
The computer algebra package Crack

Thomas Wolf
School of Mathematical Sciences

Queen Mary and Westfield College
University of London

London E1 4NS
T.Wolf@maths.qmw.ac.uk

Andreas Brand
Fakultät für Mathematik und Informatik

Friedrich Schiller Universität Jena
07740 Jena
Germany

maa@hpux.rz.uni-jena.de

May 3, 1999

Contents

1 The purpose of Crack 2

2 Technical details 2
2.1 System requirements . 2
2.2 Installation . 2
2.3 Updates / web demos . 2
2.4 The files . 3
2.5 The call . 3
2.6 The result . 4
2.7 Interactive mode, flags, parameters and the list of procedures 4

3 Contents of the Crack package 6
3.1 Pseudo Differential Gröbner Basis . 7
3.2 Integrating exact PDEs . 8
3.3 Direct separation of PDEs . 10
3.4 Indirect separation of PDEs . 11
3.5 Solving standard ODEs . 13

4 Acknowledgement 14

1

1 The purpose of Crack

The package Crack attempts the solution of an overdetermined system of ordinary
or partial differential equations (ODEs/PDEs) with at most polynomial nonlinear-
ities. Under ‘normal circumstances’ the number of DEs which describe physical
processes matches the number of unknown functions which are involved. Moreover
none of those equations can be solved or integrated and integrability conditions yield
only identities. Although applying the package Crack to such problems directly
will not be of much help usually, it is possible to investigate difficult DE-systems
indirectly by studying analytic properties which would be useful for their solution.
In this way overdetermined PDE-systems result.

Applications of Crack include a program Conlaw for the computation of con-
servation laws of DEs, a program LiePDE for the computation of infinitesimal
symmetries of DEs and a program ApplySym for the computation of symmetry
and similarity variables from infinitesimal symmetries.

2 Technical details

2.1 System requirements

The required system is Reduce, version 3.6., strictly speaking the PSL version of
Reduce as distributed by the Konrad Zuse Institut / Berlin. Work on compatibility
issues aims to provide a CSL Reduce compatible version of Crack in near future
(by the end of 1998).

Memory requirements depend crucially on the application. The crack.rlg file
is produced from running crack.tst in a 4MB session running Reduce, version
3.6 under Linux. On the other hand it is not difficult to formulate problems that
consume any amount of memory.

2.2 Installation

In a running Reduce session either do
in "crack.red"$

or, in order to speed up computation, either compile it with on comp$
before the above command, or, generate a fast-loading compiled file once with

faslout "crack"$
in "crack.red"$
faslend$

and load that file to run Crack with
load crack$

2.3 Updates / web demos

A web demo under the address http://cathode.maths.qmw.ac.uk/demo.html that
was created by Francis Wright and Arrigo Triulzi allows to run problems of restricted
size. The latest version is available from

2

ftp://ftp.maths.qmw.ac.uk/pub/tw/crack/. Publications related to Crack can
be found under
http://www.maths.qmw.ac.uk/~tw/public2.html#2.

2.4 The files

The following files are provided with Crack

• crack.red contains read-in statements of a number of files cr*.red.

• crack.tst contains test-examples.

• crack.rlg contains the output of crack.tst.

• crack.tex is this manual.

2.5 The call

Crack is called by

crack({equ1, equ2, . . . , equm},
{ineq1, ineq2, . . . , ineqn},
{fun1, fun2, . . . , funp},
{var1, var2, . . . , varq});

m,n, p, q are arbitrary.

• The equi are identically vanishing partial differential expressions, i.e. they rep-
resent equations 0 = equ i, which are to be solved for the functions funj as far
as possible, thereby drawing only necessary conclusions and not restricting the
general solution.

• The ineqi are algebraic or differential expressions which must not vanish iden-
tically for any solution to be determined, i.e. only such solutions are computed
for which none of the expressions ineqi vanishes identically in all independent
variables.

• The dependence of the (scalar) functions funj on independent variables must
be defined beforehand with DEPEND rather than declaring these functions as
operators. Their arguments may themselves only be identifiers representing
variables, not expressions. Also other unknown functions not in funj must not
be represented as operators but only using DEPEND.

• The functions funj and their derivatives may only occur polynomially.

