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Abstract

This document provides the user with a description of the algebraic programming
system REDUCE. The capabilities of this system include:

=

expansion and ordering of polynomials and rational functions,
substitutions and pattern matching in a wide variety of forms,
automatic and user controlled simplification of expressions,
calculations with symbolic matrices,

arbitrary precision integer and real arithmetic,

facilities for defining new functions and extending program syntax,
analytic differentiation and integration,

factorization of polynomials,

© © N o g M W DN

facilities for the solution of a variety of algebraic equations,

[EEN
=

facilities for the output of expressions in a variety of formats,

[EEN
[EEN

. facilities for generating numerical programs from symbolic input,

[EEN
N

. Dirac matrix calculations of interest to high energy physicists.
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Chapter 1

Introductory Information

REDUCE is a system for carrying out algebraic operations accurately, no matter
how complicated the expressions become. It can manipulate polynomials in a va-
riety of forms, both expanding and factoring them, and extract various parts of
them as required. REDUCE can also do differentiation and integration, but we
shall only show trivial examples of this in this introduction. Other topics not con-
sidered include the use of arrays, the definition of procedures and operators, the
specific routines for high energy physics calculations, the use of files to eliminate
repetitious typing and for saving results, and the editing of the input text.

Also not considered in any detail in this introduction are the many options that
are available for varying computational procedures, output forms, number systems
used, and so on.

REDUCE is designed to be an interactive system, so that the user can input an al-
gebraic expression and see its value before moving on to the next calculation. For
those systems that do not support interactive use, or for those calculations, espe-
cially long ones, for which a standard script can be defined, REDUCE can also be

used in batch mode. In this case, a sequence of commands can be given to RE-
DUCE and results obtained without any user interaction during the computation.

In this introduction, we shall limit ourselves to the interactive use of REDUCE,
since this illustrates most completely the capabilities of the system. When RE-
DUCE is called, it begins by printing a banner message like:

REDUCE 3.8, 15-Jul-2003 ...

where the version number and the system release date will change from time to
time. It then prompts the user for input by:

1:

15



16 CHAPTER 1. INTRODUCTORY INFORMATION

You can now type a REDUCE statement, terminated by a semicolon to indicate the
end of the expression, for example:

(x+y+2)2;

This expression would normally be followed by another charact on
an ASCII keyboard) to “wake up” the system, which would then input the expres-
sion, evaluate it, and return the result;

2 2 2
X 4+ 22X + 22X*2 + Y + 2°Y*Z + Z

Let us review this simple example to learn a little more about the way that RE-
DUCE works. First, we note that REDUCE deals with variables, and constants
like other computer languages, but that in evaluating the former, a variable can
stand for itself. Expression evaluation normally follows the rules of high school
algebra, so the only surprise in the above example might be that the expression was
expanded. REDUCE normally expands expressions where possible, collecting like
terms and ordering the variables in a specific manner. However, expansion, order-
ing of variables, format of output and so on is under control of the user, and various
declarations are available to manipulate these.

Another characteristic of the above example is the use of lower case on input and
upper case on output. In fact, input may be in either mode, but output is usually in
lower case. To make the difference between input and output more distinct in this
manual, all expressions intended for input will be shown in lower case and output
in upper case. However, for stylistic reasons, we represent all single identifiers in
the text in upper case.

Finally, the numerical prompt can be used to reference the result in a later compu-
tation.

As a further illustration of the system features, the user should try:
for i:= 1:40 product i;

The result in this case is the value of 40!,
815915283247897734345611269596115894272000000000

You can also get the same result by saying
factorial 40;

Since we want exact results in algebraic calculations, it is essential that integer
arithmetic be performed to arbitrary precision, as in the above example. Further-
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more, theFORstatement in the above is illustrative of a whole range of combining
forms that REDUCE supports for the convenience of the user.

Among the many options in REDUCE is the use of other number systems, such as
multiple precision floating point with any specified number of digits — of use if
roundoff in, say, tha 00*" digit is all that can be tolerated.

In many cases, it is necessary to use the results of one calculation in succeeding
calculations. One way to do this is via an assignment for a variable, such as

u = (x+ty+z)°2;
If we now useU in later calculations, the value of the right-hand side of the above
will be used.

The results of a given calculation are also saved in the vari&i§{gor WorkSpace),
so this can be used in the next calculation for further processing.

For example, the expression
df(ws,x);

following the previous evaluation will calculate the derivativéofy+z)"2  with
respect toX. Alternatively,

int(ws,y);

would calculate the integral of the same expression with respect to y.

REDUCE is also capable of handling symbolic matrices. For example,
matrix m(2,2);

declares m to be a two by two matrix, and
m := mat((a,b),(c,d));

gives its elements values. Expressions that inciMdend make algebraic sense
may now be evaluated, such®Hs to give the inverse2*m - u*m™2 to give us
another matrix andet(m) to give us the determinant o

REDUCE has a wide range of substitution capabilities. The system knows about
elementary functions, but does not automatically invoke many of their well-known
properties. For example, products of trigopnometrical functions are not converted
automatically into multiple angle expressions, but if the user wants this, he can say,
for example:

(sin(a+b)+cos(a+b))*(sin(a-b)-cos(a-b))
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where cos("™x)*cos(y) = (cos(x+y)+cos(x-y))/2,
cos("™x)*sin(’y) (sin(x+y)-sin(x-y))/2,
sin("x)*sin("y) = (cos(x-y)-cos(x+y))/2;

where the tilde in front of the variableéandY indicates that the rules apply for
all values of those variables. The result of this calculation is

(COS(2*A) + SIN(2*B))

See also the user-contributed packages ASSIST (chapteLAMAL (chapter??)
and TRIGSIMP (chapte??).

Another very commonly used capability of the system, and an illustration of one of
the many output modes of REDUCE, is the ability to output results in a FORTRAN
compatible form. Such results can then be used in a FORTRAN based numerical
calculation. This is particularly useful as a way of generating algebraic formulas
to be used as the basis of extensive numerical calculations.

For example, the statements

on fort;
df(log(x)*(sin(x)+cos(x))/sqrt(x),x,2);

will result in the output

ANS=(-4.*LOG(X)*COS(X)*X**2-4.*LOG (X)*COS(X)*X+3.*
. LOG(X)*COS(X)-4.*LOG(X)*SIN(X)*X**2+4.*LOG(X)*
. SIN(X)*X+3.*LOG(X)*SIN(X)+8.*COS(X)*X-8.*COS(X)-

. *SIN(X)*X-8.*SIN(X))/(4.*SQRT(X)*X**2)

These algebraic manipulations illustrate the algebraic mode of REDUCE. RE-
DUCE is based on Standard Lisp. A symbolic mode is also available for executing
Lisp statements. These statements follow the syntax of Lisp, e.g.

symbolic car ’(a);

Communication between the two modes is possible.

With this simple introduction, you are now in a position to study the material in the
full REDUCE manual in order to learn just how extensive the range of facilities
really is. If further tutorial material is desired, the seven REDUCE Interactive
Lessons by David R. Stoutemyer are recommended. These are normally distributed
with the system.



Chapter 2

Structure of Programs

A REDUCE program consists of a set of functional commands which are evaluated
sequentially by the computer. These commands are built up from declarations,
statements and expressions. Such entities are composed of sequences of numbers,
variables, operators, strings, reserved words and delimiters (such as commas and
parentheses), which in turn are sequences of basic characters.

2.1 The REDUCE Standard Character Set

The basic characters which are used to build REDUCE symbols are the following:

1. The 26 lettera throughz
2. The 10 decimal digité through9

3. The special characters! "$% ' ()*+,-./:; <>={} <blank>

With the exception of strings and characters preceded by an exclamation mark, the
case of characters is ignored: depending of the underlying LISP they will all be
converted internally into lower case or upper ca8&PHA Alpha andalpha
represent the same symbol. Most implementations allow you to switch this con-
version off. The operating instructions for a particular implementation should be
consulted on this point. For portability, we shall limit ourselves to the standard
character set in this exposition.

2.2 Numbers

There are several different types of numbers available in REDUCE. Integers consist
of a signed or unsigned sequence of decimal digits written without a decimal point,

19



20 CHAPTER 2. STRUCTURE OF PROGRAMS

for example:
-2, 5396, +32

In principle, there is no practical limit on the number of digits permitted as ex-
act arithmetic is used in most implementations. (You should however check the
specific instructions for your particular system implementation to make sure that
this is true.) For example, if you ask for the value23f°° you get it displayed

as a number of 603 decimal digits, taking up nine lines of output on an interactive
display. It should be borne in mind of course that computations with such long
numbers can be quite slow.

Numbers that aren’t integers are usually represented as the quotient of two integers,
in lowest terms: that is, as rational numbers.

In essentially all versions of REDUCE it is also possible (but not always desirable!)
to ask REDUCE to work with floating point approximations to numbers again, to
any precision. Such numbers are caltedl. They can be input in two ways:

1. as a signed or unsigned sequence of any number of decimal digits with an
embedded or trailing decimal point.

2. as in 1. followed by a decimal exponent which is written as the |&ter
followed by a signed or unsigned integer.

e.g.32. +32.0 0.32E2 and320.E-1 are all representations of 32.

The declaratiofSCIENTIFIC _NOTATIONcontrols the output format of floating
point numbers. At the default settings, any number with five or less digits before the
decimal point is printed in a fixed-point notation, e32345.6 . Numbers with
more than five digits are printed in scientific notation, elgg34567E+5 . Sim-
ilarly, by default, any number with eleven or more zeros after the decimal point is
printed in scientific notation. To change these defaGB@&ENTIFIC _.NOTATION

can be used in one of two waySCIENTIFIC _NOTATIONmM;, wheremis a posi-

tive integer, sets the printing format so that a number with morerthdigits before

the decimal point, om or more zeros after the decimal point, is printed in scientific
notation. SCIENTIFIC NOTATION{m,n}, with m andn both positive integers,
sets the format so that a number with more thadigits before the decimal point,

or n or more zeros after the decimal point is printed in scientific notation.

CAUTION: The unsigned part of any number magt begin with a decimal point,
as this causes confusion with ti®ONS(.) operator, i.e., NOT ALLOWED:5
-23 +.12 ;use0.5 -0.23 +0.12 instead.
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2.3 ldentifiers

Identifiers in REDUCE consist of one or more alphanumeric characters (i.e. alpha-
betic letters or decimal digits) the first of which must be alphabetic. The maximum
number of characters allowed is implementation dependent, although twenty-four
is permitted in most implementations. In addition, the underscore characier (
considered a letter if it izvithin an identifier. For example,

a az pl g23p a_very_long_variable
are all identifiers, whereas

a

iS not.

A sequence of alphanumeric characters in which the first is a digit is interpreted as
a product. For examplab3c is interpreted ag*ab3c . There is one exception

to this: If the first letter after a digit i, the system will try to interpret that part of

the sequence as a real number, which may fail in some cases. For exagiile,

is the real numbe2.0 * 10'2, 2e3c is 2000.0*C, an@ebc gives an error.

Special characters, such-as*, and blank, may be used in identifiers too, even as
the first character, but each must be preceded by an exclamation mark in input. For
example:

light!-years d**n good! morning
I$sign I5goldrings

CAUTION: Many system identifiers have such special characters in their names
(especially * and =). If the user accidentally picks the name of one of them for his
own purposes it may have catastrophic consequences for his REDUCE run. Users
are therefore advised to avoid such names.

Identifiers are used as variables, labels and to name arrays, operators and proce-
dures.

Restrictions

The reserved words listed in another section may not be used as identifiers. No
spaces may appear within an identifier, and an identifier may not extend over a line
of text. (Hyphenation of an identifier, by using a reserved character as a hyphen
before an end-of-line character is possible in some versions of REDUCE).
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2.4 Variables

Every variable is named by an identifier, and is given a specific type. The type is
of no concern to the ordinary user. Most variables are allowed to have the default
type, calledscalar. These can receive, as values, the representation of any ordinary
algebraic expression. In the absence of such a value, they stand for themselves.

Reserved Variables

Several variables in REDUCE have particular properties which should not be
changed by the user. These variables include:

E Intended to represent the base of the natural logarithogge)
if it occurs in an expression, is automatically replaced by 1. If
ROUNDEDB on,E is replaced by the value of E to the current degree
of floating point precision.

I Intended to represent the square root-df i"2 is replaced by
—1, and appropriately for higher powers lof This applies only to
the symboll used on the top level, not as a formal parameter in a
procedure, a local variable, nor in the contxt i:= ...

INFINITY  Intended to represenio in limit and power series calculations
for example. Note however that the current system duzsdo
proper arithmetic omo. For exampleinfinity + infinity
is 2*infinity

NIL In REDUCE (algebraic mode only) taken as a synonym for zero.
ThereforeNIL cannot be used as a variable.

PI Intended to represent the circular constant. VRBUNDEDN, it
is replaced by the value af to the current degree of floating point
precision.

T Should not be used as a formal parameter or local variable in pro-
cedures, since conflict arises with the symbolic mode meaning of T
astrue.

Other reserved variables, suchlaBWPOWdescribed in other sections, are listed
in Appendix A.

Using these reserved variables inappropriately will lead to errors.

There are also internal variables used by REDUCE that have similar restrictions.
These usually have an asterisk in their names, so it is unlikely a casual user would
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use one. An example of such a variabl&Kis used in the asymptotic command
package.

Certain words are reserved in REDUCE. They may only be used in the manner
intended. A list of these is given in the section “Reserved Identifiers”. There are,
of course, an impossibly large number of such names to keep in mind. The reader
may therefore want to make himself a copy of the list, deleting the names he doesn't
think he is likely to use by mistake.

2.5 Strings

Strings are used iWVRITE statements, in other output statements (such as error
messages), and to name files. A string consists of any number of characters en-
closed in double quotes. For example:

"A String".

Lower case characters within a string are not converted to upper case.

The string™ represents the empty string. A double quote may be included in a
string by preceding it by another double quote. Thaisb" s the stringa"b ,
and™" isthe string'.

2.6 Comments

Text can be included in program listings for the convenience of human readers, in
such a way that REDUCE pays no attention to it. There are two ways to do this:

1. Everything from the worcOMMENID the next statement terminator, nor-
mally ; or $, is ignored. Such comments can be placed anywhere a blank
could properly appear. (Note theNDand>> arenottreated aCOMMENT
delimiters!)

2. Everything from the symbdloto the end of the line on which it appears is
ignored. Such comments can be placed as the last part of any line. Statement
terminators have no special meaning in such comments. Remember to put
a semicolon before thé&if the earlier part of the line is intended to be so
terminated. Remember also to begin each line of a multidf@mment
with a%sign.
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2.7 Operators

Operators in REDUCE are specified by name and type. There are two types, in-
fix and prefix. Operators can be purely abstract, just symbols with no properties;
they can have values assigned (usimgor simpleLET declarations) for specific
arguments; they can have properties declared for some collection of arguments
(using more generdlET declarations); or they can be fully defined (usually by a
procedure declaration).

Infix operators have a definite precedence with respect to one another, and normally
occur between their arguments. For example:

a+b-c (spaces optional)
X<y and y=z (spaces required where shown)

Spaces can be freely inserted between operators and variables or operators and
operators. They are required only where operator names are spelled out with let-
ters (such as thANDin the example) and must be unambiguously separated from
another such or from a variable (lik@. Wherever one space can be used, so can
any larger number.

Prefix operators occur to the left of their arguments, which are written as a list
enclosed in parentheses and separated by commas, as with normal mathematical
functions, e.g.,

cos(u)
df(x"2,x)
q(v+w)

Unmatched parentheses, incorrect groupings of infix operators and the like, natu-
rally lead to syntax errors. The parentheses can be omitted (replaced by a space
following the operator name) if the operator is unary and the argument is a single
symbol or begins with a prefix operator name:

cos y means cos(y)
cos (-y) — parentheses necessary
log cos y means log(cos(y))
log cos (a+b) means log(cos(a+b))
but
cos a*b means (cos a)*b
cos -y is erroneous (treated as a variable

“cos” minus the variable y)
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A unary prefix operator has a precedence higher than any infix operator, including
unary infix operators. In other words, REDUCE will always interpmes y +
3 as(cos y) + 3 ratherthan asos(y + 3)

Infix operators may also be used in a prefix format on input, €(g,b,c) . On
output, however, such expressions will always be printed in infix form @.et,
b + c for this example).

A number of prefix operators are built into the system with predefined properties.
Users may also add new operators and define their rules for simplification. The
built in operators are described in another section.

Built-In Infix Operators

The following infix operators are built into the system. They are all defined inter-
nally as procedures.

<infix operator>::= where|:=|orland|member|memqg|=|neq|eq|
>=|>|<= <+

These operators may be further divided into the following subclasses:

<assignment operator> = =

<logical operator> ::= orland|member|memq
<relational operator> = =|negleg|>=|>|<=|<
<substitution operator> ::= where

<arithmetic operator> = -

<construction operator> := .

MEM@ndEQare not used in the algebraic mode of REDUCE. They are explained
in the section on symbolic mod&/HEREs described in the section on substitu-
tions.

