
Turtle Graphics Interface for REDUCE

Version 3

Caroline Cotter
Konrad–Zuse–Zentrum für Informationstechnik Berlin

E–mail: cotter@zib.de

October 1998

1 Introduction

This program is a simple implementation of the “Turtle Graphics” style of
drawing graphs in REDUCE. The background and ideas of “Turtle Graphics”
are outlined below.

1.1 Turtle Graphics

Turtle Graphics was originally developed in the 1960’s as part of the LOGO
system, and used in the classroom as an introduction to graphics and using
computers to help with mathematics.

The LOGO language was created as part of an experiment to test the
idea that programming may be used as an educational discipline to teach
children. It was first intended to be used for problem solving, for illus-
trating mathematical concepts usually difficult to grasp, and for creation of
experiments with abstract ideas.

At first LOGO had no graphics capabilities, but fast development en-
abled the incorporation of graphics, known as “Turtle Graphics” into the
language. “Turtle Graphics” is regarded by many as the main use of LOGO.

Main Idea: To use simple commands directing a turtle, such as forward,
back, turnleft, in order to construct pictures as opposed to drawing lines
connecting cartesian coordinate points.

The ‘turtle’ is at all times determined by its state {x,y,a,p}- where x,y
determine its position in the (x,y)-plane, a determines the angle (which

1



describes the direction the turtle is facing) and p signals whether the pen is
up or down (i. e. whether or not it is drawing on the paper).

2 Implementation

Some alterations to the original “Turtle Graphics” commands have been
made in this implementation due to the design of the graphics package gnu-
plot used in REDUCE.

• It is not possible to draw lines individually and to see each seperate
line as it is added to the graph since gnuplot automatically replaces
the last graph each time it calls on the plot function.

Thus the whole sequence of commands must be input together if the
complete picture is to be seen.

• This implementation does not make use of the standard turtle com-
mands ‘pen-up’ or ‘pen-down’ . Instead, ‘set’ commands are included
which allow the turtle to move without drawing a line.

• No facility is provided here to change the pen-colour, but gnuplot does
have the capability to handle a few different colours (which could be
included later).

• Many of the commands are long and difficult to type out repeatedly,
therefore all the commands included under ‘Turtle Functions’ (below)
are listed alongside an equivalent abbreviated form.

• The user has no control over the range of output that can be seen
on the screen since the gnuplot program automatically adjusts the
picture to fit the window. Hence the size of each specified ‘step’ the
turtle takes in any direction is not a fixed unit of length, rather it is
relative to the scale chosen by gnuplot.

3 Turtle Functions

As previously mentioned, the turtle is determined at all times by its state
{x,y,a}: its position on the (x,y)-plane and its angle(a) - its heading - which
determines the direction the turtle is facing, in degrees, relative anticlockwise
to the positive x-axis.

2



3.1 User Setting Functions

setheading Takes a number as its argument and resets the heading to this
number. If the number entered is negative or greater than or equal to
360 then it is automatically checked to lie between 0 and 360.

Returns the turtle position {x,y}
SYNTAX: setheading(θ)

Abbreviated form: sh(θ)

leftturn The turtle is turned anticlockwise through the stated number of
degrees. Takes a number as its argument and resets the heading by
adding this number to the previous heading setting.

Returns the turtle position {x,y}
SYNTAX: leftturn(α)

Abbreviated form: slt(α)

rightturn Similar to leftturn, but the turtle is turned clockwise through
the stated number of degrees. Takes a number as its argument and re-
sets the heading by subtracting this number from the previous heading
setting.

Returns the turtle position {x,y}
SYNTAX: rightturn(β)

Abbreviated form: srt(β)

setx Relocates the turtle in the x direction. Takes a number as its argument
and repositions the state of the turtle by changing its x-coordinate.

Returns {}
SYNTAX: setx(x)

Abbreviated form: sx(x)

sety Relocates the turtle in the y direction. Takes a number as its argument
and repositions the state of the turtle by changing its y-coordinate.

Returns {}
SYNTAX: sety(y)

Abbreviated form: sy(y)

3



setposition Relocates the turtle from its current position to the new carte-
sian coordinate position described. Takes a pair of numbers as its ar-
guments and repositions the state of the turtle by changing the x and
y coordinates.

Returns {}
SYNTAX: setposition(x,y)

Abbreviated form: spn(x,y)

setheadingtowards Resets the heading so that the turtle is facing towards
the given point, with respect to its current position on the coordinate
axes. Takes a pair of numbers as its arguments and changes the head-
ing, but the turtle stays in the same place.

