
REDUCE
User’s Manual

Version 3.8

Anthony C. Hearn
Santa Monica, CA, USA

Email: reduce@rand.org

February 2004



0

Copyright c©2004 Anthony C. Hearn. All rights reserved.

Registered system holders may reproduce all or any part of this publication for
internal purposes, provided that the source of the material is clearly acknowledged,
and the copyright notice is retained.



Contents

Abstract 11

1 Introductory Information 15

2 Structure of Programs 19

2.1 The REDUCE Standard Character Set . . . . . . . . . . . . . . . 19

2.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Expressions 27

3.1 Scalar Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Integer Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Proper Statements as Expressions . . . . . . . . . . . . . . . . . 31

4 Lists 33

4.1 Operations on Lists . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 FIRST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



2 CONTENTS

4.1.3 SECOND . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.4 THIRD . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.5 REST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.6 . (Cons) Operator . . . . . . . . . . . . . . . . . . . . . . 34

4.1.7 APPEND . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.8 REVERSE . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.9 List Arguments of Other Operators . . . . . . . . . . . . 35

4.1.10 Caveats and Examples . . . . . . . . . . . . . . . . . . . 35

5 Statements 37

5.1 Assignment Statements . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Set Statement . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Group Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Conditional Statements . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 FOR Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 WHILE . . . DO . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 REPEAT . . . UNTIL . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Compound Statements . . . . . . . . . . . . . . . . . . . . . . . 43

5.7.1 Compound Statements with GO TO . . . . . . . . . . . . 45

5.7.2 Labels and GO TO Statements . . . . . . . . . . . . . . . 45

5.7.3 RETURN Statements . . . . . . . . . . . . . . . . . . . . 46

6 Commands and Declarations 49

6.1 Array Declarations . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Mode Handling Declarations . . . . . . . . . . . . . . . . . . . . 50

6.3 END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 BYE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 SHOWTIME Command . . . . . . . . . . . . . . . . . . . . . . 51

6.6 DEFINE Command . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Built-in Prefix Operators 53

7.1 Numerical Operators . . . . . . . . . . . . . . . . . . . . . . . . 53



CONTENTS 3

7.1.1 ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.2 CEILING . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.3 CONJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.4 FACTORIAL . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.5 FIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.6 FLOOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.7 IMPART . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.8 MAX/MIN . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.9 NEXTPRIME . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.10 RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1.11 RANDOMNEW SEED . . . . . . . . . . . . . . . . . . 56

7.1.12 REPART . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1.13 ROUND . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.14 SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Mathematical Functions . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 DF Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.1 Adding Differentiation Rules . . . . . . . . . . . . . . . . 61

7.4 INT Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.4.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4.2 Advanced Use . . . . . . . . . . . . . . . . . . . . . . . 63

7.4.3 References . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.5 LENGTH Operator . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.6 MAP Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.7 MKID Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.8 PF Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.9 SELECT Operator . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.10 SOLVE Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.10.1 Handling of Undetermined Solutions . . . . . . . . . . . 69

7.10.2 Solutions of Equations Involving Cubics and Quartics . . 70

7.10.3 Other Options . . . . . . . . . . . . . . . . . . . . . . . . 72



4 CONTENTS

7.10.4 Parameters and Variable Dependency . . . . . . . . . . . 73

7.11 Even and Odd Operators . . . . . . . . . . . . . . . . . . . . . . 76

7.12 Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.13 Non-Commuting Operators . . . . . . . . . . . . . . . . . . . . . 78

7.14 Symmetric and Antisymmetric Operators . . . . . . . . . . . . . 78

7.15 Declaring New Prefix Operators . . . . . . . . . . . . . . . . . . 79

7.16 Declaring New Infix Operators . . . . . . . . . . . . . . . . . . . 79

7.17 Creating/Removing Variable Dependency . . . . . . . . . . . . . 80

8 Display and Structuring of Expressions 83

8.1 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2 The Expression Workspace . . . . . . . . . . . . . . . . . . . . . 84

8.3 Output of Expressions . . . . . . . . . . . . . . . . . . . . . . . . 85

8.3.1 LINELENGTH Operator . . . . . . . . . . . . . . . . . . 86

8.3.2 Output Declarations . . . . . . . . . . . . . . . . . . . . 86

8.3.3 Output Control Switches . . . . . . . . . . . . . . . . . . 87

8.3.4 WRITE Command . . . . . . . . . . . . . . . . . . . . . 91

8.3.5 Suppression of Zeros . . . . . . . . . . . . . . . . . . . . 93

8.3.6 FORTRAN Style Output Of Expressions . . . . . . . . . 93

8.3.7 Saving Expressions for Later Use as Input . . . . . . . . . 96

8.3.8 Displaying Expression Structure . . . . . . . . . . . . . . 96

8.4 Changing the Internal Order of Variables . . . . . . . . . . . . . . 99

8.5 Obtaining Parts of Algebraic Expressions . . . . . . . . . . . . . 99

8.5.1 COEFF Operator . . . . . . . . . . . . . . . . . . . . . . 99

8.5.2 COEFFN Operator . . . . . . . . . . . . . . . . . . . . . 100

8.5.3 PART Operator . . . . . . . . . . . . . . . . . . . . . . . 100

8.5.4 Substituting for Parts of Expressions . . . . . . . . . . . . 102

9 Polynomials and Rationals 103

9.1 Controlling the Expansion of Expressions . . . . . . . . . . . . . 104

9.2 Factorization of Polynomials . . . . . . . . . . . . . . . . . . . . 104



CONTENTS 5

9.3 Cancellation of Common Factors . . . . . . . . . . . . . . . . . . 106

9.3.1 Determining the GCD of Two Polynomials . . . . . . . . 107

9.4 Working with Least Common Multiples . . . . . . . . . . . . . . 108

9.5 Controlling Use of Common Denominators . . . . . . . . . . . . 108

9.6 REMAINDER Operator . . . . . . . . . . . . . . . . . . . . . . 108

9.7 RESULTANT Operator . . . . . . . . . . . . . . . . . . . . . . . 109

9.8 DECOMPOSE Operator . . . . . . . . . . . . . . . . . . . . . . 110

9.9 INTERPOL operator . . . . . . . . . . . . . . . . . . . . . . . . 111

9.10 Obtaining Parts of Polynomials and Rationals . . . . . . . . . . . 111

9.10.1 DEG Operator . . . . . . . . . . . . . . . . . . . . . . . 112

9.10.2 DEN Operator . . . . . . . . . . . . . . . . . . . . . . . 112

9.10.3 LCOF Operator . . . . . . . . . . . . . . . . . . . . . . . 112

9.10.4 LPOWER Operator . . . . . . . . . . . . . . . . . . . . . 114

9.10.5 LTERM Operator . . . . . . . . . . . . . . . . . . . . . . 114

9.10.6 MAINVAR Operator . . . . . . . . . . . . . . . . . . . . 114

9.10.7 NUM Operator . . . . . . . . . . . . . . . . . . . . . . . 115

9.10.8 REDUCT Operator . . . . . . . . . . . . . . . . . . . . . 115

9.11 Polynomial Coefficient Arithmetic . . . . . . . . . . . . . . . . . 116

9.11.1 Rational Coefficients in Polynomials . . . . . . . . . . . . 116

9.11.2 Real Coefficients in Polynomials . . . . . . . . . . . . . . 116

9.11.3 Modular Number Coefficients in Polynomials . . . . . . . 118

9.11.4 Complex Number Coefficients in Polynomials . . . . . . 118

10 Substitution Commands 121

10.1 SUB Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10.2 LET Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.2.1 FOR ALL . . . LET . . . . . . . . . . . . . . . . . . . . . 124

10.2.2 FOR ALL . . . SUCH THAT . . . LET . . . . . . . . . . . . 125

10.2.3 Removing Assignments and Substitution Rules . . . . . . 126

10.2.4 Overlapping LET Rules . . . . . . . . . . . . . . . . . . 126

10.2.5 Substitutions for General Expressions . . . . . . . . . . . 127



6 CONTENTS

10.3 Rule Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.4 Asymptotic Commands . . . . . . . . . . . . . . . . . . . . . . . 136

11 File Handling Commands 137

11.1 IN Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11.2 OUT Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11.3 SHUT Command . . . . . . . . . . . . . . . . . . . . . . . . . . 138

12 Commands for Interactive Use 139

12.1 Referencing Previous Results . . . . . . . . . . . . . . . . . . . . 139

12.2 Interactive Editing . . . . . . . . . . . . . . . . . . . . . . . . . . 140

12.3 Interactive File Control . . . . . . . . . . . . . . . . . . . . . . . 141

13 Matrix Calculations 143

13.1 MAT Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

13.2 Matrix Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

13.3 Matrix Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 144

13.4 Operators with Matrix Arguments . . . . . . . . . . . . . . . . . 145

13.4.1 DET Operator . . . . . . . . . . . . . . . . . . . . . . . . 145

13.4.2 MATEIGEN Operator . . . . . . . . . . . . . . . . . . . 146

13.4.3 TP Operator . . . . . . . . . . . . . . . . . . . . . . . . . 147

13.4.4 Trace Operator . . . . . . . . . . . . . . . . . . . . . . . 147

13.4.5 Matrix Cofactors . . . . . . . . . . . . . . . . . . . . . . 147

13.4.6 NULLSPACE Operator . . . . . . . . . . . . . . . . . . . 148

13.4.7 RANK Operator . . . . . . . . . . . . . . . . . . . . . . 149

13.5 Matrix Assignments . . . . . . . . . . . . . . . . . . . . . . . . . 149

13.6 Evaluating Matrix Elements . . . . . . . . . . . . . . . . . . . . 149

14 Procedures 151

14.1 Procedure Heading . . . . . . . . . . . . . . . . . . . . . . . . . 152

14.2 Procedure Body . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

14.3 Using LET Inside Procedures . . . . . . . . . . . . . . . . . . . . 155



CONTENTS 7

14.4 LET Rules as Procedures . . . . . . . . . . . . . . . . . . . . . . 156

14.5 REMEMBER Statement . . . . . . . . . . . . . . . . . . . . . . 157

15 User Contributed Packages 159

15.1 ALGINT: Integration of square roots . . . . . . . . . . . . . . . . 159

15.2 APPLYSYM: Infinitesimal symmetries of differential equations . 160

15.3 ARNUM: An algebraic number package . . . . . . . . . . . . . . 160

15.4 ASSIST: Useful utilities for various applications . . . . . . . . . . 160

15.5 AVECTOR: A vector algebra and calculus package . . . . . . . . 161

15.6 BOOLEAN: A package for boolean algebra . . . . . . . . . . . . 161

15.7 CALI: A package for computational commutative algebra . . . . . 161

15.8 CAMAL: Calculations in celestial mechanics . . . . . . . . . . . 161

15.9 CHANGEVR: Change of Independent Variable(s) in DEs . . . . . 162

15.10COMPACT: Package for compacting expressions . . . . . . . . . 162

15.11CRACK: Solving overdetermined systems of PDEs or ODEs . . . 162

15.12CVIT: Fast calculation of Dirac gamma matrix traces . . . . . . . 163

15.13DEFINT: A definite integration interface . . . . . . . . . . . . . . 163

15.14DESIR: Differential linear homogeneous equation solutions in the
neighborhood of irregular and regular singular points . . . . . . . 163

15.15DFPART: Derivatives of generic functions . . . . . . . . . . . . . 163

15.16DUMMY: Canonical form of expressions with dummy variables . 164

15.17EXCALC: A differential geometry package . . . . . . . . . . . . 164

15.18FIDE: Finite difference method for partial differential equations . 164

15.19FPS: Automatic calculation of formal power series . . . . . . . . 164

15.20GENTRAN: A code generation package . . . . . . . . . . . . . . 165

15.21GNUPLOT: Display of functions and surfaces . . . . . . . . . . . 165

15.22GROEBNER: A Gr̈obner basis package . . . . . . . . . . . . . . 165

15.23IDEALS: Arithmetic for polynomial ideals . . . . . . . . . . . . 166

15.24INEQ: Support for solving inequalities . . . . . . . . . . . . . . . 166

15.25INVBASE: A package for computing involutive bases . . . . . . . 166

15.26LAPLACE: Laplace transforms . . . . . . . . . . . . . . . . . . . 166



8 CONTENTS

15.27LIE: Functions for the classification of real n-dimensional Lie al-
gebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

15.28LIMITS: A package for finding limits . . . . . . . . . . . . . . . 167

15.29LINALG: Linear algebra package . . . . . . . . . . . . . . . . . 167

15.30MODSR: Modular solve and roots . . . . . . . . . . . . . . . . . 167

15.31NCPOLY: Non–commutative polynomial ideals . . . . . . . . . . 168

15.32NORMFORM: Computation of matrix normal forms . . . . . . . 168

15.33NUMERIC: Solving numerical problems . . . . . . . . . . . . . 169

15.34ODESOLVE: Ordinary differential equations solver . . . . . . . . 169

15.35ORTHOVEC: Manipulation of scalars and vectors . . . . . . . . . 170

15.36PHYSOP: Operator calculus in quantum theory . . . . . . . . . . 170

15.37PM: A REDUCE pattern matcher . . . . . . . . . . . . . . . . . . 170

15.38RANDPOLY: A random polynomial generator . . . . . . . . . . . 171

15.39REACTEQN: Support for chemical reaction equation systems . . 171

15.40RESET: Code to reset REDUCE to its initial state . . . . . . . . . 171

15.41RESIDUE: A residue package . . . . . . . . . . . . . . . . . . . 171

15.42RLFI: REDUCE LaTeX formula interface . . . . . . . . . . . . . 171

15.43ROOTS: A REDUCE root finding package . . . . . . . . . . . . . 172

15.44RSOLVE: Rational/integer polynomial solvers . . . . . . . . . . . 172

15.45SCOPE: REDUCE source code optimization package . . . . . . . 172

15.46SETS: A basic set theory package . . . . . . . . . . . . . . . . . 173

15.47SPDE: Finding symmetry groups of PDE’s . . . . . . . . . . . . . 173

15.48SPECFN: Package for special functions . . . . . . . . . . . . . . 173

15.49SPECFN2: Package for special special functions . . . . . . . . . 174

15.50SUM: A package for series summation . . . . . . . . . . . . . . . 175

15.51SYMMETRY: Operations on symmetric matrices . . . . . . . . . 175

15.52TAYLOR: Manipulation of Taylor series . . . . . . . . . . . . . . 175

15.53TPS: A truncated power series package . . . . . . . . . . . . . . 175

15.54TRI: TeX REDUCE interface . . . . . . . . . . . . . . . . . . . . 176

15.55TRIGSIMP: Simplification and factorization of trigonometric and
hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . 176



CONTENTS 9

15.56WU: Wu algorithm for polynomial systems . . . . . . . . . . . . 176

15.57XCOLOR: Color factor in some field theories . . . . . . . . . . . 176

15.58XIDEAL: Gr̈obner Bases for exterior algebra . . . . . . . . . . . 177

15.59ZEILBERG: A package for indefinite and definite summation . . . 177

15.60ZTRANS:Z-transform package . . . . . . . . . . . . . . . . . . 177

16 Symbolic Mode 179

16.1 Symbolic Infix Operators . . . . . . . . . . . . . . . . . . . . . . 181

16.2 Symbolic Expressions . . . . . . . . . . . . . . . . . . . . . . . . 181

16.3 Quoted Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 181

16.4 Lambda Expressions . . . . . . . . . . . . . . . . . . . . . . . . 181

16.5 Symbolic Assignment Statements . . . . . . . . . . . . . . . . . 182

16.6 FOR EACH Statement . . . . . . . . . . . . . . . . . . . . . . . 183

16.7 Symbolic Procedures . . . . . . . . . . . . . . . . . . . . . . . . 183

16.8 Standard Lisp Equivalent of Reduce Input . . . . . . . . . . . . . 184

16.9 Communicating with Algebraic Mode . . . . . . . . . . . . . . . 184

16.9.1 Passing Algebraic Mode Values to Symbolic Mode . . . . 185

16.9.2 Passing Symbolic Mode Values to Algebraic Mode . . . . 187

16.9.3 Complete Example . . . . . . . . . . . . . . . . . . . . . 188

16.9.4 Defining Procedures for Intermode Communication . . . . 188

16.10Rlisp ’88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

16.11References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

17 Calculations in High Energy Physics 191

17.1 High Energy Physics Operators . . . . . . . . . . . . . . . . . . . 191

17.1.1 . (Cons) Operator . . . . . . . . . . . . . . . . . . . . . . 191

17.1.2 G Operator for Gamma Matrices . . . . . . . . . . . . . . 192

17.1.3 EPS Operator . . . . . . . . . . . . . . . . . . . . . . . . 193

17.2 Vector Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

17.3 Additional Expression Types . . . . . . . . . . . . . . . . . . . . 194

17.3.1 Vector Expressions . . . . . . . . . . . . . . . . . . . . . 194



10 CONTENTS

17.3.2 Dirac Expressions . . . . . . . . . . . . . . . . . . . . . 194

17.4 Trace Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 195

17.5 Mass Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . 195

17.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

17.7 Extensions to More Than Four Dimensions . . . . . . . . . . . . 197

18 REDUCE and Rlisp Utilities 199

18.1 The Standard Lisp Compiler . . . . . . . . . . . . . . . . . . . . 199

18.2 Fast Loading Code Generation Program . . . . . . . . . . . . . . 200

18.3 The Standard Lisp Cross Reference Program . . . . . . . . . . . . 201

18.3.1 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . 202

18.3.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

18.3.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

18.4 Prettyprinting Reduce Expressions . . . . . . . . . . . . . . . . . 203

18.5 Prettyprinting Standard Lisp S-Expressions . . . . . . . . . . . . 203

19 Maintaining REDUCE 205

A Reserved Identifiers 207



Abstract

This document provides the user with a description of the algebraic programming
system REDUCE. The capabilities of this system include:

1. expansion and ordering of polynomials and rational functions,

2. substitutions and pattern matching in a wide variety of forms,

3. automatic and user controlled simplification of expressions,

4. calculations with symbolic matrices,

5. arbitrary precision integer and real arithmetic,

6. facilities for defining new functions and extending program syntax,

7. analytic differentiation and integration,

8. factorization of polynomials,

9. facilities for the solution of a variety of algebraic equations,

10. facilities for the output of expressions in a variety of formats,

11. facilities for generating numerical programs from symbolic input,

12. Dirac matrix calculations of interest to high energy physicists.

11



12 CONTENTS



Acknowledgment

The production of this version of the manual has been the result of the contribu-
tions of a large number of individuals who have taken the time and effort to suggest
improvements to previous versions, and to draft new sections. Particular thanks
are due to Gerry Rayna, who provided a draft rewrite of most of the first half of
the manual. Other people who have made significant contributions have included
John Fitch, Martin Griss, Stan Kameny, Jed Marti, Herbert Melenk, Don Morri-
son, Arthur Norman, Eberhard Schrüfer, Larry Seward and Walter Tietze. Finally,
Richard Hitt produced a TEX version of the REDUCE 3.3 manual, which has been
a useful guide for the production of the LATEX version of this manual.

13



14 CONTENTS



Chapter 1

Introductory Information

REDUCE is a system for carrying out algebraic operations accurately, no matter
how complicated the expressions become. It can manipulate polynomials in a va-
riety of forms, both expanding and factoring them, and extract various parts of
them as required. REDUCE can also do differentiation and integration, but we
shall only show trivial examples of this in this introduction. Other topics not con-
sidered include the use of arrays, the definition of procedures and operators, the
specific routines for high energy physics calculations, the use of files to eliminate
repetitious typing and for saving results, and the editing of the input text.

Also not considered in any detail in this introduction are the many options that
are available for varying computational procedures, output forms, number systems
used, and so on.

REDUCE is designed to be an interactive system, so that the user can input an al-
gebraic expression and see its value before moving on to the next calculation. For
those systems that do not support interactive use, or for those calculations, espe-
cially long ones, for which a standard script can be defined, REDUCE can also be
used in batch mode. In this case, a sequence of commands can be given to RE-
DUCE and results obtained without any user interaction during the computation.

In this introduction, we shall limit ourselves to the interactive use of REDUCE,
since this illustrates most completely the capabilities of the system. When RE-
DUCE is called, it begins by printing a banner message like:

REDUCE 3.8, 15-Jul-2003 ...

where the version number and the system release date will change from time to
time. It then prompts the user for input by:

1:

15



16 CHAPTER 1. INTRODUCTORY INFORMATION

You can now type a REDUCE statement, terminated by a semicolon to indicate the
end of the expression, for example:

(x+y+z)ˆ2;

This expression would normally be followed by another character (aReturn on
an ASCII keyboard) to “wake up” the system, which would then input the expres-
sion, evaluate it, and return the result:

2 2 2
X + 2*X*Y + 2*X*Z + Y + 2*Y*Z + Z

Let us review this simple example to learn a little more about the way that RE-
DUCE works. First, we note that REDUCE deals with variables, and constants
like other computer languages, but that in evaluating the former, a variable can
stand for itself. Expression evaluation normally follows the rules of high school
algebra, so the only surprise in the above example might be that the expression was
expanded. REDUCE normally expands expressions where possible, collecting like
terms and ordering the variables in a specific manner. However, expansion, order-
ing of variables, format of output and so on is under control of the user, and various
declarations are available to manipulate these.

Another characteristic of the above example is the use of lower case on input and
upper case on output. In fact, input may be in either mode, but output is usually in
lower case. To make the difference between input and output more distinct in this
manual, all expressions intended for input will be shown in lower case and output
in upper case. However, for stylistic reasons, we represent all single identifiers in
the text in upper case.

Finally, the numerical prompt can be used to reference the result in a later compu-
tation.

As a further illustration of the system features, the user should try:

for i:= 1:40 product i;

The result in this case is the value of 40!,

815915283247897734345611269596115894272000000000

You can also get the same result by saying

factorial 40;

Since we want exact results in algebraic calculations, it is essential that integer
arithmetic be performed to arbitrary precision, as in the above example. Further-



17

more, theFORstatement in the above is illustrative of a whole range of combining
forms that REDUCE supports for the convenience of the user.

Among the many options in REDUCE is the use of other number systems, such as
multiple precision floating point with any specified number of digits — of use if
roundoff in, say, the100th digit is all that can be tolerated.

In many cases, it is necessary to use the results of one calculation in succeeding
calculations. One way to do this is via an assignment for a variable, such as

u := (x+y+z)ˆ2;

If we now useU in later calculations, the value of the right-hand side of the above
will be used.

The results of a given calculation are also saved in the variableWS(for WorkSpace),
so this can be used in the next calculation for further processing.

For example, the expression

df(ws,x);

following the previous evaluation will calculate the derivative of(x+y+z)ˆ2 with
respect toX. Alternatively,

int(ws,y);

would calculate the integral of the same expression with respect to y.

REDUCE is also capable of handling symbolic matrices. For example,

matrix m(2,2);

declares m to be a two by two matrix, and

m := mat((a,b),(c,d));

gives its elements values. Expressions that includeMand make algebraic sense
may now be evaluated, such as1/m to give the inverse,2*m - u*mˆ2 to give us
another matrix anddet(m) to give us the determinant ofM.

REDUCE has a wide range of substitution capabilities. The system knows about
elementary functions, but does not automatically invoke many of their well-known
properties. For example, products of trigonometrical functions are not converted
automatically into multiple angle expressions, but if the user wants this, he can say,
for example:

(sin(a+b)+cos(a+b))*(sin(a-b)-cos(a-b))



18 CHAPTER 1. INTRODUCTORY INFORMATION

where cos(˜x)*cos(˜y) = (cos(x+y)+cos(x-y))/2,
cos(˜x)*sin(˜y) = (sin(x+y)-sin(x-y))/2,
sin(˜x)*sin(˜y) = (cos(x-y)-cos(x+y))/2;

where the tilde in front of the variablesX andY indicates that the rules apply for
all values of those variables. The result of this calculation is

-(COS(2*A) + SIN(2*B))

See also the user-contributed packages ASSIST (chapter??), CAMAL (chapter??)
and TRIGSIMP (chapter??).

Another very commonly used capability of the system, and an illustration of one of
the many output modes of REDUCE, is the ability to output results in a FORTRAN
compatible form. Such results can then be used in a FORTRAN based numerical
calculation. This is particularly useful as a way of generating algebraic formulas
to be used as the basis of extensive numerical calculations.

For example, the statements

on fort;
df(log(x)*(sin(x)+cos(x))/sqrt(x),x,2);

will result in the output

ANS=(-4.*LOG(X)*COS(X)*X**2-4.*LOG(X)*COS(X)*X+3.*
. LOG(X)*COS(X)-4.*LOG(X)*SIN(X)*X**2+4.*LOG(X)*
. SIN(X)*X+3.*LOG(X)*SIN(X)+8.*COS(X)*X-8.*COS(X)-

8.
. *SIN(X)*X-8.*SIN(X))/(4.*SQRT(X)*X**2)

These algebraic manipulations illustrate the algebraic mode of REDUCE. RE-
DUCE is based on Standard Lisp. A symbolic mode is also available for executing
Lisp statements. These statements follow the syntax of Lisp, e.g.

symbolic car ’(a);

Communication between the two modes is possible.

With this simple introduction, you are now in a position to study the material in the
full REDUCE manual in order to learn just how extensive the range of facilities
really is. If further tutorial material is desired, the seven REDUCE Interactive
Lessons by David R. Stoutemyer are recommended. These are normally distributed
with the system.



Chapter 2

Structure of Programs

A REDUCE program consists of a set of functional commands which are evaluated
sequentially by the computer. These commands are built up from declarations,
statements and expressions. Such entities are composed of sequences of numbers,
variables, operators, strings, reserved words and delimiters (such as commas and
parentheses), which in turn are sequences of basic characters.

2.1 The REDUCE Standard Character Set

The basic characters which are used to build REDUCE symbols are the following:

1. The 26 lettersa throughz

2. The 10 decimal digits0 through9

3. The special characters! ” $ % ’ ( ) * + , - . / : ; < > = { } <blank>

With the exception of strings and characters preceded by an exclamation mark, the
case of characters is ignored: depending of the underlying LISP they will all be
converted internally into lower case or upper case:ALPHA, Alpha andalpha
represent the same symbol. Most implementations allow you to switch this con-
version off. The operating instructions for a particular implementation should be
consulted on this point. For portability, we shall limit ourselves to the standard
character set in this exposition.

2.2 Numbers

There are several different types of numbers available in REDUCE. Integers consist
of a signed or unsigned sequence of decimal digits written without a decimal point,

19



20 CHAPTER 2. STRUCTURE OF PROGRAMS

for example:

-2, 5396, +32

In principle, there is no practical limit on the number of digits permitted as ex-
act arithmetic is used in most implementations. (You should however check the
specific instructions for your particular system implementation to make sure that
this is true.) For example, if you ask for the value of22000 you get it displayed
as a number of 603 decimal digits, taking up nine lines of output on an interactive
display. It should be borne in mind of course that computations with such long
numbers can be quite slow.

Numbers that aren’t integers are usually represented as the quotient of two integers,
in lowest terms: that is, as rational numbers.

In essentially all versions of REDUCE it is also possible (but not always desirable!)
to ask REDUCE to work with floating point approximations to numbers again, to
any precision. Such numbers are calledreal. They can be input in two ways:

1. as a signed or unsigned sequence of any number of decimal digits with an
embedded or trailing decimal point.

2. as in 1. followed by a decimal exponent which is written as the letterE
followed by a signed or unsigned integer.

e.g.32. +32.0 0.32E2 and320.E-1 are all representations of 32.

The declarationSCIENTIFIC NOTATIONcontrols the output format of floating
point numbers. At the default settings, any number with five or less digits before the
decimal point is printed in a fixed-point notation, e.g.,12345.6 . Numbers with
more than five digits are printed in scientific notation, e.g.,1.234567E+5 . Sim-
ilarly, by default, any number with eleven or more zeros after the decimal point is
printed in scientific notation. To change these defaults,SCIENTIFIC NOTATION
can be used in one of two ways.SCIENTIFIC NOTATIONm;, wherem is a posi-
tive integer, sets the printing format so that a number with more thanmdigits before
the decimal point, ormor more zeros after the decimal point, is printed in scientific
notation.SCIENTIFIC NOTATION{m,n}, with m andn both positive integers,
sets the format so that a number with more thanm digits before the decimal point,
or n or more zeros after the decimal point is printed in scientific notation.

CAUTION:The unsigned part of any number maynot begin with a decimal point,
as this causes confusion with theCONS(.) operator, i.e., NOT ALLOWED:.5
-.23 +.12 ; use0.5 -0.23 +0.12 instead.



2.3. IDENTIFIERS 21

2.3 Identifiers

Identifiers in REDUCE consist of one or more alphanumeric characters (i.e. alpha-
betic letters or decimal digits) the first of which must be alphabetic. The maximum
number of characters allowed is implementation dependent, although twenty-four
is permitted in most implementations. In addition, the underscore character () is
considered a letter if it iswithin an identifier. For example,

a az p1 q23p a_very_long_variable

are all identifiers, whereas

_a

is not.

A sequence of alphanumeric characters in which the first is a digit is interpreted as
a product. For example,2ab3c is interpreted as2*ab3c . There is one exception
to this: If the first letter after a digit isE, the system will try to interpret that part of
the sequence as a real number, which may fail in some cases. For example,2E12
is the real number2.0 ∗ 1012, 2e3c is 2000.0*C, and2ebc gives an error.

Special characters, such as−, *, and blank, may be used in identifiers too, even as
the first character, but each must be preceded by an exclamation mark in input. For
example:

light!-years d!*!*n good! morning
!$sign !5goldrings

CAUTION: Many system identifiers have such special characters in their names
(especially * and =). If the user accidentally picks the name of one of them for his
own purposes it may have catastrophic consequences for his REDUCE run. Users
are therefore advised to avoid such names.

Identifiers are used as variables, labels and to name arrays, operators and proce-
dures.

Restrictions

The reserved words listed in another section may not be used as identifiers. No
spaces may appear within an identifier, and an identifier may not extend over a line
of text. (Hyphenation of an identifier, by using a reserved character as a hyphen
before an end-of-line character is possible in some versions of REDUCE).



22 CHAPTER 2. STRUCTURE OF PROGRAMS

2.4 Variables

Every variable is named by an identifier, and is given a specific type. The type is
of no concern to the ordinary user. Most variables are allowed to have the default
type, calledscalar. These can receive, as values, the representation of any ordinary
algebraic expression. In the absence of such a value, they stand for themselves.

Reserved Variables

Several variables in REDUCE have particular properties which should not be
changed by the user. These variables include:

E Intended to represent the base of the natural logarithms.log(e) ,
if it occurs in an expression, is automatically replaced by 1. If
ROUNDEDis on,E is replaced by the value of E to the current degree
of floating point precision.

I Intended to represent the square root of−1. iˆ2 is replaced by
−1, and appropriately for higher powers ofI . This applies only to
the symbolI used on the top level, not as a formal parameter in a
procedure, a local variable, nor in the contextfor i:= ...

INFINITY Intended to represent∞ in limit and power series calculations
for example. Note however that the current system doesnot do
proper arithmetic on∞. For example,infinity + infinity
is 2*infinity .

NIL In REDUCE (algebraic mode only) taken as a synonym for zero.
ThereforeNIL cannot be used as a variable.

PI Intended to represent the circular constant. WithROUNDEDon, it
is replaced by the value ofπ to the current degree of floating point
precision.

T Should not be used as a formal parameter or local variable in pro-
cedures, since conflict arises with the symbolic mode meaning of T
astrue.

Other reserved variables, such asLOWPOW, described in other sections, are listed
in Appendix A.

Using these reserved variables inappropriately will lead to errors.

There are also internal variables used by REDUCE that have similar restrictions.
These usually have an asterisk in their names, so it is unlikely a casual user would



2.5. STRINGS 23

use one. An example of such a variable isK!* used in the asymptotic command
package.

Certain words are reserved in REDUCE. They may only be used in the manner
intended. A list of these is given in the section “Reserved Identifiers”. There are,
of course, an impossibly large number of such names to keep in mind. The reader
may therefore want to make himself a copy of the list, deleting the names he doesn’t
think he is likely to use by mistake.

2.5 Strings

Strings are used inWRITEstatements, in other output statements (such as error
messages), and to name files. A string consists of any number of characters en-
closed in double quotes. For example:

"A String".

Lower case characters within a string are not converted to upper case.

The string"" represents the empty string. A double quote may be included in a
string by preceding it by another double quote. Thus"a""b" is the stringa"b ,
and"""" is the string" .

2.6 Comments

Text can be included in program listings for the convenience of human readers, in
such a way that REDUCE pays no attention to it. There are two ways to do this:

1. Everything from the wordCOMMENTto the next statement terminator, nor-
mally ; or $, is ignored. Such comments can be placed anywhere a blank
could properly appear. (Note thatENDand>> arenot treated asCOMMENT
delimiters!)

2. Everything from the symbol%to the end of the line on which it appears is
ignored. Such comments can be placed as the last part of any line. Statement
terminators have no special meaning in such comments. Remember to put
a semicolon before the%if the earlier part of the line is intended to be so
terminated. Remember also to begin each line of a multi-line%comment
with a%sign.



24 CHAPTER 2. STRUCTURE OF PROGRAMS

2.7 Operators

Operators in REDUCE are specified by name and type. There are two types, in-
fix and prefix. Operators can be purely abstract, just symbols with no properties;
they can have values assigned (using:= or simpleLET declarations) for specific
arguments; they can have properties declared for some collection of arguments
(using more generalLET declarations); or they can be fully defined (usually by a
procedure declaration).

Infix operators have a definite precedence with respect to one another, and normally
occur between their arguments. For example:

a + b - c (spaces optional)
x<y and y=z (spaces required where shown)

Spaces can be freely inserted between operators and variables or operators and
operators. They are required only where operator names are spelled out with let-
ters (such as theANDin the example) and must be unambiguously separated from
another such or from a variable (likeY). Wherever one space can be used, so can
any larger number.

Prefix operators occur to the left of their arguments, which are written as a list
enclosed in parentheses and separated by commas, as with normal mathematical
functions, e.g.,

cos(u)
df(xˆ2,x)
q(v+w)

Unmatched parentheses, incorrect groupings of infix operators and the like, natu-
rally lead to syntax errors. The parentheses can be omitted (replaced by a space
following the operator name) if the operator is unary and the argument is a single
symbol or begins with a prefix operator name:

cos y means cos(y)
cos (-y) – parentheses necessary
log cos y means log(cos(y))
log cos (a+b) means log(cos(a+b))

but

cos a*b means (cos a)*b
cos -y is erroneous (treated as a variable

“cos” minus the variable y)



2.7. OPERATORS 25

A unary prefix operator has a precedence higher than any infix operator, including
unary infix operators. In other words, REDUCE will always interpretcos y +
3 as(cos y) + 3 rather than ascos(y + 3) .

Infix operators may also be used in a prefix format on input, e.g.,+(a,b,c) . On
output, however, such expressions will always be printed in infix form (i.e.,a +
b + c for this example).

A number of prefix operators are built into the system with predefined properties.
Users may also add new operators and define their rules for simplification. The
built in operators are described in another section.

Built-In Infix Operators

The following infix operators are built into the system. They are all defined inter-
nally as procedures.

<infix operator>::= where|:=|or|and|member|memq|=|neq|eq|
>=|>|<=|<|+|-|*|/|ˆ|**|.

These operators may be further divided into the following subclasses:

<assignment operator> ::= :=
<logical operator> ::= or|and|member|memq
<relational operator> ::= =|neq|eq|>=|>|<=|<
<substitution operator> ::= where
<arithmetic operator> ::= +|-|*|/|ˆ|**
<construction operator> ::= .

MEMQandEQare not used in the algebraic mode of REDUCE. They are explained
in the section on symbolic mode.WHEREis described in the section on substitu-
tions.

In previous versions of REDUCE,not was also defined as an infix operator. In the
present version it is a regular prefix operator, and interchangeable withnull.