In previous versions of REDUCHBpotwas also defined as an infix operator. In the
present version it is a regular prefix operator, and interchangeabl@&wlith

For compatibility with the intermediate language used by REDUCE, each special
character infix operator has an alternative alphanumeric identifier associated with
it. These identifiers may be used interchangeably with the corresponding special
character names on input. This correspondence is as follows:

= setq (the assignment operator)
= equal

>= geq

> greaterp

<= leq
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< lessp

+ plus

- difference (if unary, minus )

* times

/ quotient (if unary,recip )

" oor ** expt (raising to a power)
cons

Note: NEQis used to meanot equal There is no special symbol provided for it.

The above operators are binary, excBi@Twhich is unary and+r and* which

are nary (i.e., taking an arbitrary number of arguments). In addii@nd/ may

be used as unary operators, e.g., /2 means the same as 1/2. Any other operator is
parsed as a binary operator using a left association rule. bits is interpreted
as(a/b)/c . There are two exceptions to this rules and. are right associa-

tive. Example:a:=b:=c is interpreted as:=(b:=c) . Unlike ALGOL and
PASCAL," is left associative. In other worda’b"c is interpreted a&"b)"c

The operatorsc, <=, >, >= can only be used for making comparisons between
numbers. No meaning is currently assigned to this kind of comparison between
general expressions.

Parentheses may be used to specify the order of combination. If parentheses are
omitted then this order is by the ordering of the precedence list defined by the right-
hand side of theinfix operator> table at the beginning of this section, from
lowest to highest. In other word$YHERmBas the lowest precedence, andthe

dot operator) the highest.
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EXxpressions

REDUCE expressions may be of several types and consist of sequences of num-
bers, variables, operators, left and right parentheses and commas. The most com-
mon types are as follows:

3.1 Scalar Expressions

Using the arithmetic operations - * / = (power) and parentheses, scalar ex-
pressions are composed from numbers, ordinary “scalar” variables (identifiers), ar-
ray names with subscripts, operator or procedure names with arguments and state-
ment expressions.

Examples:
X
X3 - 2*y/(2*2°2 - df(X,2))

(p°2 + m™2)"(1/2)*log (y/m)
a(5) + b(i,q)

The symbol ** may be used as an alternative to the caret symbtdb( forming
powers, particularly in those systems that do not support a caret symbol.

Statement expressions, usually in parentheses, can also form part of a scalar ex-
pression, as in the example

W + (Ci=x+y) + z .

When the algebraic value of an expression is needed, REDUCE determines it, start-
ing with the algebraic values of the parts, roughly as follows:

27
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Variables and operator symbols with an argument list have the algebraic values
they were last assigned, or if never assigned stand for themselves. However, array
elements have the algebraic values they were last assigned, or, if never assigned,
are taken to be O.

Procedures are evaluated with the values of their actual parameters.

In evaluating expressions, the standard rules of algebra are applied. Unfortunately,
this algebraic evaluation of an expression is not as unambiguous as is numerical
evaluation. This process is generally referred to as “simplification” in the sense that
the evaluation usually but not always produces a simplified form for the expression.

There are many options available to the user for carrying out such simplification.

If the user doesn’t specify any method, the default method is used. The default
evaluation of an expression involves expansion of the expression and collection
of like terms, ordering of the terms, evaluation of derivatives and other functions
and substitution for any expressions which have values assigned or declared (see
assignments andET statements). In many cases, this is all that the user needs.

The declarations by which the user can exercise some control over the way in which
the evaluation is performed are explained in other sections. For example, if a real
(floating point) number is encountered during evaluation, the system will normally
convert it into a ratio of two integers. If the user wants to use real arithmetic,
he can effect this by the commaond rounded; . Other modes for coefficient
arithmetic are described elsewhere.

If an illegal action occurs during evaluation (such as division by zero) or functions
are called with the wrong number of arguments, and so on, an appropriate error
message is generated.

3.2 Integer Expressions

These are expressions which, because of the values of the constants and variables
in them, evaluate to whole numbers.

Examples:

2, 37 * 999, (x + 3)2 - X2 - 6%
are obviously integer expressions.

j+k-2*j2

is an integer expression whérandK have values that are integers, or if not integers
are such that “the variables and fractions cancel out”, as in
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k- 7/3 -]+ 2/3 + 2%2.

3.3 Boolean Expressions

A boolean expression returns a truth value. In the algebraic mode of REDUCE,
boolean expressions have the syntactical form:

<expression> <relational operator> <expression>
or

<boolean operator> (<arguments>)
or

<boolean expression> <logical operator>
<boolean expression>.

Parentheses can also be used to control the precedence of expressions.

In addition to the logical and relational operators defined earlier as infix operators,
the following boolean operators are also defined:

EVENP(U) determines if the numbetis even or not;
FIXP(U) determines if the expressidhis integer or not;

FREEOF(U,V) determines if the expressiahdoes not contain the kernel
V anywhere in its structure;

NUMBERP(U) determines iUis a number or not;

ORDP(U,V) determines ifU is ordered ahead of by some canonical
ordering (based on the expression structure and an internal
ordering of identifiers);

PRIMEP(U) true if Uis a prime object, i.e., any object other than 0 and
plus or minus 1 which is only exactly divisible by itself or
a unit.

Examples:

<1
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x>0 or x=-2

numberp x

fixp x and evenp Xx
numberp x and x neq O

Boolean expressions can only appear directly witRinFOR WHILE, andUNTIL
statements, as described in other sections. Such expressions cannot be used in place
of ordinary algebraic expressions, or assigned to a variable.

NB: For those familiar with symbolic mode, the meaning of some of these oper-
ators is different in that mode. For examd\¢JMBER true only for integers and
reals in symbolic mode.

When two or more boolean expressions are combinedANtD they are evaluated

one by one until dalseexpression is found. The rest are not evaluated. Thus
numberp x and numberp y and x>y

does not attempt to make tlkey comparison unlesX andY are both verified to

be numbers.

Similarly, evaluation of a sequence of boolean expressions connecteR&pps
as soon as aue expression is found.

NB: In a boolean expression, and in a place where a boolean expression is expected,
the algebraic value 0 is interpreted fatse while all other algebraic values are
converted tdrue. So in algebraic mode a procedure can be written for direct usage
in boolean expressions, returning say 1 or 0 as its value as in

procedure polynomialp(u,x);
if den(u)=1 and deg(u,x)>=1 then 1 else O;

One can then use this in a boolean construct, such as
if polynomialp(g,z) and not polynomialp(q,y) then ...

In addition, any procedure that does not have a defined return value (for example,
a block without ERETURNMstatement in it) has the boolean vafaése

3.4 Equations

Equations are a particular type of expression with the syntax

<expression> = <expression>.
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In addition to their role as boolean expressions, they can also be used as arguments
to several operators (e.gOLVH, and can be returned as values.

Under normal circumstances, the right-hand-side of the equation is evaluated but
not the left-hand-side. This also applies to any substitutions made b$LilBe
operator. If both sides are to be evaluated, the swEYWLLHSEQRshould be
turned on.

To facilitate the handling of equations, two selectdtdS andRHS which return
the left- and right-hand sides of a equation respectively, are provided. For example,

Ihs(a+b=c) -> atb
and
rhs(a+b=c) -> c.

3.5 Proper Statements as Expressions

Several kinds of proper statements deliver an algebraic or numerical result of some
kind, which can in turn be used as an expression or part of an expression. For
example, an assignment statement itself has a value, namely the value assigned. So

2 * (x ;= ath)

is equal to2*(a+b) , as well as having the “side-effect” of assigning the value
a+b to X. In context,

y =2 * (x ;= atb);

setsXto a+b andY to 2*(a+b)

The sections on the various proper statement types indicate which of these state-
ments are also useful as expressions.
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Lists

A list is an object consisting of a sequence of other objects (including lists them-
selves), separated by commas and surrounded by braces. Examples of lists are:

{a,b,c}
{1,a-b,c=d}

{{a}.{{b,c},d}.e}.

The empty list is represented as

{

4.1 Operations on Lists

Several operators in the system return their results as lists, and a user can create
new lists using braces and commas. Alternatively, one can use the operator LIST
to construct a list. An important class of operations on lists are MAP and SELECT
operations. For details, please refer to the chapters on MAP, SELECT and the FOR
command. See also the documentation on the ASSIST package.

To facilitate the use of lists, a number of operators are also available for manipu-
lating them.PART(<list>,n) for example will return the:'” element of a list.
LENGTHill return the length of a list. Several operators are also defined uniquely
for lists. For those familiar with them, these operators in fact mirror the operations
defined for Lisp lists. These operators are as follows:

33
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4.1.1 LIST
The operator LIST is an alternative to the usage of curly brackets. LIST accepts an
arbitrary number of arguments and returns a list of its arguments. This operator is

useful in cases where operators have to be passed as arguments. E.g.,

list(a, list(list(b,c),d),e); > {{a},{{b,c},d}.e}

4.1.2 FIRST

This operator returns the first member of a list. An error occurs if the argument is
not a list, or the list is empty.

4.1.3 SECOND

SECONDeturns the second member of a list. An error occurs if the argument is
not a list or has no second element.

4.1.4 THIRD

This operator returns the third member of a list. An error occurs if the argument is
not a list or has no third element.

415 REST

RESTreturns its argument with the first element removed. An error occurs if the
argument is not a list, or is empty.

4.1.6 . (Cons) Operator
This operator adds (“conses”) an expression to the front of a list. For example:

a . {b,c} -> {a,b,c}.

4.1.7 APPEND
This operator appends its first argument to its second to form a nelXamples:

append({a,b},{c,d}) -> {a,b,c,d}
append({{a,b}}{c,d}) > {{a,b},c,d}.
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4.1.8 REVERSE

The operatoREVERSEeturns its argument with the elements in the reverse or-
der. It only applies to the top level list, not any lower level lists that may occur.
Examples are:

reverse({a,b,c}) -> {c,b,a}
reverse({{a,b,c},d}) -> {d.{a,b,c}}.

4.1.9 List Arguments of Other Operators

If an operator other than those specifically defined for lists is given a single argu-
ment that is a list, then the result of this operation will be a list in which that
operator is applied to each element of the list. For example, the result of evaluating
log {a,b,c } isthe expressiofLOG(A),LOG(B),LOG(C) }.

There are two ways to inhibit this operator distribution. Firstly, the swiiti$:
TARGS if on, will globally inhibit such distribution. Secondly, one can inhibit
this distribution for a specific operator by the declaratid8TARGP. For ex-
ample, with the declaratiolistargp log , log {a,b,c } would evaluate to
LOG({AB,C }).

If an operator has more than one argument, no such distribution occurs.

4.1.10 Caveats and Examples

Some of the natural list operations suchmambeor deleteare available only after
loading the packagASSIST

Please note that a non-list as second argument to CONS (a "dotted pair” in LISP
terms) is not allowed and causes an "invalid as list” error.

a =17 . 4;
*eekk 17 4 invalid as list

Also, the initialization of a scalar variable is not the empty list — one has to set list
type variables explicitly, as in the following example:

load_package assist;
procedure lotto (n,m);

begin scalar list_ 1 _n, luckies, hit;
list 1 n = {};
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luckies = {};
for ki==1:n do list 1 n = k . list_ 1 n;
for k:=1:m do
<< hit := part(list_1_n,random(n-k+1) + 1);
list_1 n := delete(hitlist_1_n);
luckies := hit . luckies >>;
return luckies;

end; % In Germany, try lotto (49,6);

Another exampleFind all coefficients of a multivariate polynomial with respect to
a list of variables:

procedure allcoeffs(q,lis); % q : polynomial, lis: list of vars
allcoeffsl (list q,lis);

procedure allcoeffs1(q,lis);
if lis={} then g else
allcoeffs1(foreach qq in q join coeff(qq,first lis),rest lis);
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Statements

A statement is any combination of reserved words and expressions, and has the
syntax

<statement> ::= <expression>|<proper statement>

A REDUCE program consists of a series of commands which are statements fol-
lowed by a terminator:

<terminator> = ;|$

The division of the program into lines is arbitrary. Several statements can be on
one line, or one statement can be freely broken onto several lines. If the program
is run interactively, statements ending with ; or $ are not processed until an end-of-
line character is encountered. This character can vary from system to system, but
is normally th key on an ASCII terminal. Specific systems may also use
additional keys as statement terminators.

If a statement is a proper statement, the appropriate action takes place.

Depending on the nature of the proper statement some result or response may or
may not be printed out, and the response may or may not depend on the terminator
used.

If a statement is an expression, it is evaluated. If the terminator is a semicolon, the
result is printed. If the terminator is a dollar sign, the result is not printed. Because
it is not usually possible to know in advance how large an expression will be, no

explicit format statements are offered to the user. However, a variety of output
declarations are available so that the output can be produced in different forms.
These output declarations are explained in Section 8.3.3.

The following sub-sections describe the types of proper statements in REDUCE.
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5.1 Assignment Statements

These statements have the syntax
<assignment statement> := <expression> := <expression>

The<expression>  on the left side is normally the name of a variable, an op-
erator symbol with its list of arguments filled in, or an array name with the proper
number of integer subscript values within the array bounds. For example:

al = b +c
h(l,m) = x-2*y (whereh is an operator)
k(3,5) := x-2*y (wherek is a 2-dim. array)

More general assignments suclaa® = ¢ are also allowed. The effect of these
is explained in Section 10.2.5.

An assignment statement causes the expression on the right-hand-side to be evalu-
ated. If the left-hand-side is a variable, the value of the right-hand-side is assigned
to that unevaluated variable. If the left-hand-side is an operator or array expression,
the arguments of that operator or array are evaluated, but no other simplification
done. The evaluated right-hand-side is then assigned to the resulting expression.
For example, ifA is a single-dimensional arrag(1+1) := b assigns the value

B to the array elemera(2) .

If a semicolon is used as the terminator when an assignmentis issued as a command
(i.e. not as a part of a group statement or procedure or other similar construct), the
left-hand side symbol of the assignment statement is printed out, followed by a
“.= ", followed by the value of the expression on the right.

It is also possible to write a multiple assignment statement:
<expression> := ... := <expression> := <expression>
In this form, eachkexpression>  but the last is set to the value of the lastx-

pression> . If a semicolon is used as a terminator, each expression except the
last is printed followed by a:£ ” ending with the value of the last expression.

5.1.1 Set Statement
In some cases, it is desirable to perform an assignment in vidutithe left- and
right-hand sides of an assignment are evaluated. In this cas8Ehstatement

can be used with the syntax:

SET(<expression>,<expression>);
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For example, the statements

j = 23;
set(mkid(a,j),x);

assigns the valux to A23.

5.2 Group Statements

The group statement is a construct used where REDUCE expects a single state-
ment, but a series of actions needs to be performed. It is formed by enclosing one
or more statements (of any kind) between the symbkatsand >>, separated by
semicolons or dollar signs — it doesn’t matter which. The statements are executed
one after another.

Examples will be given in the sections tbh and other types of statements in which
the << ...>> construct is useful.

If the last statement in the enclosed group has a value, then that is also the value
of the group statement. Care must be taken not to have a semicolon or dollar sign
after the last grouped statement, if the value of the group is relevant: such an extra
terminator causes the group to have the value NIL or zero.

5.3 Conditional Statements

The conditional statement has the following syntax:

<conditional statement> ::=
IF <boolean expression> THEN <statement> [ELSE <statement>]

The boolean expression is evaluated. If thigrige, the first<statement> s
executed. If it ifalse the second is.

Examples:
if x=5 then a:=b+c else d:=e+f
if x=5 and numberp y
then <<ff:=gql; a:=b+c>>

else <<ff:=g2; d:=e+f>>

Note the use of the group statement.
Conditional statements associate to the right; i.e.,
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IF <a> THEN <b> ELSE IF <c> THEN <d> ELSE <e>
is equivalent to:

IF <a> THEN <b> ELSE (IF <c> THEN <d> ELSE <e>)
In addition, the construction

IF <a> THEN IF <b> THEN <c> ELSE <d>
parses as

IF <a> THEN (IF <b> THEN <c> ELSE <d>).

If the value of the conditional statement is of primary interest, it is often called a
conditional expression instead. Its value is the value of whichever statement was
executed. (If the executed statement has no value, the conditional expression has
no value or the value 0, depending on how it is used.)

Examples:

a:=if x<5 then 123 else 456;
b:=u + Vv(if numberp z then 10*z else 1) + w;

If the value is of no concern, thELSE clause may be omitted if no action is
required in thdalsecase.

if x=5 then a:=b+c;

Note: As explained in Section 3.3,a if a scalar or numerical expression is used in
place of the boolean expression — for example, a variable is written therdra¢he
alternative is followed unless the expression has the value 0.

5.4 FOR Statements

TheFORstatement is used to define a variety of program loops. Its general syntax
is as follows:

(var) = (numbep
FOR

{STEP (numbef UNTIL} (numbet

(action) (exprn
EACH (var) {I(I)\IN} (list)

where

(action) ::= do|product|sum|collect|join.
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The assignment form of theORstatement defines an iteration over the indicated
numerical range. If expressions that do not evaluate to numbers are used in the
designated places, an error will result.