• The vark are further independent variables, which are not already arguments
of any of the funj. If there are none then the fourth argument is the empty
list {}, although it does no harm to include arguments of functions funj.

• The dependence of the equ i on the independent variables and on constants
and functions other than funj is arbitrary.

3

• Crack can be run in automatic batch mode (by default) or interactively with
the switch OFF BATCH MODE.

2.6 The result

The result is a list of solutions
{sol1, . . .}

where each solution is a list of 4 lists:

{{con1, con2, . . . , conq},
{funa = ex a, funb = ex b, . . . , funp = ex p},
{func, fund, . . . , funr},
{ineq1, ineq2, . . . , ineqs}. }

For example, in the case of a linear system as input, there is at most one solution
sol1.

If Crack finds a contradiction as e.g. 0 = 1 then there exists no solution and it
returns the empty list {}. If Crack can factorize algebraically a non-linear equation
then factors are set to zero individually and different sub-cases are studied through
Crack calling itself recursively. If during such a recursive call a contradiction
results, then this sub-case will not have a solution but other sub-cases still may
have solutions. The empty list is also returned if no solution exists which satisfies
the inequalities ineqi 6= 0.

The expressions con i (if there are any), are the remaining necessary and sufficient
conditions for the functions func, . . . , funr in the third list. Those functions can be
original functions from the equations to be solved (of the second argument of the
call of Crack) or new functions or constants which arose from integrations. The
dependence of new functions on variables is declared with DEPEND and to visualize
this dependence the algebraic mode function FARGS(funi) can be used. If there
are no con i then all equations are solved and the functions in the third list are
unconstrained. The elements of the fourth list are the expressions who have been
assumed to be unequal zero in the derivation of this solution.

The second list contains equations fun i = ex i where each fun i is an original
function and ex i is the computed expression for fun i.

2.7 Interactive mode, flags, parameters and the list of pro-
cedures

Under normal circumstances one will try to have problems solved automatically by
Crack. An alternative is to input OFF BATCH MODE; before calling Crack and
solve problems interactively. In interactive mode it is possible to

• inspect data, like equations and their properties, unknown functions, variables,
identities, a statistics,

• save, change, add or drop equations,

4

• inspect and change flags and parameters which govern individual modules as
well as their interplay,

• specify how to proceed, like doing

– one automatic step,

– one specific step,

– a number of automatic steps,

– a specific step as often as possible.

To get interactive help one enters ‘h’ or ‘?’.
Flags and parameters are stored as symbolic fluid variables which means that

they can be accessed by lisp(...), like lisp(print :=5); before calling
Crack. print , for example, is a measure of the maximal length of expressions
still to be printed on the screen (the number of factors in terms). A complete list
of flags and parameters is given at the beginning of the file crinit.red.

One more parameter shall be mentioned, which is the list of modules/procedures
called proc list . In interactive mode this list can be looked at with ‘p’ or be
changed with ‘cp’. This list defines in which order the different modules/procedures
are tried whenever Crack has to decide of what to do next. There are exceptions
to this rule possible. Some procedures, say P1, require after their execution another
specific procedure, say P2, to be executed, independent of whether P2 would be next
according to proc list . This is managed by P1 writing after its completion the
procedure P2 into a hot-list. This list is dealt with in the ‘to do’ step which comes
always first in proc list . A way to have the convenience of running Crack auto-
matically and still being able to break the fixed rhythm prescribed by proc list
is to have the entry stop batch in proc list and have Crack started in auto-
matic batch mode. Then execution is continuing until none of the procedures which
come before stop batch are applicable any more so that stop batch is executed
next which will stop automatic execution and go into interactive mode. This allows
either to continue the computation interactively, or to change the proc list with
‘cp’ and to continue in automatic mode.