Returns the turtle position {x,y}
SYNTAX: setheadingtowards(x,y)

Abbreviated form: shto(x,y)

setforward Relocates the turtle from its current position by moving for-
ward (in the direction of its heading) the number of steps given. Takes
a number as its argument and repositions the state of the turtle by
changing the x and y coordinates.

Returns {}
SYNTAX: setforward(n)

Abbreviated form: sfwd(n)

setback As with setforward, but moves back (in the opposite direction of
its heading) the number of steps given.

Returns {}
SYNTAX: setback(n)

Abbreviated form: sbk(n)

3.2 Line-Drawing Functions

forward Moves the turtle forward (in the direction its heading) the number
of steps given. Takes a number as its argument and draws a line from
its current position to a new position on the coordinate plane. The x
and y coordinates are reset to the new values.

4



Returns the list of points { {old x,old y}, {new x,new y} }
SYNTAX: forward(s)

Abbreviated form: fwd(s)

back As with forward except the turtle moves back (in the opposite direc-
tion to its heading) the number of steps given.

Returns the list of points { {old x,old y}, {new x,new y} }
SYNTAX: back(s)

Abbreviated form: bk(s)

move Moves the turtle to a specified point on the coordinate plane. Takes
a pair of numbers as its arguments and draws a line from its current
position to the position described. The x and y coordinates are set to
these new values.

Returns the list of points { {old x,old y}, {new x,new y} }
SYNTAX: move(x,y)

Abbreviated form: mv(x,y)

3.3 Plotting Functions

draw This is the function the user calls within REDUCE to draw the list
of turtle commands given into a picture. Takes a list as its argument,
with each seperate command being seperated by a comma, and returns
the graph drawn by following the commands.

SYNTAX: draw{command(command args),..., command(command args)}
Note: all commands may be entered in either long or shorthand form,
and with a space before the arguments instead of parentheses only if
just one argument is needed. Commands taking more than one argu-
ment must be written in parentheses and arguments seperated by a
comma.

fdraw This function is also called in REDUCE by the user and outputs the
same as the draw command, but it takes a filename as its argument.
The file which is called upon by fdraw must contain only the turtle
commands and other functions defined by the user for turtle graphics.
(This is intended to make it easier for the user to make small changes
without constantly typing out long series of commands.)

5



SYNTAX: fdraw{"filename"} Note: commands may be entered in
long or shorthand form but each command must be written on a sepa-
rate line of the file. Also, arguments are to be written without paren-
theses and separated with a space, not a comma, regardless of the
number of arguments given to the function.

3.4 Other Important Functions

info This function is called on its own in REDUCE to tell user the current
state of the turtle. Takes no arguments but returns a list containing
the current values of the x and y coordinates and the heading variable.

Returns the list {x coord,y coord,heading}
SYNTAX: info() or simply info

clearscreen This is also called on its own in REDUCE to get rid of the
last gnuplot window, displaying the last turtle graphics picture, and to
reset all the variables to 0. Takes no arguments and returns no printed
output to the screen but the graphics window is simply cleared.

SYNTAX: clearscreen() or simply clearscreen

Abbreviated form: cls() or cls

home This is a command which can be called within a plot function as well
as outside of one. Takes no arguments, and simply resets the x and
y coordinates and the heading variable to 0. When used in a series
of turtle commands, it moves the turtle from its current position to
the origin and sets the direction of the turtle along the x-axis, without
drawing a line.

Returns {0,0}
SYNTAX: home() or simply home

3.5 Defining Functions

It is possible to use conditional statements (if . . . then . . . else . . . ) and ‘for’
statements (for i:=. . . collect{. . . }) in calls to draw. However, care must be
taken - when using conditional statements the final else statement must
return a point or at least {x coord,y coord} if the picture is to be continued
at that point. Also, ‘for’ statements must include ‘collect’ followed by a list
of turtle commands (in addition, the variable must begin counting from 0

6



if it is to be joined to the previous list of turtle commands at that point
exactly, e. g. for i:=0:10 collect {. . . }).

SYNTAX: {(For user-defined Turtle functions)}
procedure func name(func args);
begin [scalar additional variables];

...
(the procedure body containing some turtle commands)
...
return (a list, or label to a list, of turtle commands

as accepted by draw)
end;

For convenience, it is recommended that all user defined functions, such as those
involving if...then...else... or for i:=...collect{...} are defined together
in a separate file, then called into REDUCE using the in "filename" command.

7



4 Examples

The following examples are taken from the tur.tst file. Examples 1,2,5 & 6 are
simple calls to draw. Examples 3 & 4 show how more complicated commands can
be built (which can take their own set of arguments) using procedures. Examples
7 & 8 show the difference between the draw and fdraw commands.