For compatibility with the intermediate language used by REDUCE, each special
character infix operator has an alternative alphanumeric identifier associated with
it. These identifiers may be used interchangeably with the corresponding special
character names on input. This correspondence is as follows:

:= setq (the assignment operator)
= equal
>= geq
> greaterp
<= leq



26 CHAPTER 2. STRUCTURE OF PROGRAMS

< lessp
+ plus
- difference (if unary,minus )
* times
/ quotient (if unary, recip )
ˆ or ** expt (raising to a power)
. cons

Note: NEQis used to meannot equal. There is no special symbol provided for it.

The above operators are binary, exceptNOTwhich is unary and+ and * which
are nary (i.e., taking an arbitrary number of arguments). In addition,- and/ may
be used as unary operators, e.g., /2 means the same as 1/2. Any other operator is
parsed as a binary operator using a left association rule. Thusa/b/c is interpreted
as(a/b)/c . There are two exceptions to this rule::= and. are right associa-
tive. Example:a:=b:=c is interpreted asa:=(b:=c) . Unlike ALGOL and
PASCAL,ˆ is left associative. In other words,aˆbˆc is interpreted as(aˆb)ˆc .

The operators<, <=, >, >= can only be used for making comparisons between
numbers. No meaning is currently assigned to this kind of comparison between
general expressions.

Parentheses may be used to specify the order of combination. If parentheses are
omitted then this order is by the ordering of the precedence list defined by the right-
hand side of the<infix operator> table at the beginning of this section, from
lowest to highest. In other words,WHEREhas the lowest precedence, and. (the
dot operator) the highest.



Chapter 3

Expressions

REDUCE expressions may be of several types and consist of sequences of num-
bers, variables, operators, left and right parentheses and commas. The most com-
mon types are as follows:

3.1 Scalar Expressions

Using the arithmetic operations+ - * / ˆ (power) and parentheses, scalar ex-
pressions are composed from numbers, ordinary “scalar” variables (identifiers), ar-
ray names with subscripts, operator or procedure names with arguments and state-
ment expressions.

Examples:

x
xˆ3 - 2*y/(2*zˆ2 - df(x,z))
(pˆ2 + mˆ2)ˆ(1/2)*log (y/m)
a(5) + b(i,q)

The symbol ** may be used as an alternative to the caret symbol (ˆ ) for forming
powers, particularly in those systems that do not support a caret symbol.

Statement expressions, usually in parentheses, can also form part of a scalar ex-
pression, as in the example

w + (c:=x+y) + z .

When the algebraic value of an expression is needed, REDUCE determines it, start-
ing with the algebraic values of the parts, roughly as follows:

27



28 CHAPTER 3. EXPRESSIONS

Variables and operator symbols with an argument list have the algebraic values
they were last assigned, or if never assigned stand for themselves. However, array
elements have the algebraic values they were last assigned, or, if never assigned,
are taken to be 0.

Procedures are evaluated with the values of their actual parameters.

In evaluating expressions, the standard rules of algebra are applied. Unfortunately,
this algebraic evaluation of an expression is not as unambiguous as is numerical
evaluation. This process is generally referred to as “simplification” in the sense that
the evaluation usually but not always produces a simplified form for the expression.

There are many options available to the user for carrying out such simplification.
If the user doesn’t specify any method, the default method is used. The default
evaluation of an expression involves expansion of the expression and collection
of like terms, ordering of the terms, evaluation of derivatives and other functions
and substitution for any expressions which have values assigned or declared (see
assignments andLET statements). In many cases, this is all that the user needs.

The declarations by which the user can exercise some control over the way in which
the evaluation is performed are explained in other sections. For example, if a real
(floating point) number is encountered during evaluation, the system will normally
convert it into a ratio of two integers. If the user wants to use real arithmetic,
he can effect this by the commandon rounded; . Other modes for coefficient
arithmetic are described elsewhere.

If an illegal action occurs during evaluation (such as division by zero) or functions
are called with the wrong number of arguments, and so on, an appropriate error
message is generated.

3.2 Integer Expressions

These are expressions which, because of the values of the constants and variables
in them, evaluate to whole numbers.

Examples:

2, 37 * 999, (x + 3)ˆ2 - xˆ2 - 6*x

are obviously integer expressions.

j + k - 2 * jˆ2

is an integer expression whenJ andKhave values that are integers, or if not integers
are such that “the variables and fractions cancel out”, as in



3.3. BOOLEAN EXPRESSIONS 29

k - 7/3 - j + 2/3 + 2*jˆ2.

3.3 Boolean Expressions

A boolean expression returns a truth value. In the algebraic mode of REDUCE,
boolean expressions have the syntactical form:

<expression> <relational operator> <expression>

or

<boolean operator> (<arguments>)

or

<boolean expression> <logical operator>
<boolean expression>.

Parentheses can also be used to control the precedence of expressions.

In addition to the logical and relational operators defined earlier as infix operators,
the following boolean operators are also defined:

EVENP(U) determines if the numberU is even or not;

FIXP(U) determines if the expressionU is integer or not;

FREEOF(U,V) determines if the expressionUdoes not contain the kernel
V anywhere in its structure;

NUMBERP(U) determines ifU is a number or not;

ORDP(U,V) determines ifU is ordered ahead ofV by some canonical
ordering (based on the expression structure and an internal
ordering of identifiers);

PRIMEP(U) true if U is a prime object, i.e., any object other than 0 and
plus or minus 1 which is only exactly divisible by itself or
a unit.

Examples:

j<1



30 CHAPTER 3. EXPRESSIONS

x>0 or x=-2
numberp x
fixp x and evenp x
numberp x and x neq 0

Boolean expressions can only appear directly withinIF , FOR, WHILE, andUNTIL
statements, as described in other sections. Such expressions cannot be used in place
of ordinary algebraic expressions, or assigned to a variable.

NB: For those familiar with symbolic mode, the meaning of some of these oper-
ators is different in that mode. For example,NUMBERPis true only for integers and
reals in symbolic mode.

When two or more boolean expressions are combined withAND, they are evaluated
one by one until afalseexpression is found. The rest are not evaluated. Thus

numberp x and numberp y and x>y

does not attempt to make thex>y comparison unlessX andY are both verified to
be numbers.

Similarly, evaluation of a sequence of boolean expressions connected byORstops
as soon as atrueexpression is found.

NB: In a boolean expression, and in a place where a boolean expression is expected,
the algebraic value 0 is interpreted asfalse, while all other algebraic values are
converted totrue. So in algebraic mode a procedure can be written for direct usage
in boolean expressions, returning say 1 or 0 as its value as in

procedure polynomialp(u,x);
if den(u)=1 and deg(u,x)>=1 then 1 else 0;

One can then use this in a boolean construct, such as

if polynomialp(q,z) and not polynomialp(q,y) then ...

In addition, any procedure that does not have a defined return value (for example,
a block without aRETURNstatement in it) has the boolean valuefalse.

3.4 Equations

Equations are a particular type of expression with the syntax

<expression> = <expression>.



3.5. PROPER STATEMENTS AS EXPRESSIONS 31

In addition to their role as boolean expressions, they can also be used as arguments
to several operators (e.g.,SOLVE), and can be returned as values.

Under normal circumstances, the right-hand-side of the equation is evaluated but
not the left-hand-side. This also applies to any substitutions made by theSUB
operator. If both sides are to be evaluated, the switchEVALLHSEQPshould be
turned on.

To facilitate the handling of equations, two selectors,LHS andRHS, which return
the left- and right-hand sides of a equation respectively, are provided. For example,

lhs(a+b=c) -> a+b
and

rhs(a+b=c) -> c.

3.5 Proper Statements as Expressions

Several kinds of proper statements deliver an algebraic or numerical result of some
kind, which can in turn be used as an expression or part of an expression. For
example, an assignment statement itself has a value, namely the value assigned. So

2 * (x := a+b)

is equal to2*(a+b) , as well as having the “side-effect” of assigning the value
a+b to X. In context,

y := 2 * (x := a+b);

setsX to a+b andY to 2*(a+b) .

The sections on the various proper statement types indicate which of these state-
ments are also useful as expressions.



32 CHAPTER 3. EXPRESSIONS



Chapter 4

Lists

A list is an object consisting of a sequence of other objects (including lists them-
selves), separated by commas and surrounded by braces. Examples of lists are:

{a,b,c}

{1,a-b,c=d}

{{a},{{b,c},d},e}.

The empty list is represented as

{}.

4.1 Operations on Lists

Several operators in the system return their results as lists, and a user can create
new lists using braces and commas. Alternatively, one can use the operator LIST
to construct a list. An important class of operations on lists are MAP and SELECT
operations. For details, please refer to the chapters on MAP, SELECT and the FOR
command. See also the documentation on the ASSIST package.

To facilitate the use of lists, a number of operators are also available for manipu-
lating them.PART(<list>,n) for example will return thenth element of a list.
LENGTHwill return the length of a list. Several operators are also defined uniquely
for lists. For those familiar with them, these operators in fact mirror the operations
defined for Lisp lists. These operators are as follows:

33



34 CHAPTER 4. LISTS

4.1.1 LIST

The operator LIST is an alternative to the usage of curly brackets. LIST accepts an
arbitrary number of arguments and returns a list of its arguments. This operator is
useful in cases where operators have to be passed as arguments. E.g.,

list(a,list(list(b,c),d),e); -> {{a},{{b,c},d},e}

4.1.2 FIRST

This operator returns the first member of a list. An error occurs if the argument is
not a list, or the list is empty.

4.1.3 SECOND

SECONDreturns the second member of a list. An error occurs if the argument is
not a list or has no second element.

4.1.4 THIRD

This operator returns the third member of a list. An error occurs if the argument is
not a list or has no third element.

4.1.5 REST

RESTreturns its argument with the first element removed. An error occurs if the
argument is not a list, or is empty.

4.1.6 . (Cons) Operator

This operator adds (“conses”) an expression to the front of a list. For example:

a . {b,c} -> {a,b,c}.

4.1.7 APPEND

This operator appends its first argument to its second to form a new list.Examples:

append({a,b},{c,d}) -> {a,b,c,d}
append({{a,b}},{c,d}) -> {{a,b},c,d}.



4.1. OPERATIONS ON LISTS 35

4.1.8 REVERSE

The operatorREVERSEreturns its argument with the elements in the reverse or-
der. It only applies to the top level list, not any lower level lists that may occur.
Examples are:

reverse({a,b,c}) -> {c,b,a}
reverse({{a,b,c},d}) -> {d,{a,b,c}}.

4.1.9 List Arguments of Other Operators

If an operator other than those specifically defined for lists is given a single argu-
ment that is a list, then the result of this operation will be a list in which that
operator is applied to each element of the list. For example, the result of evaluating
log {a,b,c } is the expression{LOG(A),LOG(B),LOG(C) }.
There are two ways to inhibit this operator distribution. Firstly, the switchLIS-
TARGS, if on, will globally inhibit such distribution. Secondly, one can inhibit
this distribution for a specific operator by the declarationLISTARGP. For ex-
ample, with the declarationlistargp log , log {a,b,c } would evaluate to
LOG({A,B,C }) .

If an operator has more than one argument, no such distribution occurs.

4.1.10 Caveats and Examples

Some of the natural list operations such asmemberor deleteare available only after
loading the packageASSIST.

Please note that a non-list as second argument to CONS (a ”dotted pair” in LISP
terms) is not allowed and causes an ”invalid as list” error.

a := 17 . 4;

***** 17 4 invalid as list

Also, the initialization of a scalar variable is not the empty list – one has to set list
type variables explicitly, as in the following example:

load_package assist;

procedure lotto (n,m);
begin scalar list_1_n, luckies, hit;

list_1_n := {};



36 CHAPTER 4. LISTS

luckies := {};
for k:=1:n do list_1_n := k . list_1_n;
for k:=1:m do

<< hit := part(list_1_n,random(n-k+1) + 1);
list_1_n := delete(hit,list_1_n);
luckies := hit . luckies >>;

return luckies;
end; % In Germany, try lotto (49,6);

Another example:Find all coefficients of a multivariate polynomial with respect to
a list of variables:

procedure allcoeffs(q,lis); % q : polynomial, lis: list of vars
allcoeffs1 (list q,lis);

procedure allcoeffs1(q,lis);
if lis={} then q else

allcoeffs1(foreach qq in q join coeff(qq,first lis),rest lis);



Chapter 5

Statements

A statement is any combination of reserved words and expressions, and has the
syntax

<statement> ::= <expression>|<proper statement>

A REDUCE program consists of a series of commands which are statements fol-
lowed by a terminator:

<terminator> ::= ;|$

The division of the program into lines is arbitrary. Several statements can be on
one line, or one statement can be freely broken onto several lines. If the program
is run interactively, statements ending with ; or $ are not processed until an end-of-
line character is encountered. This character can vary from system to system, but
is normally the Return key on an ASCII terminal. Specific systems may also use
additional keys as statement terminators.

If a statement is a proper statement, the appropriate action takes place.

Depending on the nature of the proper statement some result or response may or
may not be printed out, and the response may or may not depend on the terminator
used.

If a statement is an expression, it is evaluated. If the terminator is a semicolon, the
result is printed. If the terminator is a dollar sign, the result is not printed. Because
it is not usually possible to know in advance how large an expression will be, no
explicit format statements are offered to the user. However, a variety of output
declarations are available so that the output can be produced in different forms.
These output declarations are explained in Section 8.3.3.

The following sub-sections describe the types of proper statements in REDUCE.

37



38 CHAPTER 5. STATEMENTS

5.1 Assignment Statements

These statements have the syntax

<assignment statement> ::= <expression> := <expression>

The<expression> on the left side is normally the name of a variable, an op-
erator symbol with its list of arguments filled in, or an array name with the proper
number of integer subscript values within the array bounds. For example:

a1 := b + c
h(l,m) := x-2*y (whereh is an operator)
k(3,5) := x-2*y (wherek is a 2-dim. array)

More general assignments such asa+b := c are also allowed. The effect of these
is explained in Section 10.2.5.

An assignment statement causes the expression on the right-hand-side to be evalu-
ated. If the left-hand-side is a variable, the value of the right-hand-side is assigned
to that unevaluated variable. If the left-hand-side is an operator or array expression,
the arguments of that operator or array are evaluated, but no other simplification
done. The evaluated right-hand-side is then assigned to the resulting expression.
For example, ifA is a single-dimensional array,a(1+1) := b assigns the value
B to the array elementa(2) .

If a semicolon is used as the terminator when an assignment is issued as a command
(i.e. not as a part of a group statement or procedure or other similar construct), the
left-hand side symbol of the assignment statement is printed out, followed by a
“ := ”, followed by the value of the expression on the right.

It is also possible to write a multiple assignment statement:

<expression> := ... := <expression> := <expression>

In this form, each<expression> but the last is set to the value of the last<ex-
pression> . If a semicolon is used as a terminator, each expression except the
last is printed followed by a “:= ” ending with the value of the last expression.

5.1.1 Set Statement

In some cases, it is desirable to perform an assignment in whichboth the left- and
right-hand sides of an assignment are evaluated. In this case, theSET statement
can be used with the syntax:

SET(<expression>,<expression>);



5.2. GROUP STATEMENTS 39

For example, the statements

j := 23;
set(mkid(a,j),x);

assigns the valueX to A23.

5.2 Group Statements

The group statement is a construct used where REDUCE expects a single state-
ment, but a series of actions needs to be performed. It is formed by enclosing one
or more statements (of any kind) between the symbols<< and>>, separated by
semicolons or dollar signs – it doesn’t matter which. The statements are executed
one after another.

Examples will be given in the sections onIF and other types of statements in which
the<< . . .>> construct is useful.

If the last statement in the enclosed group has a value, then that is also the value
of the group statement. Care must be taken not to have a semicolon or dollar sign
after the last grouped statement, if the value of the group is relevant: such an extra
terminator causes the group to have the value NIL or zero.

5.3 Conditional Statements

The conditional statement has the following syntax:

<conditional statement> ::=
IF <boolean expression> THEN <statement> [ELSE <statement>]

The boolean expression is evaluated. If this istrue, the first<statement> is
executed. If it isfalse, the second is.

Examples:

if x=5 then a:=b+c else d:=e+f

if x=5 and numberp y
then <<ff:=q1; a:=b+c>>
else <<ff:=q2; d:=e+f>>

Note the use of the group statement.
Conditional statements associate to the right; i.e.,



40 CHAPTER 5. STATEMENTS

IF <a> THEN <b> ELSE IF <c> THEN <d> ELSE <e>

is equivalent to:

IF <a> THEN <b> ELSE (IF <c> THEN <d> ELSE <e>)

In addition, the construction

IF <a> THEN IF <b> THEN <c> ELSE <d>

parses as

IF <a> THEN (IF <b> THEN <c> ELSE <d>).

If the value of the conditional statement is of primary interest, it is often called a
conditional expression instead. Its value is the value of whichever statement was
executed. (If the executed statement has no value, the conditional expression has
no value or the value 0, depending on how it is used.)

Examples:

a:=if x<5 then 123 else 456;
b:=u + vˆ(if numberp z then 10*z else 1) + w;

If the value is of no concern, theELSE clause may be omitted if no action is
required in thefalsecase.

if x=5 then a:=b+c;

Note: As explained in Section 3.3,a if a scalar or numerical expression is used in
place of the boolean expression – for example, a variable is written there – thetrue
alternative is followed unless the expression has the value 0.

5.4 FOR Statements

TheFORstatement is used to define a variety of program loops. Its general syntax
is as follows:

FOR





〈var〉 := 〈number〉
{

STEP 〈number〉 UNTIL
:

}
〈number〉

EACH 〈var〉
{

IN
ON

}
〈list〉




〈action〉 〈exprn〉

where

〈action〉 ::= do|product|sum|collect|join.



5.4. FOR STATEMENTS 41

The assignment form of theFORstatement defines an iteration over the indicated
numerical range. If expressions that do not evaluate to numbers are used in the
designated places, an error will result.

The FOR EACHform of the FORstatement is designed to iterate down a list.
Again, an error will occur if a list is not used.

The actionDOmeans that<exprn> is simply evaluated and no value kept; the
statement returning 0 in this case (or no value at the top level).COLLECTmeans
that the results of evaluating<exprn> each time are linked together to make a list,
andJOIN means that the values of<exprn> are themselves lists that are joined
to make one list (similar toCONCin Lisp). Finally,PRODUCTandSUMform the
respective combined value out of the values of<exprn> .

In all cases,<exprn> is evaluated algebraically within the scope of the current
value of<var> . If <action> is DO, then nothing else happens. In other cases,
<action> is a binary operator that causes a result to be built up and returned
by FOR. In those cases, the loop is initialized to a default value (0 for SUM, 1 for
PRODUCT, and an empty list for the other actions). The test for the end condition
is made before any action is taken. As in Pascal, if the variable is out of range in
the assignment case, or the<list> is empty in theFOR EACHcase,<exprn>
is not evaluated at all.

Examples:

1. If A, B have been declared to be arrays, the following stores52 through102

in A(5) throughA(10) , and at the same time stores the cubes in theB
array:

for i := 5 step 1 until 10 do <<a(i):=iˆ2; b(i):=iˆ3>>

2. As a convenience, the common construction

STEP 1 UNTIL

may be abbreviated to a colon. Thus, instead of the above we could write:

for i := 5:10 do <<a(i):=iˆ2; b(i):=iˆ3>>

3. The following setsC to the sum of the squares of 1,3,5,7,9; andD to the
expressionx*(x+1)*(x+2)*(x+3)*(x+4):

c := for j:=1 step 2 until 9 sum jˆ2;
d := for k:=0 step 1 until 4 product (x+k);

4. The following forms a list of the squares of the elements of the list
{a,b,c }:



42 CHAPTER 5. STATEMENTS

for each x in {a,b,c} collect xˆ2;

5. The following forms a list of the listed squares of the elements of the list
{a,b,c } (i.e.,{{Aˆ2 }, {Bˆ2 }, {Cˆ2 }}):

for each x in {a,b,c} collect {xˆ2};

6. The following also forms a list of the squares of the elements of the list
{a,b,c }, since theJOIN operation joins the individual lists into one list:

for each x in {a,b,c} join {xˆ2};

The control variable used in theFORstatement is actually a new variable, not
related to the variable of the same name outside theFORstatement. In other words,
executing a statementfor i:= . . . doesn’t change the system’s assumption that
i2 = −1. Furthermore, in algebraic mode, the value of the control variable is
substituted in<exprn> only if it occurs explicitly in that expression. It will not
replace a variable of the same name in the value of that expression. For example:

b := a; for a := 1:2 do write b;

printsA twice, not 1 followed by 2.

5.5 WHILE . . . DO

TheFOR ...DO feature allows easy coding of a repeated operation in which the
number of repetitions is known in advance. If the criterion for repetition is more
complicated,WHILE ...DO can often be used. Its syntax is:

WHILE <boolean expression> DO <statement>

The WHILE ...DO controls the single statement followingDO. If several state-
ments are to be repeated, as is almost always the case, they must be grouped using
the<< . . .>> or BEGIN ...END as in the example below.

The WHILE condition is tested each timebefore the action following theDO is
attempted. If the condition is false to begin with, the action is not performed at all.
Make sure that what is to be tested has an appropriate value initially.

Example:

Suppose we want to add up a series of terms, generated one by one, until we reach
a term which is less than 1/1000 in value. For our simple example, let us suppose
the first term equals 1 and each term is obtained from the one before by taking one
third of it and adding one third its square. We would write:



5.6. REPEAT . . . UNTIL 43

ex:=0; term:=1;
while num(term - 1/1000) >= 0 do

<<ex := ex+term; term:=(term + termˆ2)/3>>;
ex;

As long asTERMis greater than or equal to (>=) 1/1000 it will be added toEXand
the nextTERMcalculated. As soon asTERMbecomes less than 1/1000 theWHILE
test fails and theTERMwill not be added.

5.6 REPEAT . . . UNTIL

REPEAT ...UNTIL is very similar in purpose toWHILE ...DO . Its syntax is:

REPEAT <statement> UNTIL <boolean expression>

(PASCAL users note: Only a single statement – usually a group statement – is
allowed between theREPEATand theUNTIL.)

There are two essential differences:

1. The test is performedafter the controlled statement (or group of statements)
is executed, so the controlled statement is always executed at least once.

2. The test is a test for when to stop rather than when to continue, so its “polar-
ity” is the opposite of that inWHILE ...DO.

As an example, we rewrite the example from theWHILE ...DO section:

ex:=0; term:=1;
repeat <<ex := ex+term; term := (term + termˆ2)/3>>

until num(term - 1/1000) < 0;
ex;

In this case, the answer will be the same as before, because in neither case is a term
added toEXwhich is less than 1/1000.

5.7 Compound Statements

Often the desired process can best (or only) be described as a series of steps to be
carried out one after the other. In many cases, this can be achieved by use of the
group statement. However, each step often provides some intermediate result, until
at the end we have the final result wanted. Alternatively, iterations on the steps are



44 CHAPTER 5. STATEMENTS

needed that are not possible with constructs such asWHILEor REPEATstatements.
In such cases the steps of the process must be enclosed between the wordsBEGIN
andENDforming what is technically called ablockor compoundstatement. Such
a compound statement can in fact be used wherever a group statement appears.
The converse is not true:BEGIN ...END can be used in ways that<< . . .>>
cannot.

If intermediate results must be formed, local variables must be provided in which
to store them.Local means that their values are deleted as soon as the block’s
operations are complete, and there is no conflict with variables outside the block
that happen to have the same name. Local variables are created by aSCALAR
declaration immediately after theBEGIN:

scalar a,b,c,z;

If more convenient, severalSCALARdeclarations can be given one after another:

scalar a,b,c;
scalar z;

In place ofSCALARone can also use the declarationsINTEGERor REAL. In the
present version of REDUCE variables declaredINTEGERare expected to have
only integer values, and are initialized to 0.REALvariables on the other hand are
currently treated as algebraic modeSCALARs.

CAUTION: INTEGER, REALandSCALARdeclarations can only be given imme-
diately after aBEGIN. An error will result if they are used after other statements
in a block (includingARRAYand OPERATORdeclarations, which are global in
scope), or outside the top-most block (e.g., at the top level). All variables declared
SCALARare automatically initialized to zero in algebraic mode (NIL in symbolic
mode).

Any symbols not declared as local variables in a block refer to the variables of
the same name in the current calling environment. In particular, if they are not so
declared at a higher level (e.g., in a surrounding block or as parameters in a calling
procedure), their values can be permanently changed.

Following theSCALARdeclaration(s), if any, write the statements to be executed,
one after the other, separated by delimiters (e.g.,; or $) (it doesn’t matter which).
However, from a stylistic point of view,; is preferred.

The last statement in the body, just beforeEND, need not have a terminator (since
theBEGIN ...END are in a sense brackets confining the block statements). The
last statement must also be the commandRETURNfollowed by the variable or
expression whose value is to be the value returned by the procedure. If theRETURN
is omitted (or nothing is written after the wordRETURN) the procedure will have
no value or the value zero, depending on how it is used (andNIL in symbolic



5.7. COMPOUND STATEMENTS 45

mode). Remember to put a terminator after theEND.

Example:

Given a previously assigned integer value forN, the following block will compute
the Legendre polynomial of degreeN in the variableX:

begin scalar seed,deriv,top,fact;
seed:=1/(yˆ2 - 2*x*y +1)ˆ(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

5.7.1 Compound Statements with GO TO

It is possible to have more complicated structures inside theBEGIN ...END
brackets than indicated in the previous example. That the individual lines of the
program need not be assignment statements, but could be almost any other kind
of statement or command, needs no explanation. For example, conditional state-
ments, andWHILEandREPEAT constructions, have an obvious role in defining
more intricate blocks.

If these structured constructs don’t suffice, it is possible to use labels andGO TOs
within a compound statement, and also to useRETURNin places within the block
other than just before theEND. The following subsections discuss these matters in
detail. For many readers the following example, presenting one possible definition
of a process to calculate the factorial ofN for preassignedNwill suffice:

Example:

begin scalar m;
m:=1;

l: if n=0 then return m;
m:=m*n;
n:=n-1;
go to l

end;

5.7.2 Labels and GO TO Statements

Within a BEGIN ...END compound statement it is possible to label statements,
and transfer to them out of sequence usingGO TOstatements. Only statements on
the top level inside compound statements can be labeled, not ones inside subsidiary



46 CHAPTER 5. STATEMENTS

constructions like<< . . .>>, IF . . .THEN. . . , WHILE. . .DO. . . , etc.

Labels andGO TOstatements have the syntax:

<go to statement> ::= GO TO <label> | GOTO <label>
<label> ::= <identifier>
<labeled statement> ::= <label>:<statement>

Note that statement names cannot be used as labels.

While GO TOis an unconditional transfer, it is frequently used in conditional state-
ments such as

if x>5 then go to abcd;

giving the effect of a conditional transfer.

Transfers usingGO TOs can only occur within the block in which theGO TOis
used. In other words, you cannot transfer from an inner block to an outer block us-
ing aGO TO. However, if a group statement occurs within a compound statement,
it is possible to jump out of that group statement to a point within the compound
statement using aGO TO.

5.7.3 RETURN Statements

The value corresponding to aBEGIN ...END compound statement, such as a
procedure body, is normally 0 (NIL in symbolic mode). By executing aRETURN
statement in the compound statement a different value can be returned. After aRE-
TURNstatement is executed, no further statements within the compound statement
are executed.

Examples:

return x+y;
return m;
return;

Note that parentheses are not required around thex+y , although they are permitted.
The last example is equivalent toreturn 0 or return nil , depending on
whether the block is used as part of an expression or not.

SinceRETURNactually moves up only one block level, in a sense the casual user
is not expected to understand, we tabulate some cautions concerning its use.

1. RETURNcan be used on the top level inside the compound statement, i.e. as
one of the statements bracketed together by theBEGIN ...END



5.7. COMPOUND STATEMENTS 47

2. RETURNcan be used within a top level<< . . .>> construction within the
compound statement. In this case, theRETURNtransfers control out of both
the group statement and the compound statement.

3. RETURNcan be used within anIF . . .THEN. . .ELSE . . . on the top level
within the compound statement.

NOTE: At present, there is no construct provided to permit early termination of
a FOR, WHILE, or REPEATstatement. In particular, the use ofRETURNin such
cases results in a syntax error. For example,

begin scalar y;
y := for i:=0:99 do if a(i)=x then return b(i);
...

will lead to an error.



48 CHAPTER 5. STATEMENTS



Chapter 6

Commands and Declarations

A command is an order to the system to do something. Some commands cause
visible results (such as calling for input or output); others, usually called declara-
tions, set options, define properties of variables, or define procedures. Commands
are formally defined as a statement followed by a terminator

<command> ::= <statement> <terminator>
<terminator> ::= ;|$

Some REDUCE commands and declarations are described in the following sub-
sections.

6.1 Array Declarations

Array declarations in REDUCE are similar to FORTRAN dimension statements.
For example:

array a(10),b(2,3,4);

Array indices each range from 0 to the value declared. An element of an array is
referred to in standard FORTRAN notation, e.g.A(2) .

We can also use an expression for defining an array bound, provided the value of
the expression is a positive integer. For example, ifX has the value 10 andY the
value 7 thenarray c(5*x+y) is the same asarray c(57) .

If an array is referenced by an index outside its range, an error occurs. If the array
is to be one-dimensional, and the bound a number or a variable (not a more general
expression) the parentheses may be omitted:

49



50 CHAPTER 6. COMMANDS AND DECLARATIONS

array a 10, c 57;

The operatorLENGTHapplied to an array name returns a list of its dimensions.

All array elements are initialized to 0 at declaration time. In other words, an array
element has aninstant evaluationproperty and cannot stand for itself. If this is
required, then an operator should be used instead.

Array declarations can appear anywhere in a program. Once a symbol is declared
to name an array, it can not also be used as a variable, or to name an operator or
a procedure. It can however be re-declared to be an array, and its size may be
changed at that time. An array name can also continue to be used as a parameter in
a procedure, or a local variable in a compound statement, although this use is not
recommended, since it can lead to user confusion over the type of the variable.

Arrays once declared are global in scope, and so can then be referenced anywhere
in the program. In other words, unlike arrays in most other languages, a declara-
tion within a block (or a procedure) does not limit the scope of the array to that
block, nor does the array go away on exiting the block (useCLEARinstead for this
purpose).

6.2 Mode Handling Declarations

TheONandOFFdeclarations are available to the user for controlling various sys-
tem options. Each option is represented by aswitchname.ONandOFFtake a list
of switch names as argument and turn them on and off respectively, e.g.,

on time;

causes the system to print a message after each command giving the elapsed CPU
time since the last command, or sinceTIME was last turned off, or the session be-
gan. Another useful switch with interactive use isDEMO, which causes the system
to pause after each command in a file (with the exception of comments) until a
Return is typed on the terminal. This enables a user to set up a demonstration

file and step through it command by command.

As with most declarations, arguments toONandOFFmay be strung together sep-
arated by commas. For example,

off time,demo;

will turn off both the time messages and the demonstration switch.

We note here that while mostONandOFFcommands are obeyed almost instanta-
neously, some trigger time-consuming actions such as reading in necessary mod-



6.3. END 51

ules from secondary storage.

A diagnostic message is printed ifONor OFF are used with a switch that is not
known to the system. For example, if you misspellDEMOand type

on demq;

you will get the message

***** DEMQ not defined as switch.

6.3 END

The identifierENDhas two separate uses.

1) Its use in aBEGIN ...END bracket has been discussed in connection with
compound statements.

2) Files to be read usingIN should end with an extraEND; command. The reason
for this is explained in the section on theIN command. This use ofENDdoes not
allow an immediately precedingEND(such as theENDof a procedure definition),
so we advise using;END; there.

6.4 BYE Command

The commandBYE; (or alternativelyQUIT;) stops the execution of REDUCE,
closes all open output files, and returns you to the calling program (usually the
operating system). Your REDUCE session is normally destroyed.

6.5 SHOWTIME Command

SHOWTIME; prints the elapsed time since the last call of this command or, on its
first call, since the current REDUCE session began. The time is normally given
in milliseconds and gives the time as measured by a system clock. The operations
covered by this measure are system dependent.

6.6 DEFINE Command

The commandDEFINE allows a user to supply a new name for any identifier or
replace it by any well-formed expression. Its argument is a list of expressions of



52 CHAPTER 6. COMMANDS AND DECLARATIONS

the form

<identifier> = <number>|<identifier>|<operator>|
<reserved word>|<expression>

Example:

define be==,x=y+z;

means thatBE will be interpreted as an equal sign, andX as the expressiony+z
from then on. This renaming is done at parse time, and therefore takes precedence
over any other replacement declared for the same identifier. It stays in effect until
the end of the REDUCE run.

The identifiersALGEBRAICandSYMBOLIChave properties which preventDE-
FINE from being used on them. To defineALGto be a synonym forALGEBRAIC,
use the more complicated construction

put(’alg,’newnam,’algebraic);



Chapter 7

Built-in Prefix Operators

In the following subsections are descriptions of the most useful prefix operators
built into REDUCE that are not defined in other sections (such as substitution
operators). Some are fully defined internally as procedures; others are more nearly
abstract operators, with only some of their properties known to the system.

In many cases, an operator is described by a prototypical header line as follows.
Each formal parameter is given a name and followed by its allowed type. The
names of classes referred to in the definition are printed in lower case, and param-
eter names in upper case. If a parameter type is not commonly used, it may be
a specific set enclosed in brackets{ . . .}. Operators that accept formal parame-
ter lists of arbitrary length have the parameter and type class enclosed in square
brackets indicating that zero or more occurrences of that argument are permitted.
Optional parameters and their type classes are enclosed in angle brackets.

7.1 Numerical Operators

REDUCE includes a number of functions that are analogs of those found in most
numerical systems. With numerical arguments, such functions return the expected
result. However, they may also be called with non-numerical arguments. In such
cases, except where noted, the system attempts to simplify the expression as far as
it can. In such cases, a residual expression involving the original operator usually
remains. These operators are as follows:

7.1.1 ABS

ABS returns the absolute value of its single argument, if that argument has a nu-
merical value. A non-numerical argument is returned as an absolute value, with an

53



54 CHAPTER 7. BUILT-IN PREFIX OPERATORS

overall numerical coefficient taken outside the absolute value operator. For exam-
ple:

abs(-3/4) -> 3/4
abs(2a) -> 2*ABS(A)
abs(i) -> 1
abs(-x) -> ABS(X)

7.1.2 CEILING

This operator returns the ceiling (i.e., the least integer greater than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

ceiling(-5/4) -> -1
ceiling(-a) -> CEILING(-A)

7.1.3 CONJ

This returns the complex conjugate of an expression, if that argument has an numer-
ical value. A non-numerical argument is returned as an expression in the operators
REPARTandIMPART. For example:

conj(1+i) -> 1-I
conj(a+i*b) -> REPART(A) - REPART(B)*I - IMPART(A)*I

- IMPART(B)

7.1.4 FACTORIAL

If the single argument ofFACTORIALevaluates to a non-negative integer, its fac-
torial is returned. Otherwise an expression involvingFACTORIALis returned. For
example:

factorial(5) -> 120
factorial(a) -> FACTORIAL(A)

7.1.5 FIX

This operator returns the fixed value (i.e., the integer part of the given argument) if
its single argument has a numerical value. A non-numerical argument is returned
as an expression in the original operator. For example:



7.1. NUMERICAL OPERATORS 55

fix(-5/4) -> -1
fix(a) -> FIX(A)

7.1.6 FLOOR

This operator returns the floor (i.e., the greatest integer less than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

floor(-5/4) -> -2
floor(a) -> FLOOR(A)

7.1.7 IMPART

This operator returns the imaginary part of an expression, if that argument has an
numerical value. A non-numerical argument is returned as an expression in the
operatorsREPARTandIMPART. For example:

impart(1+i) -> 1
impart(a+i*b) -> REPART(B) + IMPART(A)

7.1.8 MAX/MIN

MAXand MIN can take an arbitrary number of expressions as their arguments.
If all arguments evaluate to numerical values, the maximum or minimum of the
argument list is returned. If any argument is non-numeric, an appropriately reduced
expression is returned. For example:

max(2,-3,4,5) -> 5
min(2,-2) -> -2.
max(a,2,3) -> MAX(A,3)
min(x) -> X

MAXor MIN of an empty list returns 0.