The default value of proc list does not include all possible modules because
not all are suitable for any kind of overdetermined system to be solved. The complete
list is shown in interactive mode under ‘cp’. A few basic modules are described in
the following section. The efficiency of Crack in automatic mode is very much de-
pending on the content of proc list and the sequence of its elements. Optimizing
proc list for a given task needs experience which can not be formalized in a few
simple rules and will therefore not be explained in more detail here. The following
remarks are only guidelines.

to do : hot list of steps to be taken next, should always come first,

subst level ? : substitutions of functions by expressions differing by their max-
imal allowed size and other properties,

separation : what is described as direct separation in the next section,

5

gen separation : what is as indirect separation in the next section, only to be
used for linear problems,

quick integration : integration of very specific short equations,

full integration : integration of equations which have the chance to lead to a
substitution,

integration : any integration,

factorization : splitting the computation into the investigation of different sub-
cases resulting from the algebraic factorization of an equation, only useful for
non-linear problems,

undetlinode : parametric solution of single under determined linear ODE (with
non-constant coefficients), only applicable for linear problems,

length reduction 1 : length reduction by algebraic combination, only for linear
problems,

length reduction 2 : length reduction by differential reduction,

decoupling : steps towards the computation of a differential Gröbner Basis,

add differentiated pdes : only useful for non-linear differential equations with
leading derivative occuring non-linearly,

add diff star pdes : for the treatment of non-linear indirectly separable equa-
tions,

multintfac : to find integrating factors of for a system of equations (very slow),

alg solve deriv : to be used for equations quadratic in the leading derivative,

alg solve system : to be used if a (sub-)system of equations shall be solved for a
set of functions or their derivatives algebraically,

subst derivative : substitution of a derivative of a function everywhere by a new
function if such a derivative exists

undo subst derivative : undo the above substitution.

3 Contents of the Crack package

The package Crack contains a number of modules. The basic ones are for comput-
ing a pseudo differential Gröbner Basis (using integrability conditions in a systematic
way), integrating exact PDEs, separating PDEs, solving DEs containing functions
of only a subset of all variables and solving standard ODEs (of Bernoulli or Euler
type, linear, homogeneous and separable ODEs). These facilities will be described
briefly together with examples. The test file crack.tst demonstrates these and
others.

6

3.1 Pseudo Differential Gröbner Basis

This module (called ‘decoupling’ in proc list) reduces derivatives in equations by
using other equations and it applies integrability conditions to formulate additional
equations which are subsequently reduced, and so on.

A general algorithm to bring a system of PDEs into a standard form where all
integrability conditions are satisfied by applying a finite number of additions, mul-
tiplications and differentiations is based on the general theory of involutive systems
[1, 2, 3].

Essential to this theory is a total ordering of partial derivatives which allows
assignment to each PDE of a Leading Derivative (LD) according to a chosen ordering
of functions and derivatives. Examples for possible orderings are

• lex. order of functions > lex. order of variables,

• lex. order of functions > total differential order > lex. order of variables,

• total order > lex. order of functions > lex. order of variables

or mixtures of them by giving weights to individual functions and variables. Above,
the ‘>’ indicate “before” in priority of criteria. The principle is then to

• take two equations at a time and differentiate them as often as necessary to
get equal LDs,

• regard these two equations as algebraic equations in the common LD and
calculate the remainder w.r.t. the LD, i.e. to generate an equation without the
LD by the Euclidean algorithm, and

• add this equation to the system.

Usually pairs of equations are taken first, such that only one must be differentiated.
If in such a generation step one of both equations is not differentiated then it is
called a simplification step and this equation will be replaced by the new equation.

The algorithm ends if each combination of two equations yields only equations
which simplify to an identity modulo the other equations. A more detailed descrip-
tion is given e.g. in [5, 6].

Other programs implementing this algorithm are described e.g. in [7, 5, 8, 6]
and [9].

In the interactive mode of Crack it is possible to change the lexicographical
ordering of variables, of functions, to choose between ‘total differential order’ or-
dering of variables or lexicographical ordering of variables and to choose whether
lexicographical ordering of functions should have a higher priority than the ordering
of the variables in a derivative, or not.

An example of the computation of a differential Gröbner Basis is given in the
test file crack.tst.

7

3.2 Integrating exact PDEs

The technical term ‘exact’ is adapted for PDEs from exterior calculus and is a
small abuse of language but it is useful to characterize the kind of PDEs under
consideration.

The purpose of the integration module in Crack is to decide whether a given
differential expression D which involves unknown functions f i(xj), 1 ≤ i ≤ m of
independent variables xj, 1 ≤ j ≤ n is a total derivative of another expression I
w.r.t. some variable xk, 1 ≤ k ≤ n

D(xi, f j, f j,p , f j,pq , . . .) =
dI(xi, f j, f j,p , f j,pq , . . .)

dxk
.