The FOR EACHorm of the FORstatement is designed to iterate down a list.
Again, an error will occur if a list is not used.

The actionDOmeans thakexprn> is simply evaluated and no value kept; the
statement returning 0 in this case (or no value at the top leG&DLLECTmeans
that the results of evaluatingexprn> each time are linked together to make a list,
andJOIN means that the values eexprn> are themselves lists that are joined
to make one list (similar t&€ ONGn Lisp). Finally, PRODUC&ndSUMform the
respective combined value out of the valuesexprn> .

In all cases<exprn> is evaluated algebraically within the scope of the current
value of<var> . If <action> is DQ then nothing else happens. In other cases,
<action> is a binary operator that causes a result to be built up and returned
by FOR In those cases, the loop is initialized to a default valuéof SUM 1 for
PRODUCTand an empty list for the other actions). The test for the end condition
is made before any action is taken. As in Pascal, if the variable is out of range in
the assignment case, or thkst>  is empty in theFOR EACHase <exprn>

is not evaluated at all.

Examples:

1. If A, B have been declared to be arrays, the following stéferough10?
in A(5) throughA(10) , and at the same time stores the cubes inBhe
array:
for i := 5 step 1 until 10 do <<a(i):=1"2; b(i):=1"3>>
2. As a convenience, the common construction
STEP 1 UNTIL
may be abbreviated to a colon. Thus, instead of the above we could write:
for i := 5:10 do <<a(i):=i"2; b(i):=1"3>>

3. The following set<C to the sum of the squares of 1,3,5,7,9; dhtb the
expressionc*(x+1)*(x+2)*(x+3)*(x+4):

¢ = for j;=1 step 2 until 9 sum |2;
d = for ki=0 step 1 until 4 product (x+k);

4. The following forms a list of the squares of the elements of the list
{a,b,c }:
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for each x in {a,b,c} collect x2;

5. The following forms a list of the listed squares of the elements of the list

{a,b,c }(i.e.,{{A2}, {B2}, {C2})}):
for each x in {a,b,c} collect {x°2};

6. The following also forms a list of the squares of the elements of the list
{a,b,c }, since theJOIN operation joins the individual lists into one list:

for each x in {a,b,c} join {x2};

The control variable used in tHeEORstatement is actually a new variable, not
related to the variable of the same name outsidé&-RBstatement. In other words,
executing a statemeifor i:=  ...doesn’t change the system’s assumption that
i> = —1. Furthermore, in algebraic mode, the value of the control variable is
substituted inckexprn> only if it occurs explicitly in that expression. It will not
replace a variable of the same name in the value of that expression. For example:

b ;= a; for a := 1:2 do write b;

prints A twice, not 1 followed by 2.

5.5 WHILE...DO

TheFOR ...DO feature allows easy coding of a repeated operation in which the
number of repetitions is known in advance. If the criterion for repetition is more
complicatedWHILE ...DO can often be used. Its syntax is:

WHILE <boolean expression> DO <statement>

The WHILE ...DO controls the single statement followifRQ If several state-
ments are to be repeated, as is almost always the case, they must be grouped using
the<<...>> orBEGIN ...END as in the example below.

The WHILE condition is tested each timmeforethe action following theDOis
attempted. If the condition is false to begin with, the action is not performed at all.
Make sure that what is to be tested has an appropriate value initially.

Example:

Suppose we want to add up a series of terms, generated one by one, until we reach
a term which is less than 1/1000 in value. For our simple example, let us suppose
the first term equals 1 and each term is obtained from the one before by taking one
third of it and adding one third its square. We would write:
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ex:=0; term:=1;
while num(term - 1/1000) >= 0 do

<<ex := ex+term; term:=(term + term™2)/3>>;
ex;

As long asTERMs greater than or equal to€) 1/1000 it will be added t&X and
the nextTERMcalculated. As soon aBERMbecomes less than 1/1000 MeHILE
test fails and th& ERMwill not be added.

5.6 REPEAT...UNTIL

REPEAT ...UNTIL is very similarin purpose t@HILE ...DO . Its syntax is:
REPEAT <statement> UNTIL <boolean expression>
(PASCAL users note: Only a single statement — usually a group statement — is

allowed between thREPEATand theUNTIL.)

There are two essential differences:

1. The testis performedlfter the controlled statement (or group of statements)
is executed, so the controlled statement is always executed at least once.

2. The testis a test for when to stop rather than when to continue, so its “polar-
ity” is the opposite of that IWHILE ...DO.

As an example, we rewrite the example from WelILE ...DO section:

ex:=0; term:=1;

repeat <<ex := ex+term; term := (term + term 2)/3>>
until num(term - 1/1000) < O;

ex;

In this case, the answer will be the same as before, because in neither case is aterm
added taEX which is less than 1/1000.

5.7 Compound Statements

Often the desired process can best (or only) be described as a series of steps to be
carried out one after the other. In many cases, this can be achieved by use of the
group statement. However, each step often provides some intermediate result, until
at the end we have the final result wanted. Alternatively, iterations on the steps are
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needed that are not possible with constructs sudktidi Eor REPEATstatements.

In such cases the steps of the process must be enclosed between thBRGHs
andENDforming what is technically called alock or compoundstatement. Such

a compound statement can in fact be used wherever a group statement appears.
The converse is not trudEGIN ...END can be used in ways that< ...>>

cannot.

If intermediate results must be formed, local variables must be provided in which
to store them.Local means that their values are deleted as soon as the block’s
operations are complete, and there is no conflict with variables outside the block
that happen to have the same name. Local variables are create@GRlAAR
declaration immediately after tHREGIN:

scalar a,b,c,z;
If more convenient, sever&ICALARdeclarations can be given one after another:

scalar a,b,c;
scalar z;

In place of SCALARoNne can also use the declaratidNFEGERor REAL In the
present version of REDUCE variables declatBTEGER are expected to have
only integer values, and are initialized toREALvariables on the other hand are
currently treated as algebraic moHEALAR.

CAUTION:INTEGER REALandSCALARdeclarations can only be given imme-
diately after aBEGIN. An error will result if they are used after other statements
in a block (includingARRAYand OPERATORIeclarations, which are global in
scope), or outside the top-most block (e.g., at the top level). All variables declared
SCALARare automatically initialized to zero in algebraic modilL( in symbolic
mode).

Any symbols not declared as local variables in a block refer to the variables of

the same name in the current calling environment. In particular, if they are not so

declared at a higher level (e.qg., in a surrounding block or as parameters in a calling
procedure), their values can be permanently changed.

Following theSCALARdeclaration(s), if any, write the statements to be executed,
one after the other, separated by delimiters (e.@r, $) (it doesn’'t matter which).
However, from a stylistic point of view, is preferred.

The last statement in the body, just bef&MD need not have a terminator (since
theBEGIN ...END are in a sense brackets confining the block statements). The
last statement must also be the comm&&ETURNollowed by the variable or
expression whose value is to be the value returned by the procedureRETHgRN

is omitted (or nothing is written after the woRETURNthe procedure will have

no value or the value zero, depending on how it is used (dihd in symbolic
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mode). Remember to put a terminator after BND
Example:

Given a previously assigned integer value fpthe following block will compute
the Legendre polynomial of degr&dn the variableX:

begin scalar seed,deriv,top,fact;
seed:=1/(y"2 - 2*x*y +1)°(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

5.7.1 Compound Statements with GO TO

It is possible to have more complicated structures insideBB&IN ...END
brackets than indicated in the previous example. That the individual lines of the
program need not be assignment statements, but could be almost any other kind
of statement or command, needs no explanation. For example, conditional state-
ments, andVHILE andREPEAT constructions, have an obvious role in defining
more intricate blocks.

If these structured constructs don't suffice, it is possible to use label&ant®
within a compound statement, and also to R&TURNIn places within the block
other than just before tHEND The following subsections discuss these matters in
detail. For many readers the following example, presenting one possible definition
of a process to calculate the factorialdfor preassigne®l will suffice:

Example:

begin scalar m;
m:=1;
[: if n=0 then return m;
m:=m*n;
n:=n-1;
go to |
end;

5.7.2 Labels and GO TO Statements

Within aBEGIN ...END compound statement it is possible to label statements,
and transfer to them out of sequence usB@ TGstatements. Only statements on
the top level inside compound statements can be labeled, not ones inside subsidiary
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constructions like<< ...>>,IF ...THEN...,WHILE...DO..., etc.

Labels andsO TGstatements have the syntax:

<go to statement> := GO TO <label> | GOTO <label>
<label> ::= <identifier>
<labeled statement> ::= <label>:<statement>

Note that statement names cannot be used as labels.

While GO TGs an unconditional transfer, it is frequently used in conditional state-
ments such as

if x>5 then go to abcd;

giving the effect of a conditional transfer.

Transfers usingsO T@ can only occur within the block in which th@O TQs

used. In other words, you cannot transfer from an inner block to an outer block us-
ing aGO TOHowever, if a group statement occurs within a compound statement,
it is possible to jump out of that group statement to a point within the compound
statement using@O TO

5.7.3 RETURN Statements

The value corresponding toBEGIN ...END compound statement, such as a
procedure body, is normally N(L in symbolic mode). By executingRETURN
statement in the compound statement a different value can be returned. REer a
TURNstatement is executed, no further statements within the compound statement
are executed.

Examples:

return x+y;
return m;
return;

Note that parentheses are not required aroung-tiie although they are permitted.
The last example is equivalent teturn O  or return nil , depending on
whether the block is used as part of an expression or not.

SinceRETURNactually moves up only one block level, in a sense the casual user
is not expected to understand, we tabulate some cautions concerning its use.

1. RETURNan be used on the top level inside the compound statement, i.e. as
one of the statements bracketed together byBIB&IN ...END
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2. RETURNan be used within a top level< ...>> construction within the
compound statement. In this case, REETURNransfers control out of both
the group statement and the compound statement.

3. RETURNcan be used within aitF ... THEN...ELSE...on the top level
within the compound statement.

NOTE: At present, there is no construct provided to permit early termination of
a FOR WHILE, or REPEATstatement. In particular, the use RETURNN such
cases results in a syntax error. For example,

begin scalar v;
y = for :=0:99 do if a(i)=x then return b(i);

will lead to an error.
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Chapter 6

Commands and Declarations

A command is an order to the system to do something. Some commands cause
visible results (such as calling for input or output); others, usually called declara-
tions, set options, define properties of variables, or define procedures. Commands
are formally defined as a statement followed by a terminator

<command> ::= <statement> <terminator>
<terminator> = ;|$

Some REDUCE commands and declarations are described in the following sub-
sections.

6.1 Array Declarations

Array declarations in REDUCE are similar to FORTRAN dimension statements.
For example:

array a(10),b(2,3,4);
Array indices each range from O to the value declared. An element of an array is

referred to in standard FORTRAN notation, efd2) .

We can also use an expression for defining an array bound, provided the value of
the expression is a positive integer. For examplg lifas the value 10 and the
value 7 therarray c(5*x+y) is the same aarray c(57)

If an array is referenced by an index outside its range, an error occurs. If the array
is to be one-dimensional, and the bound a number or a variable (not a more general
expression) the parentheses may be omitted:

49
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array a 10, ¢ 57;

The operatoL ENGTHapplied to an array name returns a list of its dimensions.

All array elements are initialized to O at declaration time. In other words, an array
element has aimstant evaluatiorproperty and cannot stand for itself. If this is
required, then an operator should be used instead.

Array declarations can appear anywhere in a program. Once a symbol is declared

to name an array, it can not also be used as a variable, or to name an operator or
a procedure. It can however be re-declared to be an array, and its size may be

changed at that time. An array hame can also continue to be used as a parameter in
a procedure, or a local variable in a compound statement, although this use is not

recommended, since it can lead to user confusion over the type of the variable.

Arrays once declared are global in scope, and so can then be referenced anywhere
in the program. In other words, unlike arrays in most other languages, a declara-
tion within a block (or a procedure) does not limit the scope of the array to that
block, nor does the array go away on exiting the block @sEARinstead for this
purpose).

6.2 Mode Handling Declarations

The ONandOFFdeclarations are available to the user for controlling various sys-
tem options. Each option is represented gngtchname.ONandOFFtake a list
of switch names as argument and turn them on and off respectively, e.g.,

on time;

causes the system to print a message after each command giving the elapsed CPU
time since the last command, or SinEWME was last turned off, or the session be-

gan. Another useful switch with interactive usdDdEMQwhich causes the system

to pause after each command in a file (with the exception of comments) until a
is typed on the terminal. This enables a user to set up a demonstration
file and step through it command by command.

As with most declarations, arguments@dNandOFFmay be strung together sep-
arated by commas. For example,

off time,demo;

will turn off both the time messages and the demonstration switch.

We note here that while mo§&iNandOFFcommands are obeyed almost instanta-
neously, some trigger time-consuming actions such as reading in necessary mod-
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ules from secondary storage.
A diagnostic message is printed@MNor OFF are used with a switch that is not
known to the system. For example, if you missfziMGand type

on demg;

you will get the message

e DEMQ not defined as switch.

6.3 END

The identifierENDhas two separate uses.

1) Its use in aBBEGIN ...END bracket has been discussed in connection with
compound statements.

2) Files to be read usinigN should end with an extrBND command. The reason
for this is explained in the section on thé command. This use @&NDdoes not
allow an immediately precedingND(such as th&NDof a procedure definition),
so we advise usingEND; there.

6.4 BYE Command

The comman®BYE (or alternativelyQUIT;) stops the execution of REDUCE,
closes all open output files, and returns you to the calling program (usually the
operating system). Your REDUCE session is hormally destroyed.

6.5 SHOWTIME Command

SHOWTIMEprints the elapsed time since the last call of this command or, on its
first call, since the current REDUCE session began. The time is normally given
in milliseconds and gives the time as measured by a system clock. The operations
covered by this measure are system dependent.

6.6 DEFINE Command

The commandEFINE allows a user to supply a new name for any identifier or
replace it by any well-formed expression. Its argument is a list of expressions of
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the form

<identifier> = <number>|<identifier>|<operator>|
<reserved word>|<expression>

Example:
define be==x=y+z;

means thaBE will be interpreted as an equal sign, aklds the expressioptz

from then on. This renaming is done at parse time, and therefore takes precedence
over any other replacement declared for the same identifier. It stays in effect until
the end of the REDUCE run.

The identifiersALGEBRAICand SYMBOLIChave properties which prevebDi-
FINE from being used on them. To defiddGto be a synonym foALGEBRAIC
use the more complicated construction

put(’alg,’newnam,’algebraic);
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Built-in Prefix Operators

In the following subsections are descriptions of the most useful prefix operators
built into REDUCE that are not defined in other sections (such as substitution
operators). Some are fully defined internally as procedures; others are more nearly
abstract operators, with only some of their properties known to the system.

In many cases, an operator is described by a prototypical header line as follows.
Each formal parameter is given a hame and followed by its allowed type. The
names of classes referred to in the definition are printed in lower case, and param-
eter names in upper case. If a parameter type is not commonly used, it may be
a specific set enclosed in brackdts..}. Operators that accept formal parame-

ter lists of arbitrary length have the parameter and type class enclosed in square
brackets indicating that zero or more occurrences of that argument are permitted.
Optional parameters and their type classes are enclosed in angle brackets.

7.1 Numerical Operators

REDUCE includes a number of functions that are analogs of those found in most
numerical systems. With numerical arguments, such functions return the expected
result. However, they may also be called with non-numerical arguments. In such
cases, except where noted, the system attempts to simplify the expression as far as
it can. In such cases, a residual expression involving the original operator usually
remains. These operators are as follows:

7.1.1 ABS

ABSreturns the absolute value of its single argument, if that argument has a nu-
merical value. A non-numerical argument is returned as an absolute value, with an

53
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overall numerical coefficient taken outside the absolute value operator. For exam-
ple:

abs(-3/4) >  3/4
abs(2a) ->  2*ABS(A)
abs(i) > 1

abs(-x) >  ABS(X)

7.1.2 CEILING

This operator returns the ceiling (i.e., the least integer greater than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

ceiling(-5/4) -> -1
ceiling(-a) -> CEILING(-A)

7.1.3 CONJ

This returns the complex conjugate of an expression, if that argument has an numer-
ical value. A non-numerical argument is returned as an expression in the operators
REPARTandIMPART. For example:

conj(1+i) -=> 14
conj(a+i*b) -> REPART(A) - REPART(B)*l - IMPART(A)*I
- IMPART(B)

7.1.4 FACTORIAL
If the single argument dFACTORIALevaluates to a non-negative integer, its fac-
torial is returned. Otherwise an expression involMiRCTORIALIs returned. For

example:

factorial(5) -> 120
factorial(@) -> FACTORIAL(A)

7.1.5 FIX

This operator returns the fixed value (i.e., the integer part of the given argument) if
its single argument has a numerical value. A non-numerical argument is returned
as an expression in the original operator. For example:
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fix(-5/4) > -1
fix(a) > FIX(A)

7.1.6 FLOOR

This operator returns the floor (i.e., the greatest integer less than the given argu-
ment) if its single argument has a numerical value. A non-numerical argument is
returned as an expression in the original operator. For example:

floor(-5/4) > -2
floor(a) ->  FLOOR(A)

7.1.7 IMPART

This operator returns the imaginary part of an expression, if that argument has an
numerical value. A non-numerical argument is returned as an expression in the
operatorlREPARTandIMPART. For example:

impart(1+i) > 1
impart(a+i*b) -> REPART(B) + IMPART(A)

7.1.8 MAX/MIN

MAXand MIN can take an arbitrary number of expressions as their arguments.
If all arguments evaluate to numerical values, the maximum or minimum of the

argument listis returned. If any argument is non-numeric, an appropriately reduced
expression is returned. For example:

max(2,-3,4,5) -> 5

min(2,-2) > -2,
max(a,2,3) > MAX(A,3)
min(x) > X

MAXor MIN of an empty list returns 0.