7.1.9 NEXTPRIME

NEXTPRIMEreturns the next prime greater than its integer argument, using a prob-
abilistic algorithm. A type error occurs if the value of the argument is not an inte-
ger. For example:



56 CHAPTER 7. BUILT-IN PREFIX OPERATORS

nextprime(5) -> 7
nextprime(-2) -> 2
nextprime(-7) -> -5
nextprime 1000000 -> 1000003

whereasnextprime(a) gives a type error.

7.1.10 RANDOM

random( n) returns a random numberr in the range0 ≤ r < n. A type error
occurs if the value of the argument is not a positive integer in algebraic mode, or
positive number in symbolic mode. For example:

random(5) -> 3
random(1000) -> 191

whereasrandom(a) gives a type error.

7.1.11 RANDOM NEW SEED

random new seed( n) reseeds the random number generator to a sequence de-
termined by the integer argumentn. It can be used to ensure that a repeatable
pseudo-random sequence will be delivered regardless of any previous use ofRAN-
DOM, or can be called early in a run with an argument derived from something
variable (such as the time of day) to arrange that different runs of a REDUCE pro-
gram will use different random sequences. When a fresh copy of REDUCE is first
created it is as ifrandom new seed(1) has been obeyed.

A type error occurs if the value of the argument is not a positive integer.

7.1.12 REPART

This returns the real part of an expression, if that argument has an numerical value.
A non-numerical argument is returned as an expression in the operatorsREPART
andIMPART. For example:

repart(1+i) -> 1
repart(a+i*b) -> REPART(A) - IMPART(B)



7.2. MATHEMATICAL FUNCTIONS 57

7.1.13 ROUND

This operator returns the rounded value (i.e, the nearest integer) of its single argu-
ment if that argument has a numerical value. A non-numeric argument is returned
as an expression in the original operator. For example:

round(-5/4) -> -1
round(a) -> ROUND(A)

7.1.14 SIGN

SIGN tries to evaluate the sign of its argument. If this is possibleSIGN returns
one of 1, 0 or -1. Otherwise, the result is the original form or a simplified variant.
For example:

sign(-5) -> -1
sign(-aˆ2*b) -> -SIGN(B)

Note that even powers of formal expressions are assumed to be positive only as
long as the switchCOMPLEXis off.

7.2 Mathematical Functions

REDUCE knows that the following represent mathematical functions that can take
arbitrary scalar expressions as their single argument:

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH DILOG EI EXP
HYPOT LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

whereLOG is the natural logarithm (and equivalent toLN), andLOGBhas two
arguments of which the second is the logarithmic base.

The derivatives of all these functions are also known to the system.

REDUCE knows various elementary identities and properties of these functions.
For example:

cos(-x) = cos(x) sin(-x) = - sin (x)
cos(n*pi) = (-1)ˆn sin(n*pi) = 0
log(e) = 1 eˆ(i*pi/2) = i
log(1) = 0 eˆ(i*pi) = -1
log(eˆx) = x eˆ(3*i*pi/2) = -i



58 CHAPTER 7. BUILT-IN PREFIX OPERATORS

Beside these identities, there are a lot of simplifications for elementary funct-
ions defined in the REDUCE system as rulelists. In order to view these, the
SHOWRULES operator can be used, e.g.

SHOWRULES tan;

{tan(˜n*arbint(˜i)*pi + ˜(˜ x)) => tan(x) when fixp(n),

tan(˜x)

=> trigquot(sin(x),cos(x)) when knowledge_about(sin,x,tan)

,

˜x + ˜(˜ k)*pi
tan(----------------)

˜d

x k 1
=> - cot(---) when x freeof pi and abs(---)=---,

d d 2

˜(˜ w) + ˜(˜ k)*pi w + remainder(k,d)*pi
tan(--------------------) => tan(---------------------

--)
˜(˜ d) d

k
when w freeof pi and ratnump(---) and fixp(k)

d

k
and abs(---)>=1,

d

tan(atan(˜x)) => x,

2
df(tan(˜x),˜x) => 1 + tan(x) }

For further simplification, especially of expressions involving trigonometric funct-
ions, see the TRIGSIMP package documentation.



7.2. MATHEMATICAL FUNCTIONS 59

Functions not listed above may be defined in the special functions package
SPECFN.

The user can add further rules for the reduction of expressions involving these
operators by using theLET command.

In many cases it is desirable to expand product arguments of logarithms, or collect
a sum of logarithms into a single logarithm. Since these are inverse operations, it
is not possible to provide rules for doing both at the same time and preserve the
REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides
two switchesEXPANDLOGSandCOMBINELOGSto carry out these operations.
Both are off by default. Thus to expandLOG(X*Y) into a sum of logs, one can
say

ON EXPANDLOGS; LOG(X*Y);

and to combine this sum into a single log:

ON COMBINELOGS; LOG(X) + LOG(Y);

At the present time, it is possible to have both switches on at once, which could
lead to infinite recursion. However, an expression is switched from one form to the
other in this case. Users should not rely on this behavior, since it may change in
the next release.

The current version of REDUCE does a poor job of simplifying surds. In particular,
expressions involving the product of variables raised to non-integer powers do not
usually have their powers combined internally, even though they are printed as if
those powers were combined. For example, the expression

xˆ(1/3)*xˆ(1/6);

will print as

SQRT(X)

but will have an internal form containing the two exponentiated terms. If you
now subtractsqrt(x) from this expression, you willnot get zero. Instead, the
confusing form

SQRT(X) - SQRT(X)

will result. To combine such exponentiated terms, the switchCOMBINEEXPT
should be turned on.



60 CHAPTER 7. BUILT-IN PREFIX OPERATORS

The square root function can be input using the nameSQRT, or the power opera-
tion ˆ(1/2) . On output, unsimplified square roots are normally represented by
the operatorSQRTrather than a fractional power. With the default system switch
settings, the argument of a square root is first simplified, and any divisors of the
expression that are perfect squares taken outside the square root argument. The
remaining expression is left under the square root. Thus the expression

sqrt(-8aˆ2*b)

becomes

2*a*sqrt(-2*b).

Note that such simplifications can cause trouble ifA is eventually given a value
that is a negative number. If it is important that the positive property of the square
root and higher even roots always be preserved, the switchPRECISEshould be
set on (the default value). This causes any non-numerical factors taken out of surds
to be represented by their absolute value form. WithPRECISEon then, the above
example would become

2*abs(a)*sqrt(-2*b).

The statement that REDUCE knows very little about these functions applies only
in the mathematically exactoff rounded mode. IfROUNDEDis on, any of the
functions

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH EXP HYPOT
LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

when given a numerical argument has its value calculated to the current degree of
floating point precision. In addition, real (non-integer valued) powers of numbers
will also be evaluated.

If the COMPLEXswitch is turned on in addition toROUNDED, these funct-
ions will also calculate a real or complex result, again to the current degree of
floating point precision, if given complex arguments. For example, withon
rounded,complex;

2.3ˆ(5.6i) -> -0.0480793490914 - 0.998843519372*I
cos(2+3i) -> -4.18962569097 - 9.10922789376*I



7.3. DF OPERATOR 61

7.3 DF Operator

The operatorDF is used to represent partial differentiation with respect to one or
more variables. It is used with the syntax:

DF(EXPRN:algebraic[,VAR:kernel<,NUM:integer>]):algebraic.

The first argument is the expression to be differentiated. The remaining arguments
specify the differentiation variables and the number of times they are applied.

The numberNUMmay be omitted if it is 1. For example,

df(y,x) = ∂y/∂x
df(y,x,2) = ∂2y/∂x2

df(y,x1,2,x2,x3,2) = ∂5y/∂x2
1 ∂x2∂x2

3.

The evaluation ofdf(y,x) proceeds as follows: first, the values ofY andX are
found. Let us assume thatX has no assigned value, so its value isX. Each term
or other part of the value ofY that contains the variableX is differentiated by the
standard rules. IfZ is another variable, notX itself, then its derivative with respect
to X is taken to be 0, unlessZ has previously been declared toDEPENDon X, in
which case the derivative is reported as the symboldf(z,x) .

7.3.1 Adding Differentiation Rules

TheLET statement can be used to introduce rules for differentiation of user-defined
operators. Its general form is

FOR ALL <var1>,...,<varn>
LET DF(<operator><varlist>,<vari>)=<expression>

where<varlist> ::= (<var1> ,. . . ,<varn> ), and<var1> ,...,<varn> are the
dummy variable arguments of<operator> .

An analogous form applies to infix operators.

Examples:

for all x let df(tan x,x)= 1 + tan(x)ˆ2;

(This is how the tan differentiation rule appears in the REDUCE source.)

for all x,y let df(f(x,y),x)=2*f(x,y),
df(f(x,y),y)=x*f(x,y);



62 CHAPTER 7. BUILT-IN PREFIX OPERATORS

Notice that all dummy arguments of the relevant operator must be declared arbi-
trary by theFOR ALLcommand, and that rules may be supplied for operators with
any number of arguments. If no differentiation rule appears for an argument in an
operator, the differentiation routines will return as result an expression in terms
of DF. For example, if the rule for the differentiation with respect to the second
argument ofF is not supplied, the evaluation ofdf(f(x,z),z) would leave this
expression unchanged. (NoDEPENDdeclaration is needed here, sincef(x,z)
obviously “depends on”Z.)

Once such a rule has been defined for a given operator, any future differentiation
rules for that operator must be defined with the same number of arguments for that
operator, otherwise we get the error message

Incompatible DF rule argument length for <operator>

7.4 INT Operator

INT is an operator in REDUCE for indefinite integration using a combination of
the Risch-Norman algorithm and pattern matching. It is used with the syntax:

INT(EXPRN:algebraic,VAR:kernel):algebraic.

This will return correctly the indefinite integral for expressions comprising poly-
nomials, log functions, exponential functions and tan and atan. The arbitrary con-
stant is not represented. If the integral cannot be done in closed terms, it returns a
formal integral for the answer in one of two ways:

1. It returns the input,INT(...,...) unchanged.

2. It returns an expression involvingINT s of some other functions (sometimes
more complicated than the original one, unfortunately).

Rational functions can be integrated when the denominator is factorizable by the
program. In addition it will attempt to integrate expressions involving error funct-
ions, dilogarithms and other trigonometric expressions. In these cases it might not
always succeed in finding the solution, even if one exists.

Examples:

int(log(x),x) -> X*(LOG(X) - 1),
int(eˆx,x) -> E**X.

The program checks that the second argument is a variable and gives an error if it
is not.



7.4. INT OPERATOR 63

Note: If the int operator is called with 4 arguments, REDUCE will implicitly call
the definite integration package (DEFINT) and this package will interpret the third
and fourth arguments as the lower and upper limit of integration, respectively. For
details, consult the documentation on the DEFINT package.

7.4.1 Options

The switchTRINT when on will trace the operation of the algorithm. It produces
a great deal of output in a somewhat illegible form, and is not of much interest to
the general user. It is normally off.

If the switchFAILHARD is on the algorithm will terminate with an error if the
integral cannot be done in closed terms, rather than return a formal integration
form. FAILHARD is normally off.

The switchNOLNRsuppresses the use of the linear properties of integration in
cases when the integral cannot be found in closed terms. It is normally off.

7.4.2 Advanced Use

If a function appears in the integrand that is not one of the functionsEXP, ERF,
TAN, ATAN, LOG, DILOG then the algorithm will make an attempt to inte-
grate the argument if it can, differentiate it and reach a known function. However
the answer cannot be guaranteed in this case. If a function is known to be alge-
braically independent of this set it can be flagged transcendental by

flag(’(trilog),’transcendental);

in which case this function will be added to the permitted field descriptors for a
genuine decision procedure. If this is done the user is responsible for the mathe-
matical correctness of his actions.

The standard version does not deal with algebraic extensions. Thus integration
of expressions involving square roots and other like things can lead to trouble. A
contributed package that supports integration of functions involving square roots is
available, however (ALGINT, chapter??). In addition there is a definite integration
package, DEFINT( chapter??).

7.4.3 References

A. C. Norman & P. M. A. Moore, “Implementing the New Risch Algorithm”,
Proc. 4th International Symposium on Advanced Comp. Methods in Theor. Phys.,
CNRS, Marseilles, 1977.



64 CHAPTER 7. BUILT-IN PREFIX OPERATORS

S. J. Harrington, “A New Symbolic Integration System in Reduce”, Comp. Journ.
22 (1979) 2.

A. C. Norman & J. H. Davenport, “Symbolic Integration — The Dust Settles?”,
Proc. EUROSAM 79, Lecture Notes in Computer Science 72, Springer-Verlag,
Berlin Heidelberg New York (1979) 398-407.

7.5 LENGTH Operator

LENGTHis a generic operator for finding the length of various objects in the sys-
tem. The meaning depends on the type of the object. In particular, the length
of an algebraic expression is the number of additive top-level terms its expanded
representation.

Examples:

length(a+b) -> 2
length(2) -> 1.

Other objects that support a length operator include arrays, lists and matrices. The
explicit meaning in these cases is included in the description of these objects.

7.6 MAP Operator

The MAPoperator applies a uniform evaluation pattern to all members of a com-
posite structure: a matrix, a list, or the arguments of an operator expression. The
evaluation pattern can be a unary procedure, an operator, or an algebraic expression
with one free variable.

It is used with the syntax:

MAP(U:function,V:object)

Hereobject is a list, a matrix or an operator expression.Function can be one
of the following:

1. the name of an operator for a single argument: the operator is evaluated once
with each element ofobject as its single argument;

2. an algebraic expression with exactly one free variable, that is a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
object , where the element is substituted for the free variable;



7.7. MKID OPERATOR 65

3. a replacement rule of the formvar => rep wherevar is a variable (a
kernel without a subscript) andrep is an expression that containsvar . Rep
is evaluated for each element ofobject where the element is substituted
for var . Var may be optionally preceded by a tilde.

The rule form forfunction is needed when more than one free variable occurs.

Examples:

map(abs,{1,-2,a,-a}) -> {1,2,ABS(A),ABS(A)}
map(int(˜w,x), mat((xˆ2,xˆ5),(xˆ4,xˆ5))) ->

[ 3 6 ]
[ x x ]
[---- ----]
[ 3 6 ]
[ ]
[ 5 6 ]
[ x x ]
[---- ----]
[ 5 6 ]

map(˜w*6, xˆ2/3 = yˆ3/2 -1) -> 2*Xˆ2=3*(Yˆ3-2)

You can useMAPin nested expressions. However, you cannot applyMAPto a
non-composed object, e.g. an identifier or a number.

7.7 MKID Operator

In many applications, it is useful to create a set of identifiers for naming objects in
a consistent manner. In most cases, it is sufficient to create such names from two
components. The operatorMKID is provided for this purpose. Its syntax is:

MKID(U:id,V:id|non-negative integer):id

for example

mkid(a,3) -> A3
mkid(apple,s) -> APPLES

while mkid(a+b,2) gives an error.

TheSET operator can be used to give a value to the identifiers created byMKID,
for example



66 CHAPTER 7. BUILT-IN PREFIX OPERATORS

set(mkid(a,3),3);

will give A3 the value 2.

7.8 PF Operator

PF(<exp>,<var>) transforms the expression<exp> into a list of partial frac-
tions with respect to the main variable,<var> . PFdoes a complete partial fraction
decomposition, and as the algorithms used are fairly unsophisticated (factorization
and the extended Euclidean algorithm), the code may be unacceptably slow in com-
plicated cases.

Example:Given 2/((x+1)ˆ2*(x+2)) in the workspace,pf(ws,x); gives
the result

2 - 2 2
{-------,-------,--------------} .

X + 2 X + 1 2
X + 2*X + 1

If you want the denominators in factored form, useoff exp; . Thus, with
2/((x+1)ˆ2*(x+2)) in the workspace, the commandsoff exp; pf(ws,x);
give the result

2 - 2 2
{-------,-------,----------} .

X + 2 X + 1 2
(X + 1)

To recombine the terms,FOR EACH ...SUMcan be used. So with the above list
in the workspace,for each j in ws sum j; returns the result

2
------------------

2
(X + 2)*(X + 1)

Alternatively, one can use the operations on lists to extract any desired term.



7.9. SELECT OPERATOR 67

7.9 SELECT Operator

The SELECToperator extracts from a list, or from the arguments of an n–ary
operator, elements corresponding to a boolean predicate. It is used with the syntax:

SELECT(U:function,V:list)

Function can be one of the following forms:

1. the name of an operator for a single argument: the operator is evaluated once
with each element ofobject as its single argument;

2. an algebraic expression with exactly one free variable, that is a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
〈object〉, where the element is substituted for the free variable;

3. a replacement rule of the form〈var => rep〉 wherevar is a variable (a
kernel without subscript) andrep is an expression that containsvar . Rep
is evaluated for each element ofobject where the element is substituted
for var . var may be optionally preceded by a tilde.

The rule form forfunction is needed when more than one free variable occurs.

The result of evaluatingfunction is interpreted as a boolean value correspond-
ing to the conventions of REDUCE. These values are composed with the leading
operator of the input expression.

Examples:

select( ˜w>0 , {1,-1,2,-3,3}) -> {1,2,3}
select(evenp deg(˜w,y),part((x+y)ˆ5,0):=list)

-> {Xˆ5 ,10*Xˆ3*Yˆ2 ,5*X*Yˆ4}
select(evenp deg(˜w,x),2xˆ2+3xˆ3+4xˆ4) -> 4Xˆ4 + 2Xˆ2

7.10 SOLVE Operator

SOLVE is an operator for solving one or more simultaneous algebraic equations.
It is used with the syntax:

SOLVE(EXPRN:algebraic[,VAR:kernel|,VARLIST:list of kernels])
:list.

EXPRNis of the form<expression> or{ <expression1> ,<expression2> ,
. . .}. Each expression is an algebraic equation, or is the difference of the two sides



68 CHAPTER 7. BUILT-IN PREFIX OPERATORS

of the equation. The second argument is either a kernel or a list of kernels represent-
ing the unknowns in the system. This argument may be omitted if the number of
distinct, non-constant, top-level kernels equals the number of unknowns, in which
case these kernels are presumed to be the unknowns.

For one equation,SOLVErecursively uses factorization and decomposition, to-
gether with the known inverses ofLOG, SIN , COS, ˆ , ACOS, ASIN, and linear,
quadratic, cubic, quartic, or binomial factors. Solutions of equations built with
exponentials or logarithms are often expressed in terms of Lambert’sWfunction.
This function is (partially) implemented in the special functions package.

Linear equations are solved by the multi-step elimination method due to Bareiss,
unless the switchCRAMERis on, in which case Cramer’s method is used. The
Bareiss method is usually more efficient unless the system is large and dense.

Non-linear equations are solved using the Groebner basis package. Users should
note that this can be quite a time consuming process.

Examples:

solve(log(sin(x+3))ˆ5 = 8,x);
solve(a*log(sin(x+3))ˆ5 - b, sin(x+3));
solve({a*x+y=3,y=-2},{x,y});

SOLVEreturns a list of solutions. If there is one unknown, each solution is an
equation for the unknown. If a complete solution was found, the unknown will
appear by itself on the left-hand side of the equation. On the other hand, if the
solve package could not find a solution, the “solution” will be an equation for the
unknown in terms of the operatorROOTOF. If there are several unknowns, each
solution will be a list of equations for the unknowns. For example,

solve(xˆ2=1,x); -> {X=-1,X=1}

solve(xˆ7-xˆ6+xˆ2=1,x)
6

-> {X=ROOT_OF(X_ + X_ + 1,X_,TAG_1),X=1}

solve({x+3y=7,y-x=1},{x,y}) -> {{X=1,Y=2}}.

The TAG argument is used to uniquely identify those particular solutions. Solution
multiplicities are stored in the global variableROOTMULTIPLICITIES rather
than the solution list. The value of this variable is a list of the multiplicities of the
solutions for the last call ofSOLVE. For example,

solve(xˆ2=2x-1,x); root_multiplicities;



7.10. SOLVE OPERATOR 69

gives the results

{X=1}

{2}

If you want the multiplicities explicitly displayed, the switchMULTIPLICITIES
can be turned on. For example

on multiplicities; solve(xˆ2=2x-1,x);

yields the result

{X=1,X=1}

7.10.1 Handling of Undetermined Solutions

WhenSOLVEcannot find a solution to an equation, it normally returns an equation
for the relevant indeterminates in terms of the operatorROOTOF. For example, the
expression

solve(cos(x) + log(x),x);

returns the result

{X=ROOT_OF(COS(X_) + LOG(X_),X_,TAG_1)} .

An expression with a top-levelROOTOFoperator is implicitly a list with an un-
known number of elements (since we don’t always know how many solutions an
equation has). If a substitution is made into such an expression, closed form solu-
tions can emerge. If this occurs, theROOTOFconstruct is replaced by an operator
ONEOF. At this point it is of course possible to transform the result of the original
SOLVEoperator expression into a standardSOLVEsolution. To effect this, the
operatorEXPANDCASEScan be used.

The following example shows the use of these facilities:



70 CHAPTER 7. BUILT-IN PREFIX OPERATORS

solve(-a*xˆ3+a*xˆ2+xˆ4-xˆ3-4*xˆ2+4,x);
2 3

{X=ROOT_OF(A*X_ - X_ + 4*X_ + 4,X_,TAG_2),X=1}

sub(a=-1,ws);

{X=ONE_OF({2,-1,-2},TAG_2),X=1}

expand_cases ws;

{X=2,X=-1,X=-2,X=1}

7.10.2 Solutions of Equations Involving Cubics and Quartics

Since roots of cubics and quartics can often be very messy, a switchFULLROOTS
is available, that, when off (the default), will prevent the production of a result in
closed form. TheROOTOFconstruct will be used in this case instead.

In constructing the solutions of cubics and quartics, trigonometrical forms are used
where appropriate. This option is under the control of a switchTRIGFORM, which
is normally on.

The following example illustrates the use of these facilities:

let xx = solve(xˆ3+x+1,x);

xx;
3

{X=ROOT_OF(X_ + X_ + 1,X_)}

on fullroots;

xx;

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
{X=(I*(SQRT(3)*SIN(-----------------------)

3



7.10. SOLVE OPERATOR 71

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
- COS(-----------------------)))/SQRT(3),

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
X=( - I*(SQRT(3)*SIN(-----------------------)

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
+ COS(-----------------------)))/SQRT(

3

3),

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
2*COS(-----------------------)*I

3
X=----------------------------------}

SQRT(3)

off trigform;

xx;
2/3

{X=( - (SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) - 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2 )/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6
*3 ),

2/3



72 CHAPTER 7. BUILT-IN PREFIX OPERATORS

X=((SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) + 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2 )/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6
*3 ),

2/3 2/3
(SQRT(31) - 3*SQRT(3)) - 2

X=-------------------------------------}
1/3 1/3 1/6

(SQRT(31) - 3*SQRT(3)) *6 *3

7.10.3 Other Options

If SOLVESINGULARis on (the default setting), degenerate systems such as
x+y=0 , 2x+2y=0 will be solved by introducing appropriate arbitrary constants.
The consistent singular equation 0=0 or equations involving functions with multi-
ple inverses may introduce unique new indeterminant kernelsARBCOMPLEX(j),
or ARBINT(j) , (j=1,2,...), representing arbitrary complex or integer numbers re-
spectively. To automatically select the principal branches, dooff allbranch;
. To avoid the introduction of new indeterminant kernels doOFF ARBVARS–
then no equations are generated for the free variables and their original names are
used to express the solution forms. To suppress solutions of consistent singular
equations doOFF SOLVESINGULAR.

To incorporate additional inverse functions do, for example:

put(’sinh,’inverse,’asinh);
put(’asinh,’inverse,’sinh);

together with any desired simplification rules such as

for all x let sinh(asinh(x))=x, asinh(sinh(x))=x;

For completeness, functions with non-unique inverses should be treated asˆ , SIN ,
andCOSare in theSOLVE module source.

Arguments ofASIN andACOSare not checked to ensure that the absolute value
of the real part does not exceed 1; and arguments ofLOGare not checked to ensure



7.10. SOLVE OPERATOR 73

that the absolute value of the imaginary part does not exceedπ; but checks (perhaps
involving user response for non-numerical arguments) could be introduced using
LET statements for these operators.

7.10.4 Parameters and Variable Dependency

The proper design of a variable sequence supplied as a second argument toSOLVE
is important for the structure of the solution of an equation system. Any unknown
in the system not in this list is considered totally free. E.g. the call

solve({x=2*z,z=2*y},{z});

produces an empty list as a result because there is no functionz = z(x, y) which
fulfills both equations for arbitraryx andy values. In such a case the share variable
requirements displays a set of restrictions for the parameters of the system:

requirements;

{x - 4*y}

The non-existence of a formal solution is caused by a contradiction which disap-
pears only if the parameters of the initial system are set such that all members of
the requirements list take the value zero. For a linear system the set is complete:
a solution of the requirements list makes the initial system solvable. E.g. in the
above case a substitutionx = 4y makes the equation set consistent. For a non-
linear system only one inconsistency is detected. If such a system has more than
one inconsistency, you must reduce them one after the other.1 The set shows you
also the dependency among the parameters: here one ofx andy is free and a formal
solution of the system can be computed by adding it to the variable list ofsolve .
The requirement set is not unique – there may be other such sets.

A system with parameters may have a formal solution, e.g.

solve({x=a*z+1,0=b*z-y},{z,x});

y a*y + b
{{z=---,x=---------}}

b b
1The difference between linear and non–linear inconsistent systems is based on the algorithms

which produce this information as a side effect when attempting to find a formal solution; example:
solve({x = a, x = b, y = c, y = d}, {x, y} gives a set{a− b, c− d} while solve({x2 = a, x2 =
b, y2 = c, y2 = d}, {x, y} leads to{a− b}.



74 CHAPTER 7. BUILT-IN PREFIX OPERATORS

which is not valid for all possible values of the parameters. The variableassump-
tions contains then a list of restrictions: the solutions are valid only as long as
none of these expressions vanishes. Any zero of one of them represents a special
case that is not covered by the formal solution. In the above case the value is



7.10. SOLVE OPERATOR 75

assumptions;

{b}

which excludes formally the caseb = 0; obviously this special parameter value
makes the system singular. The set of assumptions is complete for both, linear and
non–linear systems.

SOLVErearranges the variable sequence to reduce the (expected) computing time.
This behavior is controlled by the switchvaropt , which is on by default. If it is
turned off, the supplied variable sequence is used or the system kernel ordering is
taken if the variable list is omitted. The effect is demonstrated by an example:

s:= {yˆ3+3x=0,xˆ2+yˆ2=1};

solve(s,{y,x});

6 2
{{y=root_of(y_ + 9*y_ - 9,y_),

3
- y

x=-------}}
3

off varopt; solve(s,{y,x});

6 4 2
{{x=root_of(x_ - 3*x_ + 12*x_ - 1,x_),

4 2
x*( - x + 2*x - 10)

y=-----------------------}}
3

In the first case,solve forms the solution as a set of pairs(yi, x(yi)) because the
degree ofx is higher – such a rearrangement makes the internal computation of the
Gröbner basis generally faster. For the second case the explicitly given variable
sequence is used such that the solution has now the form(xi, y(xi)). Controlling
the variable sequence is especially important if the system has one or more free
variables. As an alternative to turning offvaropt , a partial dependency among
the variables can be declared using thedepend statement:solve then rearranges
the variable sequence but keeps any variable ahead of those on which it depends.



76 CHAPTER 7. BUILT-IN PREFIX OPERATORS

on varopt;
s:={aˆ3+b,bˆ2+c}$
solve(s,{a,b,c});

3 6
{{a=arbcomplex(1),b= - a ,c= - a }}

depend a,c; depend b,c; solve(s,{a,b,c});

{{c=arbcomplex(2),

6
a=root_of(a_ + c,a_),

3
b= - a }}

Heresolve is forced to putc aftera and afterb, but there is no obstacle to inter-
changinga andb.

7.11 Even and Odd Operators

An operator can be declared to beevenor odd in its first argument by the declara-
tions EVENandODDrespectively. Expressions involving an operator declared in
this manner are transformed if the first argument contains a minus sign. Any other
arguments are not affected. In addition, if sayF is declared odd, thenf(0) is
replaced by zero unlessF is also declarednon zeroby the declarationNONZERO.
For example, the declarations

even f1; odd f2;

mean that

f1(-a) -> F1(A)
f2(-a) -> -F2(A)
f1(-a,-b) -> F1(A,-B)
f2(0) -> 0.

To inhibit the last transformation, saynonzero f2; .



7.12. LINEAR OPERATORS 77

7.12 Linear Operators

An operator can be declared to be linear in its first argument over powers of its
second argument. If an operatorF is so declared,F of any sum is broken up into
sums ofFs, and any factors that are not powers of the variable are taken outside.
This means thatF must have (at least) two arguments. In addition, the second
argument must be an identifier (or more generally a kernel), not an expression.

Example:

If F were declared linear, then

5
f(a*xˆ5+b*x+c,x) -> F(X ,X)*A + F(X,X)*B + F(1,X)*C

More precisely, not only will the variable and its powers remain within the scope
of the F operator, but so will any variable and its powers that had been declared
to DEPENDon the prescribed variable; and so would any expression that contains
that variable or a dependent variable on any level, e.g.cos(sin(x)) .

To declare operatorsF andGto be linear operators, use:

linear f,g;

The analysis is done of the first argument with respect to the second; any other
arguments are ignored. It uses the following rules of evaluation:

f(0) -> 0
f(-y,x) -> -F(Y,X)
f(y+z,x) -> F(Y,X)+F(Z,X)
f(y*z,x) -> Z*F(Y,X) if Z does not depend on X
f(y/z,x) -> F(Y,X)/Z if Z does not depend on X

To summarize,Y “depends” on the indeterminateX in the above if either of the
following hold:

1. Y is an expression that containsXat any level as a variable, e.g.:cos(sin(x))

2. Any variable in the expressionY has been declared dependent onX by use
of the declarationDEPEND.

The use of such linear operators can be seen in the paper Fox, J.A. and A. C. Hearn,
“Analytic Computation of Some Integrals in Fourth Order Quantum Electrodynam-
ics” Journ. Comp. Phys. 14 (1974) 301-317, which contains a complete listing of
a program for definite integration of some expressions that arise in fourth order
quantum electrodynamics.



78 CHAPTER 7. BUILT-IN PREFIX OPERATORS

7.13 Non-Commuting Operators

An operator can be declared to be non-commutative under multiplication by the
declarationNONCOM.

Example:

After the declaration
noncom u,v;
the expressionsu(x)*u(y)-u(y)*u(x) andu(x)*v(y)-v(y)*u(x) will
remain unchanged on simplification, and in particular will not simplify to zero.

Note that it is the operator (UandV in the above example) and not the variable that
has the non-commutative property.

TheLET statement may be used to introduce rules of evaluation for such operators.
In particular, the boolean operatorORDPis useful for introducing an ordering on
such expressions.

Example:

The rule

for all x,y such that x neq y and ordp(x,y)
let u(x)*u(y)= u(y)*u(x)+comm(x,y);

would introduce the commutator ofu(x) andu(y) for all X andY. Note that
sinceordp(x,x) is true, the equality check is necessary in the degenerate case
to avoid a circular loop in the rule.

7.14 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments by the
declarationSYMMETRIC. For example

symmetric u,v;

means that any expression involving the top level operatorsU or V will have its
arguments reordered to conform to the internal order used by REDUCE. The user
can change this order for kernels by the commandKORDER.

For example,u(x,v(1,2)) would becomeu(v(2,1),x) , since numbers are
ordered in decreasing order, and expressions are ordered in decreasing order of
complexity.

Similarly the declarationANTISYMMETRICdeclares an operator antisymmetric.
For example,



7.15. DECLARING NEW PREFIX OPERATORS 79

antisymmetric l,m;

means that any expression involving the top level operatorsL or Mwill have its
arguments reordered to conform to the internal order of the system, and the sign
of the expression changed if there are an odd number of argument interchanges
necessary to bring about the new order.

For example,l(x,m(1,2)) would become-l(-m(2,1),x) since one inter-
change occurs with each operator. An expression likel(x,x) would also be
replaced by 0.

7.15 Declaring New Prefix Operators

The user may add new prefix operators to the system by using the declaration
OPERATOR. For example:

operator h,g1,arctan;

adds the prefix operatorsH, G1andARCTANto the system.

This allows symbols likeh(w), h(x,y,z), g1(p+q), arctan(u/v) to
be used in expressions, but no meaning or properties of the operator are implied.
The same operator symbol can be used equally well as a 0-, 1-, 2-, 3-, etc.-place
operator.

To give a meaning to an operator symbol, or express some of its properties,LET
statements can be used, or the operator can be given a definition as a procedure.

If the user forgets to declare an identifier as an operator, the system will prompt the
user to do so in interactive mode, or do it automatically in non-interactive mode.
A diagnostic message will also be printed if an identifier is declaredOPERATOR
more than once.

Operators once declared are global in scope, and so can then be referenced any-
where in the program. In other words, a declaration within a block (or a procedure)
does not limit the scope of the operator to that block, nor does the operator go away
on exiting the block (useCLEARinstead for this purpose).

7.16 Declaring New Infix Operators

Users can add new infix operators by using the declarationsINFIX andPRECE-
DENCE. For example,

infix mm;



80 CHAPTER 7. BUILT-IN PREFIX OPERATORS

precedence mm,-;

The declarationinfix mm; would allow one to use the symbolMMas an infix
operator:

a mm b instead of mm(a,b) .

The declarationprecedence mm,-; says thatMMshould be inserted into the
infix operator precedence list justafter the− operator. This gives it higher prece-
dence than− and lower precedence than * . Thus

a - b mm c - d means a - (b mm c) - d ,

while

a * b mm c * d means (a * b) mm (c * d) .

Both infix and prefix operators have no transformation properties unlessLET state-
ments or procedure declarations are used to assign a meaning.

We should note here that infix operators so defined are always binary:

a mm b mm c means (a mm b) mm c.

7.17 Creating/Removing Variable Dependency

There are several facilities in REDUCE, such as the differentiation operator and
the linear operator facility, that can utilize knowledge of the dependency between
various variables, or kernels. Such dependency may be expressed by the command
DEPEND. This takes an arbitrary number of arguments and sets up a dependency
of the first argument on the remaining arguments. For example,

depend x,y,z;

says thatX is dependent on bothY andZ.

depend z,cos(x),y;

says thatZ is dependent onCOS(X) andY.

Dependencies introduced byDEPENDcan be removed byNODEPEND. The argu-
ments of this are the same as forDEPEND. For example, given the above depen-
dencies,



7.17. CREATING/REMOVING VARIABLE DEPENDENCY 81

nodepend z,cos(x);

says thatZ is no longer dependent onCOS(X) , although it remains dependent on
Y.



82 CHAPTER 7. BUILT-IN PREFIX OPERATORS



Chapter 8

Display and Structuring of
Expressions

In this section, we consider a variety of commands and operators that permit the
user to obtain various parts of algebraic expressions and also display their structure
in a variety of forms. Also presented are some additional concepts in the REDUCE
design that help the user gain a better understanding of the structure of the system.

8.1 Kernels

REDUCE is designed so that each operator in the system has an evaluation (or
simplification) function associated with it that transforms the expression into an
internal canonical form. This form, which bears little resemblance to the original
expression, is described in detail in Hearn, A. C., “REDUCE 2: A System and Lan-
guage for Algebraic Manipulation,” Proc. of the Second Symposium on Symbolic
and Algebraic Manipulation, ACM, New York (1971) 128-133.

The evaluation function may transform its arguments in one of two alternative
ways. First, it may convert the expression into other operators in the system, leav-
ing no functions of the original operator for further manipulation. This is in a sense
true of the evaluation functions associated with the operators+, * and/ , for ex-
ample, because the canonical form does not include these operators explicitly. It
is also true of an operator such as the determinant operatorDETbecause the rel-
evant evaluation function calculates the appropriate determinant, and the operator
DETno longer appears. On the other hand, the evaluation process may leave some
residual functions of the relevant operator. For example, with the operatorCOS,
a residual expression likeCOS(X) may remain after evaluation unless a rule for
the reduction of cosines into exponentials, for example, were introduced. These
residual functions of an operator are termedkernelsand are stored uniquely like

83



84 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

variables. Subsequently, the kernel is carried through the calculation as a variable
unless transformations are introduced for the operator at a later stage.