The index k is reserved in the following for the integration variable xk. With an
appropriate function of integration cr, which depends on all variables except xk it
is no loss of generality to replace 0 = D by 0 = I + cr in a system of equations.

Of course there always exists a function I with a total derivative equal to D but
the question is whether for arbitrary f i the integral I is functionally dependent only
on the f i and their derivatives, and not on integrals of f i.
Preconditions:
D is a polynomial in the f i and their derivatives. The number of functions and
variables is free. For deciding the existence of I only, the explicit occurrence of the
variables xi is arbitrary. In order to actually calculate I explicitly, D must have
the property that all terms in D must either contain an unknown function of xk or
must be formally integrable w.r.t. xk. That means if I exists then only a special
explicit occurrence of xk can prevent the calculation of I and furthermore only in
those terms which do not contain any unknown function of xk. If such terms occur
in D and I exists then I can still be expressed as a polynomial in the f i, f i,j , . . .
and terms containing indefinite integrals with integrands explicit in xk.
Algorithm:
Successive partial integration of the term with the highest xk-derivative of any f i. By
that the differential order w.r.t. xk is reduced successively. This procedure is always
applicable because steps involve only differentiations and the polynomial integration
(
∫
hn ∂h

∂x
dx = hn+1/(n + 1)) where h is a partial derivative of some function f i. For

a more detailed description see [12].
Stop:
Iteration stops if no term with any xk-derivative of any f i is left. If in the remaining
un-integrated terms any f i(xk) itself occurs, then I is not expressible with f i and its
derivatives only. In case no f i(xk) occurs then any remaining terms can contain xk

only explicitly. Whether they can be integrated depends on their formal integrability.
For their integration the Reduce integrator is applied.
Speed up:
The partial integration as described above preserves derivatives with respect to
other variables. For example, the three terms f,x , ff,xxx , f,xxy can not combine
somehow to the same terms in the integral because if one ignores x-derivatives then
it is clear that f, f 2 and f,y are like three completely different expressions from the
point of view of x-integrations. This allows the following drastic speed up for large

8

expressions. It is possible to partition the complete sum of terms into partial sum
such that each of the partial sum has to be integrable on its own. That is managed
by generating a label for each term and collecting terms with equal label into partial
sums. The label is produced by dropping all x-derivatives from all functions to be
computed and dropping all factors which are not powers of derivatives of functions
to be computed.

The partitioning into partial sums has two effects. Firstly, if the integration of
one partial sum fails then the remaining sums do not have to be tried for integration.
Secondly, doing partial integration for each term means doing many subtractions.
It is much faster to subtract terms from small sums than from large sums.

Example :
We apply the above algorithm to

D := 2f,y g′ + 2f,xy g + gg′3 + xg′4 + 3xgg′2g′′ = 0 (1)

with f = f(x, y), g = g(x), ′ ≡ d/dx. Starting with terms containing g and at first
with the highest derivative g,xx , the steps are∫

3xgg,2x g,xx dx =
∫
d(xgg,3x) −

∫
(∂x(xg)g,3x) dx

= xgg,3x −
∫
g,3x (g + xg,x)dx,

I := I + xgg,3x

D := D − g,3x (g + xg,x)− 3xgg,2x g,xx

The new terms −g,3x (g+xg,x) are of lower order than g,xx and so in the expression
D the maximal order of x-derivatives of g is lowered. The conditions that D is exact
are the following.

• The leading derivative must occur linearly before each partial integration step.

• After the partial integration of the terms with first order x-derivatives of f
the remaining D must not contain f or other derivatives of f , because such
terms cannot be integrated w.r.t. x without specifying f .