7.1.9 NEXTPRIME

NEXTPRIMEeturns the next prime greater than its integer argument, using a prob-
abilistic algorithm. A type error occurs if the value of the argument is not an inte-
ger. For example:
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nextprime(5) > 7
nextprime(-2) > 2
nextprime(-7) > -5

nextprime 1000000 -> 1000003

whereasextprime(a) gives a type error.

7.1.10 RANDOM

random( n) returns a random numberin the ranged < r < n. A type error
occurs if the value of the argument is not a positive integer in algebraic mode, or
positive number in symbolic mode. For example:

random(5) -> 3
random(1000) -=> 191

whereagandom(a) gives a type error.

7.1.11 RANDOMNEW_SEED

random _new_seed( n) reseeds the random number generator to a sequence de-
termined by the integer argument It can be used to ensure that a repeatable
pseudo-random sequence will be delivered regardless of any previousRia&lof
DOMor can be called early in a run with an argument derived from something
variable (such as the time of day) to arrange that different runs of a REDUCE pro-
gram will use different random sequences. When a fresh copy of REDUCE is first
created it is as ifandom _new_seed(1) has been obeyed.

A type error occurs if the value of the argument is not a positive integer.

7.1.12 REPART

This returns the real part of an expression, if that argument has an numerical value.
A non-numerical argument is returned as an expression in the opeRESART
andIMPART. For example:

repart(1+i) > 1
repart(a+i*b) -> REPART(A) - IMPART(B)
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7.1.13 ROUND

This operator returns the rounded value (i.e, the nearest integer) of its single argu-
ment if that argument has a numerical value. A non-numeric argument is returned
as an expression in the original operator. For example:

round(-5/4) > -1
round(a) -> ROUND(A)

7.1.14 SIGN
SIGN tries to evaluate the sign of its argument. If this is poss&ileN returns
one of 1, 0 or -1. Otherwise, the result is the original form or a simplified variant.

For example:

sign(-5) > -1
sign(-a”2*b) -> -SIGN(B)

Note that even powers of formal expressions are assumed to be positive only as
long as the switciCOMPLEXs off.

7.2 Mathematical Functions

REDUCE knows that the following represent mathematical functions that can take
arbitrary scalar expressions as their single argument:

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH DILOG ElI EXP
HYPOT LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

whereLOGis the natural logarithm (and equivalent kdl), and LOGBhas two
arguments of which the second is the logarithmic base.

The derivatives of all these functions are also known to the system.

REDUCE knows various elementary identities and properties of these functions.
For example:

cos(-x) = cos(x) sin(-x) = - sin (X)
cos(n*pi) = (-1)'n sin(n*pi) = 0
loge) =1 e (i*pil2) =i
log(l) = e(i*pi) = -1
log(e™x) = x e (3**pil2) = -i
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Beside these identities, there are a lot of simplifications for elementary funct-
ions defined in the REDUCE system as rulelists. In order to view these, the
SHOWRULES operator can be used, e.g.

SHOWRULES tan;
{tan("n*arbint("i)*pi + “(C x)) => tan(x) when fixp(n),
tan("x)

=> trigquot(sin(x),cos(x)) when knowledge about(sin,x,tan)

X + 7 k)*pi
tan(---------------- )
d
X k 1
=> - cot(---) when x freeof pi and abs(---)=---,
d d 2
“Cw) + 7C K)*pi w + remainder(k,d)*pi
tan(-------------------- ) => tan(
-)
“C d) d
k
when w freeof pi and ratnump(---) and fixp(k)
d
k
and abs(---)>=1,
d

tan(atan("x)) => x,

dftan(x),"x) => 1 + tan(x) }

For further simplification, especially of expressions involving trigonometric funct-
ions, see the TRIGSIMP package documentation.
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Functions not listed above may be defined in the special functions package
SPECFN.

The user can add further rules for the reduction of expressions involving these
operators by using theET command.

In many cases it is desirable to expand product arguments of logarithms, or collect
a sum of logarithms into a single logarithm. Since these are inverse operations, it
is not possible to provide rules for doing both at the same time and preserve the
REDUCE concept of idempotent evaluation. As an alternative, REDUCE provides
two switchesEXPANDLOGSand COMBINELOG® carry out these operations.
Both are off by default. Thus to expah®G(X*Y) into a sum of logs, one can

say

ON EXPANDLOGS; LOG(X*Y);
and to combine this sum into a single log:
ON COMBINELOGS; LOG(X) + LOG(Y);

At the present time, it is possible to have both switches on at once, which could
lead to infinite recursion. However, an expression is switched from one form to the
other in this case. Users should not rely on this behavior, since it may change in
the next release.

The current version of REDUCE does a poor job of simplifying surds. In particular,
expressions involving the product of variables raised to non-integer powers do not
usually have their powers combined internally, even though they are printed as if
those powers were combined. For example, the expression

X" (1/3)*x"(1/6);
will print as

SQRT(X)
but will have an internal form containing the two exponentiated terms. If you
now subtracsqrt(x)  from this expression, you wilhot get zero. Instead, the
confusing form

SQRT(X) - SQRT(X)

will result. To combine such exponentiated terms, the swig€dMBINEEXPT
should be turned on.
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The square root function can be input using the n&Q&RT or the power opera-

tion °(1/2) . On output, unsimplified square roots are normally represented by
the operatoSQRTrather than a fractional power. With the default system switch
settings, the argument of a square root is first simplified, and any divisors of the
expression that are perfect squares taken outside the square root argument. The
remaining expression is left under the square root. Thus the expression

sqrt(-8a"2*b)

becomes
2*a*sqrt(-2*b).

Note that such simplifications can cause troublé i eventually given a value

that is a negative number. If it is important that the positive property of the square
root and higher even roots always be preserved, the sWRIECISE should be

set on (the default value). This causes any non-numerical factors taken out of surds
to be represented by their absolute value form. WIRECISEon then, the above
example would become

2*abs(a)*sqrt(-2*b).

The statement that REDUCE knows very little about these functions applies only
in the mathematically exactff rounded mode. FROUNDER on, any of the
functions

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH EXP HYPOT
LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

when given a numerical argument has its value calculated to the current degree of
floating point precision. In addition, real (non-integer valued) powers of numbers
will also be evaluated.

If the COMPLEXswitch is turned on in addition tROUNDEDthese funct-
ions will also calculate a real or complex result, again to the current degree of
floating point precision, if given complex arguments. For example, with
rounded,complex;

2.3°(5.6() ->  -0.0480793490914 - 0.998843519372*
cos(2+3i) > -4.18962569097 - 9.10922789376*
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7.3 DF Operator

The operatoDF is used to represent partial differentiation with respect to one or
more variables. It is used with the syntax:

DF(EXPRN:algebraic[,VAR:kernel<,NUM:integer>]).algebraic.

The first argument is the expression to be differentiated. The remaining arguments
specify the differentiation variables and the number of times they are applied.

The numbeNUMmay be omitted if it is 1. For example,

df(y,x) =0y/0x
df(y,x,2) = 9%y /0x?
df(y,x1,2,x2,x3,2) = 9%y/0x? ('“)xgazc%.

The evaluation oflf(y,x)  proceeds as follows: first, the valuesYofindX are
found. Let us assume ththas no assigned value, so its valuXisEach term
or other part of the value of that contains the variabl¥ is differentiated by the
standard rules. [ is another variable, nd itself, then its derivative with respect
to X is taken to be 0, unless has previously been declared&PENDon X, in
which case the derivative is reported as the synali@,x)

7.3.1 Adding Differentiation Rules

TheLET statement can be used to introduce rules for differentiation of user-defined
operators. Its general form is

FOR ALL <varl>,...<varn>
LET DF(<operator><varlist>,<vari>)=<expression>

where<varlist> = (<varl> ,... <varn> ), and<varl> ,..<varn> are the
dummy variable arguments ebperator>

An analogous form applies to infix operators.

Examples:
for all x let df(tan x,x)= 1 + tan(x)"2;
(This is how the tan differentiation rule appears in the REDUCE source.)

for all x,y let df(f(x,y),x)=2*f(x,y),
df(f(x.y),y)=x*(x.y);
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Notice that all dummy arguments of the relevant operator must be declared arbi-
trary by theFOR ALLcommand, and that rules may be supplied for operators with
any number of arguments. If no differentiation rule appears for an argument in an
operator, the differentiation routines will return as result an expression in terms
of DF. For example, if the rule for the differentiation with respect to the second
argument of is not supplied, the evaluation df(f(x,z),z) would leave this
expression unchanged. (N@EPENDdeclaration is needed here, sir¢e,z)
obviously “depends onZ.)

Once such a rule has been defined for a given operator, any future differentiation
rules for that operator must be defined with the same number of arguments for that
operator, otherwise we get the error message

Incompatible DF rule argument length for <operator>

7.4 INT Operator

INT is an operator in REDUCE for indefinite integration using a combination of
the Risch-Norman algorithm and pattern matching. It is used with the syntax:

INT(EXPRN:algebraic,VAR:kernel):algebraic.

This will return correctly the indefinite integral for expressions comprising poly-
nomials, log functions, exponential functions and tan and atan. The arbitrary con-
stant is not represented. If the integral cannot be done in closed terms, it returns a
formal integral for the answer in one of two ways:

1. Itreturns the inpuiNT(...,...) unchanged.

2. Itreturns an expression involviy T s of some other functions (sometimes
more complicated than the original one, unfortunately).

Rational functions can be integrated when the denominator is factorizable by the
program. In addition it will attempt to integrate expressions involving error funct-
ions, dilogarithms and other trigonometric expressions. In these cases it might not
always succeed in finding the solution, even if one exists.

Examples:

int(log(x),x) -> X*LOG(X) - 1),
int(e"x,x) >  E**X.

The program checks that the second argument is a variable and gives an error if it
iS not.
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Note: If theint operator is called with 4 arguments, REDUCE will implicitly call
the definite integration package (DEFINT) and this package will interpret the third
and fourth arguments as the lower and upper limit of integration, respectively. For
details, consult the documentation on the DEFINT package.

7.4.1 Options

The switchTRINT when on will trace the operation of the algorithm. It produces
a great deal of output in a somewhat illegible form, and is not of much interest to
the general user. It is normally off.

If the switch FAILHARD is on the algorithm will terminate with an error if the
integral cannot be done in closed terms, rather than return a formal integration
form. FAILHARD s normally off.

The switchNOLNRsuppresses the use of the linear properties of integration in
cases when the integral cannot be found in closed terms. It is normally off.

7.4.2 Advanced Use

If a function appears in the integrand that is not one of the functfiR, ERF,

TAN, ATAN, LOG, DILOG then the algorithm will make an attempt to inte-
grate the argument if it can, differentiate it and reach a known function. However
the answer cannot be guaranteed in this case. If a function is known to be alge-
braically independent of this set it can be flagged transcendental by

flag(’(trilog), transcendental);

in which case this function will be added to the permitted field descriptors for a
genuine decision procedure. If this is done the user is responsible for the mathe-
matical correctness of his actions.

The standard version does not deal with algebraic extensions. Thus integration
of expressions involving square roots and other like things can lead to trouble. A
contributed package that supports integration of functions involving square roots is
available, however (ALGINT, chaptéf). In addition there is a definite integration
package, DEFINT( chapté?).

7.4.3 References

A. C. Norman & P. M. A. Moore, “Implementing the New Risch Algorithm”,
Proc. 4th International Symposium on Advanced Comp. Methods in Theor. Phys.,
CNRS, Marseilles, 1977.
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S. J. Harrington, “A New Symbolic Integration System in Reduce”, Comp. Journ.
22 (1979) 2.

A. C. Norman & J. H. Davenport, “Symbolic Integration — The Dust Settles?”,
Proc. EUROSAM 79, Lecture Notes in Computer Science 72, Springer-Verlag,
Berlin Heidelberg New York (1979) 398-407.

7.5 LENGTH Operator

LENGTHSs a generic operator for finding the length of various objects in the sys-
tem. The meaning depends on the type of the object. In particular, the length
of an algebraic expression is the number of additive top-level terms its expanded
representation.

Examples:

length(a+b) > 2
length(2) > 1.

Other objects that support a length operator include arrays, lists and matrices. The
explicit meaning in these cases is included in the description of these objects.

7.6  MAP Operator

The MAPoperator applies a uniform evaluation pattern to all members of a com-
posite structure: a matrix, a list, or the arguments of an operator expression. The
evaluation pattern can be a unary procedure, an operator, or an algebraic expression
with one free variable.

It is used with the syntax:
MAP(U:function,V:object)

Hereobject is a list, a matrix or an operator expressiéinction can be one
of the following:

1. the name of an operator for a single argument: the operator is evaluated once
with each element adbject as its single argument;

2. an algebraic expression with exactly one free variable, that is a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
object , where the element is substituted for the free variable;
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3. a replacement rule of the formar => rep wherevar is a variable (a
kernel without a subscript) amdp is an expression that containar . Rep
is evaluated for each element @bject where the element is substituted
for var . Var may be optionally preceded by a tilde.

The rule form forfunction  is needed when more than one free variable occurs.

Examples:

map(abs,{1,-2,a,-a)) -> {1,2,ABS(A),ABS(A)}
map(int(w,x), mat((x"2,x’5),(x'4,x’5))) ->

[ 3 6]
[x X ]
[ ]

(3 6]
[ ]
[ 5 6]
[x X ]
e

(5 6]

map(w*6, x2/3 = y3/2 -1) -> 2*X"2=3*(Y"3-2)

You can useMAPiIn nested expressions. However, you cannot apphPto a
non-composed object, e.g. an identifier or a number.

7.7 MKID Operator

In many applications, it is useful to create a set of identifiers for naming objects in
a consistent manner. In most cases, it is sufficient to create such names from two
components. The operathtKID is provided for this purpose. Its syntax is:

MKID(U:id,V:id|non-negative integer):id
for example

mkid(a,3) -> A3
mkid(apple,s) -> APPLES
while mkid(a+b,2) gives an error.

The SET operator can be used to give a value to the identifiers creat®kii,
for example
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set(mkid(a,3),3);

will give A3 the value 2.

7.8 PF Operator

PF(<exp>,<var>) transforms the expressiatexp> into a list of partial frac-

tions with respect to the main variabteyjar> . PF does a complete partial fraction
decomposition, and as the algorithms used are fairly unsophisticated (factorization
and the extended Euclidean algorithm), the code may be unacceptably slow in com-
plicated cases.

Example: Given 2/((x+1)"2*(x+2)) in the workspacepf(ws,x); gives
the result

2 -2 2
’ ’ }
X+ 2 X+1 2
X + 22X + 1

{

If you want the denominators in factored form, usé# exp; . Thus, with
2/((x+1)"2*(x+2)) in the workspace, the commanof$ exp; pf(ws,x);
give the result

X + 2 X +1 2
X + 1)

To recombine the term&EOR EACH ...SUMcan be used. So with the above list
in the workspacefpr each j in ws sum j; returns the result

X + 2)*(X + 1)

Alternatively, one can use the operations on lists to extract any desired term.
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7.9 SELECT Operator

The SELECT operator extracts from a list, or from the arguments of an n-ary
operator, elements corresponding to a boolean predicate. It is used with the syntax:

SELECT(U:function,V:list)

Function can be one of the following forms:

1. the name of an operator for a single argument: the operator is evaluated once
with each element adbject as its single argument;

2. an algebraic expression with exactly one free variable, that is a variable pre-
ceded by the tilde symbol. The expression is evaluated for each element of
(object, where the element is substituted for the free variable;

3. a replacement rule of the forgvar => rep) wherevar is a variable (a
kernel without subscript) anep is an expression that contaimar . Rep
is evaluated for each element albject where the element is substituted
forvar . var may be optionally preceded by a tilde.

The rule form forfunction  is needed when more than one free variable occurs.

The result of evaluatinfunction  is interpreted as a boolean value correspond-
ing to the conventions of REDUCE. These values are composed with the leading
operator of the input expression.

Examples:
select( "w>0 , {1,-1,2,-3,3}) -> {1,2,3}
select(evenp deg("w,y),part((x+y)"5,0):=list)
> {X'5 ,10*X"3*Y"2 ,5*X*Y 4}
select(evenp deg("w,x),2x2+3X"3+4x°4) -> 4X°4 + 2X"2

7.10 SOLVE Operator

SOLVE is an operator for solving one or more simultaneous algebraic equations.
It is used with the syntax:

SOLVE(EXPRN:algebraic[,VAR:kernel|,VARLIST:list of kernels])
‘list.