In those cases where the evaluation process leaves an operator expression with
non-trivial arguments, the form of the argument can vary depending on the state
of the system at the point of evaluation. Such arguments are normally produced in
expanded form with no terms factored or grouped in any way. For example, the
expressioncos(2*x+2*y) will normally be returned in the same form. If the
argument2*x+2*y were evaluated at the top level, however, it would be printed
as2*(X+Y) . If it is desirable to have the arguments themselves in a similar form,
the switchINTSTR (for “internal structure”), if on, will cause this to happen.

In cases where the arguments of the kernel operators may be reordered, the sys-
tem puts them in a canonical order, based on an internal intrinsic ordering of the
variables. However, some commands allow arguments in the form of kernels, and
the user has no way of telling what internal order the system will assign to these
arguments. To resolve this difficulty, we introduce the notion of akernel formas
an expression that transforms to a kernel on evaluation.

Examples of kernel forms are:

a
cos(x*y)
log(sin(x))

whereas

a*b
(a+b)ˆ4

are not.

We see that kernel forms can usually be used as generalized variables, and most
algebraic properties associated with variables may also be associated with kernels.

8.2 The Expression Workspace

Several mechanisms are available for saving and retrieving previously evaluated
expressions. The simplest of these refers to the last algebraic expression simpli-
fied. When an assignment of an algebraic expression is made, or an expression is
evaluated at the top level, (i.e., not inside a compound statement or procedure) the
results of the evaluation are automatically saved in a variableWSthat we shall refer
to as the workspace. (More precisely, the expression is assigned to the variableWS
that is then available for further manipulation.)



8.3. OUTPUT OF EXPRESSIONS 85

Example:

If we evaluate the expression(x+y)ˆ2 at the top level and next wish to differen-
tiate it with respect toY, we can simply say

df(ws,y);

to get the desired answer.

If the user wishes to assign the workspace to a variable or expression for later use,
theSAVEASstatement can be used. It has the syntax

SAVEAS <expression>

For example, after the differentiation in the last example, the workspace holds the
expression2*x+2*y . If we wish to assign this to the variableZ we can now say

saveas z;

If the user wishes to save the expression in a form that allows him to use some of
its variables as arbitrary parameters, theFOR ALLcommand can be used.

Example:

for all x saveas h(x);

with the above expression would mean thath(z) evaluates to2*Y+2*Z .

A further method for referencing more than the last expression is described in the
section on interactive use of REDUCE.

8.3 Output of Expressions

A considerable degree of flexibility is available in REDUCE in the printing of
expressions generated during calculations. No explicit format statements are sup-
plied, as these are in most cases of little use in algebraic calculations, where the size
of output or its composition is not generally known in advance. Instead, REDUCE
provides a series of mode options to the user that should enable him to produce his
output in a comprehensible and possibly pleasing form.

The most extreme option offered is to suppress the output entirely from any top
level evaluation. This is accomplished by turning off the switchOUTPUTwhich is
normally on. It is useful for limiting output when loading large files or producing
“clean” output from the prettyprint programs.

In most circumstances, however, we wish to view the output, so we need to know



86 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

how to format it appropriately. As we mentioned earlier, an algebraic expression
is normally printed in an expanded form, filling the whole output line with terms.
Certain output declarations, however, can be used to affect this format. To begin
with, we look at an operator for changing the length of the output line.

8.3.1 LINELENGTH Operator

This operator is used with the syntax

LINELENGTH(NUM:integer):integer

and sets the output line length to the integerNUM. It returns the previous output line
length (so that it can be stored for later resetting of the output line if needed).

8.3.2 Output Declarations

We now describe a number of switches and declarations that are available for con-
trolling output formats. It should be noted, however, that the transformation of
large expressions to produce these varied output formats can take a lot of comput-
ing time and space. If a user wishes to speed up the printing of the output in such
cases, he can turn off the switchPRI . If this is done, then output is produced in
one fixed format, which basically reflects the internal form of the expression, and
none of the options below apply.PRI is normally on.

With PRI on, the output declarations and switches available are as follows:

ORDER Declaration

The declarationORDERmay be used to order variables on output. The syntax is:

order v1,...vn;

where thevi are kernels. Thus,

order x,y,z;

ordersX ahead ofY, Y ahead ofZ and all three ahead of other variables not given
an order.order nil; resets the output order to the system default. The order
of variables may be changed by further calls ofORDER, but then the reordered
variables would have an order lower than those in earlierORDERcalls. Thus,

order x,y,z;
order y,x;



8.3. OUTPUT OF EXPRESSIONS 87

would orderZ ahead ofY andX. The default ordering is usually alphabetic.

FACTOR Declaration

This declaration takes a list of identifiers or kernels as argument.FACTORis not
a factoring command (useFACTORIZEor theFACTORswitch for this purpose);
rather it is a separation command. All terms involving fixed powers of the declared
expressions are printed as a product of the fixed powers and a sum of the rest of the
terms.

All expressions involving a given prefix operator may also be factored by putting
the operator name in the list of factored identifiers. For example:

factor x,cos,sin(x);

causes all powers ofX andSIN(X) and all functions ofCOSto be factored.

Note thatFACTORdoes not affect the order of its arguments. You should also use
ORDERif this is important.

The declarationremfac v1,...,vn; removes the factoring flag from the ex-
pressionsv1 throughvn .

8.3.3 Output Control Switches

In addition to these declarations, the form of the output can be modified by switch-
ing various output control switches using the declarationsONandOFF. We shall
illustrate the use of these switches by an example, namely the printing of the ex-
pression

xˆ2*(yˆ2+2*y)+x*(yˆ2+z)/(2*a) .

The relevant switches are as follows:

ALLFAC Switch

This switch will cause the system to search the whole expression, or any sub-
expression enclosed in parentheses, for simple multiplicative factors and print them
outside the parentheses. Thus our expression withALLFAC off will print as

2 2 2 2
(2*X *Y *A + 4*X *Y*A + X*Y + X*Z)/(2*A)

and withALLFACon as



88 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

2 2
X*(2*X*Y *A + 4*X*Y*A + Y + Z)/(2*A) .

ALLFAC is normally on, and is on in the following examples, except where other-
wise stated.

DIV Switch

This switch makes the system search the denominator of an expression for simple
factors that it divides into the numerator, so that rational fractions and negative
powers appear in the output. WithDIV on, our expression would print as

2 2 (-1) (-1)
X*(X*Y + 2*X*Y + 1/2*Y *A + 1/2*A *Z) .

DIV is normally off.

LIST Switch

This switch causes the system to print each term in any sum on a separate line.
With LIST on, our expression prints as

2
X*(2*X*Y *A

+ 4*X*Y*A

2
+ Y

+ Z)/(2*A) .

LIST is normally off.

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expression across
lines at a natural point. This is a fairly expensive process. If you are not overly
concerned about where the end-of-line breaks come, you can speed up the printing
of expressions by turning off the switchNOSPLIT. This switch is normally on.



8.3. OUTPUT OF EXPRESSIONS 89

RAT Switch

This switch is only useful with expressions in which variables are factored with
FACTOR. With this mode, the overall denominator of the expression is printed
with each factored sub-expression. We assume a prior declarationfactor x; in
the following output. We first print the expression withRAT off :

2 2
(2*X *Y*A*(Y + 2) + X*(Y + Z))/(2*A) .

With RATon the output becomes:



90 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

2 2
X *Y*(Y + 2) + X*(Y + Z)/(2*A) .

RATis normally off.

Next, if we leaveX factored, and turn on bothDIV andRAT, the result becomes

2 (-1) 2
X *Y*(Y + 2) + 1/2*X*A *(Y + Z) .

Finally, with X factored,RATon andALLFACoff we retrieve the original structure

2 2 2
X *(Y + 2*Y) + X*(Y + Z)/(2*A) .

RATPRI Switch

If the numerator and denominator of an expression can each be printed in one line,
the output routines will print them in a two dimensional notation, with numerator
and denominator on separate lines and a line of dashes in between. For example,
(a+b)/2 will print as

A + B
-----

2

Turning this switch off causes such expressions to be output in a linear form.

REVPRI Switch

The normal ordering of terms in output is from highest to lowest power. In some
situations (e.g., when a power series is output), the opposite ordering is more con-
venient. The switchREVPRI if on causes such a reverse ordering of terms. For
example, the expressiony*(x+1)ˆ2+(y+3)ˆ2 will normally print as

2 2
X *Y + 2*X*Y + Y + 7*Y + 9

whereas withREVPRIon, it will print as

2 2
9 + 7*Y + Y + 2*X*Y + X *Y.



8.3. OUTPUT OF EXPRESSIONS 91

8.3.4 WRITE Command

In simple cases no explicit output command is necessary in REDUCE, since the
value of any expression is automatically printed if a semicolon is used as a delim-
iter. There are, however, several situations in which such a command is useful.

In a FOR, WHILE, or REPEATstatement it may be desired to output something
each time the statement within the loop construct is repeated.

It may be desired for a procedure to output intermediate results or other information
while it is running. It may be desired to have results labeled in special ways,
especially if the output is directed to a file or device other than the terminal.

TheWRITEcommand consists of the wordWRITEfollowed by one or more items
separated by commas, and followed by a terminator. There are three kinds of items
that can be used:

1. Expressions (including variables and constants). The expression is evalu-
ated, and the result is printed out.

2. Assignments. The expression on the right side of the:= operator is evalu-
ated, and is assigned to the variable on the left; then the symbol on the left is
printed, followed by a “:= ”, followed by the value of the expression on the
right – almost exactly the way an assignment followed by a semicolon prints
out normally. (The difference is that if theWRITEis in aFORstatement and
the left-hand side of the assignment is an array position or something similar
containing the variable of theFORiteration, then the value of that variable is
inserted in the printout.)

3. Arbitrary strings of characters, preceded and followed by double-quote
marks (e.g.,"string" ).

The items specified by a singleWRITEstatement print side by side on one line.
(The line is broken automatically if it is too long.) Strings print exactly as quoted.
TheWRITEcommand itself however does not return a value.

The print line is closed at the end of aWRITEcommand evaluation. Therefore the
commandWRITE ""; (specifying nothing to be printed except the empty string)
causes a line to be skipped.

Examples:

1. If A is X+5, B is itself,C is 123,Mis an array, andQ=3, then

write m(q):=a," ",b/c," THANK YOU";

will set M(3) to x+5 and print



92 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

M(Q) := X + 5 B/123 THANK YOU

The blanks between the5 andB, and the3 andT, come from the blanks in
the quoted strings.

2. To print a table of the squares of the integers from 1 to 20:

for i:=1:20 do write i," ",iˆ2;

3. To print a table of the squares of the integers from 1 to 20, and at the same
time store them in positions 1 to 20 of an arrayA:

for i:=1:20 do <<a(i):=iˆ2; write i," ",a(i)>>;

This will give us two columns of numbers. If we had used

for i:=1:20 do write i," ",a(i):=iˆ2;

we would also getA( i) := repeated on each line.

4. The following more complete example calculates the famous f and g se-
ries, first reported in Sconzo, P., LeSchack, A. R., and Tobey, R., “Symbolic
Computation of f and g Series by Computer”, Astronomical Journal 70 (May
1965).

x1:= -sig*(mu+2*eps)$
x2:= eps - 2*sigˆ2$
x3:= -3*mu*sig$
f:= 1$
g:= 0$
for i:= 1 step 1 until 10 do begin

f1:= -mu*g+x1*df(f,eps)+x2*df(f,sig)+x3*df(f,mu);
write "f(",i,") := ",f1;
g1:= f+x1*df(g,eps)+x2*df(g,sig)+x3*df(g,mu);
write "g(",i,") := ",g1;
f:=f1$
g:=g1$

end;

A portion of the output, to illustrate the printout from theWRITEcommand,
is as follows:

... <prior output> ...

2



8.3. OUTPUT OF EXPRESSIONS 93

F(4) := MU*(3*EPS - 15*SIG + MU)

G(4) := 6*SIG*MU

2
F(5) := 15*SIG*MU*( - 3*EPS + 7*SIG - MU)

2
G(5) := MU*(9*EPS - 45*SIG + MU)

... <more output> ...

8.3.5 Suppression of Zeros

It is sometimes annoying to have zero assignments (i.e. assignments of the form
<expression> := 0 ) printed, especially in printing large arrays with many
zero elements. The output from such assignments can be suppressed by turning on
the switchNERO.

8.3.6 FORTRAN Style Output Of Expressions

It is naturally possible to evaluate expressions numerically in REDUCE by giving
all variables and sub-expressions numerical values. However, as we pointed out
elsewhere the user must declare real arithmetical operation by turning on the switch
ROUNDED. However, it should be remembered that arithmetic in REDUCE is not
particularly fast, since results are interpreted rather than evaluated in a compiled
form. The user with a large amount of numerical computation after all necessary
algebraic manipulations have been performed is therefore well advised to perform
these calculations in a FORTRAN or similar system. For this purpose, REDUCE
offers facilities for users to produce FORTRAN compatible files for numerical pro-
cessing.

First, when the switchFORTis on, the system will print expressions in a FOR-
TRAN notation. Expressions begin in column seven. If an expression extends over
one line, a continuation mark (.) followed by a blank appears on subsequent cards.
After a certain number of lines have been produced (according to the value of the
variableCARDNO), a new expression is started. If the expression printed arises
from an assignment to a variable, the variable is printed as the name of the expres-
sion. Otherwise the expression is given the default nameANS. An error occurs if
identifiers or numbers are outside the bounds permitted by FORTRAN.

A second option is to use theWRITEcommand to produce other programs.



94 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

Example:

The following REDUCE statements

on fort;
out "forfil";
write "C this is a fortran program";
write " 1 format(e13.5)";
write " u=1.23";
write " v=2.17";
write " w=5.2";
x:=(u+v+w)ˆ11;
write "C it was foolish to expand this expression";
write " print 1,x";
write " end";
shut "forfil";
off fort;

will generate a fileforfil that contains:

c this is a fortran program
1 format(e13.5)

u=1.23
v=2.17
w=5.2
ans1=1320.*u**3*v*w**7+165.*u**3*w**8+55.*u**2*v**9+495.*u

. **2*v**8*w+1980.*u**2*v**7*w**2+4620.*u**2*v**6*w**3+

. 6930.*u**2*v**5*w**4+6930.*u**2*v**4*w**5+4620.*u**2*v**3*

. w**6+1980.*u**2*v**2*w**7+495.*u**2*v*w**8+55.*u**2*w**9+

. 11.*u*v**10+110.*u*v**9*w+495.*u*v**8*w**2+1320.*u*v**7*w

. **3+2310.*u*v**6*w**4+2772.*u*v**5*w**5+2310.*u*v**4*w**6

. +1320.*u*v**3*w**7+495.*u*v**2*w**8+110.*u*v*w**9+11.*u*w

. **10+v**11+11.*v**10*w+55.*v**9*w**2+165.*v**8*w**3+330.*

. v**7*w**4+462.*v**6*w**5+462.*v**5*w**6+330.*v**4*w**7+

. 165.*v**3*w**8+55.*v**2*w**9+11.*v*w**10+w**11
x=u**11+11.*u**10*v+11.*u**10*w+55.*u**9*v**2+110.*u**9*v*

. w+55.*u**9*w**2+165.*u**8*v**3+495.*u**8*v**2*w+495.*u**8

. *v*w**2+165.*u**8*w**3+330.*u**7*v**4+1320.*u**7*v**3*w+

. 1980.*u**7*v**2*w**2+1320.*u**7*v*w**3+330.*u**7*w**4+462.

. *u**6*v**5+2310.*u**6*v**4*w+4620.*u**6*v**3*w**2+4620.*u

. **6*v**2*w**3+2310.*u**6*v*w**4+462.*u**6*w**5+462.*u**5*

. v**6+2772.*u**5*v**5*w+6930.*u**5*v**4*w**2+9240.*u**5*v

. **3*w**3+6930.*u**5*v**2*w**4+2772.*u**5*v*w**5+462.*u**5

. *w**6+330.*u**4*v**7+2310.*u**4*v**6*w+6930.*u**4*v**5*w

. **2+11550.*u**4*v**4*w**3+11550.*u**4*v**3*w**4+6930.*u**

. 4*v**2*w**5+2310.*u**4*v*w**6+330.*u**4*w**7+165.*u**3*v

. **8+1320.*u**3*v**7*w+4620.*u**3*v**6*w**2+9240.*u**3*v**



8.3. OUTPUT OF EXPRESSIONS 95

. 5*w**3+11550.*u**3*v**4*w**4+9240.*u**3*v**3*w**5+4620.*u

. **3*v**2*w**6+ans1
c it was foolish to expand this expression

print 1,x
end

If the arguments of aWRITEstatement include an expression that requires con-
tinuation records, the output will need editing, since the output routine prints the
arguments ofWRITEsequentially, and the continuation mechanism therefore gen-
erates its auxiliary variables after the preceding expression has been printed.

Finally, since there is no direct analog oflist in FORTRAN, a comment line of the
form

c ***** invalid fortran construct (list) not printed

will be printed if you try to print a list withFORTon.

FORTRAN Output Options

There are a number of methods available to change the default format of the FOR-
TRAN output.

The breakup of the expression into subparts is such that the number of continuation
lines produced is less than a given number. This number can be modified by the
assignment

card_no := <number>;

where<number> is thetotal number of cards allowed in a statement. The default
value ofCARDNOis 20.

The width of the output expression is also adjustable by the assignment

fort_width := <integer>;

which sets the total width of a given line to<integer> . The initial FORTRAN
output width is 70.

REDUCE automatically inserts a decimal point after each isolated integer coeffi-
cient in a FORTRAN expression (so that, for example, 4 becomes4. ). To prevent
this, set thePERIODmode switch toOFF.

FORTRAN output is normally produced in lower case. If upper case is desired, the
switchFORTUPPERshould be turned on.

Finally, the default nameANSassigned to an unnamed expression and its subparts



96 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

can be changed by the operatorVARNAME. This takes a single identifier as argu-
ment, which then replacesANSas the expression name. The value ofVARNAMEis
its argument.

Further facilities for the production of FORTRAN and other language output are
provided by the SCOPE and GENTRAN packagesdescribed in chapters??and??.

8.3.7 Saving Expressions for Later Use as Input

It is often useful to save an expression on an external file for use later as input
in further calculations. The commands for opening and closing output files are
explained elsewhere. However, we see in the examples on output of expressions
that the standard “natural” method of printing expressions is not compatible with
the input syntax. So to print the expression in an input compatible form we must
inhibit this natural style by turning off the switchNAT. If this is done, a dollar sign
will also be printed at the end of the expression.

Example:

The following sequence of commands

off nat; out "out"; x := (y+z)ˆ2; write "end";
shut "out"; on nat;

will generate a fileout that contains

X := Y**2 + 2*Y*Z + Z**2$
END$

8.3.8 Displaying Expression Structure

In those cases where the final result has a complicated form, it is often convenient
to display the skeletal structure of the answer. The operatorSTRUCTR, that takes
a single expression as argument, will do this for you. Its syntax is:

STRUCTR(EXPRN:algebraic[,ID1:identifier[,ID2:identifier]]);

The structure is printed effectively as a tree, in which the subparts are laid out with
auxiliary names. If the optionalID1 is absent, the auxiliary names are prefixed by
the rootANS. This root may be changed by the operatorVARNAME. If the optional
ID1 is present, and is an array name, the subparts are named as elements of that
array, otherwiseID1 is used as the root prefix. (The second optional argument
ID2 is explained later.)



8.3. OUTPUT OF EXPRESSIONS 97

The EXPRNcan be either a scalar or a matrix expression. Use of any other will
result in an error.

Example:

Let us suppose that the workspace contains((A+B)ˆ2+C)ˆ3+D . Then the input
STRUCTR WS;will (with EXPoff) result in the output:



98 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

ANS3

where

3
ANS3 := ANS2 + D

2
ANS2 := ANS1 + C

ANS1 := A + B

The workspace remains unchanged after this operation, sinceSTRUCTRin the de-
fault situation returns no value (ifSTRUCTRis used as a sub-expression, its value
is taken to be 0). In addition, the sub-expressions are normally only displayed and
not retained. If you wish to access the sub-expressions with their displayed names,
the switchSAVESTRUCTRshould be turned on. In this case,STRUCTRreturns a
list whose first element is a representation for the expression, and subsequent ele-
ments are the sub-expression relations. Thus, withSAVESTRUCTRon,STRUCTR
WSin the above example would return

3 2
{ANS3,ANS3=ANS2 + D,ANS2=ANS1 + C,ANS1=A + B}

ThePARToperator can be used to retrieve the required parts of the expression. For
example, to get the value ofANS2in the above, one could say:

part(ws,3,2);

If FORTis on, then the results are printed in the reverse order; the algorithm in fact
guaranteeing that no sub-expression will be referenced before it is defined. The
second optional argumentID2 may also be used in this case to name the actual
expression (or expressions in the case of a matrix argument).

Example:

Let us suppose thatM, a 2 by 1 matrix, contains the elements((a+b)ˆ2 + c)ˆ3
+ d and(a + b)*(c + d) respectively, and thatV has been declared to be an
array. WithEXP off and FORTon, the statementstructr(2*m,v,k); will
result in the output

V(1)=A+B
V(2)=V(1)**2+C
V(3)=V(2)**3+D
V(4)=C+D



8.4. CHANGING THE INTERNAL ORDER OF VARIABLES 99

K(1,1)=2.*V(3)
K(2,1)=2.*V(1)*V(4)

8.4 Changing the Internal Order of Variables

The internal ordering of variables (more specifically kernels) can have a significant
effect on the space and time associated with a calculation. In its default state, RE-
DUCE uses a specific order for this which may vary between sessions. However,
it is possible for the user to change this internal order by means of the declaration
KORDER. The syntax for this is:

korder v1,...,vn;

where theVi are kernels. With this declaration, theVi are ordered internally ahead
of any other kernels in the system.V1 has the highest order,V2 the next highest,
and so on. A further call ofKORDERreplaces a previous one.KORDER NIL;
resets the internal order to the system default.

Unlike theORDERdeclaration, that has a purely cosmetic effect on the way results
are printed, the use ofKORDERcan have a significant effect on computation time.
In critical cases then, the user can experiment with the ordering of the variables
used to determine the optimum set for a given problem.

8.5 Obtaining Parts of Algebraic Expressions

There are many occasions where it is desirable to obtain a specific part of an ex-
pression, or even change such a part to another expression. A number of operators
are available in REDUCE for this purpose, and will be described in this section. In
addition, operators for obtaining specific parts of polynomials and rational funct-
ions (such as a denominator) are described in another section.

8.5.1 COEFF Operator

Syntax:

COEFF(EXPRN:polynomial,VAR:kernel)

COEFFis an operator that partitionsEXPRNinto its various coefficients with re-
spect toVARand returns them as a list, with the coefficient independent ofVAR
first.



100 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

Under normal circumstances, an error results ifEXPRNis not a polynomial inVAR,
although the coefficients themselves can be rational as long as they do not depend
on VAR. However, if the switchRATARGis on, denominators are not checked for
dependence onVAR, and are taken to be part of the coefficients.

Example:

coeff((yˆ2+z)ˆ3/z,y);

returns the result

2
{Z ,0,3*Z,0,3,0,1/Z}.

whereas

coeff((yˆ2+z)ˆ3/y,y);

gives an error ifRATARGis off, and the result

3 2
{Z /Y,0,3*Z /Y,0,3*Z/Y,0,1/Y}

if RATARGis on.

The length of the result ofCOEFFis the highest power ofVARencountered plus
1. In the above examples it is 7. In addition, the variableHIGH POWis set to
the highest non-zero power found inEXPRNduring the evaluation, andLOWPOW
to the lowest non-zero power, or zero if there is a constant term. IfEXPRNis a

constant, thenHIGH POWandLOWPOWare both set to zero.

8.5.2 COEFFN Operator

TheCOEFFNoperator is designed to give the user a particular coefficient of a vari-
able in a polynomial, as opposed toCOEFFthat returns all coefficients.COEFFN
is used with the syntax

COEFFN(EXPRN:polynomial,VAR:kernel,N:integer)

It returns thenth coefficient ofVARin the polynomialEXPRN.

8.5.3 PART Operator

Syntax:



8.5. OBTAINING PARTS OF ALGEBRAIC EXPRESSIONS 101

PART(EXPRN:algebraic[,INTEXP:integer])

This operator works on the form of the expression as printedor as it would have
been printed at that point in the calculationbearing in mind all the relevant switch
settings at that point. The reader therefore needs some familiarity with the way
that expressions are represented in prefix form in REDUCE to use these operators
effectively. Furthermore, it is assumed thatPRI is ONat that point in the calcula-
tion. The reason for this is that withPRI off, an expression is printed by walking
the tree representing the expression internally. To save space, it is never actually
transformed into the equivalent prefix expression as occurs whenPRI is on. How-
ever, the operations on polynomials described elsewhere can be equally well used
in this case to obtain the relevant parts.

The evaluation proceeds recursively down the integer expression list. In other
words,

PART(<expression>,<integer1>,<integer2>)
-> PART(PART(<expression>,<integer1>),<integer2>)

and so on, and

PART(<expression>) -> <expression>.

INTEXP can be any expression that evaluates to an integer. If the integer is pos-
itive, then that term of the expression is found. If the integer is 0, the operator
is returned. Finally, if the integer is negative, the counting is from the tail of the
expression rather than the head.

For example, if the expressiona+b is printed asA+B (i.e., the ordering of the
variables is alphabetical), then

part(a+b,2) -> B
part(a+b,-1) -> B

and
part(a+b,0) -> PLUS

An operatorARGLENGTHis available to determine the number of arguments of the
top level operator in an expression. If the expression does not contain a top level
operator, then−1 is returned. For example,

arglength(a+b+c) -> 3
arglength(f()) -> 0
arglength(a) -> -1



102 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

8.5.4 Substituting for Parts of Expressions

PARTmay also be used to substitute for a given part of an expression. In this case,
thePARTconstruct appears on the left-hand side of an assignment statement, and
the expression to replace the given part on the right-hand side.

For example, with the normal settings of the REDUCE switches:

xx := a+b;
part(xx,2) := c; -> A+C
part(c+d,0) := -; -> C-D

Note thatxx in the above is not changed by this substitution. In addition, un-
like expressions such as array and matrix elements that have aninstant evaluation
property, the values ofpart(xx,2) andpart(c+d,0) are also not changed.



Chapter 9

Polynomials and Rationals

Many operations in computer algebra are concerned with polynomials and rational
functions. In this section, we review some of the switches and operators available
for this purpose. These are in addition to those that work on general expressions
(such asDFandINT ) described elsewhere. In the case of operators, the arguments
are first simplified before the operations are applied. In addition, they operate
only on arguments of prescribed types, and produce a type mismatch error if given
arguments which cannot be interpreted in the required mode with the current switch
settings. For example, if an argument is required to be a kernel anda/2 is used
(with no other rules forA), an error

A/2 invalid as kernel

will result.

With the exception of those that select various parts of a polynomial or rational
function, these operations have potentially significant effects on the space and time
associated with a given calculation. The user should therefore experiment with
their use in a given calculation in order to determine the optimum set for a given
problem.

One such operation provided by the system is an operatorLENGTHwhich returns
the number of top level terms in the numerator of its argument. For example,

length ((a+b+c)ˆ3/(c+d));

has the value 10. To get the number of terms in the denominator, one would first
select the denominator by the operatorDENand then callLENGTH, as in

length den ((a+b+c)ˆ3/(c+d));

103



104 CHAPTER 9. POLYNOMIALS AND RATIONALS

Other operations currently supported, the relevant switches and operators, and the
required argument and value modes of the latter, follow.

9.1 Controlling the Expansion of Expressions

The switchEXPcontrols the expansion of expressions. If it is off, no expansion of
powers or products of expressions occurs. Users should note however that in this
case results come out in a normal but not necessarily canonical form. This means
that zero expressions simplify to zero, but that two equivalent expressions need not
necessarily simplify to the same form.

Example:With EXPon, the two expressions

(a+b)*(a+2*b)

and

aˆ2+3*a*b+2*bˆ2

will both simplify to the latter form. WithEXPoff, they would remain unchanged,
unless the complete factoring(ALLFAC) option were in force.EXP is normally
on.

Several operators that expect a polynomial as an argument behave differently when
EXP is off, since there is often only one term at the top level. For example, with
EXPoff

length((a+b+c)ˆ3/(c+d));

returns the value 1.

9.2 Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials that
have integer coefficients, finding all factors that also have integer coefficients. The
package for doing this was written by Dr. Arthur C. Norman and Ms. P. Mary Ann
Moore at The University of Cambridge. It is described in P. M. A. Moore and A.
C. Norman, “Implementing a Polynomial Factorization and GCD Package”, Proc.
SYMSAC ’81, ACM (New York) (1981), 109-116.

The easiest way to use this facility is to turn on the switchFACTOR, which causes
all expressions to be output in a factored form. For example, withFACTORon, the
expressionAˆ2-Bˆ2 is returned as(A+B)*(A-B) .



9.2. FACTORIZATION OF POLYNOMIALS 105

It is also possible to factorize a given expression explicitly. The operatorFAC-
TORIZE that invokes this facility is used with the syntax

FACTORIZE(EXPRN:polynomial[,INTEXP:prime integer]):list,

the optional argument of which will be described later. Thus to find and display all
factors of the cyclotomic polynomialx105 − 1, one could write:

factorize(xˆ105-1);

The result is a list of factor,exponent pairs. In the above example, there is no overall
numerical factor in the result, so the results will consist only of polynomials in x.
The number of such polynomials can be found by using the operatorLENGTH. If
there is a numerical factor, as in factorizing12x2 − 12, that factor will appear as
the first member of the result. It will however not be factored further. Prime factors
of such numbers can be found, using a probabilistic algorithm, by turning on the
switchIFACTOR. For example,

on ifactor; factorize(12xˆ2-12);

would result in the output

{{2,2},{3,1},{X + 1,1},{X - 1,1}}.

If the first argument ofFACTORIZEis an integer, it will be decomposed into its
prime components, whether or notIFACTORis on.

Note that theIFACTORswitch only affects the result ofFACTORIZE. It has no
effect if theFACTORswitch is also on.

The order in which the factors occur in the result (with the exception of a possi-
ble overall numerical coefficient which comes first) can be system dependent and
should not be relied on. Similarly it should be noted that any pair of individ-
ual factors can be negated without altering their product, and that REDUCE may
sometimes do that.

The factorizer works by first reducing multivariate problems to univariate ones and
then solving the univariate ones modulo small primes. It normally selects both
evaluation points and primes using a random number generator that should lead
to different detailed behavior each time any particular problem is tackled. If, for
some reason, it is known that a certain (probably univariate) factorization can be
performed effectively with a known prime,P say, this value ofP can be handed to
FACTORIZEas a second argument. An error will occur if a non-prime is provided
to FACTORIZEin this manner. It is also an error to specify a prime that divides
the discriminant of the polynomial being factored, but users should note that this
condition is not checked by the program, so this capability should be used with



106 CHAPTER 9. POLYNOMIALS AND RATIONALS

care.

Factorization can be performed over a number of polynomial coefficient domains
in addition to integers. The particular description of the relevant domain should
be consulted to see if factorization is supported. For example, the following state-
ments will factorizex4 + 1 modulo 7:

setmod 7;
on modular;
factorize(xˆ4+1);

The factorization module is provided with a trace facility that may be useful as a
way of monitoring progress on large problems, and of satisfying curiosity about the
internal workings of the package. The most simple use of this is enabled by issuing
the REDUCE commandon trfac; . Following this, all calls to the factorizer
will generate informative messages reporting on such things as the reduction of
multivariate to univariate cases, the choice of a prime and the reconstruction of
full factors from their images. Further levels of detail in the trace are intended
mainly for system tuners and for the investigation of suspected bugs. For example,
TRALLFACgives tracing information at all levels of detail. The switch that can
be set byon timings; makes it possible for one who is familiar with the algo-
rithms used to determine what part of the factorization code is consuming the most
resources.on overview ; reduces the amount of detail presented in other forms
of trace. Other forms of trace output are enabled by directives of the form

symbolic set!-trace!-factor(<number>,<filename>);

where useful numbers are 1, 2, 3 and 100, 101, ... . This facility is intended to make
it possible to discover in fairly great detail what just some small part of the code has
been doing — the numbers refer mainly to depths of recursion when the factorizer
calls itself, and to the split between its work forming and factorizing images and
reconstructing full factors from these. IfNIL is used in place of a filename the
trace output requested is directed to the standard output stream. After use of this
trace facility the generated trace files should be closed by calling

symbolic close!-trace!-files();

NOTE:Using the factorizer withMCDoff will result in an error.

9.3 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors in the numer-
ators and denominators of expressions, at the option of the user. The system will



9.3. CANCELLATION OF COMMON FACTORS 107

perform this greatest common divisor computation if the switchGCDis on. (GCD
is normally off.)

A check is automatically made, however, for common variable and numerical prod-
ucts in the numerators and denominators of expressions, and the appropriate can-
cellations made.

WhenGCDis on, andEXP is off, a check is made for square free factors in an
expression. This includes separating out and independently checking the content
of a given polynomial where appropriate. (For an explanation of these terms, see
Anthony C. Hearn, “Non-Modular Computation of Polynomial GCDs Using Trial
Division”, Proc. EUROSAM 79, published as Lecture Notes on Comp. Science,
Springer-Verlag, Berlin, No 72 (1979) 227-239.)

Example:With EXPoff andGCDon, the polynomiala*c+a*d+b*c+b*d would
be returned as(A+B)*(C+D) .

Under normal circumstances, GCDs are computed using an algorithm described in
the above paper. It is also possible in REDUCE to compute GCDs using an al-
ternative algorithm, called the EZGCD Algorithm, which uses modular arithmetic.
The switchEZGCD, if on in addition toGCD, makes this happen.

In non-trivial cases, the EZGCD algorithm is almost always better than the basic
algorithm, often by orders of magnitude. We thereforestrongly advise users to
use theEZGCDswitch where they have the resources available for supporting the
package.

For a description of the EZGCD algorithm, see J. Moses and D.Y.Y. Yun, “The EZ
GCD Algorithm”, Proc. ACM 1973, ACM, New York (1973) 159-166.

NOTE:This package shares code with the factorizer, so a certain amount of trace
information can be produced using the factorizer trace switches.

9.3.1 Determining the GCD of Two Polynomials

This operator, used with the syntax

GCD(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the greatest common divisor of the two polynomialsEXPRN1andEXPRN2.

Examples:

gcd(xˆ2+2*x+1,xˆ2+3*x+2) -> X+1
gcd(2*xˆ2-2*yˆ2,4*x+4*y) -> 2*X+2*Y
gcd(xˆ2+yˆ2,x-y) -> 1.



108 CHAPTER 9. POLYNOMIALS AND RATIONALS

9.4 Working with Least Common Multiples

Greatest common divisor calculations can often become expensive if extensive
work with large rational expressions is required. However, in many cases, the only
significant cancellations arise from the fact that there are often common factors
in the various denominators which are combined when two rationals are added.
Since these denominators tend to be smaller and more regular in structure than the
numerators, considerable savings in both time and space can occur if a full GCD
check is made when the denominators are combined and only a partial check when
numerators are constructed. In other words, the true least common multiple of
the denominators is computed at each step. The switchLCMis available for this
purpose, and is normally on.

In addition, the operatorLCM, used with the syntax

LCM(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the least common multiple of the two polynomialsEXPRN1andEXPRN2.

Examples:

lcm(xˆ2+2*x+1,xˆ2+3*x+2) -> X**3 + 4*X**2 + 5*X + 2
lcm(2*xˆ2-2*yˆ2,4*x+4*y) -> 4*(X**2 - Y**2)

9.5 Controlling Use of Common Denominators

When two rational functions are added, REDUCE normally produces an expression
over a common denominator. However, if the user does not want denominators
combined, he or she can turn off the switchMCDwhich controls this process. The
latter switch is particularly useful if no greatest common divisor calculations are
desired, or excessive differentiation of rational functions is required.