The result of x- and y-integration in the above example is (remember g = g(x))

0 = 2fg + xygg,3x +c1(x) + c2(y) (= I). (2)

Crack can now eliminate f and substitute for it in all other equations.
Generalization:
If after applying the above basic algorithm, terms are left which contain functions
of xk but each of these functions depends only on a subset of all xi, 1 ≤ i ≤ n, then
a generalized version of the above algorithm can still provide a formal expression for
the integral I (see [12]). The price consists of additional differential conditions, but
they are equations in less variables than occur in the integrated equation. Integrating
for example

D̃ = D + g2(y2 + x sin y + x2ey) (3)

9

by introducing as few new functions and additional conditions as possible gives as
the integral Ĩ

Ĩ = 2fg + xygg,3x +c1(x) + c2(y)

+
1
3
y3c′′3 − cos y(xc′′3 − c3) + ey(x2c′′3 − 2xc′3 + 2c3)

with c3 = c3(x), ′ ≡ d/dx and the single additional condition g2 = c′′′3 . The integra-
tion of the new terms of (3) is achieved by partial integration again, for example∫

g2x2dx = x2
∫
g2dx−

∫
(2x

∫
g2dx)dx

= x2
∫
g2dx− 2x

∫ ∫
g2dx+ 2

∫ ∫ ∫
g2dx

= x2c′′3 − 2xc′3 + 2c3.

Characterization:
This algorithm is a decision algorithm which does not involve any heuristic. After
integration the new equation is still a polynomial in f i and in the new constant
or function of integration. Therefore the algorithms for bringing the system into
standard form can still be applied to the PDE-system after the equation D = 0 is
replaced by I = 0.

The complexity of algorithms for bringing a PDE-system into a standard form
depends nonlinearly on the order of these equations because of the nonlinear increase
of the number of different leading derivatives and by that the number of equations
generated intermediately by such an algorithm. It therefore in general pays off to
integrate equations during such a standard form algorithm.

If an f i, which depends on all variables, can be eliminated after an integration,
then depending on its length it is in general helpful to substitute f i in other equations
and to reduce the number of equations and functions by one. This is especially
profitable if the replaced expression is short and contains only functions of less
variables than f i.
Test:
The corresponding test input is

depend f,x,y;
depend g,x;
crack({2*df(f,y)*df(g,x)+2*df(f,x,y)*g+g*df(g,x)**3

+x*df(g,x)**4+3*x*g*df(g,x)**2*df(g,x,2)
+g**2*(y**2+x*sin y+x**2*e**y)},
{},{f,g},{});

The meaning of the Reduce command depend is to declare that f depends in an
unknown way on x and y. For more details on the algorithm see [12].

3.3 Direct separation of PDEs

As a result of repeated integrations the functions in the remaining equations have
less and less variables. It therefore may happen that after a substitution an equation

10

results where at least one variable occurs only explicitly and not as an argument of an
unknown function. Consequently all coefficients of linearly independent expressions
in this variable can be set to zero individually.
Example:
f = f(x, y), g = g(x), x, y, z are independent variables. The equation is

0 = f,y +z(f 2 + g,x) + z2(g,x +yg2) (4)

x-separation? → no
y-separation? → no
z-separation? → yes: 0 = f,y = f 2 + g,x = g,x +yg2

y-separation? → yes: 0 = g,x = g2 (from the third equation from the z-separation)
If z2 had been replaced in (4) by a third function h(z) then direct separation

would not have been possible. The situation changes if h is a parametric function
which is assumed to be independently given and which should not be calculated, i.e.
f and g should be calculated for any arbitrary given h(z). Then the same separation
could have been done with an extra treatment of the special case h,zz = 0, i.e. h
linear in z. This different treatment of unknown functions makes it necessary to
input explicitly the functions to be calculated as the third argument to Crack.
The input in this case would be

depend f,x,y;
depend g,x;
depend h,z;
crack({df(f,y)+z*f**2+(z+h)*df(g,x)+h*y*g**2},{},{f,g},{z});

The fourth parameter for Crack is necessary to make clear that in addition to the
variables of f and g, z is also an independent variable.

If the flag independence is not nil then Crack will stop if linear independence
of the explicit expressions of the separation variable (in the example 1, z, z2) is not
clear and ask interactively whether separation should be done or not.

3.4 Indirect separation of PDEs

For the above direct separation a precondition is that at least one variable occurs
only explicitly or as an argument of parametric functions. The situation where
each variable is an argument of at least one function but no function contains all
independent variables of an equation needs a more elaborate treatment.

The steps are these

• A variable xa is chosen which occurs in as few functions as possible. This vari-
able will be separated directly later which requires that all unknown functions
fi containing xa are to be eliminated. Therefore, as long as F := {fi} is not
empty do the following:

– Choose the function fi(yp) in F with the smallest number of variables yp
and with zij as those variables on which fi does not depend.