EXPRNSs of the form<expression>  or{ <expressionl> ,<expression2>
... }. Each expression is an algebraic equation, or is the difference of the two sides
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of the equation. The second argument is either a kernel or a list of kernels represent-
ing the unknowns in the system. This argument may be omitted if the number of
distinct, non-constant, top-level kernels equals the number of unknowns, in which
case these kernels are presumed to be the unknowns.

For one equationSOLVErecursively uses factorization and decomposition, to-
gether with the known inverses €fOG SIN, COS ™, ACOSASIN, and linear,
guadratic, cubic, quartic, or binomial factors. Solutions of equations built with
exponentials or logarithms are often expressed in terms of Lamb¥ftiaction.
This function is (partially) implemented in the special functions package.

Linear equations are solved by the multi-step elimination method due to Bareiss,
unless the switctlCRAMERs on, in which case Cramer’s method is used. The
Bareiss method is usually more efficient unless the system is large and dense.

Non-linear equations are solved using the Groebner basis package. Users should
note that this can be quite a time consuming process.

Examples:

solve(log(sin(x+3))’5 = 8,X);
solve(a*log(sin(x+3))"5 - b, sin(x+3));
solve({a*x+y=3,y=-2},{x,y});

SOLVEreturns a list of solutions. If there is one unknown, each solution is an
equation for the unknown. If a complete solution was found, the unknown will
appear by itself on the left-hand side of the equation. On the other hand, if the
solve package could not find a solution, the “solution” will be an equation for the
unknown in terms of the operatROOTOF |If there are several unknowns, each
solution will be a list of equations for the unknowns. For example,

solve(x"2=1,x); > {X=-1,X=1}
solve(X"7-x"6+x"2=1,x)
6
> {X=ROOT_OF(X_ + X_ + 1,X_,TAG_1),X=1}

solve({x+3y=7y-x=1},{x,y}) -> {{X=1,Y=2}}.
The TAG argument is used to uniquely identify those particular solutions. Solution
multiplicities are stored in the global variadROOTMULTIPLICITIES rather
than the solution list. The value of this variable is a list of the multiplicities of the

solutions for the last call dBOLVE For example,

solve(x"2=2x-1,x); root_multiplicities;
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gives the results
{X=1}

{2}

If you want the multiplicities explicitly displayed, the switdhULTIPLICITIES
can be turned on. For example

on multiplicities; solve(x"2=2x-1,X);
yields the result

{X=1,X=1}

7.10.1 Handling of Undetermined Solutions

WhenSOLVEcannot find a solution to an equation, it normally returns an equation
for the relevant indeterminates in terms of the operR©OOTOF. For example, the
expression

solve(cos(x) + log(x),x);
returns the result
{X=ROOT_OF(COS(X_) + LOG(X ),X_,TAG_ 1)} .

An expression with a top-levé@OOTOF operator is implicitly a list with an un-
known number of elements (since we don’t always know how many solutions an
eqguation has). If a substitution is made into such an expression, closed form solu-
tions can emerge. If this occurs, tROOTOFconstruct is replaced by an operator
ONEOF At this point it is of course possible to transform the result of the original
SOLVEoperator expression into a stand&@@LVEsolution. To effect this, the
operatolEXPANDCASES can be used.

The following example shows the use of these facilities:
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solve(-a*x"3+a*x"2+x"4-x"3-4*X"2+4,X);
2 3
{X=ROOT_OF(A*X_ - X_ + 4*X_ + 4X_,TAG_2)X=1}

sub(a=-1,ws);
{X=ONE_OF({2,-1,-2},TAG_2),X=1}
expand_cases ws;

{X=2,X=-1,X=-2,X=1}

7.10.2 Solutions of Equations Involving Cubics and Quartics

Since roots of cubics and quartics can often be very messy, a sitthROOTS
is available, that, when off (the default), will prevent the production of a result in
closed form. Th&ROOTOFconstruct will be used in this case instead.

In constructing the solutions of cubics and quartics, trigonometrical forms are used
where appropriate. This option is under the control of a switthGFORMwhich
is normally on.

The following example illustrates the use of these facilities:
let xx = solve(X"3+x+1,x);
XX;

3
{X=ROOT_OF(X_ + X_ + 1,X)}

on fullroots;
XX;
- SQRT(31)*l
ATAN(------=--=----- )
3*SQRT(3)
{X=(*(SQRT(3)*SIN( )

3
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- SQRT(31)l

3*SQRT(3)
- COS( N)/SQRT(3),

- SQRT(31)*

3*SQRT(3)
X=( - I*(SQRT(3)*SIN( )
3

- SQRT(31)*

3*SQRT(3)
+ COS( MISQRT(
3

3),
- SQRT(31)*I

3*SQRT(3)
2*COS( )
3
X= }
SQRT(3)

off trigform;

XX;
2/3
{X=( - (SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

213 23
- (SQRT(31) - 3*SQRT(3)) - 2 *SQRT(3)*
2/3 1/3 1/3

+ 2 )I(2SQRT(31) - 3*SQRT(3)) *6

1/6
*3 ),

2/3

71
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X=((SQRT(31) - 3*SQRT(3)) *SQRT(3)*l

213 2/3
- (SQRT(31) - 3*SQRT(3)) + 2  *SQRT(3)*

2/3 1/3 1/3
+ 2 )I(2*(SQRT(31) - 3*SQRT(3)) *6

1/6
*3 )’

213 2/3
(SQRT(31) - 3*SQRT(3)) - 2
X= }
1/3 1/3 1/6
(SQRT(31) - 3*SQRT(3)) *6 *3

7.10.3 Other Options

If SOLVESINGULARis on (the default setting), degenerate systems such as
x+y=0, 2x+2y=0 will be solved by introducing appropriate arbitrary constants.
The consistent singular equation 0=0 or equations involving functions with multi-
ple inverses may introduce unique new indeterminant ke AiRBCOMPLEX(j),
or ARBINT(j) , (j=1,2,...), representing arbitrary complex or integer numbers re-
spectively. To automatically select the principal branchegffiallbranch;

To avoid the introduction of new indeterminant kernelsQieF ARBVARS
then no equations are generated for the free variables and their original names are
used to express the solution forms. To suppress solutions of consistent singular
equations d®FF SOLVESINGULAR

To incorporate additional inverse functions do, for example:

put(’sinh,’'inverse,’asinh);
put(’asinh,’'inverse,’sinh);

together with any desired simplification rules such as
for all x let sinh(asinh(x))=x, asinh(sinh(x))=x;

For completeness, functions with non-unique inverses should be tredte8ihs,
andCOSare in theSOLVE module source.

Arguments ofASIN and ACOSare not checked to ensure that the absolute value
of the real part does not exceed 1; and argument©@are not checked to ensure
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that the absolute value of the imaginary part does not excgleat checks (perhaps
involving user response for non-numerical arguments) could be introduced using
LET statements for these operators.

7.10.4 Parameters and Variable Dependency

The proper design of a variable sequence supplied as a second argu®@hiMe
is important for the structure of the solution of an equation system. Any unknown
in the system not in this list is considered totally free. E.g. the call

solve({x=2*z,z=2*y},{z}):

produces an empty list as a result because there is no function(x, y) which
fulfills both equations for arbitrary andy values. In such a case the share variable
requirements  displays a set of restrictions for the parameters of the system:

requirements;

{x - 4%}

The non-existence of a formal solution is caused by a contradiction which disap-
pears only if the parameters of the initial system are set such that all members of
the requirements list take the value zero. For a linear system the set is complete:
a solution of the requirements list makes the initial system solvable. E.g. in the
above case a substitution= 4y makes the equation set consistent. For a non-
linear system only one inconsistency is detected. If such a system has more than
one inconsistency, you must reduce them one after the dtfidre set shows you

also the dependency among the parameters: here aranaly is free and a formal
solution of the system can be computed by adding it to the variable lsiloé .

The requirement set is not unique — there may be other such sets.

A system with parameters may have a formal solution, e.g.

solve({x=a*z+1,0=b*z-y},{z,x});

y aty + b
{{z=--- X==ee 1
b b

The difference between linear and non-linear inconsistent systems is based on the algorithms
which produce this information as a side effect when attempting to find a formal solution; example:
solve({x = a,z = b,y = ¢,y = d}, {x,y} gives asef{a — b, c — d} while solve({z? = a,2> =

b,y* = c,y® = d}, {z,y} leads to{a — b}.
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which is not valid for all possible values of the parameters. The varagdemp-

tions contains then a list of restrictions: the solutions are valid only as long as
none of these expressions vanishes. Any zero of one of them represents a special
case that is not covered by the formal solution. In the above case the value is
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assumptions;
{b}

which excludes formally the cage= 0; obviously this special parameter value
makes the system singular. The set of assumptions is complete for both, linear and
non-linear systems.

SOLVErearranges the variable sequence to reduce the (expected) computing time.
This behavior is controlled by the switetaropt , which is on by default. If it is
turned off, the supplied variable sequence is used or the system kernel ordering is
taken if the variable list is omitted. The effect is demonstrated by an example:

s:= {y"3+3x=0,x"2+y"2=1};
solve(s,{y,x});

6 2
{{y=root_of(y_ + 9*y_ - 9y ),

off varopt; solve(s,{y,x});

6 4 2
{{x=root_of(x_ - 3*x_ + 12*x_ - 1,x),
4 2
x*(-x + 2* - 10)
y= 1
3

In the first casesolve forms the solution as a set of paitg, z(y;)) because the
degree oft is higher — such a rearrangement makes the internal computation of the
Grobner basis generally faster. For the second case the explicitly given variable
sequence is used such that the solution has now the (feyrg(x;)). Controlling

the variable sequence is especially important if the system has one or more free
variables. As an alternative to turning offropt , a partial dependency among

the variables can be declared usingdiepend statementsolve thenrearranges

the variable sequence but keeps any variable ahead of those on which it depends.
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on varopt;
s:={a"3+b,b"2+c}$
solve(s,{a,b,c});

3 6
{{a=arbcomplex(1),b= - a ,c= - a }}

depend a,c; depend b,c; solve(s,{a,b,c});
{{c=arbcomplex(2),

6
a=root_of(a_ + c,a),

3
b= - a }}

Heresolve is forced to put aftera and afterb, but there is no obstacle to inter-
changinga andb.

7.11 Even and Odd Operators

An operator can be declared to &eenor oddin its first argument by the declara-
tions EVENand ODDrespectively. Expressions involving an operator declared in
this manner are transformed if the first argument contains a minus sign. Any other
arguments are not affected. In addition, if days declared odd, thef{0) is
replaced by zero unles$sis also declaredion zeroby the declaratioNONZERO

For example, the declarations

even fl; odd f2;

mean that
fi(-a) -> F1(A)
f2(-a) -> -F2(A)
fi(-a,-b) -> F1(A,-B)
f2(0) -> 0.

To inhibit the last transformation, saypnzero f2;
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7.12 Linear Operators

An operator can be declared to be linear in its first argument over powers of its
second argument. If an operateiis so declaredi of any sum is broken up into
sums ofFs, and any factors that are not powers of the variable are taken outside.
This means thaF must have (at least) two arguments. In addition, the second
argument must be an identifier (or more generally a kernel), not an expression.

Example:

If F were declared linear, then

5
f@*x'5+b*x+c,x) -> F(X XA + F(X,X)*B + F(1,X)*C

More precisely, not only will the variable and its powers remain within the scope
of the F operator, but so will any variable and its powers that had been declared
to DEPENDpn the prescribed variable; and so would any expression that contains
that variable or a dependent variable on any level, @g(sin(x))

To declare operatois andGto be linear operators, use:
linear f,qg;

The analysis is done of the first argument with respect to the second; any other
arguments are ignored. It uses the following rules of evaluation:

f(0) -> 0

f(-y,x) -> -F(Y,X)

fly+z,x) -> F(Y,X)+F(Z,X)

fiy*z,x) -> Z*F(Y,X) if Z does not depend on X
fy/lz,x) -> F(Y,X)/Z if Z does not depend on X

To summarizey “depends” on the indeterminad¢in the above if either of the
following hold:

1. Yis an expression that contaikst any level as a variable, e.gos(sin(x))

2. Any variable in the expressiorihas been declared dependenthy use
of the declaratiodEPEND

The use of such linear operators can be seen in the paper Fox, J.A. and A. C. Hearn,
“Analytic Computation of Some Integrals in Fourth Order Quantum Electrodynam-
ics” Journ. Comp. Phys. 14 (1974) 301-317, which contains a complete listing of
a program for definite integration of some expressions that arise in fourth order
gquantum electrodynamics.
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7.13 Non-Commuting Operators

An operator can be declared to be non-commutative under multiplication by the
declaratiorNONCOM

Example:

After the declaration

noncom u,v;

the expressiong(X)*u(y)-u(y)*u(x) andu(x)*v(y)-v(y)*u(x) will
remain unchanged on simplification, and in particular will not simplify to zero.

Note that it is the operatotlandV in the above example) and not the variable that
has the non-commutative property.

TheLET statement may be used to introduce rules of evaluation for such operators.
In particular, the boolean operat&RDHs useful for introducing an ordering on
such expressions.

Example:
The rule

for all x,y such that x neq y and ordp(x,y)
let u(x)*u(y)=u(y)*u(x)+comm(x.y);

would introduce the commutator oi(x) andu(y) for all X andY. Note that
sinceordp(x,x)  istrue, the equality check is necessary in the degenerate case
to avoid a circular loop in the rule.

7.14 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments by the
declaratiorSYMMETRICFor example

symmetric u,v;

means that any expression involving the top level operdtons V will have its
arguments reordered to conform to the internal order used by REDUCE. The user
can change this order for kernels by the commE@RDER

For exampleu(x,v(1,2)) would becomau(v(2,1),x) , since numbers are
ordered in decreasing order, and expressions are ordered in decreasing order of
complexity.

Similarly the declaratioMNTISYMMETRICdeclares an operator antisymmetric.
For example,
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antisymmetric |,m;

means that any expression involving the top level operdtans Mwill have its
arguments reordered to conform to the internal order of the system, and the sign
of the expression changed if there are an odd number of argument interchanges
necessary to bring about the new order.

For example|(x,m(1,2)) would becomel(-m(2,1),x) since one inter-
change occurs with each operator. An expressionl{k)  would also be
replaced by 0.

7.15 Declaring New Prefix Operators

The user may add new prefix operators to the system by using the declaration
OPERATORFor example:

operator h,gl,arctan;

adds the prefix operatok§ G1andARCTANo the system.

This allows symbols liké(w), h(x,y,z), gl(p+q), arctan(u/v) to

be used in expressions, but no meaning or properties of the operator are implied.
The same operator symbol can be used equally well as a 0-, 1-, 2-, 3-, etc.-place
operator.

To give a meaning to an operator symbol, or express some of its prop&HeEs,
statements can be used, or the operator can be given a definition as a procedure.

If the user forgets to declare an identifier as an operator, the system will prompt the
user to do so in interactive mode, or do it automatically in non-interactive mode.
A diagnostic message will also be printed if an identifier is decl@PERATOR
more than once.

Operators once declared are global in scope, and so can then be referenced any-
where in the program. In other words, a declaration within a block (or a procedure)
does not limit the scope of the operator to that block, nor does the operator go away
on exiting the block (us€LEARIinstead for this purpose).

7.16 Declaring New Infix Operators

Users can add new infix operators by using the declaratdRbX andPRECE-
DENCEFor example,

infix mm;
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precedence mm,-;

The declarationnfix mm;  would allow one to use the symbMMas an infix
operator:

a mm b instead of mm(a,b) .

The declaratiorprecedence mm,-;  says thatMMshould be inserted into the
infix operator precedence list juafter the — operator. This gives it higher prece-
dence than- and lower precedence than * . Thus

a-bmmc-d means a-(bmmec-d,

while
a*bmmec*d means (@ * b) mm (c * d)

Both infix and prefix operators have no transformation properties ublEEstate-
ments or procedure declarations are used to assign a meaning.

We should note here that infix operators so defined are always binary:

a mmb mmc means (@ mm b) mm c

7.17 Creating/Removing Variable Dependency

There are several facilities in REDUCE, such as the differentiation operator and
the linear operator facility, that can utilize knowledge of the dependency between
various variables, or kernels. Such dependency may be expressed by the command
DEPENDThis takes an arbitrary number of arguments and sets up a dependency
of the first argument on the remaining arguments. For example,

depend x,y,z;
says thak is dependent on botl andZ.
depend z,cos(x),y;

says thak is dependent o€OS(X) andY.

Dependencies introduced DEPENDCan be removed bNODEPENDThe argu-
ments of this are the same as REPENDFor example, given the above depen-
dencies,
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nodepend z,cos(x);

says that is no longer dependent d&OS(X), although it remains dependent on
Y.
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Chapter 8

Display and Structuring of
EXxpressions

In this section, we consider a variety of commands and operators that permit the
user to obtain various parts of algebraic expressions and also display their structure
in a variety of forms. Also presented are some additional concepts in the REDUCE
design that help the user gain a better understanding of the structure of the system.