CAUTION:With MCDoff, results are not guaranteed to come out in either normal
or canonical form. In other words, an expression equivalent to zero may in fact not
be simplified to zero. This option is therefore most useful for avoiding expression
swell during intermediate parts of a calculation.

MCDis normally on.

9.6 REMAINDER Operator

This operator is used with the syntax



9.7. RESULTANT OPERATOR 109

REMAINDER(EXPRN1:polynomial,EXPRN2:polynomial):polynomial.

It returns the remainder whenEXPRN1is divided byEXPRN2. This is the true
remainder based on the internal ordering of the variables, and not the pseudo-
remainder. The pseudo-remainder and in general pseudo-division of polynomials
can be calculated after loading thepolydiv package. Please refer to the docu-
mentation of this package for details.

Examples:

remainder((x+y)*(x+2*y),x+3*y) -> 2*Y**2
remainder(2*x+y,2) -> Y.

CAUTION: In the default case, remainders are calculated over the integers. If you
need the remainder with respect to another domain, it must be declared explicitly.

Example:

remainder(xˆ2-2,x+sqrt(2)); -> Xˆ2 - 2
load_package arnum;
defpoly sqrt2**2-2;
remainder(xˆ2-2,x+sqrt2); -> 0

9.7 RESULTANT Operator

This is used with the syntax

RESULTANT(EXPRN1:polynomial,EXPRN2:polynomial,VAR:kernel):
polynomial.

It computes the resultant of the two given polynomials with respect to the given
variable, the coefficients of the polynomials can be taken from any domain. The
result can be identified as the determinant of a Sylvester matrix, but can often
also be thought of informally as the result obtained when the given variable is
eliminated between the two input polynomials. If the two input polynomials have
a non-trivial GCD their resultant vanishes.

The switchBezout controls the computation of the resultants. It is off by default.
In this case a subresultant algorithm is used. If the switch Bezout is turned on,
the resultant is computed via the Bezout Matrix. However, in the latter case, only
polynomial coefficients are permitted.



110 CHAPTER 9. POLYNOMIALS AND RATIONALS

The sign conventions used by the resultant function follow those in R. Loos, “Com-
puting in Algebraic Extensions” in “Computer Algebra — Symbolic and Algebraic
Computation”, Second Ed., Edited by B. Buchberger, G.E. Collins and R. Loos,
Springer-Verlag, 1983. Namely, withA andB not dependent onX:

deg(p)*deg(q)
resultant(p(x),q(x),x)= (-1) *resultant(q,p,x)

deg(p)
resultant(a,p(x),x) = a

resultant(a,b,x) = 1

Examples:

2
resultant(x/r*u+y,u*y,u) -> - y

calculation in an algebraic extension:

load arnum;
defpoly sqrt2**2 - 2;

resultant(x + sqrt2,sqrt2 * x +1,x) -> -1

or in a modular domain:

setmod 17;
on modular;

resultant(2x+1,3x+4,x) -> 5

9.8 DECOMPOSE Operator

The DECOMPOSEoperator takes a multivariate polynomial as argument, and re-
turns an expression and a list of equations from which the original polynomial can
be found by composition. Its syntax is:

DECOMPOSE(EXPRN:polynomial):list.

For example:



9.9. INTERPOL OPERATOR 111

decompose(xˆ8-88*xˆ7+2924*xˆ6-43912*xˆ5+263431*xˆ4-

218900*xˆ3+65690*xˆ2-7700*x+234)
2 2 2

-> {U + 35*U + 234, U=V + 10*V, V=X - 22*X}
2

decompose(uˆ2+vˆ2+2u*v+1) -> {W + 1, W=U + V}

Users should note however that, unlike factorization, this decomposition is not
unique.

9.9 INTERPOL operator

Syntax:

INTERPOL(<values>,<variable>,<points>);

where<values> and<points> are lists of equal length and<variable> is
an algebraic expression (preferably a kernel).

INTERPOLgenerates an interpolation polynomialf in the given variable of degree
length(<values> )-1. The unique polynomialf is defined by the property that for
corresponding elementsv of <values> andp of <points> the relationf(p) =
v holds.

The Aitken-Neville interpolation algorithm is used which guarantees a stable result
even with rounded numbers and an ill-conditioned problem.

9.10 Obtaining Parts of Polynomials and Rationals

These operators select various parts of a polynomial or rational function structure.
Except for the cost of rearrangement of the structure, these operations take very
little time to perform.

For those operators in this section that take a kernelVARas their second argument,
an error results if the first expression is not a polynomial inVAR, although the coef-
ficients themselves can be rational as long as they do not depend onVAR. However,
if the switchRATARGis on, denominators are not checked for dependence onVAR,
and are taken to be part of the coefficients.



112 CHAPTER 9. POLYNOMIALS AND RATIONALS

9.10.1 DEG Operator

This operator is used with the syntax

DEG(EXPRN:polynomial,VAR:kernel):integer.

It returns the leading degree of the polynomialEXPRNin the variableVAR. If VAR
does not occur as a variable inEXPRN, 0 is returned.

Examples:

deg((a+b)*(c+2*d)ˆ2,a) -> 1
deg((a+b)*(c+2*d)ˆ2,d) -> 2
deg((a+b)*(c+2*d)ˆ2,e) -> 0.

Note also that ifRATARGis on,

deg((a+b)ˆ3/a,a) -> 3

since in this case, the denominatorA is considered part of the coefficients of the
numerator inA. With RATARGoff, however, an error would result in this case.

9.10.2 DEN Operator

This is used with the syntax:

DEN(EXPRN:rational):polynomial.

It returns the denominator of the rational expressionEXPRN. If EXPRNis a poly-
nomial, 1 is returned.

Examples:

den(x/yˆ2) -> Y**2
den(100/6) -> 3

[since 100/6 is first simplified to 50/3]
den(a/4+b/6) -> 12
den(a+b) -> 1

9.10.3 LCOF Operator

LCOF is used with the syntax

LCOF(EXPRN:polynomial,VAR:kernel):polynomial.



9.10. OBTAINING PARTS OF POLYNOMIALS AND RATIONALS 113

It returns the leading coefficient of the polynomialEXPRNin the variableVAR. If
VARdoes not occur as a variable inEXPRN, EXPRNis returned.



114 CHAPTER 9. POLYNOMIALS AND RATIONALS

Examples:

lcof((a+b)*(c+2*d)ˆ2,a) -> C**2+4*C*D+4*D**2
lcof((a+b)*(c+2*d)ˆ2,d) -> 4*(A+B)
lcof((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

9.10.4 LPOWER Operator

Syntax:

LPOWER(EXPRN:polynomial,VAR:kernel):polynomial.

LPOWER returns the leading power ofEXPRNwith respect toVAR. If EXPRN
does not depend onVAR, 1 is returned.

Examples:

lpower((a+b)*(c+2*d)ˆ2,a) -> A
lpower((a+b)*(c+2*d)ˆ2,d) -> D**2
lpower((a+b)*(c+2*d),e) -> 1

9.10.5 LTERM Operator

Syntax:

LTERM(EXPRN:polynomial,VAR:kernel):polynomial.

LTERM returns the leading term ofEXPRNwith respect toVAR. If EXPRNdoes
not depend onVAR, EXPRNis returned.

Examples:

lterm((a+b)*(c+2*d)ˆ2,a) -> A*(C**2+4*C*D+4*D**2)
lterm((a+b)*(c+2*d)ˆ2,d) -> 4*D**2*(A+B)
lterm((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

Compatibility Note: In some earlier versions of REDUCE,LTERMreturned0 if
theEXPRNdid not depend onVAR. In the present version,EXPRNis always equal
to LTERM(EXPRN,VAR)+ REDUCT(EXPRN,VAR).

9.10.6 MAINVAR Operator

Syntax:



9.10. OBTAINING PARTS OF POLYNOMIALS AND RATIONALS 115

MAINVAR(EXPRN:polynomial):expression.

Returns the main variable (based on the internal polynomial representation) ofEX-
PRN. If EXPRNis a domain element, 0 is returned.

Examples:

AssumingA has higher kernel order thanB, C, or D:

mainvar((a+b)*(c+2*d)ˆ2) -> A
mainvar(2) -> 0

9.10.7 NUM Operator

Syntax:

NUM(EXPRN:rational):polynomial.

Returns the numerator of the rational expressionEXPRN. If EXPRNis a polyno-
mial, that polynomial is returned.

Examples:

num(x/yˆ2) -> X
num(100/6) -> 50
num(a/4+b/6) -> 3*A+2*B
num(a+b) -> A+B

9.10.8 REDUCT Operator

Syntax:

REDUCT(EXPRN:polynomial,VAR:kernel):polynomial.

Returns the reductum ofEXPRNwith respect toVAR(i.e., the part ofEXPRNleft
after the leading term is removed). IfEXPRNdoes not depend on the variableVAR,
0 is returned.

Examples:

reduct((a+b)*(c+2*d),a) -> B*(C + 2*D)
reduct((a+b)*(c+2*d),d) -> C*(A + B)
reduct((a+b)*(c+2*d),e) -> 0



116 CHAPTER 9. POLYNOMIALS AND RATIONALS

Compatibility Note: In some earlier versions of REDUCE,REDUCTreturnedEX-
PRNif it did not depend onVAR. In the present version,EXPRNis always equal to
LTERM(EXPRN,VAR)+ REDUCT(EXPRN,VAR).

9.11 Polynomial Coefficient Arithmetic

REDUCE allows for a variety of numerical domains for the numerical coefficients
of polynomials used in calculations. The default mode is integer arithmetic, al-
though the possibility of using real coefficients has been discussed elsewhere. Ra-
tional coefficients have also been available by using integer coefficients in both the
numerator and denominator of an expression, using theON DIVoption to print the
coefficients as rationals. However, REDUCE includes several other coefficient opt-
ions in its basic version which we shall describe in this section. All such coefficient
modes are supported in a table-driven manner so that it is straightforward to extend
the range of possibilities. A description of how to do this is given in R.J. Brad-
ford, A.C. Hearn, J.A. Padget and E. Schrüfer, “Enlarging the REDUCE Domain
of Computation,” Proc. of SYMSAC ’86, ACM, New York (1986), 100–106.

9.11.1 Rational Coefficients in Polynomials

Instead of treating rational numbers as the numerator and denominator of a rational
expression, it is also possible to use them as polynomial coefficients directly. This
is accomplished by turning on the switchRATIONAL.

Example: With RATIONAL off, the input expressiona/2 would be converted
into a rational expression, whose numerator wasA and denominator 2. WithRA-
TIONAL on, the same input would become a rational expression with numerator
1/2*A and denominator1. Thus the latter can be used in operations that require
polynomial input whereas the former could not.

9.11.2 Real Coefficients in Polynomials

The switchROUNDEDpermits the use of arbitrary sized real coefficients in poly-
nomial expressions. The actual precision of these coefficients can be set by the
operatorPRECISION. For example,precision 50; sets the precision to fifty
decimal digits. The default precision is system dependent and can be found by
precision 0; . In this mode, denominators are automatically made monic, and
an appropriate adjustment is made to the numerator.

Example:With ROUNDEDon, the input expressiona/2 would be converted into a
rational expression whose numerator is0.5*A and denominator1.

Internally, REDUCE uses floating point numbers up to the precision supported by



9.11. POLYNOMIAL COEFFICIENT ARITHMETIC 117

the underlying machine hardware, and so-calledbigfloatsfor higher precision or
whenever necessary to represent numbers whose value cannot be represented in
floating point. The internal precision is two decimal digits greater than the external
precision to guard against roundoff inaccuracies. Bigfloats represent the fraction
and exponent parts of a floating-point number by means of (arbitrary precision)
integers, which is a more precise representation in many cases than the machine
floating point arithmetic, but not as efficient. If a case arises where use of the
machine arithmetic leads to problems, a user can force REDUCE to use the bigfloat
representation at all precisions by turning on the switchROUNDBF. In rare cases,
this switch is turned on by the system, and the user informed by the message

ROUNDBF turned on to increase accuracy

Rounded numbers are normally printed to the specified precision. However, if the
user wishes to print such numbers with less precision, the printing precision can be
set by the commandPRINT PRECISION. For example,print precision
5; will cause such numbers to be printed with five digits maximum.

Under normal circumstances whenROUNDEDis on, REDUCE converts the number
1.0 to the integer 1. If this is not desired, the switchNOCONVERTcan be turned
on.

Numbers that are stored internally as bigfloats are normally printed with a space
between every five digits to improve readability. If this feature is not required, it
can be suppressed by turning off the switchBFSPACE.

Further information on the bigfloat arithmetic may be found in T. Sasaki, “Man-
ual for Arbitrary Precision Real Arithmetic System in REDUCE”, Department of
Computer Science, University of Utah, Technical Note No. TR-8 (1979).

When a real number is input, it is normally truncated to the precision in effect
at the time the number is read. If it is desired to keep the full precision of all
numbers input, the switchADJPREC(for adjust precision) can be turned on. While
on,ADJPRECwill automatically increase the precision, when necessary, to match
that of any integer or real input, and a message printed to inform the user of the
precision increase.

WhenROUNDEDis on, rational numbers are normally converted to rounded rep-
resentation. However, if a user wishes to keep such numbers in a rational form
until used in an operation that returns a real number, the switchROUNDALLcan be
turned off. This switch is normally on.

Results from rounded calculations are returned in rounded form with two excep-
tions: if the result is recognized as0 or 1 to the current precision, the integer result
is returned.



118 CHAPTER 9. POLYNOMIALS AND RATIONALS

9.11.3 Modular Number Coefficients in Polynomials

REDUCE includes facilities for manipulating polynomials whose coefficients are
computed modulo a given base. To use this option, two commands must be used;
SETMOD <integer> , to set the prime modulus, andON MODULARto cause the
actual modular calculations to occur. For example, withsetmod 3; and on
modular; , the polynomial(a+2*b)ˆ3 would becomeAˆ3+2*Bˆ3 .

The argument ofSETMODis evaluated algebraically, except that non-modular (in-
teger) arithmetic is used. Thus the sequence

setmod 3; on modular; setmod 7;

will correctly set the modulus to 7.

Modular numbers are by default represented by integers in the interval [0,p-1]
where p is the current modulus. Sometimes it is more convenient to use an equiv-
alent symmetric representation in the interval [-p/2+1,p/2], or more precisely [-
floor((p-1)/2), ceiling((p-1)/2)], especially if the modular numbers map objects that
include negative quantities. The switchBALANCEDMODallows you to select the
symmetric representation for output.

Users should note that the modular calculations are on the polynomial coefficients
only. It is not currently possible to reduce the exponents since no check for a prime
modulus is made (which would allowxp−1 to be reduced to 1 mod p). Note also
that any division by a number not co-prime with the modulus will result in the error
“Invalid modular division”.

9.11.4 Complex Number Coefficients in Polynomials

Although REDUCE routinely treats the square of the variablei as equivalent to−1,
this is not sufficient to reduce expressions involvingi to lowest terms, or to factor
such expressions over the complex numbers. For example, in the default case,

factorize(aˆ2+1);

gives the result

{{A**2+1,1}}

and

(aˆ2+bˆ2)/(a+i*b)



9.11. POLYNOMIAL COEFFICIENT ARITHMETIC 119

is not reduced further. However, if the switchCOMPLEXis turned on, full complex
arithmetic is then carried out. In other words, the above factorization will give the
result

{{A + I,1},{A - I,1}}

and the quotient will be reduced toA-I*B .

The switchCOMPLEXmay be combined withROUNDEDto give complex real num-
bers; the appropriate arithmetic is performed in this case.

Complex conjugation is used to remove complex numbers from denominators of
expressions. To do this ifCOMPLEXis off, you must turn the switchRATIONAL-
IZE on.



120 CHAPTER 9. POLYNOMIALS AND RATIONALS



Chapter 10

Substitution Commands

An important class of commands in REDUCE define substitutions for variables and
expressions to be made during the evaluation of expressions. Such substitutions use
the prefix operatorSUB, various forms of the commandLET, and rule sets.

10.1 SUB Operator

Syntax:

SUB(<substitution_list>,EXPRN1:algebraic):algebraic

where<substitution list> is a list of one or more equations of the form

VAR:kernel=EXPRN:algebraic

or a kernel that evaluates to such a list.

The SUBoperator gives the algebraic result of replacing every occurrence of the
variableVAR in the expressionEXPRN1by the expressionEXPRN. Specifically,
EXPRN1is first evaluated using all available rules. Next the substitutions are made,
and finally the substituted expression is reevaluated. When more than one variable
occurs in the substitution list, the substitution is performed by recursively walking
down the tree representingEXPRN1, and replacing everyVAR found by the ap-
propriateEXPRN. TheEXPRNare not themselves searched for any occurrences of
the variousVARs. The trivial caseSUB(EXPRN1) returns the algebraic value of
EXPRN1.

Examples:

2 2

121



122 CHAPTER 10. SUBSTITUTION COMMANDS

sub({x=a+y,y=y+1},xˆ2+yˆ2) -> A + 2*A*Y + 2*Y + 2*Y + 1

and withs := {x=a+y,y=y+1 },

2 2
sub(s,xˆ2+yˆ2) -> A + 2*A*Y + 2*Y + 2*Y + 1

Note that the global assignmentsx:=a+y , etc., do not take place.

EXPRN1can be any valid algebraic expression whose type is such that a substi-
tution process is defined for it (e.g., scalar expressions, lists and matrices). An
error will occur if an expression of an invalid type for substitution occurs either in
EXPRNor EXPRN1.

The braces around the substitution list may also be omitted, as in:

2 2
sub(x=a+y,y=y+1,xˆ2+yˆ2) -> A + 2*A*Y + 2*Y + 2*Y + 1

10.2 LET Rules

Unlike substitutions introduced viaSUB, LET rules are global in scope and stay in
effect until replaced orCLEARed.

The simplest use of theLET statement is in the form

LET <substitution list>

where<substitution list> is a list of rules separated by commas, each of
the form:

<variable> = <expression>

or

<prefix operator>(<argument>,...,<argument>) = <expression>

or

<argument> <infix operator>,..., <argument> = <expression>

For example,

let {x => yˆ2,
h(u,v) => u - v,



10.2. LET RULES 123

cos(pi/3) => 1/2,
a*b => c,
l+m => n,
wˆ3 => 2*z - 3,
zˆ10 => 0}

The list brackets can be left out if preferred. The above rules could also have been
entered as seven separateLET statements.

After suchLET rules have been input,X will always be evaluated as the square of
Y, and so on. This is so even if at the time theLET rule was input, the variableY
had a value other thanY. (In contrast, the assignmentx:=yˆ2 will set X equal to
the square of the current value ofY, which could be quite different.)

The rule let a*b=c means that wheneverA and B are both factors in an ex-
pression their product will be replaced byC. For example,aˆ5*bˆ7*w would be
replaced bycˆ5*bˆ2*w .

The rule forl+m will not only replace all occurrences ofl+m by N, but will also
normally replaceL by n-m, but notMby n-l . A more complete description of this
case is given in Section 10.2.5.

The rule pertaining towˆ3 will apply to any power ofWgreater than or equal to
the third.

Note especially the last example,let zˆ10=0 . This declaration means, in effect:
ignore the tenth or any higher power ofZ. Such declarations, when appropriate,
often speed up a computation to a considerable degree. (See Section 10.4 for more
details.)

Any new operators occurring in suchLET rules will be automatically declared
OPERATORby the system, if the rules are being read from a file. If they are being
entered interactively, the system will askDECLARE... OPERATOR?. AnswerY
or Nand hit Return .

In each of these examples, substitutions are only made for the explicit expressions
given; i.e., none of the variables may be considered arbitrary in any sense. For
example, the command

let h(u,v) = u - v;

will causeh(u,v) to evaluate toU - V, but will not affecth(u,z) or H with
any arguments other than precisely the symbolsU,V .

These simpleLET rules are on the same logical level as assignments made with
the := operator. An assignmentx := p+q cancels a rulelet x = yˆ2 made
earlier, and vice versa.

CAUTION:A recursive rule such as



124 CHAPTER 10. SUBSTITUTION COMMANDS

let x = x + 1;

is erroneous, since any subsequent evaluation ofX would lead to a non-terminating
chain of substitutions:

x -> x + 1 -> (x + 1) + 1 -> ((x + 1) + 1) + 1 -> ...

Similarly, coupled substitutions such as

let l = m + n, n = l + r;

would lead to the same error. As a result, if you try to evaluate anX, L or Ndefined
as above, you will get an error such as

X improperly defined in terms of itself

Array and matrix elements can appear on the left-hand side of aLET statement.
However, because of theirinstant evaluationproperty, it is the value of the element
that is substituted for, rather than the element itself. E.g.,

array a(5);
a(2) := b;
let a(2) = c;

results inB being substituted byC; the assignment fora(2) does not change.

Finally, if an error occurs in any equation in aLET statement (including generalized
statements involvingFOR ALLandSUCH THAT), the remaining rules are not
evaluated.

10.2.1 FOR ALL . . . LET

If a substitution for all possible values of a given argument of an operator is re-
quired, the declarationFOR ALLmay be used. The syntax of such a command
is

FOR ALL <variable>,...,<variable>
<LET statement> <terminator>

e.g.,

for all x,y let h(x,y) = x-y;
for all x let k(x,y) = xˆy;



10.2. LET RULES 125

The first of these declarations would causeh(a,b) to be evaluated asA-B ,
h(u+v,u+w) to be V-W, etc. If the operator symbolH is used with more or
fewer argument places, not two, theLET would have no effect, and no error would
result.

The second declaration would causek(a,y) to be evaluated asaˆy , but would
have no effect onk(a,z) since the rule didn’t sayFOR ALL Y... .

Where we usedX andY in the examples, any variables could have been used. This
use of a variable doesn’t affect the value it may have outside theLET statement.
However, you should remember what variables you actually used. If you want
to delete the rule subsequently, you must use the same variables in theCLEAR
command.

It is possible to use more complicated expressions as a template for aLET state-
ment, as explained in the section on substitutions for general expressions. In nearly
all cases, the rule will be accepted, and a consistent application made by the sys-
tem. However, if there is a sole constant or a sole free variable on the left-hand side
of a rule (e.g.,let 2=3 or for all x let x=2) , then the system is unable
to handle the rule, and the error message

Substitution for ... not allowed

will be issued. Any variable listed in theFOR ALLpart will have its symbol
preceded by an equal sign:X in the above example will appear as=X. An error will
also occur if a variable in theFOR ALLpart is not properly matched on both sides
of theLET equation.

10.2.2 FOR ALL . . . SUCH THAT . . . LET

If a substitution is desired for more than a single value of a variable in an operator or
other expression, but not all values, a conditional form of theFOR ALL ...LET
declaration can be used.

Example:

for all x such that numberp x and x<0 let h(x)=0;

will causeh(-5) to be evaluated as 0, butHof a positive integer, or of an argument
that is not an integer at all, would not be affected. Any boolean expression can
follow theSUCH THATkeywords.



126 CHAPTER 10. SUBSTITUTION COMMANDS

10.2.3 Removing Assignments and Substitution Rules

The user may remove all assignments and substitution rules from any expression
by the commandCLEAR, in the form

CLEAR <expression>,...,<expression><terminator>

e.g.

clear x, h(x,y);

Because of theirinstant evaluationproperty, array and matrix elements cannot be
cleared withCLEAR. For example, ifA is an array, you must say

a(3) := 0;

rather than

clear a(3);

to “clear” elementa(3) .

On the other hand, a whole array (or matrix)A can be cleared by the command
clear a ; This means much more than resetting to 0 all the elements ofA. The
fact thatA is an array, and what its dimensions are, are forgotten, soA can be
redefined as another type of object, for example an operator.

The more general types ofLET declarations can also be deleted by usingCLEAR.
Simply repeat theLET rule to be deleted, usingCLEARin place ofLET, and omit-
ting the equal sign and right-hand part. The same dummy variables must be used
in theFOR ALLpart, and the boolean expression in theSUCH THATpart must be
written the same way. (The placing of blanks doesn’t have to be identical.)

Example:TheLET rule

for all x such that numberp x and x<0 let h(x)=0;

can be erased by the command

for all x such that numberp x and x<0 clear h(x);

10.2.4 Overlapping LET Rules

CLEARis not the only way to delete aLET rule. A newLET rule identical to
the first, but with a different expression after the equal sign, replaces the first.



10.2. LET RULES 127

Replacements are also made in other cases where the existing rule would be in
conflict with the new rule. For example, a rule forxˆ4 would replace a rule for
xˆ5 . The user should however be cautioned against having severalLET rules in
effect that relate to the same expression. No guarantee can be given as to which
rules will be applied by REDUCE or in what order. It is best toCLEARan old rule
before entering a new relatedLET rule.

10.2.5 Substitutions for General Expressions

The examples of substitutions discussed in other sections have involved very sim-
ple rules. However, the substitution mechanism used in REDUCE is very general,
and can handle arbitrarily complicated rules without difficulty.

The general substitution mechanism used in REDUCE is discussed in Hearn, A.
C., “REDUCE, A User-Oriented Interactive System for Algebraic Simplification,”
Interactive Systems for Experimental Applied Mathematics, (edited by M. Klerer
and J. Reinfelds), Academic Press, New York (1968), 79-90, and Hearn. A. C.,
“The Problem of Substitution,” Proc. 1968 Summer Institute on Symbolic Mathe-
matical Computation, IBM Programming Laboratory Report FSC 69-0312 (1969).
For the reasons given in these references, REDUCE does not attempt to imple-
ment a general pattern matching algorithm. However, the present system uses far
more sophisticated techniques than those discussed in the above papers. It is now
possible for the rules appearing in arguments ofLET to have the form

<substitution expression> = <expression>

where any rule to which a sensible meaning can be assigned is permitted. However,
this meaning can vary according to the form of<substitution expres-
sion> . The semantic rules associated with the application of the substitution are
completely consistent, but somewhat complicated by the pragmatic need to per-
form such substitutions as efficiently as possible. The following rules explain how
the majority of the cases are handled.

To begin with, the<substitution expression> is first partly simplified
by collecting like terms and putting identifiers (and kernels) in the system order.
However, no substitutions are performed on any part of the expression with the
exception of expressions with theinstant evaluationproperty, such as array and
matrix elements, whose actual values are used. It should also be noted that the
system order used is not changeable by the user, even with theKORDERcommand.
Specific cases are then handled as follows:

1. If the resulting simplified rule has a left-hand side that is an identifier, an
expression with a top-level algebraic operator or a power, then the rule is
added without further change to the appropriate table.



128 CHAPTER 10. SUBSTITUTION COMMANDS

2. If the operator * appears at the top level of the simplified left-hand side, then
any constant arguments in that expression are moved to the right-hand side
of the rule. The remaining left-hand side is then added to the appropriate
table. For example,

let 2*x*y=3

becomes

let x*y=3/2

so thatx*y is added to the product substitution table, and when this rule is
applied, the expressionx*y becomes 3/2, butX or Y by themselves are not
replaced.

3. If the operators+, - or / appear at the top level of the simplified left-hand
side, all but the first term is moved to the right-hand side of the rule. Thus
the rules

let l+m=n, x/2=y, a-b=c

become

let l=n-m, x=2*y, a=c+b.

One problem that can occur in this case is that if a quantified expression is moved
to the right-hand side, a given free variable might no longer appear on the left-hand
side, resulting in an error because of the unmatched free variable. E.g.,

for all x,y let f(x)+f(y)=x*y

would become

for all x,y let f(x)=x*y-f(y)

which no longer hasY on both sides.

The fact that array and matrix elements are evaluated in the left-hand side of rules
can lead to confusion at times. Consider for example the statements

array a(5); let x+a(2)=3; let a(3)=4;

The left-hand side of the first rule will becomeX, and the second 0. Thus the first
rule will be instantiated as a substitution forX, and the second will result in an
error.



10.3. RULE LISTS 129

The order in which a list of rules is applied is not easily understandable without
a detailed knowledge of the system simplification protocol. It is also possible for
this order to change from release to release, as improved substitution techniques
are implemented. Users should therefore assume that the order of application of
rules is arbitrary, and program accordingly.

After a substitution has been made, the expression being evaluated is reexamined
in case a new allowed substitution has been generated. This process is continued
until no more substitutions can be made.

As mentioned elsewhere, when a substitution expression appears in a product, the
substitution is made if that expression divides the product. For example, the rule

let aˆ2*c = 3*z;

would causeaˆ2*c*x to be replaced by3*Z*X andaˆ2*cˆ2 by 3*Z*C . If the
substitution is desired only when the substitution expression appears in a product
with the explicit powers supplied in the rule, the commandMATCHshould be used
instead.

For example,

match aˆ2*c = 3*z;

would causeaˆ2*c*x to be replaced by3*Z*X , but aˆ2*cˆ2 would not be
replaced. MATCHcan also be used with theFOR ALLconstructions described
above.

To remove substitution rules of the type discussed in this section, theCLEARcom-
mand can be used, combined, if necessary, with the sameFOR ALLclause with
which the rule was defined, for example:

for all x clear log(eˆx),eˆlog(x),cos(w*t+theta(x));

Note, however, that the arbitrary variable names in this casemustbe the same as
those used in defining the substitution.

10.3 Rule Lists

Rule lists offer an alternative approach to defining substitutions that is different
from eitherSUBor LET. In fact, they provide the best features of both, since they
have all the capabilities ofLET, but the rules can also be applied locally as is pos-
sible withSUB. In time, they will be used more and more in REDUCE. However,
since they are relatively new, much of the REDUCE code you see uses the older
constructs.



130 CHAPTER 10. SUBSTITUTION COMMANDS

A rule list is a list ofrulesthat have the syntax

<expression> => <expression> (WHEN <boolean expres-
sion>)

For example,

{cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2,
cos(˜n*pi) => (-1)ˆn when remainder(n,2)=0}

The tilde preceding a variable marks that variable asfree for that rule, much as a
variable in aFOR ALLclause in aLET statement. The first occurrence of that
variable in each relevant rule must be so marked on input, otherwise inconsistent
results can occur. For example, the rule list

{cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2,
cos(x)ˆ2 => (1+cos(2x))/2}

designed to replace products of cosines, would not be correct, since the second
rule would only apply to the explicit argumentX. Later occurrences in the same
rule may also be marked, but this is optional (internally, all such rules are stored
with each relevant variable explicitly marked). The optionalWHENclause allows
constraints to be placed on the application of the rule, much as theSUCH THAT
clause in aLET statement.

A rule list may be named, for example

trig1 := {cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2,
cos(˜x)*sin(˜y) => (sin(x+y)-sin(x-y))/2,
sin(˜x)*sin(˜y) => (cos(x-y)-cos(x+y))/2,
cos(˜x)ˆ2 => (1+cos(2*x))/2,
sin(˜x)ˆ2 => (1-cos(2*x))/2};

Such named rule lists may be inspected as needed. E.g., the commandtrig1;
would cause the above list to be printed.

Rule lists may be used in two ways. They can be globally instantiated by means of
the commandLET. For example,

let trig1;

would cause the above list of rules to be globally active from then on until cancelled
by the commandCLEARRULES, as in

clearrules trig1;



10.3. RULE LISTS 131

CLEARRULEShas the syntax

CLEARRULES <rule list>|<name of rule list>(,...) .

The second way to use rule lists is to invoke them locally by means of aWHERE
clause. For example

cos(a)*cos(b+c)
where {cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2};

or

cos(a)*sin(b) where trigrules;

The syntax of an expression with aWHEREclause is:

<expression>
WHERE <rule>|<rule list>(,<rule>|<rule list> ...)

so the first example above could also be written

cos(a)*cos(b+c)
where cos(˜x)*cos(˜y) => (cos(x+y)+cos(x-y))/2;

The effect of this construct is that the rule list(s) in theWHEREclause only apply to
the expression on the left ofWHERE. They have no effect outside the expression. In
particular, they do not affect previously definedWHEREclauses orLET statements.
For example, the sequence

let a=2;
a where a=>4;
a;

would result in the output

4

2

AlthoughWHEREhas a precedence less than any other infix operator, it still binds
higher than keywords such asELSE, THEN, DO, REPEATand so on. Thus the
expression

if a=2 then 3 else a+2 where a=3



132 CHAPTER 10. SUBSTITUTION COMMANDS

will parse as

if a=2 then 3 else (a+2 where a=3)

WHEREmay be used to introduce auxiliary variables in symbolic mode expres-
sions, as described in Section 16.4. However, the symbolic mode use has different
semantics, so expressions do not carry from one mode to the other.

Compatibility Note:In order to provide compatibility with older versions of rule
lists released through the Network Library, it is currently possible to use an equal
sign interchangeably with the replacement sign=> in rules andLET statements.
However, since this will change in future versions, the replacement sign is prefer-
able in rules and the equal sign in non-rule-basedLET statements.

Advanced Use of Rule Lists

Some advanced features of the rule list mechanism make it possible to write more
complicated rules than those discussed so far, and in many cases to write more
compact rule lists. These features are:

• Free operators

• Double slash operator

• Double tilde variables.

A free operator in the left hand side of a pattern will match any operator with
the same number of arguments. The free operator is written in the same style as
a variable. For example, the implementation of the product rule of differentiation
can be written as:

operator diff, !˜f, !˜g;

prule := {diff(˜f(˜x) * ˜g(˜x),x) =>
diff(f(x),x) * g(x) + diff(g(x),x) * f(x)};

let prule;

diff(sin(z)*cos(z),z);

cos(z)*diff(sin(z),z) + diff(cos(z),z)*sin(z)

The double slash operatormay be used as an alternative to a single slash (quo-
tient) in order to match quotients properly. E.g., in the example of the Gamma
function above, one can use:



10.3. RULE LISTS 133

gammarule :=
{gamma(˜z)//(˜c*gamma(˜zz)) => gamma(z)/(c*gamma(zz-

1)*zz)
when fixp(zz -z) and (zz -z) >0,

gamma(˜z)//gamma(˜zz) => gamma(z)/(gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0};

let gammarule;

gamma(z)/gamma(z+3);

1
----------------------

3 2
z + 6*z + 11*z + 6

The above example suffers from the fact that two rules had to be written in order to
perform the required operation. This can be simplified by the use ofdouble tilde
variables. E.g. the rule list

GGrule := {
gamma(˜z)//(˜˜c*gamma(˜zz)) => gamma(z)/(c*gamma(zz-

1)*zz)
when fixp(zz -z) and (zz -z) >0};

will implement the same operation in a much more compact way. In general, dou-
ble tilde variables are bound to the neutral element with respect to the operation in
which they are used.

Pattern given Argument used Binding

˜z + ˜˜y x z=x; y=0
˜z + ˜˜y x+3 z=x; y=3 or z=3; y=x

˜z * ˜˜y x z=x; y=1
˜z * ˜˜y x*3 z=x; y=3 or z=3; y=x

˜z / ˜˜y x z=x; y=1
˜z / ˜˜y x/3 z=x; y=3

Remarks: A double tilde variable as the numerator of a pattern is not allowed.
Also, using double tilde variables may lead to recursion errors when the zero case
is not handled properly.



134 CHAPTER 10. SUBSTITUTION COMMANDS

let f(˜˜a * ˜x,x) => a * f(x,x) when freeof (a,x);

f(z,z);

***** f(z,z) improperly defined in terms of itself

% BUT:

let ff(˜˜a * ˜x,x)
=> a * ff(x,x) when freeof (a,x) and a neq 1;

ff(z,z);
ff(z,z)

ff(3*z,z);
3*ff(z,z)

Displaying Rules Associated with an Operator

The operatorSHOWRULEStakes a single identifier as argument, and returns in
rule-list form the operator rules associated with that argument. For example:

showrules log;

{LOG(E) => 1,

LOG(1) => 0,

˜X
LOG(E ) => ˜X,

1
DF(LOG(˜X),˜X) => ----}

˜X

Such rules can then be manipulated further as with any list. For examplerhs
first ws; has the value1. Note that an operator may have other properties that
cannot be displayed in such a form, such as the fact it is an odd function, or has a
definition defined as a procedure.