11

– Identify all different products Pik of powers of fi-derivatives and of fi in
the equation. Determine the zij-dependent factors Cik of the coefficients
of Pik and store them in a list.

– For each Cil (i fixed, l = 1, . . .) choose a zij and :

∗ divide by Cil the equation and all following elements Cim with m > l
of this list, such that these elements are still the actual coefficients
in the equation after the division,
∗ differentiate the equation and the Cim,m > l w.r.t. zij

• The resulting equation no longer contains any unknown function of xa and
can be separated w.r.t. xa directly in case xa still occurs explicitly. In both
cases the equation(s) is (are) free of xa afterwards and inverting the sequence
of integration and multiplication of all those equations (in case of direct sep-
arability) will also result in an equation(s) free of xa. More exactly, the steps
are

– multiplication of the equation(s) and the Cim with m < l by the elements
of the Cik-lists in exactly the inverse order,

– integration of these exact PDEs and the Cim w.r.t. zij.

• The equations originating that way are used to evaluate those functions which
do not depend on xa and which survived in the above differentiations. Substi-
tuting these functions in the original equation, may enable direct separability
w.r.t. variables on which the fi do not depend on.

• The whole procedure is repeated for another variable xb if the original DE
could not be separated directly and still has the property that it contains only
functions of a subset of all variables in the equation.

The additional bookkeeping of coefficients Cik and their updating by division, differ-
entiation, integration and multiplication is done to use them as integrating factors
for the backward integration. The following example makes this clearer. The equa-
tion is

0 = f(x)g(y)− 1
2
xf ′(x)− g′(y)− (1 + x2)y. (5)

The steps are (equal levels of indentation in the example correspond to those in the
algorithm given above)

• x1 := x, F = {f}

– Identify f1 := f, y1 := x, z11 := y

– and P1 = {f ′, f}, C1 = {1, g}
∗ Divide C12 and (5) by C11 = 1 and differentiate w.r.t. z11 = y :

0 = fg′ − g′′ − (1 + x2) (6)
C12 = g′

12

∗ Divide (6) by C12 = g′ and differentiate w.r.t. z11 = y :

0 = −(g′′/g′)′ − (1 + x2)(1/g′)′

• Direct separation w.r.t. x and integration:

x2 : 0 = (1/g′)′ ⇒ c1g
′ = 1 ⇒ g = y/c1 + c2

x0 : 0 = (g′′/g′)′ ⇒ c3g
′ = g′′ ⇒ c3 = 0

• Substitution of g in the original DE

0 = (y/c1 + c2)f − 1
2
xf ′ − 1/c1 − (1 + x2)y

provides a form which allows Crack standard methods to succeed by direct
separation w.r.t. y

y1 : 0 = f/c1 − 1− x2 ⇒ f ′ = 2c1x
y0 : 0 = c2f − 1

2xf
′ − 1/c1 ⇒ 0 = c2c1(1 + x2)− c1x

2 − 1/c1

and direct separation w.r.t. x:

x0 : 0 = c2c1 − c1

x2 : 0 = c2c1 − 1/c1

⇒ 0 = c1 − 1/c1

⇒ c1 = ±1⇒ c2 = 1.

We get the two solutions f = 1 + x2, g = 1 + y and f = −1 − x2, g = 1 − y. The
corresponding input to Crack would be

depend f,x;
depend g,y;
crack({f*g-x*df(f,x)/2-df(g,y)-(1+x**2)*y},{},{f,g},{});

3.5 Solving standard ODEs

For solving standard ODEs the package ODESolve by Malcalm MacCallum and
Francis Wright [14] is applied. This package is distributed with Reduce and can be
used independently of Crack. The syntax of ODESolve is quite similar to that
of Crack

depend function, variable;
odesolve(ODE, function, variable);
In the present form (1998) it solves standard first order ODEs (Bernoulli and Eu-
ler type, with separable variables, . . .) and linear higher order ODEs with constant
coefficients. An improved version is currently under preparation by Francis Wright.
The applicability of ODESolve is increased by a Crack-subroutine which recog-
nizes such PDEs in which there is only one unknown function of all variables and
all occurring derivatives of this function are only derivatives w.r.t. one variable of
only one partial derivative. For example the PDE for f(x, y)

0 = f,xxy +f,xxyy

can be viewed as a first order ODE in y for f,xxy .