8.1 Kernels

REDUCE is designed so that each operator in the system has an evaluation (or
simplification) function associated with it that transforms the expression into an
internal canonical form. This form, which bears little resemblance to the original
expression, is described in detail in Hearn, A. C., “REDUCE 2: A System and Lan-
guage for Algebraic Manipulation,” Proc. of the Second Symposium on Symbolic
and Algebraic Manipulation, ACM, New York (1971) 128-133.

The evaluation function may transform its arguments in one of two alternative
ways. First, it may convert the expression into other operators in the system, leav-
ing no functions of the original operator for further manipulation. Thisisin a sense
true of the evaluation functions associated with the operatotsand/ , for ex-
ample, because the canonical form does not include these operators explicitly. It
is also true of an operator such as the determinant opebdidbecause the rel-
evant evaluation function calculates the appropriate determinant, and the operator
DETno longer appears. On the other hand, the evaluation process may leave some
residual functions of the relevant operator. For example, with the opeC&&

a residual expression likeOS(X) may remain after evaluation unless a rule for
the reduction of cosines into exponentials, for example, were introduced. These
residual functions of an operator are terni@inelsand are stored uniquely like

83
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variables. Subsequently, the kernel is carried through the calculation as a variable
unless transformations are introduced for the operator at a later stage.

In those cases where the evaluation process leaves an operator expression with
non-trivial arguments, the form of the argument can vary depending on the state
of the system at the point of evaluation. Such arguments are normally produced in
expanded form with no terms factored or grouped in any way. For example, the
expressiorcos(2*x+2*y) will normally be returned in the same form. If the
argumen*x+2*y were evaluated at the top level, however, it would be printed
as2*(X+Y) . If itis desirable to have the arguments themselves in a similar form,
the switchINTSTR (for “internal structure”), if on, will cause this to happen.

In cases where the arguments of the kernel operators may be reordered, the sys-
tem puts them in a canonical order, based on an internal intrinsic ordering of the
variables. However, some commands allow arguments in the form of kernels, and
the user has no way of telling what internal order the system will assign to these
arguments. To resolve this difficulty, we introduce the notion kémel formas

an expression that transforms to a kernel on evaluation.

Examples of kernel forms are:

a

cos(x*y)

log(sin(x))
whereas

a*b

(a+b)"4
are not.

We see that kernel forms can usually be used as generalized variables, and most
algebraic properties associated with variables may also be associated with kernels.

8.2 The Expression Workspace

Several mechanisms are available for saving and retrieving previously evaluated
expressions. The simplest of these refers to the last algebraic expression simpli-
fied. When an assignment of an algebraic expression is made, or an expression is
evaluated at the top level, (i.e., not inside a compound statement or procedure) the
results of the evaluation are automatically saved in a varlaSnat we shall refer

to as the workspace. (More precisely, the expression is assigned to the varable
that is then available for further manipulation.)
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Example:
If we evaluate the expressigrty)™2  at the top level and next wish to differen-
tiate it with respect t&v, we can simply say

df(ws,y);

to get the desired answer.
If the user wishes to assign the workspace to a variable or expression for later use,
the SAVEASstatement can be used. It has the syntax

SAVEAS <expression>

For example, after the differentiation in the last example, the workspace holds the
expressior2*x+2*y . If we wish to assign this to the variabfewe can now say

saveas z;
If the user wishes to save the expression in a form that allows him to use some of

its variables as arbitrary parameters, @R ALLcommand can be used.

Example:
for all x saveas h(x);

with the above expression would mean th@) evaluates t@*Y+2*Z .

A further method for referencing more than the last expression is described in the
section on interactive use of REDUCE.

8.3 Output of Expressions

A considerable degree of flexibility is available in REDUCE in the printing of
expressions generated during calculations. No explicit format statements are sup-
plied, as these are in most cases of little use in algebraic calculations, where the size
of output or its composition is not generally known in advance. Instead, REDUCE
provides a series of mode options to the user that should enable him to produce his
output in a comprehensible and possibly pleasing form.

The most extreme option offered is to suppress the output entirely from any top
level evaluation. This is accomplished by turning off the swidhiTPUTwhich is
normally on. It is useful for limiting output when loading large files or producing
“clean” output from the prettyprint programs.

In most circumstances, however, we wish to view the output, so we need to know
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how to format it appropriately. As we mentioned earlier, an algebraic expression
is normally printed in an expanded form, filling the whole output line with terms.
Certain output declarations, however, can be used to affect this format. To begin
with, we look at an operator for changing the length of the output line.

8.3.1 LINELENGTH Operator
This operator is used with the syntax
LINELENGTH(NUM:integer):integer

and sets the output line length to the intely&tMIt returns the previous output line
length (so that it can be stored for later resetting of the output line if needed).

8.3.2 Output Declarations

We now describe a number of switches and declarations that are available for con-
trolling output formats. It should be noted, however, that the transformation of
large expressions to produce these varied output formats can take a lot of comput-
ing time and space. If a user wishes to speed up the printing of the output in such
cases, he can turn off the switétRI. If this is done, then output is produced in
one fixed format, which basically reflects the internal form of the expression, and
none of the options below applRI is normally on.

With PRI on, the output declarations and switches available are as follows:

ORDER Declaration
The declaratio©RDERnay be used to order variables on output. The syntax is:
order vi,...vn;
where thevi are kernels. Thus,
order Xx.,y,z;
ordersX ahead ofY, Y ahead oZ and all three ahead of other variables not given
an order.order nil; resets the output order to the system default. The order
of variables may be changed by further calls@RDERbut then the reordered

variables would have an order lower than those in ea@ifRDERalls. Thus,

order Xx,y,z;
order y,X;
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would orderZ ahead ofY andX. The default ordering is usually alphabetic.

FACTOR Declaration

This declaration takes a list of identifiers or kernels as argunmfeh€TORs not

a factoring command (udeACTORIZEor the FACTORswitch for this purpose);
rather it is a separation command. All terms involving fixed powers of the declared
expressions are printed as a product of the fixed powers and a sum of the rest of the
terms.

All expressions involving a given prefix operator may also be factored by putting
the operator name in the list of factored identifiers. For example:

factor x,cos,sin(x);

causes all powers of andSIN(X) and all functions of£OSto be factored.

Note thatFACTORIJoes not affect the order of its arguments. You should also use
ORDER this is important.

The declaratiomemfac v1,...,vn; removes the factoring flag from the ex-
pressiony1 throughvn.

8.3.3 Output Control Switches

In addition to these declarations, the form of the output can be modified by switch-
ing various output control switches using the declaratohsand OFF We shall
illustrate the use of these switches by an example, namely the printing of the ex-
pression

X"2%(y 2+2*y)+x*(y"2+z)/(2*a) .

The relevant switches are as follows:

ALLFAC Switch

This switch will cause the system to search the whole expression, or any sub-
expression enclosed in parentheses, for simple multiplicative factors and print them
outside the parentheses. Thus our expressionAlitH-FAC off will print as

2 2 2 2
(%X *Y A+ 4K KYRA + XY+ X*2)/(2*A)

and withALLFACon as
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2 2
XH2AXKY *A + AXRY*A + Y+ 2)/(2*A) .

ALLFACIis normally on, and is on in the following examples, except where other-
wise stated.

DIV Switch

This switch makes the system search the denominator of an expression for simple
factors that it divides into the numerator, so that rational fractions and negative
powers appear in the output. WiV on, our expression would print as

2 2 (1) (-1)
XHXFY  + 26XKY + 1/2%Y *A + U2*A *2) .

DIV is normally off.

LIST Switch

This switch causes the system to print each term in any sum on a separate line.
With LIST on, our expression prints as

2
X*(2*X*Y *A

+ 4FXFY*A

2
+Y

+ 2)I(2*A) .

LIST is normally off.

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expression across
lines at a natural point. This is a fairly expensive process. If you are not overly
concerned about where the end-of-line breaks come, you can speed up the printing
of expressions by turning off the switthlOSPLIT. This switch is normally on.
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RAT Switch

This switch is only useful with expressions in which variables are factored with
FACTOR With this mode, the overall denominator of the expression is printed
with each factored sub-expression. We assume a prior declafatitmm X; in

the following output. We first print the expression wiRAT off :

2 2
(2*X FYRARY + 2) + XXY + 2))I(2*A) .

With RATon the output becomes:
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2 2
X *YHY + 2) + XXY + 2)I(2*A) .

RATiIs normally off.

Next, if we leaveX factored, and turn on bothlV andRAT, the result becomes

2 1) 2
X *YXY + 2) + L2%CA XY + Z) .

Finally, with X factored RATon andALLFAC off we retrieve the original structure
2 2 2
X *Y + 2%Y) + X*(Y + 2)/(2*A) .

RATPRI Switch

If the numerator and denominator of an expression can each be printed in one line,
the output routines will print them in a two dimensional notation, with numerator
and denominator on separate lines and a line of dashes in between. For example,
(a+b)/2  will print as

Turning this switch off causes such expressions to be output in a linear form.

REVPRI Switch

The normal ordering of terms in output is from highest to lowest power. In some
situations (e.g., when a power series is output), the opposite ordering is more con-
venient. The switclREVPRI if on causes such a reverse ordering of terms. For
example, the expressigri(x+1)"2+(y+3)"2 will normally print as

2 2
X* + 22X5Y + Y + 7Y + 9

whereas wittREVPRI on, it will print as

2 2
9+ 7Y + Y + 2°X*Y + X *Y.
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8.3.4 WRITE Command

In simple cases no explicit output command is necessary in REDUCE, since the
value of any expression is automatically printed if a semicolon is used as a delim-
iter. There are, however, several situations in which such a command is useful.

In a FOR WHILE, or REPEATSstatement it may be desired to output something
each time the statement within the loop construct is repeated.

It may be desired for a procedure to output intermediate results or other information
while it is running. It may be desired to have results labeled in special ways,
especially if the output is directed to a file or device other than the terminal.

TheWRITEcommand consists of the wowiRITEfollowed by one or more items
separated by commas, and followed by a terminator. There are three kinds of items
that can be used:

1. Expressions (including variables and constants). The expression is evalu-
ated, and the result is printed out.

2. Assignments. The expression on the right side oftheperator is evalu-
ated, and is assigned to the variable on the left; then the symbol on the left is
printed, followed by a =", followed by the value of the expression on the
right — almost exactly the way an assignment followed by a semicolon prints
out normally. (The difference is that if tAWRITEis in aFORstatement and
the left-hand side of the assignment is an array position or something similar
containing the variable of tHeORiteration, then the value of that variable is
inserted in the printout.)

3. Arbitrary strings of characters, preceded and followed by double-quote
marks (e.g.;string" ).

The items specified by a singiWRITE statement print side by side on one line.
(The line is broken automatically if it is too long.) Strings print exactly as quoted.
The WRITEcommand itself however does not return a value.

The print line is closed at the end o#RITEcommand evaluation. Therefore the
commandVRITE ™; (specifying nothing to be printed except the empty string)
causes a line to be skipped.

Examples:
1. If Ais X+5, Bis itself,Cis 123,Mis an array, an@@=3, then
write m(qg):=a," ",b/c,” THANK YOU";

will set M(3) tox+5 and print
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M(Q) = X + 5 B/123 THANK YOU

The blanks between tHe& andB, and the3 andT, come from the blanks in
the quoted strings.

2. To print a table of the squares of the integers from 1 to 20:
for i:=1:20 do write i," ",i"2;

3. To print a table of the squares of the integers from 1 to 20, and at the same
time store them in positions 1 to 20 of an arvay

for i:=1:20 do <<a(i):=i"2; write i," ",a(i)>>;
This will give us two columns of numbers. If we had used
for i:=1:20 do write i," ",a(i):=1"2;

we would also geA(i) := repeated on each line.

4. The following more complete example calculates the famous f and g se-
ries, first reported in Sconzo, P., LeSchack, A. R., and Tobey, R., “Symbolic
Computation of f and g Series by Computer”, Astronomical Journal 70 (May
1965).

x1:= -sig*(mu+2*eps)$
X2:= eps - 2*sig"2$
x3:= -3*mu*sig$
fi= 1%
g:= 0%
for i:i= 1 step 1 until 10 do begin
fl:= -mu*g+x1*df(f,eps)+x2*df(f,sig) +x3*df(f,mu);
write "f(",i,") = "f1;
gl:= f+x1*df(g,eps)+x2*df(g,sig)+x3*df(g,mu);
write "g(",i,") = ",01,;
f:=f1$
0:=g1%
end;

A portion of the output, to illustrate the printout from tiéRITEcommand,
is as follows:

. <prior output> ...

2
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F(4) := MU*3*EPS - 15*SIG + MU)

6*SIG*MU

G@4) :

2
F(5) := 15*SIG*MU*( - 3*EPS + 7*SIG - MU)

2

G(5) := MU*Q*EPS - 45*SIG + MU)

. <more output> ...

8.3.5 Suppression of Zeros

It is sometimes annoying to have zero assignments (i.e. assignments of the form
<expression> := 0 ) printed, especially in printing large arrays with many
zero elements. The output from such assignments can be suppressed by turning on
the switchNERO

8.3.6 FORTRAN Style Output Of Expressions

It is naturally possible to evaluate expressions numerically in REDUCE by giving
all variables and sub-expressions numerical values. However, as we pointed out
elsewhere the user must declare real arithmetical operation by turning on the switch
ROUNDEMHowever, it should be remembered that arithmetic in REDUCE is not
particularly fast, since results are interpreted rather than evaluated in a compiled
form. The user with a large amount of numerical computation after all necessary
algebraic manipulations have been performed is therefore well advised to perform
these calculations in a FORTRAN or similar system. For this purpose, REDUCE
offers facilities for users to produce FORTRAN compatible files for numerical pro-
cessing.

First, when the switciFORTis on, the system will print expressions in a FOR-
TRAN notation. Expressions begin in column seven. If an expression extends over
one line, a continuation mark (.) followed by a blank appears on subsequent cards.
After a certain number of lines have been produced (according to the value of the
variable CARDNQ, a new expression is started. If the expression printed arises
from an assignment to a variable, the variable is printed as the name of the expres-
sion. Otherwise the expression is given the default nA& An error occurs if
identifiers or numbers are outside the bounds permitted by FORTRAN.

A second option is to use thWRITEcommand to produce other programs.
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Example:
The following REDUCE statements

on fort;

out "forfil";

write "C this is a fortran program’;
write " 1 format(e13.5)";

write " u=1.23"

write " v=2.17"

write " w=5.2";

X:=(u+v+w)"11;

write "C it was foolish to expand this expression";
write " print 1,x";

write " end";

shut "forfil";

off fort;

will generate a fildorfil that contains:

¢ this is a fortran program
1 format(el13.5)

u=1.23

v=2.17

w=5.2

ans1=1320.*u**3*v*w**7+165.*u**3*w**8+55.*u**2*v**9+495.*u
L RRQREEGRW 1980, U 2RV T RW A2 +4620. KU 2* VA6 WA 3+
. 6930.*ur*2*v SR W 4+6930. FUrF 2 AW E+4620. Furr 2 3
. WX*G+1980.¥ur*2*y** 2*W** 7 +495 *u** 2 v W *8+55 Furr 2w 9+
. 12 4u*rvA*10+110.4urv**9*w+495 *urvr 8w 2+ 1320 . *urvF*7*w
. **3+2310. XUtV EWR4+27 72 *urvEEr W 5+2310. UtV 4 W6
. +1320.*urvE* 3w 7 +495 *urvF2*wr*8+110. *urviw**9+11. *urw
. P10+ 11+1 1. VA 10 WSS AV O WA 2+ 165 v 8*w**3+330.*
. VERTRWRRALA62 VWS 462 KSR WA 6+330. F VAR W T +
. 165.7v**3*W**8+55 *v* 2 W 9 +11 *vrwr*10+w*r*11

X=u**11+11.*u**10*v+11.*u**10*wW+55.*u**9*y**2+110.*u**9*v*
. WHB5 *ur*Q*wW**2+165. *ur*8*y**3+495 *ur*8ry**2*w+495 *u**8
. ORVRWRR2+165. 2 U8 WA 3+330. Furr 7y 4 +1320. FurF 7V 3w+
. 1980.*ur*7*y**2*W**2+1320. *u**7*v*wW**3+330.*u** 7*W**4+462.
. UFGRVF5+2310. 5 U6 VA 4*W+4620. Furr 6V 3 W 2+4620.*u
L RRGRYERRI R I 4231 0. U FVIWRFA+A62, FUFF 6 W5 +462 FurrE*
. VERBH2772 *urrSryr 5w +6930. *ur* Sy 4w 2+9240 *u**5*v
. FEFAWRRI+6930. KSR AWRFA42T7 72 FUFFBFVFWE+462. ¥ urrD
. WAE+330. 7 ur 47 +2310. U 4*v 6 w+6930. U 4*vrr5*w
. **2411550. *ur* 44w *3+1 1550 . Fur*4*v* 3w *4+6930.*u**
L ARyER R WRRE 4231 0. Fur* 4y rWF*6+330. *ur 4 W7 +165. *ur* 3ty
. ¥*8+1320.*ur* 3V TFWH4620. FUr* 3V WFF2+9240 . Fur* 3y r*
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. B*wW**3+11550.*u**3*v**4*W**4+9240. *ur*3*v*3*w**5+4620.*u
. FERSFVPR2*WRr6+ansl
c it was foolish to expand this expression
print 1,x
end

If the arguments of &VRITE statement include an expression that requires con-

tinuation records, the output will need editing, since the output routine prints the
arguments oWRITEsequentially, and the continuation mechanism therefore gen-
erates its auxiliary variables after the preceding expression has been printed.