10.3. RULE LISTS 135

Order of Application of Rules

If rules have overlapping domains, their order of application is important. In gen-
eral, it is very difficult to specify this order precisely, so that it is best to assume
that the order is arbitrary. However, if only one operator is involved, the order of
application of the rules for this operator can be determined from the following:

1. Rules containing at least one free variable apply before all rules without free
variables.

2. Rules activated in the most recentLET command are applied first.

3. LET with several entries generate the same order of application as a corre-
sponding sequence of commands with one rule or rule set each.

4. Within a rule set, the rules containing at least one free variable are applied in
their given order. In other words, the first member of the list is applied first.

5. Consistent with the first item, any rule in a rule list that contains no free
variables is applied after all rules containing free variables.

Example: The following rule set enables the computation of exact values of the
Gamma function:

operator gamma,gamma_error;
gamma_rules :=
{gamma(˜x)=>sqrt(pi)/2 when x=1/2,

gamma(˜n)=>factorial(n-1) when fixp n and n>0,
gamma(˜n)=>gamma_error(n) when fixp n,
gamma(˜x)=>(x-1)*gamma(x-1) when fixp(2*x) and x>1,
gamma(˜x)=>gamma(x+1)/x when fixp(2*x)};

Here, rule by rule, cases of known or definitely uncomputable values are sorted out;
e.g. the rule leading to the error expression will be applied for negative integers
only, since the positive integers are caught by the preceding rule, and the last rule
will apply for negative odd multiples of1/2 only. Alternatively the first rule could
have been written as

gamma(1/2) => sqrt(pi)/2,

but then the casex = 1/2 should be excluded in theWHENpart of the last rule
explicitly because a rule without free variables cannot take precedence over the
other rules.



136 CHAPTER 10. SUBSTITUTION COMMANDS

10.4 Asymptotic Commands

In expansions of polynomials involving variables that are known to be small, it is
often desirable to throw away all powers of these variables beyond a certain point
to avoid unnecessary computation. The commandLET may be used to do this. For
example, if only powers ofX up toxˆ7 are needed, the command

let xˆ8 = 0;

will cause the system to delete all powers ofX higher than 7.

CAUTION: This particular simplification works differently from most substitu-
tion mechanisms in REDUCE in that it is applied during polynomial manipulation
rather than to the whole evaluated expression. Thus, with the above rule in effect,
xˆ10/xˆ5 would give the result zero, since the numerator would simplify to zero.
Similarly xˆ20/xˆ10 would give aZero divisor error message, since both
numerator and denominator would first simplify to zero.

The method just described is not adequate when expressions involve several vari-
ables having different degrees of smallness. In this case, it is necessary to supply
an asymptotic weight to each variable and count up the total weight of each product
in an expanded expression before deciding whether to keep the term or not. There
are two associated commands in the system to permit this type of asymptotic con-
straint. The commandWEIGHT takes a list of equations of the form

<kernel form> = <number>

where<number> must be a positive integer (not just evaluate to a positive inte-
ger). This command assigns the weight<number> to the relevant kernel form.
A check is then made in all algebraic evaluations to see if the total weight of the
term is greater than the weight level assigned to the calculation. If it is, the term is
deleted. To compute the total weight of a product, the individual weights of each
kernel form are multiplied by their corresponding powers and then added.

The weight level of the system is initially set to 1. The user may change this setting
by the command

wtlevel <number>;

which sets<number> as the new weight level of the system.<number> must
evaluate to a positive integer. WTLEVEL will also allow NIL as an argument, in
which case the current weight level is returned.



Chapter 11

File Handling Commands

In many applications, it is desirable to load previously prepared REDUCE files
into the system, or to write output on other files. REDUCE offers four commands
for this purpose, namely,IN , OUT, SHUT, LOAD, andLOADPACKAGE. The first
three operators are described here;LOADandLOADPACKAGEare discussed in

Section 18.2.

11.1 IN Command

This command takes a list of file names as argument and directs the system to
input each file (that should contain REDUCE statements and commands) into the
system. File names can either be an identifier or a string. The explicit format of
these will be system dependent and, in many cases, site dependent. The explicit
instructions for the implementation being used should therefore be consulted for
further details. For example:

in f1,"ggg.rr.s";

will first load file F1, thenggg.rr.s . When a semicolon is used as the terminator
of the IN statement, the statements in the file are echoed on the terminal or written
on the current output file. If $ is used as the terminator, the input is not shown.
Echoing of all or part of the input file can be prevented, even if a semicolon was
used, by placing anoff echo; command in the input file.

Files to be read usingIN should end with;END; . Note the two semicolons! First
of all, this is protection against obscure difficulties the user will have if there are,
by mistake, moreBEGINs thanENDs on the file. Secondly, it triggers some file
control book-keeping which may improve system efficiency. IfENDis omitted, an
error message"End-of-file read" will occur.

137



138 CHAPTER 11. FILE HANDLING COMMANDS

11.2 OUT Command

This command takes a single file name as argument, and directs output to that
file from then on, until anotherOUTchanges the output file, orSHUTcloses it.
Output can go to only one file at a time, although many can be open. If the file
has previously been used for output during the current job, and notSHUT, the new
output is appended to the end of the file. Any existing file is erased before its first
use for output in a job, or if it had beenSHUTbefore the newOUT.

To output on the terminal without closing the output file, the reserved file name T
(for terminal) may be used. For example,out ofile; will direct output to the
file OFILE andout t; will direct output to the user’s terminal.

The output sent to the file will be in the same form that it would have on the
terminal. In particularxˆ2 would appear on two lines, anX on the lower line and
a 2 on the line above. If the purpose of the output file is to save results to be read
in later, this is not an appropriate form. We first must turn off theNATswitch that
specifies that output should be in standard mathematical notation.

Example:To create a fileABCDfrom which it will be possible to read – usingIN
– the value of the expressionXYZ:

off echo$ % needed if your input is from a file.
off nat$ % output in IN-readable form. Each expression

% printed will end with a $ .
out abcd$ % output to new file
linelength 72$ % for systems with fixed input line length.
xyz:=xyz; % will output "XYZ := " followed by the value

% of XYZ
write ";end"$ % standard for ending files for IN
shut abcd$ % save ABCD, return to terminal output
on nat$ % restore usual output form

11.3 SHUT Command

This command takes a list of names of files that have been previously opened via
an OUTstatement and closes them. Most systems require this action by the user
before he ends the REDUCE job (if not sooner), otherwise the output may be lost.
If a file is shut and a furtherOUTcommand issued for the same file, the file is
erased before the new output is written.

If it is the current output file that is shut, output will switch to the terminal. At-
tempts to shut files that have not been opened byOUT, or an input file, will lead to
errors.



Chapter 12

Commands for Interactive Use

REDUCE is designed as an interactive system, but naturally it can also operate in
a batch processing or background mode by taking its input command by command
from the relevant input stream. There is a basic difference, however, between in-
teractive and batch use of the system. In the former case, whenever the system
discovers an ambiguity at some point in a calculation, such as a forgotten type
assignment for instance, it asks the user for the correct interpretation. In batch
operation, it is not practical to terminate the calculation at such points and require
resubmission of the job, so the system makes the most obvious guess of the user’s
intentions and continues the calculation.

There is also a difference in the handling of errors. In the former case, the computa-
tion can continue since the user has the opportunity to correct the mistake. In batch
mode, the error may lead to consequent erroneous (and possibly time consuming)
computations. So in the default case, no further evaluation occurs, although the
remainder of the input is checked for syntax errors. A message"Continuing
with parsing only" informs the user that this is happening. On the other
hand, the switchERRCONT, if on, will cause the system to continue evaluating
expressions after such errors occur.

When a syntactical error occurs, the place where the system detected the error is
marked with three dollar signs ($$$). In interactive mode, the user can then useED
to correct the error, or retype the command. When a non-syntactical error occurs in
interactive mode, the command being evaluated at the time the last error occurred
is saved, and may later be reevaluated by the commandRETRY.

12.1 Referencing Previous Results

It is often useful to be able to reference results of previous computations during a
REDUCE session. For this purpose, REDUCE maintains a history of all interactive

139



140 CHAPTER 12. COMMANDS FOR INTERACTIVE USE

inputs and the results of all interactive computations during a given session. These
results are referenced by the command number that REDUCE prints automatically
in interactive mode. To use an input expression in a new computation, one writes
input( n) , wheren is the command number. To use an output expression, one
writesWS(n) . WSreferences the previous command. E.g., if command number 1
wasINT(X-1,X) ; and the result of command number 7 wasX-1 , then

2*input(1)-ws(7)ˆ2;

would give the result-1 , whereas

2*ws(1)-ws(7)ˆ2;

would yield the same result, butwithouta recomputation of the integral.

The operatorDISPLAY is available to display previous inputs. If its argument
is a positive integer,n say, then the previous n inputs are displayed. If its argu-
ment isALL (or in fact any non-numerical expression), then all previous inputs are
displayed.

12.2 Interactive Editing

It is possible when working interactively to edit any REDUCE input that comes
from the user’s terminal, and also some user-defined procedure definitions. At the
top level, one can access any previous command string by the commanded( n) ,
where n is the desired command number as prompted by the system in interactive
mode.ED; (i.e. no argument) accesses the previous command.

After EDhas been called, you can now edit the displayed string using a string editor
with the following commands:

B move pointer to beginning
C<character> replace next character bycharacter
D delete next character
E end editing and reread text
F<character> move pointer to next occurrence of

character

I<string><escape> insertstring in front of pointer
K<character> delete all characters untilcharacter
P print string from current pointer
Q give up with error exit
S<string><escape> search for first occurrence ofstring, posi-

tioning pointer just before it
space or X move pointer right one character.



12.3. INTERACTIVE FILE CONTROL 141

The above table can be displayed online by typing a question mark followed by a
carriage return to the editor. The editor prompts with an angle bracket. Commands
can be combined on a single line, and all command sequences must be followed by
a carriage return to become effective.

Thus, to change the commandx := a+1; to x := a+2 ; and cause it to be
executed, the following edit command sequence could be used:

f1c2e<return>.

The interactive editor may also be used to edit a user-defined procedure that has
not been compiled. To do this, one says:

editdef <id>;

where<id> is the name of the procedure. The procedure definition will then be
displayed in editing mode, and may then be edited and redefined on exiting from
the editor.

Some versions of REDUCE now include input editing that uses the capabilities of
modern window systems. Please consult your system dependent documentation to
see if this is possible. Such editing techniques are usually much easier to use then
EDor EDITDEF.

12.3 Interactive File Control

If input is coming from an external file, the system treats it as a batch processed
calculation. If the user desires interactive response in this case, he can include the
commandon int ; in the file. Likewise, he can issue the commandoff int ;
in the main program if he does not desire continual questioning from the system.
Regardless of the setting ofINT , input commands from a file are not kept in the
system, and so cannot be edited usingED. However, many implementations of RE-
DUCE provide a link to an external system editor that can be used for such editing.
The specific instructions for the particular implementation should be consulted for
information on this.

Two commands are available in REDUCE for interactive use of files.PAUSE; may
be inserted at any point in an input file. When this command is encountered on
input, the system prints the messageCONT?on the user’s terminal and halts. If the
user respondsY (for yes), the calculation continues from that point in the file. If the
user respondsN (for no), control is returned to the terminal, and the user can input
further statements and commands. Later on he can use the commandcont; to
transfer control back to the point in the file following the lastPAUSEencountered.
A top-levelpause; from the user’s terminal has no effect.



142 CHAPTER 12. COMMANDS FOR INTERACTIVE USE



Chapter 13

Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calculations
can be performed. To extend our syntax to this class of calculations we need to
add another prefix operator,MAT, and a further variable and expression type as
follows:

13.1 MAT Operator

This prefix operator is used to representn×m matrices.MAThasn arguments in-
terpreted as rows of the matrix, each of which is a list ofmexpressions representing
elements in that row. For example, the matrix

(
a b c
d e f

)

would be written asmat((a,b,c),(d,e,f)) .

Note that the single column matrix
(

x
y

)

becomesmat((x),(y)) . The inside parentheses are required to distinguish it
from the single row matrix (

x y
)

that would be written asmat((x,y)) .

143



144 CHAPTER 13. MATRIX CALCULATIONS

13.2 Matrix Variables

An identifier may be declared a matrix variable by the declarationMATRIX. The
size of the matrix may be declared explicitly in the matrix declaration, or by default
in assigning such a variable to a matrix expression. For example,

matrix x(2,1),y(3,4),z;

declaresX to be a 2 x 1 (column) matrix,Y to be a 3 x 4 matrix andZ a matrix
whose size is to be declared later.

Matrix declarations can appear anywhere in a program. Once a symbol is declared
to name a matrix, it can not also be used to name an array, operator or a procedure,
or used as an ordinary variable. It can however be redeclared to be a matrix, and
its size may be changed at that time. Note however that matrices once declared
areglobal in scope, and so can then be referenced anywhere in the program. In
other words, a declaration within a block (or a procedure) does not limit the scope
of the matrix to that block, nor does the matrix go away on exiting the block (use
CLEARinstead for this purpose). An element of a matrix is referred to in the
expected manner; thusx(1,1) gives the first element of the matrixX defined
above. References to elements of a matrix whose size has not yet been declared
leads to an error. All elements of a matrix whose size is declared are initialized to
0. As a result, a matrix element has aninstant evaluationproperty and cannot stand
for itself. If this is required, then an operator should be used to name the matrix
elements as in:

matrix m; operator x; m := mat((x(1,1),x(1,2));

13.3 Matrix Expressions

These follow the normal rules of matrix algebra as defined by the following syntax:

<matrix expression> ::=
MAT<matrix description>|<matrix vari-

able>|
<scalar expression>*<matrix expression>|
<matrix expression>*<matrix expression>
<matrix expression>+<matrix expression>|
<matrix expression>ˆ<integer>|
<matrix expression>/<matrix expression>

Sums and products of matrix expressions must be of compatible size; otherwise an
error will result during their evaluation. Similarly, only square matrices may be



13.4. OPERATORS WITH MATRIX ARGUMENTS 145

raised to a power. A negative power is computed as the inverse of the matrix raised
to the corresponding positive power.a/b is interpreted asa*bˆ(-1) .

Examples:

AssumingX andY have been declared as matrices, the following are matrix ex-
pressions

y
yˆ2*x-3*yˆ(-2)*x
y + mat((1,a),(b,c))/2

The computation of the quotient of two matrices normally uses a two-step elimina-
tion method due to Bareiss. An alternative method using Cramer’s method is also
available. This is usually less efficient than the Bareiss method unless the matrices
are large and dense, although we have no solid statistics on this as yet. To use
Cramer’s method instead, the switchCRAMERshould be turned on.

13.4 Operators with Matrix Arguments

The operatorLENGTHapplied to a matrix returns a list of the number of rows and
columns in the matrix. Other operators useful in matrix calculations are defined
in the following subsections. Attention is also drawn to the LINALG (chapter??)
and NORMFORM (chapter??) packages.

13.4.1 DET Operator

Syntax:

DET(EXPRN:matrix_expression):algebraic.

The operatorDET is used to represent the determinant of a square matrix expres-
sion. E.g.,

det(yˆ2)

is a scalar expression whose value is the determinant of the square of the matrixY,
and

det mat((a,b,c),(d,e,f),(g,h,j));



146 CHAPTER 13. MATRIX CALCULATIONS

is a scalar expression whose value is the determinant of the matrix



a b c
d e f
g h j




Determinant expressions have theinstant evaluationproperty. In other words, the
statement

let det mat((a,b),(c,d)) = 2;

sets thevalueof the determinant to 2, and does not set up a rule for the determinant
itself.

13.4.2 MATEIGEN Operator

Syntax:

MATEIGEN(EXPRN:matrix_expression,ID):list.

MATEIGENcalculates the eigenvalue equation and the corresponding eigenvectors
of a matrix, using the variableID to denote the eigenvalue. A square free decom-
position of the characteristic polynomial is carried out. The result is a list of lists
of 3 elements, where the first element is a square free factor of the characteristic
polynomial, the second its multiplicity and the third the corresponding eigenvector
(as ann by 1 matrix). If the square free decomposition was successful, the product
of the first elements in the lists is the minimal polynomial. In the case of degener-
acy, several eigenvectors can exist for the same eigenvalue, which manifests itself
in the appearance of more than one arbitrary variable in the eigenvector. To extract
the various parts of the result use the operations defined on lists.

Example:The command

mateigen(mat((2,-1,1),(0,1,1),(-1,1,1)),eta);

gives the output

{{ETA - 1,2,

[ARBCOMPLEX(1)]
[ ]
[ARBCOMPLEX(1)]
[ ]
[ 0 ]



13.4. OPERATORS WITH MATRIX ARGUMENTS 147

},

{ETA - 2,1,

[ 0 ]
[ ]
[ARBCOMPLEX(2)]
[ ]
[ARBCOMPLEX(2)]

}}

13.4.3 TP Operator

Syntax:

TP(EXPRN:matrix_expression):matrix.

This operator takes a single matrix argument and returns its transpose.

13.4.4 Trace Operator

Syntax:

TRACE(EXPRN:matrix_expression):algebraic.

The operatorTRACEis used to represent the trace of a square matrix.

13.4.5 Matrix Cofactors

Syntax:

COFACTOR(EXPRN:matrix_expression,ROW:integer,COLUMN:integer):
algebraic

The operatorCOFACTORreturns the cofactor of the element in rowROWand col-
umn COLUMNof the matrixMATRIX. Errors occur ifROWor COLUMNdo not
simplify to integer expressions or ifMATRIX is not square.



148 CHAPTER 13. MATRIX CALCULATIONS

13.4.6 NULLSPACE Operator

Syntax:

NULLSPACE(EXPRN:matrix_expression):list

NULLSPACEcalculates for a matrixA a list of linear independent vectors (a basis)
whose linear combinations satisfy the equationAx = 0. The basis is provided in a
form such that as many upper components as possible are isolated.

Note that withb := nullspace a the expressionlength b is thenullity of
A, and thatsecond length a - length b calculates therank of A. The
rank of a matrix expression can also be found more directly by theRANKoperator
described below.

Example:The command

nullspace mat((1,2,3,4),(5,6,7,8));

gives the output

{
[ 1 ]
[ ]
[ 0 ]
[ ]
[ - 3]
[ ]
[ 2 ]
,
[ 0 ]
[ ]
[ 1 ]
[ ]
[ - 2]
[ ]
[ 1 ]
}

In addition to the REDUCE matrix form,NULLSPACEaccepts as input a matrix
given as a list of lists, that is interpreted as a row matrix. If that form of input
is chosen, the vectors in the result will be represented by lists as well. This addi-
tional input syntax facilitates the use ofNULLSPACEin applications different from
classical linear algebra.



13.5. MATRIX ASSIGNMENTS 149

13.4.7 RANK Operator

Syntax:

RANK(EXPRN:matrix_expression):integer

RANKcalculates the rank of its argument, that, likeNULLSPACEcan either be a
standard matrix expression, or a list of lists, that can be interpreted either as a row
matrix or a set of equations.

Example:

rank mat((a,b,c),(d,e,f));

returns the value 2.

13.5 Matrix Assignments

Matrix expressions may appear in the right-hand side of assignment statements. If
the left-hand side of the assignment, which must be a variable, has not already been
declared a matrix, it is declared by default to the size of the right-hand side. The
variable is then set to the value of the right-hand side.

Such an assignment may be used very conveniently to find the solution of a set of
linear equations. For example, to find the solution of the following set of equations

a11*x(1) + a12*x(2) = y1
a21*x(1) + a22*x(2) = y2

we simply write

x := 1/mat((a11,a12),(a21,a22))*mat((y1),(y2));

13.6 Evaluating Matrix Elements

Once an element of a matrix has been assigned, it may be referred to in standard
array element notation. Thusy(2,1) refers to the element in the second row and
first column of the matrixY.



150 CHAPTER 13. MATRIX CALCULATIONS



Chapter 14

Procedures

It is often useful to name a statement for repeated use in calculations with varying
parameters, or to define a complete evaluation procedure for an operator. REDUCE
offers a procedural declaration for this purpose. Its general syntax is:

[<procedural type>] PROCEDURE <name>[<varlist>];<statement>;

where

<varlist> ::= (<variable>,...,<variable>)

This will be explained more fully in the following sections.

In the algebraic mode of REDUCE the<procedure type> can be omitted,
since the default isALGEBRAIC. Procedures of typeINTEGERor REALmay also
be used. In the former case, the system checks that the value of the procedure is
an integer. At present, such checking is not done for a real procedure, although
this will change in the future when a more complete type checking mechanism is
installed. Users should therefore only use these types when appropriate. An empty
variable list may also be omitted.

All user-defined procedures are automatically declared to be operators.

In order to allow users relatively easy access to the whole REDUCE source pro-
gram, system procedures are not protected against user redefinition. If a procedure
is redefined, a message

*** <procedure name> REDEFINED

is printed. If this occurs, and the user is not redefining his own procedure, he is
well advised to rename it, and possibly start over (because he hasalreadyredefined
some internal procedure whose correct functioning may be required for his job!)

151



152 CHAPTER 14. PROCEDURES

All required procedures should be defined at the top level, since they have global
scope throughout a program. In particular, an attempt to define a procedure within
a procedure will cause an error to occur.

14.1 Procedure Heading

Each procedure has a heading consisting of the wordPROCEDURE(optionally
preceded by the wordALGEBRAIC), followed by the name of the procedure to be
defined, and followed by its formal parameters – the symbols that will be used in
the body of the definition to illustrate what is to be done. There are three cases:

1. No parameters. Simply follow the procedure name with a terminator (semi-
colon or dollar sign).

procedure abc;

When such a procedure is used in an expression or command,abc() , with
empty parentheses, must be written.

2. One parameter. Enclose it in parenthesesor just leave at least one space,
then follow with a terminator.

procedure abc(x);

or

procedure abc x;

3. More than one parameter. Enclose them in parentheses, separated by com-
mas, then follow with a terminator.

procedure abc(x,y,z);

Referring to the last example, if later in some expression being evaluated the sym-
bols abc(u,p*q,123) appear, the operations of the procedure body will be
carried out as ifX had the same value asU does,Y the same value asp*q does,
andZ the value 123. The values ofX, Y, Z, after the procedure body operations are
completed are unchanged. So, normally, are the values ofU, P, Q, and (of course)
123. (This is technically referred to as call by value.)

The reader will have noted the wordnormallya few lines earlier. The call by value
protections can be bypassed if necessary, as described elsewhere.



14.2. PROCEDURE BODY 153

14.2 Procedure Body

Following the delimiter that ends the procedure heading must be asinglestatement
defining the action to be performed or the value to be delivered. A terminator must
follow the statement. If it is a semicolon, the name of the procedure just defined is
printed. It is not printed if a dollar sign is used.

If the result wanted is given by a formula of some kind, the body is just that for-
mula, using the variables in the procedure heading.

Simple Example:

If f(x) is to mean(x+5)*(x+6)/(x+7) , the entire procedure definition could
read

procedure f x; (x+5)*(x+6)/(x+7);

Then f(10) would evaluate to 240/17,f(a-6) to A*(A-1)/(A+1) , and so
on.

More Complicated Example:

Suppose we need a functionp(n,x) that, for any positive integerN, is the Legen-
dre polynomial of ordern. We can define this operator using the textbook formula
defining these functions:

pn(x) =
1
n!

dn

dyn

1

(y2 − 2xy + 1)
1
2

∣∣∣∣∣
y=0

Put into words, the Legendre polynomialpn(x) is the result of substitutingy = 0
in thenth partial derivative with respect toy of a certain fraction involvingx and
y, then dividing that byn!.

This verbal formula can easily be written in REDUCE:

procedure p(n,x);
sub(y=0,df(1/(yˆ2-2*x*y+1)ˆ(1/2),y,n))

/(for i:=1:n product i);

Having input this definition, the expression evaluation

2p(2,w);

would result in the output

2
3*W - 1 .



154 CHAPTER 14. PROCEDURES

If the desired process is best described as a series of steps, then a group or com-
pound statement can be used.



14.3. USING LET INSIDE PROCEDURES 155

Example:

The above Legendre polynomial example can be rewritten as a series of steps in-
stead of a single formula as follows:

procedure p(n,x);
begin scalar seed,deriv,top,fact;

seed:=1/(yˆ2 - 2*x*y +1)ˆ(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

Procedures may also be defined recursively. In other words, the procedure body can
include references to the procedure name itself, or to other procedures that them-
selves reference the given procedure. As an example, we can define the Legendre
polynomial through its standard recurrence relation:

procedure p(n,x);
if n<0 then rederr "Invalid argument to P(N,X)"

else if n=0 then 1
else if n=1 then x
else ((2*n-1)*x*p(n-1,x)-(n-1)*p(n-2,x))/n;

The operatorREDERRin the above example provides for a simple error exit from
an algebraic procedure (and also a block). It can take a string as argument.

It should be noted however that all the above definitions ofp(n,x) are quite
inefficient if extensive use is to be made of such polynomials, since each call ef-
fectively recomputes all lower order polynomials. It would be better to store these
expressions in an array, and then use say the recurrence relation to compute only
those polynomials that have not already been derived. We leave it as an exercise
for the reader to write such a definition.

14.3 Using LET Inside Procedures

By using LET instead of an assignment in the procedure body it is possible to
bypass the call-by-value protection. IfX is a formal parameter or local variable
of the procedure (i.e. is in the heading or in a local declaration), andLET is used
instead of:= to make an assignment toX, e.g.

let x = 123;



156 CHAPTER 14. PROCEDURES

then it is the variable that is the value ofX that is changed. This effect also occurs
with local variables defined in a block. If the value ofX is not a variable, but a
more general expression, then it is that expression that is used on the left-hand side
of theLET statement. For example, ifX had the valuep*q , it is as if let p*q =
123 had been executed.

14.4 LET Rules as Procedures

TheLET statement offers an alternative syntax and semantics for procedure defi-
nition.

In place of

procedure abc(x,y,z); <procedure body>;

one can write

for all x,y,z let abc(x,y,z) = <procedure body>;

There are several differences to note.

If the procedure body contains an assignment to one of the formal parameters, e.g.

x := 123;

in thePROCEDUREcase it is a variable holding a copy of the first actual argument
that is changed. The actual argument is not changed.

In the LET case, the actual argument is changed. Thus, ifABC is defined using
LET, andabc(u,v,w) is evaluated, the value ofU changes to 123. That is, the
LET form of definition allows the user to bypass the protections that are enforced
by the call by value conventions of standardPROCEDUREdefinitions.

Example:We take our earlierFACTORIALprocedure and write it as aLET state-
ment.

for all n let factorial n =
begin scalar m,s;
m:=1; s:=n;

l1: if s=0 then return m;
m:=m*s;
s:=s-1;
go to l1

end;



14.5. REMEMBER STATEMENT 157

The reader will notice that we introduced a new local variable,S, and set it equal
to N. The original form of the procedure contained the statementn:=n-1; . If the
user asked for the value offactorial(5) thenNwould correspond to, not just
have the value of, 5, and REDUCE would object to trying to execute the statement
5 := 5− 1.

If PQRis a procedure with no parameters,

procedure pqr;
<procedure body>;

it can be written as aLET statement quite simply:

let pqr = <procedure body>;

To call procedurePQR, if defined in the latter form, the empty parentheses would
not be used: usePQRnotPQR() where a call on the procedure is needed.

The two notations for a procedure with no arguments can be combined.PQRcan
be defined in the standardPROCEDUREform. Then aLET statement

let pqr = pqr();

would allow a user to usePQRinstead ofPQR() in calling the procedure.

A feature available withLET-defined procedures and not with procedures defined
in the standard way is the possibility of defining partial functions.

for all x such that numberp x let uvw(x)=<procedure body>;

Now UVWof an integer would be calculated as prescribed by the procedure body,
while UVWof a general argument, such asZ or p+q (assuming these evaluate to
themselves) would simply stayuvw(z) or uvw(p+q) as the case may be.

14.5 REMEMBER Statement

Setting the remember option for an algebraic procedure by

REMEMBER (PROCNAME:procedure);

saves all intermediate results of such procedure evaluations, including recursive
calls. Subsequent calls to the procedure can then be determined from the saved
results, and thus the number of evaluations (or the complexity) can be reduced.
This mode of evalation costs extra memory, of course. In addition, the procedure
must be free of side–effects.



158 CHAPTER 14. PROCEDURES

The following examples show the effect of the remember statement on two well–
known examples.

procedure H(n); % Hofstadter’s function
if numberp n then
<< cnn := cnn +1; % counts the calls
if n < 3 then 1 else H(n-H(n-1))+H(n-H(n-2))>>;

remember h;

> << cnn := 0; H(100); cnn>>;

100

% H has been called 100 times only.

procedure A(m,n); % Ackermann function

if m=0 then n+1 else
if n=0 then A(m-1,1) else
A(m-1,A(m,n-1));

remember a;

A(3,3);



Chapter 15

User Contributed Packages

The complete REDUCE system includes a number of packages contributed by
users that are provided as a service to the user community. Questions regarding
these packages should be directed to their individual authors.

All such packages have been precompiled as part of the installation process. How-
ever, many must be specifically loaded before they can be used. (Those that are
loaded automatically are so noted in their description.) You should also consult the
user notes for your particular implementation for further information on whether
this is necessary. If it is, the relevant command isLOADPACKAGE, which takes a
list of one or more package names as argument, for example:

load_package algint;

although this syntax may vary from implementation to implementation.

Nearly all these packages come with separate documentation and test files (except
those noted here that have no additional documentation), which is included, along
with the source of the package, in the REDUCE system distribution. These items
should be studied for any additional details on the use of a particular package.

The packages available in the current release of REDUCE are as follows:

15.1 ALGINT: Integration of square roots

This package, which is an extension of the basic integration package distributed
with REDUCE, will analytically integrate a wide range of expressions involving
square roots where the answer exists in that class of functions. It is an implemen-
tation of the work described in J.H. Davenport, “On the Integration of Algebraic
Functions”, LNCS 102, Springer Verlag, 1981. Both this and the source code

159



160 CHAPTER 15. USER CONTRIBUTED PACKAGES

should be consulted for a more detailed description of this work.

Once theALGINT package has been loaded, usingLOADPACKAGE, one enters
an expression for integration, as with the regular integrator, for example:

int(sqrt(x+sqrt(x**2+1))/x,x);

If one later wishes to integrate expressions without using the facilities of this pack-
age, the switchALGINT should be turned off. This is turned on automatically
when the package is loaded.

The switches supported by the standard integrator (e.g.,TRINT) are also sup-
ported by this package. In addition, the switchTRA, if on, will give further tracing
information about the specific functioning of the algebraic integrator.

There is no additional documentation for this package.

Author: James H. Davenport.

15.2 APPLYSYM: Infinitesimal symmetries of differen-
tial equations

This package provides programs APPLYSYM, QUASILINPDE and DETRAFO
for applying infinitesimal symmetries of differential equations, the generalization
of special solutions and the calculation of symmetry and similarity variables.

Author: Thomas Wolf.

15.3 ARNUM: An algebraic number package

This package provides facilities for handling algebraic numbers as polynomial co-
efficients in REDUCE calculations. It includes facilities for introducing indetermi-
nates to represent algebraic numbers, for calculating splitting fields, and for factor-
ing and finding greatest common divisors in such domains.

Author: Eberhard Schrüfer.

15.4 ASSIST: Useful utilities for various applications

ASSIST contains a large number of additional general purpose functions that allow
a user to better adapt REDUCE to various calculational strategies and to make the
programming task more straightforward and more efficient.

Author: Hubert Caprasse.



15.5. AVECTOR: A VECTOR ALGEBRA AND CALCULUS PACKAGE 161

15.5 AVECTOR: A vector algebra and calculus package

This package provides REDUCE with the ability to perform vector algebra using
the same notation as scalar algebra. The basic algebraic operations are supported,
as are differentiation and integration of vectors with respect to scalar variables,
cross product and dot product, component manipulation and application of scalar
functions (e.g. cosine) to a vector to yield a vector result.

Author: David Harper.

15.6 BOOLEAN: A package for boolean algebra

This package supports the computation with boolean expressions in the proposi-
tional calculus. The data objects are composed from algebraic expressions con-
nected by the infix boolean operatorsand, or, implies, equiv, and the unary prefix
operatornot. Booleanallows you to simplify expressions built from these oper-
ators, and to test properties like equivalence, subset property etc.

Author: Herbert Melenk.

15.7 CALI: A package for computational commutative
algebra

This package contains algorithms for computations in commutative algebra closely
related to the Gr̈obner algorithm for ideals and modules. Its heart is a new imple-
mentation of the Gr̈obner algorithm that also allows for the computation of syzy-
gies. This implementation is also applicable to submodules of free modules with
generators represented as rows of a matrix.

Author: Hans-Gert Gr̈abe.

15.8 CAMAL: Calculations in celestial mechanics

This packages implements in REDUCE the Fourier transform procedures of the
CAMAL package for celestial mechanics.

Author: John P. Fitch.



162 CHAPTER 15. USER CONTRIBUTED PACKAGES

15.9 CHANGEVR: Change of Independent Variable(s) in
DEs

This package provides facilities for changing the independent variables in a differ-
ential equation. It is basically the application of the chain rule.

Author: G.Üçoluk.

15.10 COMPACT: Package for compacting expressions

COMPACT is a package of functions for the reduction of a polynomial in the pres-
ence of side relations. COMPACT applies the side relations to the polynomial so
that an equivalent expression results with as few terms as possible. For example,
the evaluation of

compact(s*(1-sin xˆ2)+c*(1-cos xˆ2)+sin xˆ2+cos xˆ2,
{cos xˆ2+sin xˆ2=1});

yields the result

2 2
SIN(X) *C + COS(X) *S + 1 .

Author: Anthony C. Hearn.

15.11 CRACK: Solving overdetermined systems of PDEs
or ODEs

CRACK is a package for solving overdetermined systems of partial or ordinary
differential equations (PDEs, ODEs). Examples of programs which make use
of CRACK (finding symmetries of ODEs/PDEs, first integrals, an equivalent La-
grangian or a ”differential factorization” of ODEs) are included. The application
of symmetries is also possible by using the APPLYSYM package.

Authors: Andreas Brand, Thomas Wolf.



15.12. CVIT: FAST CALCULATION OF DIRAC GAMMA MATRIX TRACES163

15.12 CVIT: Fast calculation of Dirac gamma matrix
traces

This package provides an alternative method for computing traces of Dirac gamma
matrices, based on an algorithm by Cvitanovich that treats gamma matrices as 3-j
symbols.

Authors: V.Ilyin, A.Kryukov, A.Rodionov, A.Taranov.

15.13 DEFINT: A definite integration interface

This package finds the definite integral of an expression in a stated interval. It
uses several techniques, including an innovative approach based on the Meijer G-
function, and contour integration.

Authors: Kerry Gaskell, Stanley M. Kameny, Winfried Neun.

15.14 DESIR: Differential linear homogeneous equation
solutions in the neighborhood of irregular and reg-
ular singular points

This package enables the basis of formal solutions to be computed for an ordinary
homogeneous differential equation with polynomial coefficients over Q of any or-
der, in the neighborhood of zero (regular or irregular singular point, or ordinary
point).

Documentation for this package is in plain text.

Authors: C. Dicrescenzo, F. Richard-Jung, E. Tournier.

15.15 DFPART: Derivatives of generic functions

This package supports computations with total and partial derivatives of formal
function objects. Such computations can be useful in the context of differential
equations or power series expansions.

Author: Herbert Melenk.



164 CHAPTER 15. USER CONTRIBUTED PACKAGES

15.16 DUMMY: Canonical form of expressions with dummy
variables

This package allows a user to find the canonical form of expressions involving
dummy variables. In that way, the simplification of polynomial expressions can be
fully done. The indeterminates are general operator objects endowed with as few
properties as possible. In that way the package may be used in a large spectrum of
applications.

Author: Alain Dresse.

15.17 EXCALC: A differential geometry package

EXCALC is designed for easy use by all who are familiar with the calculus of Mod-
ern Differential Geometry. The program is currently able to handle scalar-valued
exterior forms, vectors and operations between them, as well as non-scalar valued
forms (indexed forms). It is thus an ideal tool for studying differential equations,
doing calculations in general relativity and field theories, or doing simple things
such as calculating the Laplacian of a tensor field for an arbitrary given frame.

