(E)
reorder(M)

returns a fresh copy of E or M , conform-
ing to the prevailing REDUCE kernel or-
der

Table 7: Auxilliary functions



A COMMAND TABLES 59

Command Function

poincare(Ω) calculates the homotopy integral from the
proof of Poincaré’s lemma: if Ω is exact,
then the result is a form whose exterior
derivative gives back Ω

invariants(E,crd)
invariants(S,crd)

calculates the invariants (first integrals)
of a completely integrable Pfaffian system
using the inductive proof of the Frobenius
theorem: the optional second argument
specifies the order in which the coordi-
nates are to be projected away

symbol relations(E,π) returns relations between the entries of
the tableau matrix, represented by 2-
indexed 〈1-form〉 variables πai

symbol matrix(E,ξ) returns the symbol matrix for a quasilin-
ear 〈EDS 〉 E as a function of 〈0-form〉
variables ξi

characteristic variety(E,ξ) returns equations describing the charac-
teristic variety of E in terms of 〈0-form〉
variables ξi

Table 8: Experimental functions (unstable)



REFERENCES 60

References

[1] E A Arais, V P Shapeev and N N Yanenko, Computer realization of
Cartan’s exterior calculus, Soviet Math Dokl 15 (1974) 203–205

[2] R L Byrant, S S Chern, R B Gardner, H L Goldschmidt and P A
Griffiths, Exterior Differential Systems (Springer Verlag, New York,
1991)

[3] V G Ganzha, S V Meleshko, F A Murzin, V P Shapeev and N N
Yanenko, Computer realization of an algorithm for investigating the
compatibility of systems of partial differential equations, Soviet Math
Dokl 24 (1981) 638–640

[4] D H Hartley and R W Tucker, A constructive implementation of the
Cartan-Kähler theory of exterior differential systems, J Symb Comp 12
(1991) 655

[5] D Hartley and P A Tuckey, XIDEAL, Gröbner Bases for Exterior Al-
gebra (REDUCE library package)

[6] E Mansfield and E D Fackerell, Differential Gröbner bases and involu-
tivity of systems of non-linear partial differential equations, submitted
to Eur J Appl Math 1993

[7] G J Reid, Algorithms for reducing a system of partial differential equa-
tions to standard form, determining the dimension of its solutions space
and calculating its Taylor series solution, Eur J Appl Math 2 (1991)
293–318

[8] E Schrüfer, EXCALC, a system for doing calculations in the calculus of
modern differential geometry, User’s manual (Rand Corporation, Santa
Monica, 1986)

[9] W M Seiler, Applying AXIOM to partial differential equations (Internal
Report 95-17, Universität Karlsruhe, Fakultät für Informatik, 1995)

[10] M Spivak, A comprehensive introduction to differential geometry (Pub-
lish or Perish, Berkeley, 1979)

[11] HD Wahlquist, Monte Carlo calculation of Cartan characters: using the
maximal-slicing, Ricci-flat ideal as an example, Proc Aspects of General
Relativity and Mathematical Physics, eds N Bretón, R Capovilla and T
Matos, (1993) 168–174


	Introduction
	EDS data structures and concepts
	Coframings
	Exterior differential systems
	Systems
	Background coframing
	Integral elements
	Properties
	Maps
	Cobasis transformations
	Tableaux
	Normal form
	Standard cobasis

	Constructing EDS objects
	coframing
	eds
	contact
	pde2eds
	set_coframing

	Inspecting EDS objects
	cobasis
	coordinates
	structure_equations
	restrictions
	system
	independence
	properties
	one_forms
	zero_forms, nought_forms

	Manipulating EDS objects
	augment
	cross
	pullback
	restrict
	transform
	lift

	Analysing exterior systems
	cartan_system
	cauchy_system
	characters
	closure
	derived_system
	dim_grassmann_variety
	dim
	involution
	linearise, linearize
	integral_element
	prolong
	tableau
	torsion
	grassmann_variety

	Testing exterior systems
	closed
	involutive
	pfaffian
	quasilinear
	semilinear
	frobenius
	equiv

	Switches
	edsverbose
	edsdebug
	edssloppy
	edsdisjoint
	ranpos, genpos

	Auxiliary functions
	invert
	linear_divisors
	exfactors
	index_expand
	pde2jet
	mkdepend
	disjoin
	cleanup
	reorder

	Experimental facilities
	poincare
	invariants
	symbol_relations
	symbol_matrix
	characteristic_variety

	Command tables