Finally, since there is no direct analoglst in FORTRAN, a comment line of the
form

¢ **** jnvalid fortran construct (list) not printed

will be printed if you try to print a list wittFORTon.

FORTRAN Output Options
There are a number of methods available to change the default format of the FOR-
TRAN output.

The breakup of the expression into subparts is such that the number of continuation
lines produced is less than a given number. This number can be modified by the
assignment

card_no := <number>;
where<number> is thetotal number of cards allowed in a statement. The default

value of CARDNO:is 20.

The width of the output expression is also adjustable by the assignment
fort_width := <integer>;
which sets the total width of a given line tonteger> . The initial FORTRAN

output width is 70.

REDUCE automatically inserts a decimal point after each isolated integer coeffi-
cient in a FORTRAN expression (so that, for example, 4 becanes To prevent
this, set thePERIODmode switch tdOFF

FORTRAN output is normally produced in lower case. If upper case is desired, the
switchFORTUPPERhould be turned on.

Finally, the default namANSassigned to an unnamed expression and its subparts
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can be changed by the opera@hRNAME This takes a single identifier as argu-
ment, which then replacesNSas the expression name. The valu&/&RNAMES
its argument.

Further facilities for the production of FORTRAN and other language output are
provided by the SCOPE and GENTRAN packagesdescribed in ch&atarsl ??.

8.3.7 Saving Expressions for Later Use as Input

It is often useful to save an expression on an external file for use later as input
in further calculations. The commands for opening and closing output files are
explained elsewhere. However, we see in the examples on output of expressions
that the standard “natural” method of printing expressions is not compatible with
the input syntax. So to print the expression in an input compatible form we must
inhibit this natural style by turning off the switdAT. If this is done, a dollar sign

will also be printed at the end of the expression.

Example:
The following sequence of commands

off nat; out "out"; x := (y+z)'2; write "end";
shut "out"; on nat;

will generate a filout that contains

X = Y2 + 2%Y*Z + Z**2$
END$

8.3.8 Displaying Expression Structure

In those cases where the final result has a complicated form, it is often convenient
to display the skeletal structure of the answer. The opeBI®RUCTRthat takes
a single expression as argument, will do this for you. Its syntax is:

STRUCTR(EXPRN:algebraic[,ID1:identifier[,ID2:identifier]]);

The structure is printed effectively as a tree, in which the subparts are laid out with
auxiliary names. If the optiondD1 is absent, the auxiliary names are prefixed by

the rootANS This root may be changed by the operaf&RNAMHf the optional

ID1 is present, and is an array name, the subparts are named as elements of that
array, otherwisdD1 is used as the root prefix. (The second optional argument
ID2 is explained later.)
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The EXPRNcan be either a scalar or a matrix expression. Use of any other will
resultin an error.

Example:

Let us suppose that the workspace cont§fAsB)"2+C)"3+D . Then the input
STRUCTR WSwill (with EXP off) result in the output:
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ANS3
where
3
ANS3 = ANS2 + D
2
ANS2 = ANS1 + C
ANS1 = A + B

The workspace remains unchanged after this operation, SIB&CTRIin the de-
fault situation returns no value (8TRUCTRSs used as a sub-expression, its value
is taken to be 0). In addition, the sub-expressions are normally only displayed and
not retained. If you wish to access the sub-expressions with their displayed names,
the switchSAVESTRUCTRhould be turned on. In this cas8TRUCTReturns a
list whose first element is a representation for the expression, and subsequent ele-
ments are the sub-expression relations. Thus, BAWVESTRUCTRN, STRUCTR
WSin the above example would return
3 2
{ANS3,ANS3=ANS2 + D,ANS2=ANS1 + C,ANS1=A + B}

ThePARToperator can be used to retrieve the required parts of the expression. For
example, to get the value 8iINS2in the above, one could say:

part(ws,3,2);

If FORTIis on, then the results are printed in the reverse order; the algorithm in fact
guaranteeing that no sub-expression will be referenced before it is defined. The
second optional argumeiiD2 may also be used in this case to name the actual
expression (or expressions in the case of a matrix argument).

Example:

Let us suppose thdd a 2 by 1 matrix, contains the elemef(@+b)2 + ¢)"3

+ dand(a + b)*(c + d) respectively, and that has been declared to be an
array. WithEXP off and FORTon, the statemergtructr(2*m,v,k); will
result in the output

V(1)=A+B
V(2)=V(1)**2+C
V(3)=V(2)**3+D
V(4)=C+D
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K(1,1)=2.*V(3)
K(2,1)=2.*V(1)*V(4)

8.4 Changing the Internal Order of Variables

The internal ordering of variables (more specifically kernels) can have a significant
effect on the space and time associated with a calculation. In its default state, RE-
DUCE uses a specific order for this which may vary between sessions. However,
it is possible for the user to change this internal order by means of the declaration
KORDERThe syntax for this is:

korder vi,...,vn;

where theVi are kernels. With this declaration, tiié are ordered internally ahead
of any other kernels in the syste1 has the highest orde¥,2 the next highest,
and so on. A further call oKORDEReplaces a previous on&ORDER NIL;
resets the internal order to the system default.

Unlike theORDERIeclaration, that has a purely cosmetic effect on the way results
are printed, the use ®§ORDERan have a significant effect on computation time.

In critical cases then, the user can experiment with the ordering of the variables
used to determine the optimum set for a given problem.

8.5 Obtaining Parts of Algebraic Expressions

There are many occasions where it is desirable to obtain a specific part of an ex-
pression, or even change such a part to another expression. A number of operators
are available in REDUCE for this purpose, and will be described in this section. In
addition, operators for obtaining specific parts of polynomials and rational funct-
ions (such as a denominator) are described in another section.

8.5.1 COEFF Operator
Syntax:
COEFF(EXPRN:polynomial,VAR:kernel)
COEFFis an operator that partitiorEXPRNinto its various coefficients with re-

spect toVARand returns them as a list, with the coefficient independeMAR
first.
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Under normal circumstances, an error resulEXPRNs not a polynomial iVAR
although the coefficients themselves can be rational as long as they do not depend
on VAR However, if the switctRATARGSs on, denominators are not checked for
dependence o¥AR and are taken to be part of the coefficients.

Example:
coeff((y"2+2)"3/z.y);
returns the result

2
{z ,0,3*2,0,3,0,1/2}.

whereas
coeff((y"2+2)"3ly,y);
gives an error iIRATARGs off, and the result

3 2
{Z 1Y,0,3*Z IY,0,3*ZIY,0,1/Y}

if RATARGSs on.

The length of the result c€OEFFis the highest power d¥ ARencountered plus
1. In the above examples it is 7. In addition, the variaBl&H_POWs set to
the highest non-zero power foundiEXPRNduring the evaluation, andOWPOW
to the lowest non-zero power, or zero if there is a constant terBXPRNis a
constant, thefIGH_.POWANdLOWPOWare both set to zero.

8.5.2 COEFFN Operator

The COEFFNbperator is designed to give the user a particular coefficient of a vari-
able in a polynomial, as opposed@®EFFhat returns all coefficientsCOEFFN

is used with the syntax

COEFFN(EXPRN:polynomial,VAR:kernel,N:integer)

It returns then'” coefficient ofVARIn the polynomiaEXPRN

8.5.3 PART Operator

Syntax:
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PART(EXPRN:algebraic[,INTEXP:integer])

This operator works on the form of the expression as prioteas it would have

been printed at that point in the calculatitrearing in mind all the relevant switch
settings at that point. The reader therefore needs some familiarity with the way
that expressions are represented in prefix form in REDUCE to use these operators
effectively. Furthermore, it is assumed tiRRI| is ONat that point in the calcula-

tion. The reason for this is that witPRI off, an expression is printed by walking

the tree representing the expression internally. To save space, it is never actually
transformed into the equivalent prefix expression as occurs WRerns on. How-

ever, the operations on polynomials described elsewhere can be equally well used
in this case to obtain the relevant parts.

The evaluation proceeds recursively down the integer expression list. In other
words,

PART (<expression>,<integerl>,<integer2>)
-> PART(PART(<expression>,<integerl>),<integer2>)

and so on, and
PART(<expression>) -> <expression>.

INTEXP can be any expression that evaluates to an integer. If the integer is pos-
itive, then that term of the expression is found. If the integer is O, the operator
is returned. Finally, if the integer is negative, the counting is from the tail of the
expression rather than the head.

For example, if the expressiamtb is printed asA+B (i.e., the ordering of the
variables is alphabetical), then

part(a+b,2) -> B

part(a+b,-1) -> B
and

part(a+b,0) -> PLUS

An operatorARGLENGTIs$ available to determine the number of arguments of the
top level operator in an expression. If the expression does not contain a top level
operator, then-1 is returned. For example,

arglength(a+b+c) -> 3
arglength(f()) > 0
arglength(a) > -1
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8.5.4 Substituting for Parts of Expressions

PARTmay also be used to substitute for a given part of an expression. In this case,
the PARTconstruct appears on the left-hand side of an assignment statement, and
the expression to replace the given part on the right-hand side.

For example, with the normal settings of the REDUCE switches:

XX = a+b;
part(xx,2) = c; >  A+C
part(c+d,0) = - -> C-D

Note thatxx in the above is not changed by this substitution. In addition, un-
like expressions such as array and matrix elements that hawstant evaluation
property, the values qdart(xx,2) andpart(c+d,0) are also not changed.
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Polynomials and Rationals

Many operations in computer algebra are concerned with polynomials and rational
functions. In this section, we review some of the switches and operators available
for this purpose. These are in addition to those that work on general expressions
(such aDFandINT ) described elsewhere. In the case of operators, the arguments

are first simplified before the operations are applied. In addition, they operate

only on arguments of prescribed types, and produce a type mismatch error if given
arguments which cannot be interpreted in the required mode with the current switch
settings. For example, if an argument is required to be a kerned&hds used

(with no other rules foA), an error

A/2 invalid as kernel

will result.

With the exception of those that select various parts of a polynomial or rational
function, these operations have potentially significant effects on the space and time
associated with a given calculation. The user should therefore experiment with
their use in a given calculation in order to determine the optimum set for a given
problem.

One such operation provided by the system is an opek&BNGTHwhich returns
the number of top level terms in the numerator of its argument. For example,

length ((a+b+c)"3/(c+d));

has the value 10. To get the number of terms in the denominator, one would first
select the denominator by the operdbd#Nand then calLENGTHas in

length den ((a+b+c)"3/(c+d));

103
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Other operations currently supported, the relevant switches and operators, and the
required argument and value modes of the latter, follow.

9.1 Controlling the Expansion of Expressions

The switchEXPcontrols the expansion of expressions. If it is off, no expansion of
powers or products of expressions occurs. Users should note however that in this
case results come out in a normal but not necessarily canonical form. This means
that zero expressions simplify to zero, but that two equivalent expressions need not
necessarily simplify to the same form.

Example:With EXPon, the two expressions
(at+b)*(a+2*b)

and
a“2+3*a*b+2*h"2

will both simplify to the latter form. WitlEXP off, they would remain unchanged,
unless the complete factorif§LLFAC) option were in force EXPis normally
on.

Several operators that expect a polynomial as an argument behave differently when
EXPis off, since there is often only one term at the top level. For example, with
EXPoff

length((a+b+c)"3/(c+d));

returns the value 1.

9.2 Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials that
have integer coefficients, finding all factors that also have integer coefficients. The
package for doing this was written by Dr. Arthur C. Norman and Ms. P. Mary Ann
Moore at The University of Cambridge. It is described in P. M. A. Moore and A.
C. Norman, “Implementing a Polynomial Factorization and GCD Package”, Proc.
SYMSAC '81, ACM (New York) (1981), 109-116.

The easiest way to use this facility is to turn on the swkR&CTORwhich causes
all expressions to be output in a factored form. For example, WA8TORoN, the
expressiolA"2-B"2 s returned agA+B)*(A-B)
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It is also possible to factorize a given expression explicitly. The opeFA-
TORIZE that invokes this facility is used with the syntax

FACTORIZE(EXPRN:polynomial[,INTEXP:prime integer]):list,

the optional argument of which will be described later. Thus to find and display all
factors of the cyclotomic polynomial'®> — 1, one could write:

factorize(x"105-1);

The resultis a list of factor,exponent pairs. In the above example, there is no overall
numerical factor in the result, so the results will consist only of polynomials in x.
The number of such polynomials can be found by using the oper&NGTH If

there is a numerical factor, as in factorizingz? — 12, that factor will appear as

the first member of the result. It will however not be factored further. Prime factors
of such numbers can be found, using a probabilistic algorithm, by turning on the
switchIFACTOR For example,

on ifactor; factorize(12x"2-12);
would result in the output
{{2,2}{3,1},{X + 1,1},{X - 1,1}}.

If the first argument oFACTORIZEIis an integer, it will be decomposed into its
prime components, whether or i6BIACTORs on.

Note that thd FACTOR switch only affects the result #ACTORIZE It has no
effect if theFACTORswitch is also on.

The order in which the factors occur in the result (with the exception of a possi-
ble overall numerical coefficient which comes first) can be system dependent and
should not be relied on. Similarly it should be noted that any pair of individ-
ual factors can be negated without altering their product, and that REDUCE may
sometimes do that.

The factorizer works by first reducing multivariate problems to univariate ones and
then solving the univariate ones modulo small primes. It normally selects both
evaluation points and primes using a random number generator that should lead
to different detailed behavior each time any particular problem is tackled. If, for
some reason, it is known that a certain (probably univariate) factorization can be
performed effectively with a known prim®&, say, this value oP can be handed to
FACTORIZEas a second argument. An error will occur if a non-prime is provided
to FACTORIZEIin this manner. It is also an error to specify a prime that divides
the discriminant of the polynomial being factored, but users should note that this
condition is not checked by the program, so this capability should be used with
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care.

Factorization can be performed over a number of polynomial coefficient domains
in addition to integers. The particular description of the relevant domain should
be consulted to see if factorization is supported. For example, the following state-
ments will factorizer* + 1 modulo 7:

setmod 7;
on modular;
factorize(x"4+1);

The factorization module is provided with a trace facility that may be useful as a
way of monitoring progress on large problems, and of satisfying curiosity about the
internal workings of the package. The most simple use of this is enabled by issuing
the REDUCE commandn trfac; . Following this, all calls to the factorizer

will generate informative messages reporting on such things as the reduction of
multivariate to univariate cases, the choice of a prime and the reconstruction of
full factors from their images. Further levels of detail in the trace are intended
mainly for system tuners and for the investigation of suspected bugs. For example,
TRALLFACqgives tracing information at all levels of detail. The switch that can
be set byon timings;  makes it possible for one who is familiar with the algo-
rithms used to determine what part of the factorization code is consuming the most
resourceson overview ;reduces the amount of detail presented in other forms
of trace. Other forms of trace output are enabled by directives of the form

symbolic set!-trace!-factor(<number>,<filename>);

where useful numbers are 1, 2, 3and 100, 101, ... . This facility is intended to make
it possible to discover in fairly great detail what just some small part of the code has
been doing — the numbers refer mainly to depths of recursion when the factorizer
calls itself, and to the split between its work forming and factorizing images and
reconstructing full factors from these. MIL is used in place of a filename the
trace output requested is directed to the standard output stream. After use of this
trace facility the generated trace files should be closed by calling

symbolic close!-trace!-files();

NOTE: Using the factorizer wittMCDoff will result in an error.

9.3 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors in the numer-
ators and denominators of expressions, at the option of the user. The system will
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perform this greatest common divisor computation if the sw@Dis on. (GCD
is normally off.)

A check is automatically made, however, for common variable and numerical prod-
ucts in the numerators and denominators of expressions, and the appropriate can-
cellations made.

When GCDis on, andEXP s off, a check is made for square free factors in an
expression. This includes separating out and independently checking the content
of a given polynomial where appropriate. (For an explanation of these terms, see
Anthony C. Hearn, “Non-Modular Computation of Polynomial GCDs Using Trial
Division”, Proc. EUROSAM 79, published as Lecture Notes on Comp. Science,
Springer-Verlag, Berlin, No 72 (1979) 227-239.)

Example:With EXPoff and GCDon, the polynomiaé*c+a*d+b*c+b*d  would
be returned afA+B)*(C+D)

Under normal circumstances, GCDs are computed using an algorithm described in
the above paper. It is also possible in REDUCE to compute GCDs using an al-
ternative algorithm, called the EZGCD Algorithm, which uses modular arithmetic.
The switchEZGCDif on in addition toGCD makes this happen.