Author: Eberhard Schrüfer.

15.18 FIDE: Finite difference method for partial differ-
ential equations

This package performs automation of the process of numerically solving partial
differential equations systems (PDES) by means of computer algebra. For PDES
solving, the finite difference method is applied. The computer algebra system RE-
DUCE and the numerical programming language FORTRAN are used in the pre-
sented methodology. The main aim of this methodology is to speed up the process
of preparing numerical programs for solving PDES. This process is quite often,
especially for complicated systems, a tedious and time consuming task.

Documentation for this package is in plain text.

Author: Richard Liska.

15.19 FPS: Automatic calculation of formal power series

This package can expand a specific class of functions into their corresponding
Laurent-Puiseux series.



15.20. GENTRAN: A CODE GENERATION PACKAGE 165

Authors: Wolfram Koepf and Winfried Neun.

15.20 GENTRAN: A code generation package

GENTRAN is an automatic code GENerator and TRANslator. It constructs com-
plete numerical programs based on sets of algorithmic specifications and symbolic
expressions. Formatted FORTRAN, RATFOR, PASCAL or C code can be gener-
ated through a series of interactive commands or under the control of a template
processing routine. Large expressions can be automatically segmented into subex-
pressions of manageable size, and a special file-handling mechanism maintains
stacks of open I/O channels to allow output to be sent to any number of files si-
multaneously and to facilitate recursive invocation of the whole code generation
process.

Author: Barbara L. Gates.

15.21 GNUPLOT: Display of functions and surfaces

This package is an interface to the popular GNUPLOT package. It allows you to
display functions in 2D and surfaces in 3D on a variety of output devices including
X terminals, PC monitors, and postscript and Latex printer files.

NOTE: The GNUPLOT package may not be included in all versions of REDUCE.

Author: Herbert Melenk.

15.22 GROEBNER: A Gröbner basis package

GROEBNER is a package for the computation of Gröbner Bases using the Buch-
berger algorithm and related methods for polynomial ideals and modules. It can be
used over a variety of different coefficient domains, and for different variable and
term orderings.

Gröbner Bases can be used for various purposes in commutative algebra, e.g. for
elimination of variables, converting surd expressions to implicit polynomial form,
computation of dimensions, solution of polynomial equation systems etc. The
package is also used internally by theSOLVE operator.

Authors: Herbert Melenk, H.M. M̈oller and Winfried Neun.



166 CHAPTER 15. USER CONTRIBUTED PACKAGES

15.23 IDEALS: Arithmetic for polynomial ideals

This package implements the basic arithmetic for polynomial ideals by exploiting
the Gr̈obner bases package of REDUCE. In order to save computing time all inter-
mediate Gr̈obner bases are stored internally such that time consuming repetitions
are inhibited.

Author: Herbert Melenk.

15.24 INEQ: Support for solving inequalities

This package supports the operatorineq solvethat tries to solves single inequalities
and sets of coupled inequalities.

Author: Herbert Melenk.

15.25 INVBASE: A package for computing involutive
bases

Involutive bases are a new tool for solving problems in connection with multivari-
ate polynomials, such as solving systems of polynomial equations and analyzing
polynomial ideals. An involutive basis of polynomial ideal is nothing but a special
form of a redundant Gröbner basis. The construction of involutive bases reduces
the problem of solving polynomial systems to simple linear algebra.

Authors: A.Yu. Zharkov and Yu.A. Blinkov.

15.26 LAPLACE: Laplace transforms

This package can calculate ordinary and inverse Laplace transforms of expressions.
Documentation is in plain text.

Authors: C. Kazasov, M. Spiridonova, V. Tomov.

15.27 LIE: Functions for the classification of real n-dimensional
Lie algebras

LIE is a package of functions for the classification of real n-dimensional Lie al-
gebras. It consists of two modules:liendmc1 and lie1234. With the help of the



15.28. LIMITS: A PACKAGE FOR FINDING LIMITS 167

functions in theliendmcl module, real n-dimensional Lie algebrasL with a derived
algebraL(1) of dimension 1 can be classified.

Authors: Carsten and Franziska Schöbel.

15.28 LIMITS: A package for finding limits

LIMITS is a fast limit package for REDUCE for functions which are continuous
except for computable poles and singularities, based on some earlier work by Ian
Cohen and John P. Fitch. The Truncated Power Series package is used for non-
critical points, at which the value of the function is the constant term in the expan-
sion around that point. L’Ĥopital’s rule is used in critical cases, with preprocessing
of ∞ −∞ forms and reformatting of product forms in order to be able to apply
l’H ôpital’s rule. A limited amount of bounded arithmetic is also employed where
applicable.

This package defines aLIMIT operator, called with the syntax:

LIMIT(EXPRN:algebraic,VAR:kernel,LIMPOINT:algebraic):
algebraic.

For example:

limit(x*sin(1/x),x,infinity) -> 1
limit(sin x/xˆ2,x,0) -> INFINITY

Direction-dependent limit operatorsLIMIT!+ andLIMIT!- are also defined.

This package loads automatically.

Author: Stanley L. Kameny.

15.29 LINALG: Linear algebra package

This package provides a selection of functions that are useful in the world of linear
algebra.

Author: Matt Rebbeck.

15.30 MODSR: Modular solve and roots

This package supports solve (MSOLVE) and roots (MROOTS) operators for
modular polynomials and modular polynomial systems. The moduli need not be



168 CHAPTER 15. USER CONTRIBUTED PACKAGES

primes. MSOLVE requires a modulus to be set. MROOTS takes the modulus as
a second argument. For example:

on modular; setmod 8;
m_solve(2x=4); -> {{X=2},{X=6}}
m_solve({xˆ2-yˆ3=3});

-> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}
m_solve({x=2,xˆ2-yˆ3=3}); -> {{X=2,Y=1}}
off modular;
m_roots(xˆ2-1,8); -> {1,3,5,7}
m_roots(xˆ3-x,7); -> {0,1,6}

There is no further documentation for this package.

Author: Herbert Melenk.

15.31 NCPOLY: Non–commutative polynomial ideals

This package allows the user to set up automatically a consistent environment for
computing in an algebra where the non–commutativity is defined by Lie-bracket
commutators. The package uses the REDUCEnoncommechanism for elementary
polynomial arithmetic; the commutator rules are automatically computed from the
Lie brackets.

Authors: Herbert Melenk and Joachim Apel.

15.32 NORMFORM: Computation of matrix normal forms

This package contains routines for computing the following normal forms of ma-
trices:

• smithexint

• smithex

• frobenius

• ratjordan

• jordansymbolic

• jordan.

Author: Matt Rebbeck.



15.33. NUMERIC: SOLVING NUMERICAL PROBLEMS 169

15.33 NUMERIC: Solving numerical problems

This package implements basic algorithms of numerical analysis. These include:

• solution of algebraic equations by Newton’s method

num_solve({sin x=cos y, x + y = 1},{x=1,y=2})

• solution of ordinary differential equations

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5)

• bounds of a function over an interval

bounds(sin x+x,x=(1 .. 2));

• minimizing a function (Fletcher Reeves steepest descent)

num_min(sin(x)+x/5, x);

• Chebyshev curve fitting

chebyshev_fit(sin x/x,x=(1 .. 3),5);

• numerical quadrature

num_int(sin x,x=(0 .. pi));

Author: Herbert Melenk.

15.34 ODESOLVE:
Ordinary differential equations solver

The ODESOLVE package is a solver for ordinary differential equations. At the
present time it has very limited capabilities. It can handle only a single scalar
equation presented as an algebraic expression or equation, and it can solve only
first-order equations of simple types, linear equations with constant coefficients and
Euler equations. These solvable types are exactly those for which Lie symmetry
techniques give no useful information. For example, the evaluation of

depend(y,x);
odesolve(df(y,x)=x**2+e**x,y,x);



170 CHAPTER 15. USER CONTRIBUTED PACKAGES

yields the result

X 3
3*E + 3*ARBCONST(1) + X

{Y=---------------------------}
3

Main Author: Malcolm A.H. MacCallum.

Other contributors: Francis Wright, Alan Barnes.

15.35 ORTHOVEC: Manipulation of scalars and vectors

ORTHOVEC is a collection of REDUCE procedures and operations which provide
a simple-to-use environment for the manipulation of scalars and vectors. Opera-
tions include addition, subtraction, dot and cross products, division, modulus, div,
grad, curl, laplacian, differentiation, integration, and Taylor expansion.

Author: James W. Eastwood.

15.36 PHYSOP: Operator calculus in quantum theory

This package has been designed to meet the requirements of theoretical physicists
looking for a computer algebra tool to perform complicated calculations in quan-
tum theory with expressions containing operators. These operations consist mainly
of the calculation of commutators between operator expressions and in the evalua-
tions of operator matrix elements in some abstract space.

Author: Mathias Warns.

15.37 PM: A REDUCE pattern matcher

PM is a general pattern matcher similar in style to those found in systems such
as SMP and Mathematica, and is based on the pattern matcher described in Kevin
McIsaac, “Pattern Matching Algebraic Identities”, SIGSAM Bulletin, 19 (1985),
4-13.

Documentation for this package is in plain text.

Author: Kevin McIsaac.



15.38. RANDPOLY: A RANDOM POLYNOMIAL GENERATOR 171

15.38 RANDPOLY: A random polynomial generator

This package is based on a port of the Maple random polynomial generator together
with some support facilities for the generation of random numbers and anonymous
procedures.

Author: Francis J. Wright.

15.39 REACTEQN: Support for chemical reaction equat-
ion systems

This package allows a user to transform chemical reaction systems into ordinary
differential equation systems (ODE) corresponding to the laws of pure mass action.

Documentation for this package is in plain text.

Author: Herbert Melenk.

15.40 RESET: Code to reset REDUCE to its initial state

This package defines a command RESETREDUCE that works through the history
of previous commands, and clears any values which have been assigned, plus any
rules, arrays and the like. It also sets the various switches to their initial values. It
is not complete, but does work for most things that cause a gradual loss of space. It
would be relatively easy to make it interactive, so allowing for selective resetting.

There is no further documentation on this package.

Author: John Fitch.

15.41 RESIDUE: A residue package

This package supports the calculation of residues of arbitrary expressions.

Author: Wolfram Koepf.

15.42 RLFI: REDUCE LaTeX formula interface

This package adds LATEX syntax to REDUCE. Text generated by REDUCE in this
mode can be directly used in LATEX source documents. Various mathematical con-
structions are supported by the interface including subscripts, superscripts, font



172 CHAPTER 15. USER CONTRIBUTED PACKAGES

changing, Greek letters, divide-bars, integral and sum signs, derivatives, and so on.

Author: Richard Liska.

15.43 ROOTS: A REDUCE root finding package

This root finding package can be used to find some or all of the roots of a univariate
polynomial with real or complex coefficients, to the accuracy specified by the user.

It is designed so that it can be used as an independent package, or it may be called
from SOLVEif ROUNDEDis on. For example, the evaluation of

on rounded,complex;
solve(x**3+x+5,x);

yields the result

{X= - 1.51598,X=0.75799 + 1.65035*I,X=0.75799 - 1.65035*I}

This package loads automatically.

Author: Stanley L. Kameny.

15.44 RSOLVE:
Rational/integer polynomial solvers

This package provides operators that compute the exact rational zeros of a single
univariate polynomial using fast modular methods. The algorithm used is that
described by R. Loos (1983): Computing rational zeros of integral polynomials by
p-adic expansion,SIAM J. Computing, 12, 286–293.

Author: Francis J. Wright.

15.45 SCOPE: REDUCE source code optimization pack-
age

SCOPE is a package for the production of an optimized form of a set of expres-
sions. It applies an heuristic search for common (sub)expressions to almost any set
of proper REDUCE assignment statements. The output is obtained as a sequence
of assignment statements. GENTRAN is used to facilitate expression output.

Author: J.A. van Hulzen.



15.46. SETS: A BASIC SET THEORY PACKAGE 173

15.46 SETS: A basic set theory package

The SETS package provides algebraic-mode support for set operations on lists re-
garded as sets (or representing explicit sets) and on implicit sets represented by
identifiers.

Author: Francis J. Wright.

15.47 SPDE: Finding symmetry groups of PDE’s

The package SPDE provides a set of functions which may be used to determine
the symmetry group of Lie- or point-symmetries of a given system of partial dif-
ferential equations. In many cases the determining system is solved completely
automatically. In other cases the user has to provide additional input information
for the solution algorithm to terminate.

Author: Fritz Schwarz.

15.48 SPECFN: Package for special functions

This special function package is separated into two portions to make it easier to
handle. The packages are called SPECFN and SPECFN2. The first one is more
general in nature, whereas the second is devoted to special special functions. Doc-
umentation for the first package can be found in the file specfn.tex in the “doc”
directory, and examples in specfn.tst and specfmor.tst in the examples directory.

The package SPECFN is designed to provide algebraic and numerical manipula-
tions of several common special functions, namely:

• Bernoulli Numbers and Euler Numbers;

• Stirling Numbers;

• Binomial Coefficients;

• Pochhammer notation;

• The Gamma function;

• The Psi function and its derivatives;

• The Riemann Zeta function;

• The Bessel functions J and Y of the first and second kind;



174 CHAPTER 15. USER CONTRIBUTED PACKAGES

• The modified Bessel functions I and K;

• The Hankel functions H1 and H2;

• The Kummer hypergeometric functions M and U;

• The Beta function, and Struve, Lommel and Whittaker functions;

• The Airy functions;

• The Exponential Integral, the Sine and Cosine Integrals;

• The Hyperbolic Sine and Cosine Integrals;

• The Fresnel Integrals and the Error function;

• The Dilog function;

• Hermite Polynomials;

• Jacobi Polynomials;

• Legendre Polynomials;

• Spherical and Solid Harmonics;

• Laguerre Polynomials;

• Chebyshev Polynomials;

• Gegenbauer Polynomials;

• Euler Polynomials;

• Bernoulli Polynomials.

• Jacobi Elliptic Functions and Integrals;

• 3j symbols, 6j symbols and Clebsch Gordan coefficients;

Author: Chris Cannam, with contributions from Winfried Neun, Herbert Melenk,
Victor Adamchik, Francis Wright and several others.

15.49 SPECFN2: Package for special special functions

This package provides algebraic manipulations of generalized hypergeometric
functions and Meijer’s G function. Generalized hypergeometric functions are sim-
plified towards special functions and Meijer’s G function is simplified towards spe-
cial functions or generalized hypergeometric functions.

Author: Victor Adamchik, with major updates by Winfried Neun.



15.50. SUM: A PACKAGE FOR SERIES SUMMATION 175

15.50 SUM: A package for series summation

This package implements the Gosper algorithm for the summation of series. It
defines operatorsSUMandPROD. The operatorSUMreturns the indefinite or defi-
nite summation of a given expression, andPRODreturns the product of the given
expression.

This package loads automatically.

Author: Fujio Kako.

15.51 SYMMETRY: Operations on symmetric matrices

This package computes symmetry-adapted bases and block diagonal forms of ma-
trices which have the symmetry of a group. The package is the implementation
of the theory of linear representations for small finite groups such as the dihedral
groups.

Author: Karin Gatermann.

15.52 TAYLOR: Manipulation of Taylor series

This package carries out the Taylor expansion of an expression in one or more
variables and efficient manipulation of the resulting Taylor series. Capabilities
include basic operations (addition, subtraction, multiplication and division) and
also application of certain algebraic and transcendental functions.

Author: Rainer Scḧopf.

15.53 TPS: A truncated power series package

This package implements formal Laurent series expansions in one variable using
the domain mechanism of REDUCE. This means that power series objects can be
added, multiplied, differentiated etc., like other first class objects in the system.
A lazy evaluation scheme is used and thus terms of the series are not evaluated
until they are required for printing or for use in calculating terms in other power
series. The series are extendible giving the user the impression that the full infinite
series is being manipulated. The errors that can sometimes occur using series that
are truncated at some fixed depth (for example when a term in the required series
depends on terms of an intermediate series beyond the truncation depth) are thus
avoided.



176 CHAPTER 15. USER CONTRIBUTED PACKAGES

Authors: Alan Barnes and Julian Padget.

15.54 TRI: TeX REDUCE interface

This package provides facilities written in REDUCE-Lisp for typesetting RE-
DUCE formulas using TEX. The TEX-REDUCE-Interface incorporates three levels
of TEXoutput: without line breaking, with line breaking, and with line breaking
plus indentation.

Author: Werner Antweiler.

15.55 TRIGSIMP: Simplification and factorization of trigono-
metric and hyperbolic functions

TRIGSIMP is a useful tool for all kinds of trigonometric and hyperbolic simpli-
fication and factorization. There are three procedures included in TRIGSIMP:
trigsimp, trigfactorize and triggcd. The first is for finding simplifications of
trigonometric or hyperbolic expressions with many options, the second for factoriz-
ing them and the third for finding the greatest common divisor of two trigonometric
or hyperbolic polynomials.

Author: Wolfram Koepf.

15.56 WU: Wu algorithm for polynomial systems

This is a simple implementation of the Wu algorithm implemented in REDUCE
working directly from “A Zero Structure Theorem for Polynomial-Equations-
Solving,” Wu Wen-tsun, Institute of Systems Science, Academia Sinica, Beijing.

Author: Russell Bradford.

15.57 XCOLOR: Color factor in some field theories

This package calculates the color factor in non-abelian gauge field theories using
an algorithm due to Cvitanovich.

Documentation for this package is in plain text.

Author: A. Kryukov.



15.58. XIDEAL: GRÖBNER BASES FOR EXTERIOR ALGEBRA 177

15.58 XIDEAL: Gr öbner Bases for exterior algebra

XIDEAL constructs Gr̈obner bases for solving the left ideal membership problem:
Gröbner left ideal bases or GLIBs. For graded ideals, where each form is homo-
geneous in degree, the distinction between left and right ideals vanishes. Further-
more, if the generating forms are all homogeneous, then the Gröbner bases for the
non-graded and graded ideals are identical. In this case, XIDEAL is able to save
time by truncating the Gröbner basis at some maximum degree if desired.

Author: David Hartley.

15.59 ZEILBERG: A package for indefinite and definite
summation

This package is a careful implementation of the Gosper and Zeilberger algorithms
for indefinite and definite summation of hypergeometric terms, respectively. Ex-
tensions of these algorithms are also included that are valid for ratios of products
of powers, factorials,Γ function terms, binomial coefficients, and shifted factorials
that are rational-linear in their arguments.

Authors: Gregor Sẗolting and Wolfram Koepf.

15.60 ZTRANS:Z-transform package

This package is an implementation of theZ-transform of a sequence. This is the
discrete analogue of the Laplace Transform.

Authors: Wolfram Koepf and Lisa Temme.



178 CHAPTER 15. USER CONTRIBUTED PACKAGES



Chapter 16

Symbolic Mode

At the system level, REDUCE is based on a version of the programming language
Lisp known asStandard Lispwhich is described in J. Marti, Hearn, A. C., Griss,
M. L. and Griss, C., “Standard LISP Report” SIGPLAN Notices, ACM, New York,
14, No 10 (1979) 48-68. We shall assume in this section that the reader is familiar
with the material in that paper. This also assumes implicitly that the reader has
a reasonable knowledge about Lisp in general, say at the level of the LISP 1.5
Programmer’s Manual (McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T.
P. and Levin, M. I., “LISP 1.5 Programmer’s Manual”, M.I.T. Press, 1965) or any
of the books mentioned at the end of this section. Persons unfamiliar with this
material will have some difficulty understanding this section.

Although REDUCE is designed primarily for algebraic calculations, its source lan-
guage is general enough to allow for a full range of Lisp-like symbolic calculations.
To achieve this generality, however, it is necessary to provide the user with two
modes of evaluation, namely an algebraic mode and a symbolic mode. To enter
symbolic mode, the user typessymbolic; (or lisp; ) and to return to algebraic
mode one typesalgebraic; . Evaluations proceed differently in each mode so
the user is advised to check what mode he is in if a puzzling error arises. He can
find his mode by typing

eval_mode;

The current mode will then be printed asALGEBRAICor SYMBOLIC.

Expression evaluation may proceed in either mode at any level of a calculation,
provided the results are passed from mode to mode in a compatible manner. One
simply prefixes the relevant expression by the appropriate mode. If the mode name
prefixes an expression at the top level, it will then be handled as if the global system
mode had been changed for the scope of that particular calculation.

For example, if the current mode isALGEBRAIC, then the commands

179



180 CHAPTER 16. SYMBOLIC MODE

symbolic car ’(a);
x+y;

will cause the first expression to be evaluated and printed in symbolic mode and
the second in algebraic mode. Only the second evaluation will thus affect the
expression workspace. On the other hand, the statement

x + symbolic car ’(12);

will result in the algebraic valueX+12.

The use ofSYMBOLIC(and equivalentlyALGEBRAIC) in this manner is the same
as any operator. That means that parentheses could be omitted in the above ex-
amples since the meaning is obvious. In other cases, parentheses must be used, as
in

symbolic(x := ’a);

Omitting the parentheses, as in

symbolic x := a;

would be wrong, since it would parse as

symbolic(x) := a;

For convenience, it is assumed that any operator whosefirst argument is quoted is
being evaluated in symbolic mode, regardless of the mode in effect at that time.
Thus, the first example above could be equally well written:

car ’(a);

Except where explicit limitations have been made, most REDUCE algebraic con-
structions carry over into symbolic mode. However, there are some differences.
First, expression evaluation now becomes Lisp evaluation. Secondly, assignment
statements are handled differently, as we shall discuss shortly. Thirdly, local vari-
ables and array elements are initialized toNIL rather than0. (In fact, any variables
not explicitly declaredINTEGERare also initialized toNIL in algebraic mode, but
the algebraic evaluator recognizesNIL as0.) Finally, function definitions follow
the conventions of Standard Lisp.

To begin with, we mention a few extensions to our basic syntax which are designed
primarily if not exclusively for symbolic mode.



16.1. SYMBOLIC INFIX OPERATORS 181

16.1 Symbolic Infix Operators

There are three binary infix operators in REDUCE intended for use in symbolic
mode, namely .(CONS), EQ and MEMQ. The precedence of these operators
was given in another section.

16.2 Symbolic Expressions

These consist of scalar variables and operators and follow the normal rules of the
Lisp meta language.

Examples:

x
car u . reverse v
simp (u+vˆ2)

16.3 Quoted Expressions

Because symbolic evaluation requires that each variable or expression has a value,
it is necessary to add to REDUCE the concept of a quoted expression by analogy
with the LispQUOTEfunction. This is provided by the single quote mark’ . For
example,

’a represents the Lisp S-expression(quote a)
’(a b c) represents the Lisp S-expression(quote (a b c))

Note, however, that strings are constants and therefore evaluate to themselves in
symbolic mode. Thus, to print the string"A String" , one would write

prin2 "A String";

Within a quoted expression, identifier syntax rules are those of REDUCE. Thus
(A !. B) is the list consisting of the three elementsA, . , andB, whereas(A
. B) is the dotted pair ofA andB.

16.4 Lambda Expressions

LAMBDAexpressions provide the means for constructing LispLAMBDAexpres-
sions in symbolic mode. They may not be used in algebraic mode.



182 CHAPTER 16. SYMBOLIC MODE

Syntax:

<LAMBDA expression> ::=
LAMBDA <varlist><terminator><statement>

where

<varlist> ::= (<variable>,...,<variable>)

e.g.,

lambda (x,y); car x . cdr y;

is equivalent to the LispLAMBDAexpression

(lambda (x y) (cons (car x) (cdr y)))

The parentheses may be omitted in specifying the variable list if desired.

LAMBDAexpressions may be used in symbolic mode in place of prefix operators,
or as an argument of the reserved wordFUNCTION.

In those cases where aLAMBDAexpression is used to introduce local variables
to avoid recomputation, aWHEREstatement can also be used. For example, the
expression

(lambda (x,y); list(car x,cdr x,car y,cdr y))
(reverse u,reverse v)

can also be written

{car x,cdr x,car y,cdr y} where x=reverse u,y=reverse v

Where possible,WHEREsyntax is preferred toLAMBDAsyntax, since it is more
natural.

16.5 Symbolic Assignment Statements

In symbolic mode, if the left side of an assignment statement is a variable, aSETQ
of the right-hand side to that variable occurs. If the left-hand side is an expression,
it must be of the form of an array element, otherwise an error will result. For exam-
ple, x:=y translates into(SETQ X Y) whereasa(3) := 3 will be valid if A
has been previously declared a single dimensioned array of at least four elements.



16.6. FOR EACH STATEMENT 183

16.6 FOR EACH Statement

TheFOR EACHform of theFORstatement, designed for iteration down a list, is
more general in symbolic mode. Its syntax is:

FOR EACH ID:identifier {IN|ON} LST:list
{DO|COLLECT|JOIN|PRODUCT|SUM} EXPRN:S-expr

As in algebraic mode, if the keywordIN is used, iteration is on each element of the
list. With ON, iteration is on the whole list remaining at each point in the iteration.
As a result, we have the following equivalence between each form ofFOR EACH
and the various mapping functions in Lisp:

DO COLLECT JOIN
IN MAPC MAPCAR MAPCAN
ON MAP MAPLIST MAPCON

Example:To list each element of the list(a b c) :

for each x in ’(a b c) collect list x;

16.7 Symbolic Procedures

All the functions described in the Standard Lisp Report are available to users in
symbolic mode. Additional functions may also be defined as symbolic procedures.
For example, to define the Lisp functionASSOC, the following could be used:

symbolic procedure assoc(u,v);
if null v then nil

else if u = caar v then car v
else assoc(u, cdr v);

If the default mode were symbolic, thenSYMBOLICcould be omitted in the above
definition.MACROs may be defined by prefixing the keywordPROCEDUREby the
wordMACRO. (In fact, ordinary functions may be defined with the keywordEXPR
prefixingPROCEDUREas was used in the Standard Lisp Report.) For example, we
could define aMACRO CONSCONSby

symbolic macro procedure conscons l;
expand(cdr l,’cons);



184 CHAPTER 16. SYMBOLIC MODE

Another form of macro, theSMACROis also available. These are described in the
Standard Lisp Report. The Report also defines a function typeFEXPR. However,
its use is discouraged since it is hard to implement efficiently, and most uses can be
replaced by macros. At the present time, there are noFEXPRs in the core REDUCE
system.

16.8 Standard Lisp Equivalent of Reduce Input

A user can obtain the Standard Lisp equivalent of his REDUCE input by turning
on the switchDEFN(for definition). The system then prints the Lisp translation
of his input but does not evaluate it. Normal operation is resumed whenDEFNis
turned off.

16.9 Communicating with Algebraic Mode

One of the principal motivations for a user of the algebraic facilities of REDUCE to
learn about symbolic mode is that it gives one access to a wider range of techniques
than is possible in algebraic mode alone. For example, if a user wishes to use parts
of the system defined in the basic system source code, or refine their algebraic
code definitions to make them more efficient, then it is necessary to understand the
source language in fairly complete detail. Moreover, it is also necessary to know a
little more about the way REDUCE operates internally. Basically, REDUCE con-
siders expressions in two forms: prefix form, which follow the normal Lisp rules
of function composition, and so-called canonical form, which uses a completely
different syntax.

Once these details are understood, the most critical problem faced by a user is how
to make expressions and procedures communicate between symbolic and algebraic
mode. The purpose of this section is to teach a user the basic principles for this.

If one wants to evaluate an expression in algebraic mode, and then use that ex-
pression in symbolic mode calculations, or vice versa, the easiest way to do this
is to assign a variable to that expression whose value is easily obtainable in both
modes. To facilitate this, a declarationSHAREis available.SHAREtakes a list of
identifiers as argument, and marks these variables as having recognizable values in
both modes. The declaration may be used in either mode.

E.g.,

share x,y;

says thatX andY will receive values to be used in both modes.



16.9. COMMUNICATING WITH ALGEBRAIC MODE 185

If a SHAREdeclaration is made for a variable with a previously assigned algebraic
value, that value is also made available in symbolic mode.

16.9.1 Passing Algebraic Mode Values to Symbolic Mode

If one wishes to work with parts of an algebraic mode expression in symbolic
mode, one simply makes an assignment of a shared variable to the relevant expres-
sion in algebraic mode. For example, if one wishes to work with(a+b)ˆ2 , one
would say, in algebraic mode:

x := (a+b)ˆ2;

assuming thatX was declared shared as above. If we now change to symbolic mode
and say

x;

its value will be printed as a prefix form with the syntax:

(*SQ <standard quotient> T)

This particular format reflects the fact that the algebraic mode processor currently
likes to transfer prefix forms from command to command, but doesn’t like to re-
convert standard forms (which represent polynomials) and standard quotients back
to a true Lisp prefix form for the expression (which would result in excessive com-
putation). So*SQ is used to tell the algebraic processor that it is dealing with a
prefix form which is really a standard quotient and the second argument (T or NIL )
tells it whether it needs further processing (essentially, analready simplifiedflag).

So to get the true standard quotient form in symbolic mode, one needsCADRof the
variable. E.g.,

z := cadr x;

would store inZ the standard quotient form for(a+b)ˆ2 .

Once you have this expression, you can now manipulate it as you wish. To facilitate
this, a standard set of selectors and constructors are available for getting at parts of
the form. Those presently defined are as follows:



186 CHAPTER 16. SYMBOLIC MODE

REDUCE Selectors

DENR denominator of standard quotient

LC leading coefficient of polynomial

LDEG leading degree of polynomial

LPOW leading power of polynomial

LT leading term of polynomial

MVAR main variable of polynomial

NUMR numerator (of standard quotient)

PDEG degree of a power

RED reductum of polynomial

TC coefficient of a term

TDEG degree of a term

TPOW power of a term

REDUCE Constructors

.+ add a term to a polynomial

./ divide (two polynomials to get quotient)

.* multiply power by coefficient to produce term

.ˆ raise a variable to a power

For example, to find the numerator of the standard quotient above, one could say:

numr z;

or to find the leading term of the numerator:

lt numr z;

Conversion between various data structures is facilitated by the use of a set of
functions defined for this purpose. Those currently implemented include:



16.9. COMMUNICATING WITH ALGEBRAIC MODE 187

!*A2F convert an algebraic expression to a standard form. If result is
rational, an error results;

!*A2K converts an algebraic expression to a kernel. If this is not possible,
an error results;

!*F2A converts a standard form to an algebraic expression;

!*F2Q convert a standard form to a standard quotient;

!*K2F convert a kernel to a standard form;

!*K2Q convert a kernel to a standard quotient;

!*P2F convert a standard power to a standard form;

!*P2Q convert a standard power to a standard quotient;

!*Q2F convert a standard quotient to a standard form. If the quotient de-
nominator is not 1, an error results;

!*Q2K convert a standard quotient to a kernel. If this is not possible, an
error results;

!*T2F convert a standard term to a standard form

!*T2Q convert a standard term to a standard quotient.

16.9.2 Passing Symbolic Mode Values to Algebraic Mode

In order to pass the value of a shared variable from symbolic mode to algebraic
mode, the only thing to do is make sure that the value in symbolic mode is a
prefix expression. E.g., one uses(expt (plus a b) 2) for (a+b)ˆ2 , or
the format (*sq <standard quotient> t ) as described above. However, if
you have been working with parts of a standard form they will probably not be in
this form. In that case, you can do the following:

1. If it is a standard quotient, callPREPSQon it. This takes a standard quo-
tient as argument, and returns a prefix expression. Alternatively, you can
call MK!*SQ on it, which returns a prefix form like (*SQ <standard
quotient> T) and avoids translation of the expression into a true prefix
form.

2. If it is a standard form, callPREPFon it. This takes a standard form as
argument, and returns the equivalent prefix expression. Alternatively, you
can convert it to a standard quotient and then callMK!*SQ.

3. If it is a part of a standard form, you must usually first build up a standard
form out of it, and then go to step 2. The conversion functions described



188 CHAPTER 16. SYMBOLIC MODE

earlier may be used for this purpose. For example,

(a) If Z is an expression which is a term,!*T2F Z is a standard form.

(b) If Z is a standard power,!*P2F Z is a standard form.

(c) If Z is a variable, you can pass it direct to algebraic mode.

For example, to pass the leading term of(a+b)ˆ2 back to algebraic mode, one
could say:

y:= mk!*sq !*t2q lt numr z;

whereY has been declared shared as above. If you now go back to algebraic mode,
you can work withY in the usual way.

16.9.3 Complete Example

The following is the complete code for doing the above steps. The end result will
be that the square of the leading term of(a + b)2 is calculated.

share x,y; % declare X and Y as shared
x := (a+b)ˆ2; % store (a+b)ˆ2 in X
symbolic; % transfer to symbolic mode
z := cadr x; % store a true standard quo-
tient in Z
lt numr z; % print the leading term of the

% numerator of Z
y := mk!*sq !*t2q lt numr z; % store the prefix form of this

% leading term in Y
algebraic; % return to algebraic mode
yˆ2; % evaluate square of the lead-
ing term

% of (a+b)ˆ2

16.9.4 Defining Procedures for Intermode Communication

If one wishes to define a procedure in symbolic mode for use as an operator in alge-
braic mode, it is necessary to declare this fact to the system by using the declaration
OPERATORin symbolic mode. Thus

symbolic operator leadterm;

would declare the procedureLEADTERMas an algebraic operator. This declaration
mustbe made in symbolic mode as the effect in algebraic mode is different. The



16.10. RLISP ’88 189

value of such a procedure must be a prefix form.

The algebraic processor will pass arguments to such procedures in prefix form.
Therefore if you want to work with the arguments as standard quotients you must
first convert them to that form by using the functionSIMP!* . This function takes
a prefix form as argument and returns the evaluated standard quotient.

For example, if you want to define a procedureLEADTERMwhich gives the leading
term of an algebraic expression, one could do this as follows:

symbolic operator leadterm; % Declare LEADTERM as a symbolic
% mode procedure to be used in
% algebraic mode.

symbolic procedure leadterm u; % Define LEADTERM.
mk!*sq !*t2q lt numr simp!* u;

Note that this operator has a different effect than the operatorLTERM. In the latter
case, the calculation is done with respect to the second argument of the operator. In
the example here, we simply extract the leading term with respect to the system’s
choice of main variable.

Finally, if you wish to use the algebraic evaluator on an argument in a symbolic
mode definition, the functionREVALcan be used. The one argument ofREVAL
must be the prefix form of an expression.REVALreturns the evaluated expression
as a true Lisp prefix form.

16.10 Rlisp ’88

Rlisp ’88 is a superset of the Rlisp that has been traditionally used for the support
of REDUCE. It is fully documented in the book Marti, J.B., “RLISP ’88: An Evo-
lutionary Approach to Program Design and Reuse”, World Scientific, Singapore
(1993). Rlisp ’88 adds to the traditional Rlisp the following facilities:

1. more general versions of the looping constructsfor , repeat andwhile ;

2. support for a backquote construct;

3. support for active comments;

4. support for vectors of the form name[index];

5. support for simple structures;

6. support for records.



190 CHAPTER 16. SYMBOLIC MODE

In addition, “–” is a letter in Rlisp ’88. In other words,A-B is an identifier, not
the difference of the identifiersA and B. If the latter construct is required, it is
necessary to put spaces around the - character. For compatibility between the two
versions of Rlisp, we recommend this convention be used in all symbolic mode
programs.

To use Rlisp ’88, typeon rlisp88; . This switches to symbolic mode with the
Rlisp ’88 syntax and extensions. While in this environment, it is impossible to
switch to algebraic mode, or prefix expressions by “algebraic”. However, symb-
olic mode programs written in Rlisp ’88 may be run in algebraic mode provided the
rlisp88 package has been loaded. We also expect that many of the extensions de-
fined in Rlisp ’88 will migrate to the basic Rlisp over time. To return to traditional
Rlisp or to switch to algebraic mode, say “off rlisp88”.

16.11 References

There are a number of useful books which can give you further information about
LISP. Here is a selection:

Allen, J.R., “The Anatomy of LISP”, McGraw Hill, New York, 1978.

McCarthy J., P.W. Abrahams, J. Edwards, T.P. Hart and M.I. Levin, “LISP 1.5
Programmer’s Manual”, M.I.T. Press, 1965.