13

4 Acknowledgement

Francis Wright contributed a module that provides simplifications of expressions
involving symbolic derivatives and integrals. Also, Crack makes extensive use of
the Reduce program ODESolve written by Malcolm MacCallum and Francis
Wright.

Arrigo Triulzi provided a module to support the use of different total orderings
of derivatives in doing pseudo differential Gröbner basis computations.

Work on this package has been supported by the Konrad Zuse Institut/Berlin
through a fellowship of T.W.. Winfried Neun and Herbert Melenk are thanked for
many discussions and constant support.

Anthony Hearn provided free copies of Reduce to us as a Reduce developers
group which also is thankfully acknowledged.

References

[1] C. Riquier, Les systèmes d’équations aux dérivées partielles, Gauthier–Villars,
Paris (1910).

[2] J. Thomas, Differential Systems, AMS, Colloquium publications, v. 21, N.Y.
(1937).

[3] M. Janet, Leçons sur les systèmes d’équations aux dérivées, Gauthier–Villars,
Paris (1929).

[4] V.L. Topunov, Reducing Systems of Linear Differential Equations to a Passive
Form, Acta Appl. Math. 16 (1989) 191–206.

[5] A.V. Bocharov and M.L. Bronstein, Efficiently Implementing Two Methods of
the Geometrical Theory of Differential Equations: An Experience in Algorithm
and Software Design, Acta. Appl. Math. 16 (1989) 143–166.

[6] G.J. Reid, A triangularization algorithm which determines the Lie symmetry
algebra of any system of PDEs, J.Phys. A: Math. Gen. 23 (1990) L853-L859.

[7] F. Schwarz, Automatically Determining Symmetries of Partial Differential
Equations, Computing 34, (1985) 91-106.

[8] W.I. Fushchich and V.V. Kornyak, Computer Algebra Application for Deter-
mining Lie and Lie–Bäcklund Symmetries of Differential Equations, J. Symb.
Comp. 7, (1989) 611–619.

[9] E.L. Mansfield, The differential algebra package diffgrob2, Mapletech 3, (1996)
33-37 .

[10] E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, Band 1,
Gewöhnliche Differentialgleichungen, Chelsea Publishing Company, New York,
1959.

14

[11] T. Wolf, An Analytic Algorithm for Decoupling and Integrating systems of Non-
linear Partial Differential Equations, J. Comp. Phys., no. 3, 60 (1985) 437-446
and, Zur analytischen Untersuchung und exakten Lösung von Differentialgle-
ichungen mit Computeralgebrasystemen, Dissertation B, Jena (1989).

[12] T. Wolf, The Symbolic Integration of Exact PDEs, preprint, (1991).

[13] M.A.H. MacCallum, F.J. Wright, Algebraic Computing with REDUCE, Claren-
don Press, Oxford (1991).

[14] M.A.H. MacCallum, An Ordinary Differential Equation Solver for REDUCE,
Proc. ISAAC’88, Springer Lect. Notes in Comp Sci. 358, 196–205.

[15] H. Stephani, Differential equations, Their solution using symmetries, Cam-
bridge University Press (1989).

[16] T. Wolf, An efficiency improved program LiePDE for determining Lie - symme-
tries of PDEs, Proceedings of the workshop on Modern group theory methods
in Acireale (Sicily) Nov. (1992)

[17] V.I. Karpman, Phys. Lett. A 136, 216 (1989)

[18] B. Champagne, W. Hereman and P. Winternitz, The computer calculation of
Lie point symmetries of large systems of differential equation, Comp. Phys.
Comm. 66, 319-340 (1991)

15

	The purpose of Crack
	Technical details
	System requirements
	Installation
	Updates / web demos
	The files
	The call
	The result
	Interactive mode, flags, parameters and the list of procedures

	Contents of the Crack package
	Pseudo Differential Gröbner Basis
	Integrating exact PDEs
	Direct separation of PDEs
	Indirect separation of PDEs
	Solving standard ODEs

	Acknowledgement