% (1) Draw 36 rays of length 100

draw {for i:=1:36 collect{setheading(i*10), forward 100, back 100} };

-100

-50

0

50

100

-100 -50 0 50 100

p
o
in

ts

x

REDUCE Plot

% (2) Draw 12 regular polygons with 12 sides of length 40,each polygon
%forming an angle of 360/n degrees with the previous one.

draw {for i:=1:12 collect
{leftturn(30), for j:=1:12 collect

{forward 40, leftturn(30)}} };

8



-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

p
o
in

ts

x

REDUCE Plot

% (3) A "peak" pattern - an example of a recursive procedure.

procedure peak(r);
begin;

return for i:=0:r collect
{move(x_coord+5,y_coord-10), move(x_coord+10,y_coord+60),
move(x_coord+10,y_coord-60),move(x_coord+5,y_coord+10)};

end;

draw {home(), peak(3)};

9



-10

0

10

20

30

40

50

0 20 40 60 80 100 120

p
o
in

ts

x

REDUCE Plot

%This procedure can then be part of a longer chain of commands:

draw {home(), move(5,50), peak(3), move(x_coord+10,-100),
peak(2), move(x_coord+10,0)};

-150

-100

-50

0

50

100

0 50 100 150 200 250

p
o
in

ts

x

REDUCE Plot

10



% (4) Write a recursive procedure which draws "trees" such that every
%branch is half the length of the previous branch.

procedure tree(a,b); %Here: a is the start length, b is the
%number of levels

begin;
return if fixpb and b>0 %checking b is a positive integer

then {leftturn(45), forward a, tree(a/2,b-1),
back a, rightturn(90), forward a, tree(a/2,b-1),
back a, leftturn(45)}

else {x_coord,y_coord}; %default: Turtle stays still
end;

draw {home(), tree(130,7)};

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 50 100 150 200 250

p
o
in

ts

x

REDUCE Plot

% (5) A 36-point star.

draw {home(), for i:=1:36 collect
{leftturn(10), forward 100, leftturn(10), back 100} };

11



0

20

40

60

80

100

-60 -40 -20 0 20 40 60

p
o
in

ts

x

REDUCE Plot

% (6) Draw 100 equilateral triangles with the leading points
%equally spaced on a circular path.

draw {home(), for i:=1:100 collect
{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} };

12



-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

p
o
in

ts

x

REDUCE Plot

% (7) Two or more graphs can be drawn together (this is easier
%if the graphs are named). Here we show graphs 2 and 6 on top of one
%another:

gr2:={home(), for i:=1:12 collect
{leftturn(30), for j:=1:12 collect

{forward 40, leftturn(30)}} }$

gr6:={home(), for i:=1:100 collect
{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} }$

draw {gr2, gr6};

13



-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

p
o
in

ts

x

REDUCE Plot

% (8) Example 7 could have been tackled another way, which makes use of
%the fdraw command.
%By inputting gr2 and gr6 as procedures into reduce, they can then be
%used at any time in the same reduce session in a call to draw and even
%fdraw.

%First save the procedures in a file, say fxp (fdraw example procedures):

procedure gr2;
begin;

return {home, for i:=1:12 collect
{leftturn(30), for j:=1:12 collect

{forward 40, leftturn(30)}} };
end;

procedure gr6;
begin;
return {home(), for i:=1:100 collect

{forward 150, rightturn(60), back(150),
rightturn(60), forward 150, setheading(i*3.6)} };

end;

%Then create another file where the functions may be called to fdraw,
%e.g. fx:

14



gr2
gr6

%Now in reduce, after loading the turtle package just type the following:

in "fxp";
fdraw ’"fx";

%..and the graphs will appear.

%This method is useful if the user wants to define many of their own
%functions, and, using fdraw, subtle changes can be made quickly without
%having to type out the whole string of commands to plot each time. It
%is particularly useful if there are several pictures to plot at once and
%it is an easy way to build pictures so that the difference an extra
%command makes to the overall picture can be clearly seen.
%(In the above example, the file called to fdraw was only 2 lines long,
%so this method did not have any advantage over the normal draw command.
%However, when the list of commands is longer it is clearly advantageous
%to use fdraw)

5 References

1. An Implementation of Turtle Graphics for Teaching Purposes
Zoran I. Putnik & Zoram d.Budimac

2. Mapletech - Maple in Mathematics and the Sciences,
Special Issue 1994
An Implementation of “Turtle Graphics” in Maple V
Eugenio Roanes Lozano & Eugenio Roanes Macias

15