Touretzky, D.S, “LISP: A Gentle Introduction to Symbolic Computation”, Harper
& Row, New York, 1984.

Winston, P.H. and Horn, B.K.P., “LISP”, Addison-Wesley, 1981.



Chapter 17

Calculations in High Energy
Physics

A set of REDUCE commands is provided for users interested in symbolic calcula-
tions in high energy physics. Several extensions to our basic syntax are necessary,
however, to allow for the different data structures encountered.

17.1 High Energy Physics Operators

We begin by introducing three new operators required in these calculations.

17.1.1 . (Cons) Operator

Syntax:

(EXPRN1:vector_expression)
. (EXPRN2:vector_expression):algebraic.

The binary. operator, which is normally used to denote the addition of an element
to the front of a list, can also be used in algebraic mode to denote the scalar product
of two Lorentz four-vectors. For this to happen, the second argument must be
recognizable as a vector expression at the time of evaluation. With this meaning,
this operator is often referred to as thedotoperator. In the present system, the index
handling routines all assume that Lorentz four-vectors are used, but these routines
could be rewritten to handle other cases.

Components of vectors can be represented by including representations of unit vec-
tors in the system. Thus ifEOrepresents the unit vector(1,0,0,0) , (p.eo)
represents the zeroth component of the four-vector P. Our metric and notation fol-

191



192 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

lows Bjorken and Drell “Relativistic Quantum Mechanics” (McGraw-Hill, New
York, 1965). Similarly, an arbitrary componentP may be represented by(p.u) .
If contraction over components of vectors is required, then the declarationINDEX
must be used. Thus

index u;

declaresUas an index, and the simplification of

p.u * q.u

would result in

P.Q

The metric tensorgµν may be represented by(u.v) . If contraction overU andV
is required, then they should be declared as indices.

Errors occur if indices are not properly matched in expressions.

If a user later wishes to remove the index property from specific vectors, he can
do it with the declarationREMIND. Thusremind v1...vn; removes the index
flags from the variablesV1 throughVn. However, these variables remain vectors
in the system.

17.1.2 G Operator for Gamma Matrices

Syntax:

G(ID:identifier[,EXPRN:vector_expression])
:gamma_matrix_expression.

G is an n-ary operator used to denote a product ofγ matrices contracted with
Lorentz four-vectors. Gamma matrices are associated with fermion lines in a Feyn-
man diagram. If more than one such line occurs, then a different set ofγ matrices
(operating in independent spin spaces) is required to represent each line. To facil-
itate this, the first argument ofG is a line identification identifier (not a number)
used to distinguish different lines.

Thus

g(l1,p) * g(l2,q)

denotes the product ofγ.p associated with a fermion line identified asL1 , and
γ.q associated with another line identified asL2 and wherep andq are Lorentz



17.2. VECTOR VARIABLES 193

four-vectors. A product ofγ matrices associated with the same line may be written
in a contracted form.

Thus

g(l1,p1,p2,...,p3) = g(l1,p1)*g(l1,p2)*...*g(l1,p3) .

The vectorA is reserved in arguments of G to denote the specialγ matrixγ5. Thus

g(l,a) = γ5 associated with the lineL

g(l,p,a) = γ.p×γ5 associated with the lineL.

γµ (associated with the lineL) may be written asg(l,u) , with U flagged as an
index if contraction overU is required.

The notation of Bjorken and Drell is assumed in all operations involvingγ matri-
ces.

17.1.3 EPS Operator

Syntax:

EPS(EXPRN1:vector_expression,...,EXPRN4:vector_exp)
:vector_exp.

The operatorEPShas four arguments, and is used only to denote the completely
antisymmetric tensor of order 4 and its contraction with Lorentz four-vectors. Thus

εijkl =





+1 if i, j, k, l is an even permutation of 0,1,2,3
−1 if an odd permutation
0 otherwise

A contraction of the formεijµνpµqν may be written aseps(i,j,p,q) , with I
andJ flagged as indices, and so on.

17.2 Vector Variables

Apart from the line identification identifier in theGoperator, all other arguments
of the operators in this section are vectors. Variables used as such must be declared
so by the type declarationVECTOR, for example:

vector p1,p2;



194 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

declaresP1 andP2 to be vectors. Variables declared as indices or given a mass are
automatically declared vector by these declarations.

17.3 Additional Expression Types

Two additional expression types are necessary for high energy calculations, namely

17.3.1 Vector Expressions

These follow the normal rules of vector combination. Thus the product of a scalar
or numerical expression and a vector expression is a vector, as are the sum and
difference of vector expressions. If these rules are not followed, error messages are
printed. Furthermore, if the system finds an undeclared variable where it expects
a vector variable, it will ask the user in interactive mode whether to make that
variable a vector or not. In batch mode, the declaration will be made automatically
and the user informed of this by a message.

Examples:

AssumingP andQhave been declared vectors, the following are vector expressions

p
2*q/3
2*x*y*p - p.q*q/(3*q.q)

whereasp*q andp/q are not.

17.3.2 Dirac Expressions

These denote those expressions which involveγ matrices. Aγ matrix is implicitly
a 4× 4 matrix, and so the product, sum and difference of such expressions, or the
product of a scalar and Dirac expression is again a Dirac expression. There are
no Dirac variables in the system, so whenever a scalar variable appears in a Dirac
expression without an associatedγ matrix expression, an implicit unit 4 by 4 matrix
is assumed. For example,g(l,p) + m denotesg(l,p) + m*<unit 4 by
4 matrix> . Multiplication of Dirac expressions, as for matrix expressions, is of
course non-commutative.



17.4. TRACE CALCULATIONS 195

17.4 Trace Calculations

When a Dirac expression is evaluated, the system computes one quarter of the trace
of eachγ matrix product in the expansion of the expression. One quarter of each
trace is taken in order to avoid confusion between the trace of the scalarM, say,
andMrepresentingM * <unit 4 by 4 matrix> . Contraction over indices
occurring in such expressions is also performed. If an unmatched index is found in
such an expression, an error occurs.

The algorithms used for trace calculations are the best available at the time this
system was produced. For example, in addition to the algorithm developed by
Chisholm for contracting indices in products of traces, REDUCE uses the elegant
algorithm of Kahane for contracting indices inγ matrix products. These algorithms
are described in Chisholm, J. S. R., Il Nuovo Cimento X, 30, 426 (1963) and
Kahane, J., Journal Math. Phys. 9, 1732 (1968).

It is possible to prevent the trace calculation over any line identifier by the declara-
tion NOSPUR. For example,

nospur l1,l2;

will mean that no traces are taken ofγ matrix terms involving the line numbersL1
andL2 . However, in some calculations involving more than one line, a catastrophic
error

This NOSPUR option not implemented

can occur (for the reason stated!) If you encounter this error, please let us know!

A trace of aγ matrix expression involving a line identifier which has been declared
NOSPURmay be later taken by making the declarationSPUR.

See also the CVIT package for an alternative mechanism (chapter??).

17.5 Mass Declarations

It is often necessary to put a particle “on the mass shell” in a calculation. This can,
of course, be accomplished with aLET command such as

let p.p= mˆ2;

but an alternative method is provided by two commandsMASSandMSHELL. MASS
takes a list of equations of the form:

<vector variable> = <scalar variable>



196 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

for example,

mass p1=m, q1=mu;

The only effect of this command is to associate the relevant scalar variable as a
mass with the corresponding vector. If we now say

mshell <vector variable>,...,<vector variable>;

and a mass has been associated with these arguments, a substitution of the form

<vector variable>.<vector variable> = <mass>ˆ2

is set up. An error results if the variable has no preassigned mass.

17.6 Example

We give here as an example of a simple calculation in high energy physics the
computation of the Compton scattering cross-section as given in Bjorken and Drell
Eqs. (7.72) through (7.74). We wish to compute the trace of

α2

2

(
k′

k

)2 (
γ.pf + m

2m

) (
γ.e′γ.eγ.ki

2k.pi
+

γ.eγ.e′γ.kf

2k′.pi

) (
γ.pi + m

2m

)

(
γ.kiγ.eγ.e′

2k.pi
+

γ.kfγ.e′γ.e

2k′.pi

)

whereki andkf are the four-momenta of incoming and outgoing photons (with
polarization vectorse ande′ and laboratory energiesk andk′ respectively) andpi,
pf are incident and final electron four-momenta.

Omitting therefore an overall factorα
2

2m2

(
k′
k

)2
we need to find one quarter of the

trace of

(γ.pf + m)
(

γ.e′γ.eγ.ki

2k.pi
+

γ.eγ.e′γ.kf

2k′.pi

)
(γ.pi + m)

(
γ.kiγ.eγ.e′

2k.pi
+

γ.kfγ.e′γ.e

2k′.pi

)

A straightforward REDUCE program for this, with appropriate substitutions (using
P1 for pi, PF for pf , KI for ki andKF for kf ) is

on div; % this gives output in same form as Bjorken and Drell.
mass ki= 0, kf= 0, p1= m, pf= m; vector e,ep;
% if e is used as a vector, it loses its scalar identity as



17.7. EXTENSIONS TO MORE THAN FOUR DIMENSIONS 197

% the base of natural logarithms.
mshell ki,kf,p1,pf;
let p1.e= 0, p1.ep= 0, p1.pf= mˆ2+ki.kf, p1.ki= m*k,p1.kf=

m*kp, pf.e= -kf.e, pf.ep= ki.ep, pf.ki= m*kp, pf.kf=
m*k, ki.e= 0, ki.kf= m*(k-kp), kf.ep= 0, e.e= -1,
ep.ep=-1;

for all p let gp(p)= g(l,p)+m;
comment this is just to save us a lot of writing;
gp(pf)*(g(l,ep,e,ki)/(2*ki.p1) + g(l,e,ep,kf)/(2*kf.p1))

* gp(p1)*(g(l,ki,e,ep)/(2*ki.p1) + g(l,kf,ep,e)/
(2*kf.p1))$

write "The Compton cxn is",ws;

(We useP1 instead ofPI in the above to avoid confusion with the reserved variable
PI ).

This program will print the following result

(-1) (-1) 2
The Compton cxn is 1/2*K*KP + 1/2*K *KP + 2*E.EP -

1

17.7 Extensions to More Than Four Dimensions

In our discussion so far, we have assumed that we are working in the normal four
dimensions of QED calculations. However, in most cases, the programs will also
work in an arbitrary number of dimensions. The command

vecdim <expression>;

sets the appropriate dimension. The dimension can be symbolic as well as numer-
ical. Users should note however, that theEPSoperator and theγ5 symbol (A) are
not properly defined in other than four dimensions and will lead to an error if used.



198 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS



Chapter 18

REDUCE and Rlisp Utilities

REDUCE and its associated support language system Rlisp include a number of
utilities which have proved useful for program development over the years. The
following are supported in most of the implementations of REDUCE currently
available.

18.1 The Standard Lisp Compiler

Many versions of REDUCE include a Standard Lisp compiler that is automatically
loaded on demand. You should check your system specific user guide to make sure
you have such a compiler. To make the compiler active, the switchCOMPshould be
turned on. Any further definitions input after this will be compiled automatically. If
the compiler used is a derivative version of the original Griss-Hearn compiler, (M.
L. Griss and A. C. Hearn, “A Portable LISP Compiler”, SOFTWARE — Practice
and Experience 11 (1981) 541-605), there are other switches that might also be
used in this regard. However, these additional switches are not supported in all
compilers. They are as follows:

199



200 CHAPTER 18. REDUCE AND RLISP UTILITIES

PLAP If ON, causes the printing of the portable macros produced by the
compiler;

PGWD If ON, causes the printing of the actual assembly language instruc-
tions generated from the macros;

PWRDS If ON, causes a statistic message of the form
<function> COMPILED, <words> WORDS, <words>
LEFT
to be printed. The first number is the number of words of binary
program space the compiled function took, and the second
number the number of words left unused in binary program space.

18.2 Fast Loading Code Generation Program

In most versions of REDUCE, it is possible to take any set of Lisp, Rlisp or RE-
DUCE commands and build a fast loading version of them. In Rlisp or REDUCE,
one does the following:

faslout <filename>;
<commands or IN statements>
faslend;

To load such a file, one uses the commandLOAD, e.g. load foo; or load
foo,bah;

This process produces a fast-loading version of the original file. In some imple-
mentations, this means another file is created with the same name but a different
extension. For example, in PSL-based systems, the extension isb (for binary). In
CSL-based systems, however, this process adds the fast-loading code to a single
file in which all such code is stored. Particular functions are provided by CSL for
managing this file, and described in the CSL user documentation.

In doing this build, as with the production of a Standard Lisp form of such state-
ments, it is important to remember that some of the commands must be instantiated
during the building process. For example, macros must be expanded, and some
property list operations must happen. The REDUCE sources should be consulted
for further details on this.

To avoid excessive printout, input statements should be followed by a $ instead of
the semicolon. WithLOADhowever, the input doesn’t print out regardless of which
terminator is used with the command.



18.3. THE STANDARD LISP CROSS REFERENCE PROGRAM 201

If you subsequently change the source files used in producing a fast loading file,
don’t forget to repeat the above process in order to update the fast loading file
correspondingly. Remember also that the text which is read in during the creation
of the fast load file, in the compiling process described above, isnot stored in your
REDUCE environment, but only translated and output. If you want to use the file
just created, you must then useLOADto load the output of the fast-loading file
generation program.

When the file to be loaded contains a complete package for a given application,
LOADPACKAGErather thanLOADshould be used. The syntax is the same. How-
ever,LOADPACKAGEdoes some additional bookkeeping such as recording that
this package has now been loaded, that is required for the correct operation of the
system.

18.3 The Standard Lisp Cross Reference Program

CREFis a Standard Lisp program for processing a set of Standard LISP function
definitions to produce:

1. A “summary” showing:

(a) A list of files processed;

(b) A list of “entry points” (functions which are not called or are only
called by themselves);

(c) A list of undefined functions (functions called but not defined in this
set of functions);

(d) A list of variables that were used non-locally but not declaredGLOBAL
or FLUID before their use;

(e) A list of variables that were declaredGLOBALbut not used asFLUIDs,
i.e., bound in a function;

(f) A list of FLUID variables that were not bound in a function so that one
might consider declaring themGLOBALs;

(g) A list of all GLOBALvariables present;

(h) A list of all FLUID variables present;

(i) A list of all functions present.

2. A “global variable usage” table, showing for each non-local variable:

(a) Functions in which it is used as a declaredFLUID or GLOBAL;

(b) Functions in which it is used but not declared;

(c) Functions in which it is bound;



202 CHAPTER 18. REDUCE AND RLISP UTILITIES

(d) Functions in which it is changed bySETQ.

3. A “function usage” table showing for each function:

(a) Where it is defined;

(b) Functions which call this function;

(c) Functions called by it;

(d) Non-local variables used.

The program will also check that functions are called with the correct number of
arguments, and print a diagnostic message otherwise.

The output is alphabetized on the first seven characters of each function name.

18.3.1 Restrictions

Algebraic procedures in REDUCE are treated as if they were symbolic, so that
algebraic constructs will actually appear as calls to symbolic functions, such as
AEVAL.

18.3.2 Usage

To invoke the cross reference program, the switchCREF is used.on cref causes
the cref program to load and the cross-referencing process to begin. After all the
required definitions are loaded,off cref will cause the cross-reference listing
to be produced. For example, if you wish to cross-reference all functions in the
file tst.red , and produce the cross-reference listing in the filetst.crf , the
following sequence can be used:

out "tst.crf";
on cref;
in "tst.red"$
off cref;
shut "tst.crf";

To process more than one file, moreIN statements may be added before the call of
off cref , or theIN statement changed to include a list of files.

18.3.3 Options

Functions with the flagNOLIST will not be examined or output. Initially, all
Standard Lisp functions are so flagged. (In fact, they are kept on a listNOLIST!* ,



18.4. PRETTYPRINTING REDUCE EXPRESSIONS 203

so if you wish to see references toall functions, thenCREFshould be first loaded
with the commandload cref , and this variable then set toNIL ).

It should also be remembered that any macros with the property list flagEXPAND,
or, if the switchFORCEis on, without the property list flagNOEXPAND, will be
expanded before the definition is seen by the cross-reference program, so this flag
can also be used to select those macros you require expanded and those you do not.

18.4 Prettyprinting Reduce Expressions

REDUCE includes a module for printing REDUCE syntax in a standard format.
This module is activated by the switchPRET, which is normally off.

Since the system converts algebraic input into an equivalent symbolic form, the
printing program tries to interpret this as an algebraic expression before printing
it. In most cases, this can be done successfully. However, there will be occasional
instances where results are printed in symbolic mode form that bears little resem-
blance to the original input, even though it is formally equivalent.

If you want to prettyprint a whole file, sayoff output,msg; and (hopefully)
only clean output will result. UnlikeDEFN, input is also evaluated withPRET on.

18.5 Prettyprinting Standard Lisp S-Expressions

REDUCE includes a module for printing S-expressions in a standard format. The
Standard Lisp function for this purpose isPRETTYPRINTwhich takes a Lisp ex-
pression and prints the formatted equivalent.

Users can also have their REDUCE input printed in this form by use of the switch
DEFN. This is in fact a convenient way to convert REDUCE (or Rlisp) syntax into
Lisp. off msg; will prevent warning messages from being printed.

NOTE: WhenDEFNis on, input is not evaluated.



204 CHAPTER 18. REDUCE AND RLISP UTILITIES



Chapter 19

Maintaining REDUCE

REDUCE continues to evolve both in terms of the number of facilities available,
and the power of the individual facilities. Corrections are made as bugs are discov-
ered, and awkward features simplified. In order to provide users with easy access to
such enhancements, aREDUCE network libraryhas been established from which
material can be extracted by anyone with electronic mail access to the Internet
computer network.

In addition to miscellaneous documents, source and utility files, the library in-
cludes a bibliography of papers referencing REDUCE which contains over 800
entries. Instructions on using this library are sent to all registered REDUCE users
who provide a network address. If you would like a more complete list of the con-
tents of the library, send toreduce-netlib@rand.orgthe single line messagesend
indexor help. The current REDUCE information package can be obtained from the
network library by including on a separate linesend info-packageand a demonstra-
tion file by including the linesend demonstration. If you prefer, hard copies of the
information package and the bibliography are available from the REDUCE secre-
tary at RAND, 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138
(reduce@rand.org). Copies of the network library are also maintained at other ad-
dresses. At the time of writing,reduce-netlib@can.nlandreduce-netlib@pi.cc.u-
tokyo.ac.jpmay also be used instead ofreduce-netlib@rand.org.

A World Wide Web REDUCE server with URL

http://www.rrz.uni-koeln.de/REDUCE/

is also supported. In addition to general information about REDUCE, this server
has pointers to the network library, the demonstration versions, examples of RE-
DUCE programming, a set of manuals, and the REDUCE online help system.

Finally, there is a REDUCE electronic forum accessible from the same networks.
This enables REDUCE users to raise questions and discuss ideas concerning the

205



206 CHAPTER 19. MAINTAINING REDUCE

use and development of REDUCE with other users. Additions and changes to the
network library and new releases of REDUCE are also announced in this forum.
Any user with appropriate electronic mail access is encouraged to register for mem-
bership in this forum. To do so, send a message requesting inclusion to
reduce-forum-request@rand.org.



Appendix A

Reserved Identifiers

We list here all identifiers that are normally reserved in REDUCE including names
of commands, operators and switches initially in the system. Excluded are words
that are reserved in specific implementations of the system.

Commands ALGEBRAIC ANTISYMMETRIC ARRAY BYE CLEAR
CLEARRULES COMMENT CONT DECOMPOSE DEFINE
DEPEND DISPLAY ED EDITDEF END EVEN FACTOR
FOR FORALL FOREACH GO GOTO IF IN INDEX INFIX
INPUT INTEGER KORDER LET LINEAR LISP LIS-
TARGP LOAD LOADPACKAGE MASS MATCH MATRIX
MSHELL NODEPEND NONCOM NONZERO NOSPUR ODD
OFF ON OPERATOR ORDER OUT PAUSE PRECEDENCE
PRINT PRECISION PROCEDURE QUIT REAL REMFAC
REMIND RETRY RETURN SAVEAS SCALAR SETMOD
SHARE SHOWTIME SHUT SPUR SYMBOLIC SYMMET-
RIC VECDIM VECTOR WEIGHT WRITE WTLEVEL

Boolean Operators EVENP FIXP FREEOF NUMBERP ORDP PRIMEP

Infix Operators := = >= > <= < => + * / ˆ ** . WHERE SETQ OR AND
MEMBER MEMQ EQUAL NEQ EQ GEQ GREATERP LEQ
LESSP PLUS DIFFERENCE MINUS TIMES QUOTIENT
EXPT CONS

Numerical Operators ABS ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC
ASECH ASIN ASINH ATAN ATANH ATAN2 COS COSH
COT COTH CSC CSCH EXP FACTORIAL FIX FLOOR
HYPOT LN LOG LOGB LOG10 NEXTPRIME ROUND SEC
SECH SIN SINH SQRT TAN TANH

207



208 APPENDIX A. RESERVED IDENTIFIERS

Prefix Operators APPEND ARGLENGTH CEILING COEFF COEFFN CO-
FACTOR CONJ DEG DEN DET DF DILOG EI EPS ERF
FACTORIZE FIRST GCD G IMPART INT INTERPOL
LCM LCOF LENGTH LHS LINELENGTH LTERM MAIN-
VAR MAT MATEIGEN MAX MIN MKID NULLSPACE NUM
PART PF PRECISION RANDOM RANDOMNEWSEED
RANK REDERR REDUCT REMAINDER REPART REST
RESULTANT REVERSE RHS SECOND SET SHOWRULES
SIGN SOLVE STRUCTR SUB SUM THIRD TP TRACE
VARNAME

Reserved Variables CARDNO E EVALMODE FORTWIDTH
HIGH POW I INFINITY K!* LOW POW NIL
PI ROOTMULTIPLICITY T

Switches ADJPREC ALGINT ALLBRANCH ALLFAC BFSPACE
COMBINEEXPT COMBINELOGS COMP COMPLEX
CRAMER CREF DEFN DEMO DIV ECHO ERRCONT
EVALLHSEQP EXP EXPANDLOGS EZGCD FACTOR
FORT FULLROOTS GCD IFACTOR INT INTSTR LCM
LIST LISTARGS MCD MODULAR MSG MULTIPLICI-
TIES NAT NERO NOSPLIT OUTPUT PERIOD PRECISE
PRET PRI RAT RATARG RATIONAL RATIONALIZE
RATPRI REVPRI RLISP88 ROUNDALL ROUNDBF
ROUNDED SAVESTRUCTR SOLVESINGULAR TIME
TRA TRFAC TRIGFORM TRINT

Other Reserved Ids BEGIN DO EXPR FEXPR INPUT LAMBDA LISP MACRO
PRODUCT REPEAT SMACRO SUM UNTIL WHEN WHILE
WS



Index

. (CONS) , 34
3j and 6j symbols, 173

ABS, 53
ACOS, 57, 60
ACOSH, 57, 60
ACOT, 57, 60
ACOTH, 57, 60
ACSC, 57, 60
ACSCH, 57, 60
ADJPREC, 117
Airy functions, 173
Airy Ai , 173
Airy Aiprime , 173
Airy Bi , 173
Airy Biprime , 173
ALGEBRAIC, 179
Algebraic mode, 179, 184, 185
ALGINT, 159, 160
ALLBRANCH, 72
ALLFAC, 87, 90
ANTISYMMETRIC, 78
APPEND, 34
APPLYSYM, 160
ARBVARS, 72
ARGLENGTH, 101
ARNUM, 160
ARRAY, 49
ASEC, 57, 60
ASECH, 57, 60
ASIN, 57, 60
ASINH, 57, 60
Assignment, 38, 41, 45, 182, 185
ASSIST, 160
assumptions , 74
Asymptotic command, 123, 136

ATAN, 57, 60, 63
ATAN2, 57, 60
ATANH, 57, 60
AVECTOR, 161

BALANCEDMOD, 118
BEGIN ...END , 44–46
Bernoulli , 173
Bernoulli numbers, 173
Bessel functions, 173
BesselI , 173
BesselJ , 173
BesselK , 173
BesselY , 173
Beta , 173
Beta function, 173
Bezout , 109
BFSPACE, 117
Binomial , 173
Binomial coefficients, 173
Block, 44, 46
BOOLEAN, 161
Boolean, 29
BOUNDS, 169
BYE, 51

CALI , 161
Call by value, 152, 155
CAMAL, 161
Canonical form, 83
CARDNO, 93
CEILING , 54
CHANGEVR, 162
Character set, 19
Chebyshev fit, 169
Chebyshev polynomials, 173

209



210 INDEX

ChebyshevT , 173
ChebyshevU , 173
CLEAR, 126, 129
CLEARRULES, 130
Clebsch Gordan coefficients, 173
Clebsch Gordan , 173
COEFF, 99
Coefficient, 116, 118
COEFFN, 100
COFACTOR, 147
COLLECT, 40
COMBINEEXPT, 59
COMBINELOGS, 59
Command, 49
Command terminator, 137
COMMENT, 23
COMP, 199
COMPACT, 162
Compiler, 199
COMPLEX, 119
Complex coefficient, 118
Compound statement, 43, 45
Conditional statement, 39, 40
CONJ, 54
Constructor, 185
CONT, 141
COS, 57, 60
COSH, 57, 60
COT, 57, 60
COTH, 57, 60
CRACK, 162
CRAMER, 68, 145
CREF, 201, 202
Cross reference, 201
CSC, 57, 60
CSCH, 57, 60
CVIT , 163

Declaration, 49
DECOMPOSE, 110
DEFINE, 51, 52
DEFINT, 163
DEFN, 184, 203
DEG, 112

Degree, 112
DEMO, 50
DEN, 103, 112
DEPEND, 80
depend, 75
DESIR, 163
DET, 83, 145
DF, 61, 62
DFPART, 163
Differentiation, 61, 62, 80
Digamma, 173
Digamma function, 173
DILOG, 57, 63
Dilog , 173
Dilogarithm function, 173
Diracγ matrix, 192
DISPLAY, 140
Display, 83
Displaying structure, 96
DIV , 88, 116
DO, 40–42
Dollar sign, 37
Dot product, 191
DUMMY, 164

E, 22
ECHO, 137
ED, 139, 140
EDITDEF, 141
Ei , 57
EllipticE , 173
EllipticF , 173
EllipticTheta , 173
END, 51
EPS, 193
Equation, 30, 31
ERF, 63
ERRCONT, 139
Euler , 173
Euler numbers, 173
Euler polynomials, 173
EulerP , 173
EVAL MODE, 179
EVALLHSEQP, 31



INDEX 211

EVEN, 76
Even operator, 76
EVENP, 29
EXCALC, 164
Exclamation mark, 19
EXP, 57, 60, 63, 104, 107
EXPANDCASES, 69
EXPANDLOGS, 59
EXPR, 183
Expression, 27
EZGCD, 107

FACTOR, 87, 104, 105
FACTORIAL, 54, 156
Factorization, 104
FACTORIZE, 105
Fast loading of code, 200
FEXPR, 184
FIDE , 164
File handling, 137
FIRST , 34
FIX , 54
FIXP , 29
FLOOR, 55
FOR, 47
FOR ALL, 124, 125
FOR EACH, 41, 42, 183
FORT, 93
FORTWIDTH, 95
FORTRAN, 93, 95
FORTUPPER, 95
FPS, 164
FREEOF, 29
FULLROOTS, 70
Function, 157

G, 192
Gamma, 173
Gamma function, 173
GCD, 107
Gegenbauer polynomials, 173
GegenbauerP , 173
Generalized Hypergeometric funct-

ions, 174

GENTRAN, 165
GNUPLOT, 165
GO TO, 45
GROEBNER, 165
Groebner, 68
Group statement, 39, 43

Hankel functions, 173
Hankel1 , 173
Hankel2 , 173
Hermite polynomials, 173
HermiteP , 173
High energy trace, 195
High energy vector expression, 191,

194
HIGH POW, 100
History, 139
HYPOT, 57, 60

I , 22
IDEALS, 166
Identifier, 21
IF , 39
IFACTOR, 105
IMPART, 54–56
IN , 137
Indefinite integration, 62
INDEX, 192
INEQ, 166
INFINITY , 22
INFIX , 79
Infix operator, 24–26
INPUT, 140
Input, 137
Instant evaluation, 50, 102, 124, 144,

146
INT , 62, 141
INTEGER, 44
Integer, 28
Integration, 62, 77
Interactive use, 139, 141
INTERPOL, 111
Introduction, 15
INTSTR, 84



212 INDEX

INVBASE, 166

Jacobi Elliptic Functions and Inte-
grals, 173

Jacobi’s polynomials, 173
Jacobiamplitude , 173
Jacobicn , 173
Jacobidn , 173
JacobiP , 173
Jacobisn , 173
JacobiZeta , 173
JOIN , 40

Kernel, 83, 87, 99
kernel form, 84
KORDER, 99
Kummer functions, 173
KummerM, 173
KummerU, 173

Label, 45
Laguerre polynomials, 173
LaguerreP , 173
LAMBDA, 181
Lambert’s W, 68
LAPLACE, 166
LCM, 108
LCOF, 112
Leading coefficient, 113
Legendre polynomials, 153, 173
LegendreP , 173
LENGTH, 33, 50, 64, 103, 105, 145
LET, 59, 61, 73, 78–80, 122, 130,

155, 156
LHS, 31
LIE , 166
LIMITS , 167
LINALG, 167
LINEAR, 77
Linear operator, 77, 80
LINELENGTH, 86
LISP , 179
Lisp, 179
LIST , 88
List, 33

list , 67
List operation, 33, 35
LISTARGP, 35
LISTARGS, 35
LN, 57, 60
LOAD, 200
LOADPACKAGE, 159, 201
LOG, 57, 60, 63
LOG10, 57, 60
LOGB, 57, 60
Lommel functions, 173
Lommel1 , 173
Lommel2 , 173
Loop, 40, 41
LOWPOW, 100
LPOWER, 114
LTERM, 114, 189

MACRO, 183
MAINVAR, 114
MAP, 64
map, 67
MASS, 194, 195
MAT, 143, 144
MATCH, 129
MATEIGEN, 146
Mathematical function, 57
MATRIX, 144
Matrix assignment, 149
Matrix calculations, 143
MAX, 55
MCD, 106, 108
Meijer’s G function, 174
MIN, 55
Minimum, 169
MKID, 65
Mode, 50
Mode communication, 184
MODSR, 167
MODULAR, 118
Modular coefficient, 118
MSG, 203
MSHELL, 195
Multiple assignment statement, 38



INDEX 213

MULTIPLICITIES , 69

NAT, 96
NCPOLY, 168
NERO, 93
Newton’s method, 169
NEXTPRIME, 55
NOCONVERT, 117
NODEPEND, 80
Non-commuting operator, 78
NONCOM, 78
NONZERO, 76
NORMFORM, 168
NOSPLIT, 88
NOSPUR, 195
NULLSPACE, 148
NUM, 115
NUMINT , 169
NUMMIN, 169
NUMODESOLVE, 169
NUMSOLVE, 169
Number, 19, 20
NUMBERP, 29
Numerical operator, 53
Numerical precision, 22

ODD, 76
Odd operator, 76
ODESOLVE, 169
OFF, 50, 51
ON, 50, 51
ONEOF, 69
OPERATOR, 188
Operator, 24, 26
Operator precedence, 25, 26
ORDER, 86, 99
ORDP, 29, 78
Orthogonal polynomials, 173
ORTHOVEC, 170
OUT, 137, 138
OUTPUT, 85
Output, 91, 95
Output declaration, 86

PART, 33, 98, 100

PAUSE, 141
Percent sign, 23
PERIOD, 95
PF, 66
PHYSOP, 170
PI , 22
PLOT, 165
PM, 170
Pochhammer, 173
Pochhammer’s symbol, 173
Polygamma , 173
Polygamma functions, 173
Polynomial, 103
Polynomial equations, 165
PRECEDENCE, 79
PRECISE, 60
PRECISION, 116
Prefix, 53, 79, 80
Prefix operator, 24, 25
PRET, 203
PRETTYPRINT, 203
Prettyprinting, 203
PRI , 86
PRIMEP, 29
PRINT PRECISION, 117
PROCEDURE, 151
Procedure body, 153, 155
Procedure heading, 152
PRODUCT, 40, 41
Program, 23
Program structure, 19
Proper statement, 31, 37
PS, 175
PSEUDODIVIDE , 109
PSEUDOREMAINDER, 109
Psi , 173
Psi function, 173

Quadrature, 169
QUIT, 51
QUOTE, 181

RANDOM, 56
RANDOMNEWSEED, 56



214 INDEX

RANDPOLY, 171
RANK, 149
RAT, 89
RATARG, 100, 111
RATIONAL, 116
Rational coefficient, 116
Rational function, 103
RATIONALIZE, 119
RATPRI, 90
REACTEQN, 171
REAL, 44
Real, 20, 21
Real coefficient, 116
REDERR, 155
REDUCT, 115
REMAINDER, 108
REMEMBER, 157
REMFAC, 87
REMIND, 192
REPART, 54–56
REPEAT, 43–45, 47
requirements , 73
Reserved variable, 22
RESET, 171
RESIDUE, 171
REST, 34
RESULTANT, 109
RETRY, 139
RETURN, 44–46
REVERSE, 35
REVPRI, 90
RHS, 31
RLFI , 171
Rlisp, 199
RLISP88 , 190
ROOTOF, 68, 69
ROOTS, 172
ROUND, 57
ROUNDALL, 117
ROUNDBF, 117
ROUNDED, 22, 28, 60, 93, 116
RSOLVE, 172
Rule lists, 129

SAVEAS, 85
SAVESTRUCTR, 98
Saving an expression, 96
SCALAR, 44
Scalar, 27
SCIENTIFIC NOTATION, 20
SCOPE, 172
SEC, 57, 60
SECH, 57, 60
SECOND, 34
SELECT, 67
Selector, 185
Semicolon, 37
SET, 38, 65
SETMOD, 118
SETS, 173
SHARE, 184
SHOWRULES, 134
SHOWTIME, 51
SHUT, 137, 138
Side effect, 31
SIGN, 57
Simplification, 28, 83
SIN , 57, 60
SINH, 57, 60
SixjSymbol , 173
SMACRO, 184
SolidHarmonicY , 173
SOLVE, 67, 68, 72, 165
SOLVESINGULAR, 72
SPDE, 173
SPECFN, 59, 173
SPECFN2, 174
Spherical and Solid Harmonics, 173
SphericalHarmonicY , 173
SPUR, 195
SQRT, 57, 60
Standard form, 185
Standard quotient, 185
Statement, 37
Stirling numbers, 173
Stirling1 , 173
Stirling2 , 173
String, 23



INDEX 215

STRUCTR, 96, 98
Structuring, 83
Struve functions, 173
StruveH , 173
StruveL , 173
SUB, 31, 121
Substitution, 121
SUCH THAT, 125
SUM, 40, 41, 175
Switch, 50, 51
SYMBOLIC, 179
Symbolic mode, 179, 180, 184, 185
Symbolic procedure, 183
SYMMETRIC, 78
SYMMETRY, 175

T, 22
TAN, 57, 60, 63
TANH, 57, 60
TAYLOR, 175
Terminator, 37
THIRD, 34
ThreejSymbol , 173
TIME, 50
TP, 147
TPS, 175
TRA, 160
TRACE, 147
TRFAC, 106
TRI , 176
TRIGFORM, 70
TRIGSIMP, 58, 176
TRINT, 160

UNTIL , 40
User packages, 159

Variable, 22
Variable elimination, 165
VARNAME, 96
varopt , 75
VECDIM, 197
VECTOR, 193

WEIGHT, 136

WHEN, 130
WHERE, 131
WHILE, 42, 44, 45, 47
Whittaker functions, 173
WhittakerM , 173
WhittakerW , 173
Workspace, 84
WRITE, 91
WS, 17, 140
WTLEVEL, 136
WU, 176

XCOLOR, 176
XIDEAL, 177

ZEILBERG, 177
Zeta , 173
Zeta function (Riemann’s), 173
ZTRANS, 177