In non-trivial cases, the EZGCD algorithm is almost always better than the basic
algorithm, often by orders of magnitude. We therefst®ngly advise users to

use theEZGCDswitch where they have the resources available for supporting the
package.

For a description of the EZGCD algorithm, see J. Moses and D.Y.Y. Yun, “The EZ
GCD Algorithm”, Proc. ACM 1973, ACM, New York (1973) 159-166.

NOTE: This package shares code with the factorizer, so a certain amount of trace
information can be produced using the factorizer trace switches.

9.3.1 Determining the GCD of Two Polynomials
This operator, used with the syntax
GCD(EXPRN1:polynomial, EXPRN2:polynomial):polynomial,

returns the greatest common divisor of the two polynonit{®RNlandEXPRN2
Examples:
gecd(X"2+2*x+1,Xx"2+3*x+2) -> X+1

gcd(2*X"2-2*y 2, 4*x+4*y) ->  2*X+2*Y
gcd(X"2+y"2,x-y) > 1.
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9.4 Working with Least Common Multiples

Greatest common divisor calculations can often become expensive if extensive
work with large rational expressions is required. However, in many cases, the only
significant cancellations arise from the fact that there are often common factors
in the various denominators which are combined when two rationals are added.
Since these denominators tend to be smaller and more regular in structure than the
numerators, considerable savings in both time and space can occur if a full GCD
check is made when the denominators are combined and only a partial check when
numerators are constructed. In other words, the true least common multiple of
the denominators is computed at each step. The swi@Mis available for this
purpose, and is hormally on.

In addition, the operatdtCM used with the syntax
LCM(EXPRNZ1:polynomial, EXPRNZ2:polynomial):polynomial,

returns the least common multiple of the two polynomE¥PRN1andEXPRN2
Examples:

lem(X"2+2*x+1,X"2+3*x+2) -> X**3 + 4*X**2 + 5*X + 2
lcm(2*X"2-2*y"2,4*x+4*y) ->  4*(X*¥*2 - Y**2)

9.5 Controlling Use of Common Denominators

When two rational functions are added, REDUCE normally produces an expression
over a common denominator. However, if the user does not want denominators
combined, he or she can turn off the switdiDwhich controls this process. The
latter switch is particularly useful if no greatest common divisor calculations are
desired, or excessive differentiation of rational functions is required.

CAUTION: With MCDoff, results are not guaranteed to come out in either normal
or canonical form. In other words, an expression equivalent to zero may in fact not
be simplified to zero. This option is therefore most useful for avoiding expression
swell during intermediate parts of a calculation.

MCDOs normally on.

9.6 REMAINDER Operator

This operator is used with the syntax
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REMAINDER(EXPRN1:polynomial,EXPRN2:polynomial):polynomial.

It returns the remainder wheBXPRN1is divided byEXPRN2 This is the true
remainder based on the internal ordering of the variables, and not the pseudo-
remainder. The pseudo-remainder and in general pseudo-division of polynomials
can be calculated after loading tpelydiv  package. Please refer to the docu-
mentation of this package for details.

Examples:

remainder((x+y)*(x+2*y),x+3*y) -> 2*Y**2
remainder(2*x+y,2) > Y,

CAUTION: In the default case, remainders are calculated over the integers. If you
need the remainder with respect to another domain, it must be declared explicitly.

Example:

remainder(x"2-2,x+sqrt(2)); -> X2 - 2
load_package arnum;

defpoly sqrt2**2-2;
remainder(x"2-2,x+sqrt2); -> 0

9.7 RESULTANT Operator

This is used with the syntax

RESULTANT(EXPRN1:polynomial, EXPRN2:polynomial, VAR:kernel):
polynomial.

It computes the resultant of the two given polynomials with respect to the given
variable, the coefficients of the polynomials can be taken from any domain. The
result can be identified as the determinant of a Sylvester matrix, but can often
also be thought of informally as the result obtained when the given variable is
eliminated between the two input polynomials. If the two input polynomials have

a non-trivial GCD their resultant vanishes.

The switchBezout controls the computation of the resultants. It is off by default.
In this case a subresultant algorithm is used. If the switch Bezout is turned on,
the resultant is computed via the Bezout Matrix. However, in the latter case, only
polynomial coefficients are permitted.
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The sign conventions used by the resultant function follow those in R. Loos, “Com-
puting in Algebraic Extensions” in “Computer Algebra — Symbolic and Algebraic
Computation”, Second Ed., Edited by B. Buchberger, G.E. Collins and R. Loos,
Springer-Verlag, 1983. Namely, withandB not dependent oK:

deg(p)*deg(q)
resultant(p(x),q(x),x)= (-1) *resultant(q,p,X)
deg(p)
resultant(a,p(x),x) = a
resultant(a,b,x) =1
Examples:
2

resultant(x/r*u+y,u*y,u) > -y

calculation in an algebraic extension:

load arnum;
defpoly sqrt2**2 - 2;

resultant(x + sqgrt2,sqrt2 * x +1,x) -> -1
or in a modular domain:

setmod 17;
on modular;

resultant(2x+1,3x+4,X) > 5

9.8 DECOMPOSE Operator

The DECOMPOSé&perator takes a multivariate polynomial as argument, and re-
turns an expression and a list of equations from which the original polynomial can
be found by composition. Its syntax is:

DECOMPOSE(EXPRN:polynomial):list.

For example:
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decompose(X"8-88*X"7+2924*x"6-43912*X"5+263431*X"4-

218900*x"3+65690*x"2-7700*x+234)
2 2 2
> {U + 35*U + 234, U=V + 10%V, V=X - 22*X}
2
decompose(u™2+v'2+2u*v+1l) -> {W + 1, W=U + V}

Users should note however that, unlike factorization, this decomposition is not
unique.

9.9 INTERPOL operator

Syntax:
INTERPOL(<values>,<variable>,<points>);

where<values> and<points> are lists of equal length andvariable> s
an algebraic expression (preferably a kernel).

INTERPOLgenerates an interpolation polynoniiah the given variable of degree
lengthkvalues> )-1. The unique polynomidlis defined by the property that for
corresponding elementsof <values> andp of <points> the relationf(p) =

v holds.

The Aitken-Neville interpolation algorithm is used which guarantees a stable result
even with rounded numbers and an ill-conditioned problem.

9.10 Obtaining Parts of Polynomials and Rationals

These operators select various parts of a polynomial or rational function structure.
Except for the cost of rearrangement of the structure, these operations take very
little time to perform.

For those operators in this section that take a keviddRas their second argument,
an error results if the first expression is not a polynomiMAR although the coef-
ficients themselves can be rational as long as they do not depaniRiowever,

if the switchRATARGs on, denominators are not checked for dependen&&idh
and are taken to be part of the coefficients.
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9.10.1 DEG Operator
This operator is used with the syntax
DEG(EXPRN:polynomial,VAR:kernel):.integer.

It returns the leading degree of the polynonitdPRNn the variableVAR If VAR
does not occur as a variableBEEXPRNO is returned.

Examples:
deg((atb)*(c+2*d)"2,a) -> 1

deg((at+b)*(c+2*d)2,d) ->
deg((a+b)*(c+2*d)"2,e) -> O.

N

Note also that iIRATARGSs on,
deg((a+b)"3/a,a) > 3

since in this case, the denominatis considered part of the coefficients of the
numerator inA. With RATARGff, however, an error would result in this case.

9.10.2 DEN Operator
This is used with the syntax:
DEN(EXPRN:rational):polynomial.

It returns the denominator of the rational expres®&XPRN If EXPRNs a poly-
nomial, 1 is returned.
Examples:
den(xty’2) -> Y**2
den(100/6) > 3
[since 100/6 is first simplified to 50/3]

den(a/4+b/6) -> 12
den(a+b) > 1

9.10.3 LCOF Operator
LCOF is used with the syntax

LCOF(EXPRN:polynomial,VAR:kernel):polynomial.
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It returns the leading coefficient of the polynomEXPRNn the variableVAR If
VARdoes not occur as a variableEEXPRN EXPRNSs returned.
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Examples:
Icof((atb)*(c+2*d)"2,a) -> C**2+4*C*D+4*D**2

Icof((a+b)*(c+2*d)"2,d) -> 4*(A+B)
Icof((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

9.10.4 LPOWER Operator
Syntax:
LPOWER(EXPRN:polynomial,VAR:kernel):polynomial.

LPOWER returns the leading power BXPRNwith respect toVAR If EXPRN
does not depend oWAR 1 is returned.

Examples:
Ipower((a+b)*(c+2*d)2,a) -> A

Ipower((a+b)*(c+2*d)"2,d) -> D**2
Ipower((a+b)*(c+2*d),e) > 1

9.10.5 LTERM Operator
Syntax:
LTERM(EXPRN:polynomial,VAR:kernel):polynomial.

LTERM returns the leading term &XPRNwith respect toVAR If EXPRNdoes
not depend oiVAR EXPRNSs returned.
Examples:

lterm((a+b)*(c+2*d)"2,a) -> A*(C**2+4*C*D+4*D**2)

lterm((atb)*(c+2*d)"2,d) -> 4*D**2*(A+B)
lterm((a+b)*(c+2*d),e) ->  A*C+2*A*D+B*C+2*B*D

Compatibility Note: In some earlier versions of REDUCETERMreturnedO if

the EXPRNdid not depend oWAR In the present versiolsEXPRNs always equal
to LTERM(EXPRN,VAR)+ REDUCT(EXPRN,VAR)

9.10.6 MAINVAR Operator

Syntax:
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MAINVAR(EXPRN:polynomial):expression.
Returns the main variable (based on the internal polynomial representatieX) of
PRN If EXPRNs a domain element, 0 is returned.
Examples:
AssumingA has higher kernel order thd) C, or D:

mainvar((a+b)*(c+2*d)"2) -> A
mainvar(2) > 0

9.10.7 NUM Operator
Syntax:
NUM(EXPRN:rational):polynomial.

Returns the numerator of the rational expres€PRN If EXPRNis a polyno-
mial, that polynomial is returned.
Examples:

num(xly’2) -> X

num(100/6) -> 50

num(a/4+b/6) -> 3*A+2*B
num(a+hb) ->  A+B

9.10.8 REDUCT Operator
Syntax:
REDUCT(EXPRN:polynomial,VAR:kernel):polynomial.

Returns the reductum &XPRNwith respect toVAR(i.e., the part oEXPRNetft
after the leading term is removed) . HXPRNJoes not depend on the variaMAR
0 is returned.

Examples:
reduct((a+b)*(c+2*d),a) -> B*(C + 2*D)

reduct((a+b)*(c+2*d),d) -> C*(A + B)
reduct((a+b)*(c+2*d),e) -> O
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Compatibility Note: In some earlier versions of REDUCBREDUCTeturnedeX-
PRNIf it did not depend o’WVAR In the present versiofEXPRNs always equal to
LTERM(EXPRN,VAR)+ REDUCT(EXPRN,VAR)

9.11 Polynomial Coefficient Arithmetic

REDUCE allows for a variety of numerical domains for the numerical coefficients
of polynomials used in calculations. The default mode is integer arithmetic, al-
though the possibility of using real coefficients has been discussed elsewhere. Ra-
tional coefficients have also been available by using integer coefficients in both the
numerator and denominator of an expression, usin@tieDIVoption to print the
coefficients as rationals. However, REDUCE includes several other coefficient opt-
ions in its basic version which we shall describe in this section. All such coefficient
modes are supported in a table-driven manner so that it is straightforward to extend
the range of possibilities. A description of how to do this is given in R.J. Brad-
ford, A.C. Hearn, J.A. Padget and E. Safar, “Enlarging the REDUCE Domain

of Computation,” Proc. of SYMSAC '86, ACM, New York (1986), 100-106.

9.11.1 Rational Coefficients in Polynomials

Instead of treating rational numbers as the numerator and denominator of a rational
expression, it is also possible to use them as polynomial coefficients directly. This
is accomplished by turning on the switBATIONAL

Example: With RATIONAL off, the input expressio@/2 would be converted
into a rational expression, whose numerator Wasd denominator 2. WitRA-
TIONAL on, the same input would become a rational expression with numerator
1/2*A and denominatof. Thus the latter can be used in operations that require
polynomial input whereas the former could not.

9.11.2 Real Coefficients in Polynomials

The switchROUNDEPermits the use of arbitrary sized real coefficients in poly-
nomial expressions. The actual precision of these coefficients can be set by the
operatoiPRECISION. For exampleprecision 50; sets the precision to fifty
decimal digits. The default precision is system dependent and can be found by
precision 0; . In this mode, denominators are automatically made monic, and
an appropriate adjustment is made to the numerator.

Example:With ROUNDEDRN, the input expressia’2 would be converted into a
rational expression whose numeratofiS*A and denominatot.

Internally, REDUCE uses floating point numbers up to the precision supported by
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the underlying machine hardware, and so-cabegfloatsfor higher precision or
whenever necessary to represent numbers whose value cannot be represented in
floating point. The internal precision is two decimal digits greater than the external
precision to guard against roundoff inaccuracies. Bigfloats represent the fraction
and exponent parts of a floating-point number by means of (arbitrary precision)
integers, which is a more precise representation in many cases than the machine
floating point arithmetic, but not as efficient. If a case arises where use of the
machine arithmetic leads to problems, a user can force REDUCE to use the bigfloat
representation at all precisions by turning on the swWREUNDBHN rare cases,

this switch is turned on by the system, and the user informed by the message

ROUNDBF turned on to increase accuracy

Rounded numbers are normally printed to the specified precision. However, if the
user wishes to print such numbers with less precision, the printing precision can be
set by the commanB®RINT_PRECISION. For exampleprint _precision

5; will cause such numbers to be printed with five digits maximum.

Under normal circumstances whB@UNDEIR on, REDUCE converts the number
1.0 to the integer 1. If this is not desired, the switd@CONVERGan be turned
on.

Numbers that are stored internally as bigfloats are normally printed with a space
between every five digits to improve readability. If this feature is not required, it
can be suppressed by turning off the swiBFSPACE

Further information on the bigfloat arithmetic may be found in T. Sasaki, “Man-
ual for Arbitrary Precision Real Arithmetic System in REDUCE", Department of
Computer Science, University of Utah, Technical Note No. TR-8 (1979).

When a real number is input, it is normally truncated to the precision in effect
at the time the number is read. If it is desired to keep the full precision of all
numbers input, the switchDJPREGCfor adjust precisiohcan be turned on. While

on, ADJPREGuwill automatically increase the precision, when necessary, to match
that of any integer or real input, and a message printed to inform the user of the
precision increase.

WhenROUNDEI® on, rational numbers are normally converted to rounded rep-
resentation. However, if a user wishes to keep such numbers in a rational form
until used in an operation that returns a real number, the sR@UNDALIcan be
turned off. This switch is normally on.

Results from rounded calculations are returned in rounded form with two excep-
tions: if the result is recognized 8r 1 to the current precision, the integer result
is returned.
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9.11.3 Modular Number Coefficients in Polynomials

REDUCE includes facilities for manipulating polynomials whose coefficients are
computed modulo a given base. To use this option, two commands must be used;
SETMOD <integer> , to set the prime modulus, a®N MODULAMR cause the
actual modular calculations to occur. For example, vgigimod 3; andon
modular; , the polynomiala+2*b)"3  would becomeéA"3+2*B"3

The argument 0SETMOUDs evaluated algebraically, except that non-modular (in-
teger) arithmetic is used. Thus the sequence

setmod 3; on modular; setmod 7;

will correctly set the modulus to 7.

Modular numbers are by default represented by integers in the interval [0,p-1]
where p is the current modulus. Sometimes it is more convenient to use an equiv-
alent symmetric representation in the interval [-p/2+1,p/2], or more precisely |-
floor((p-1)/2), ceiling((p-1)/2)], especially if the modular numbers map objects that
include negative quantities. The switB\LANCECMOUDallows you to select the
symmetric representation for output.

Users should note that the modular calculations are on the polynomial coefficients
only. Itis not currently possible to reduce the exponents since no check for a prime
modulus is made (which would allow?—! to be reduced to 1 mod p). Note also
that any division by a number not co-prime with the modulus will result in the error
“Invalid modular division”.

9.11.4 Complex Number Coefficients in Polynomials
Although REDUCE routinely treats the square of the variabeequivalent te-1,
this is not sufficient to reduce expressions involvirig lowest terms, or to factor
such expressions over the complex numbers. For example, in the default case,
factorize(a"2+1);
gives the result
{{A=2+1,1}}

and

(@2+b"2)/(a+i*b)
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is not reduced further. However, if the switGlOMPLEXs turned on, full complex
arithmetic is then carried out. In other words, the above factorization will give the
result

{{A + L1}{A - 1,1}}

and the quotient will be reduced £61*B .

The switchCOMPLEXhay be combined witROUNDED give complex real num-
bers; the appropriate arithmetic is performed in this case.

Complex conjugation is used to remove complex numbers from denominators of
expressions. To do this GOMPLEXs off, you must turn the switcRATIONAL-
IZE on.



120 CHAPTER 9. POLYNOMIALS AND RATIONALS



Chapter 10

Substitution Commands

An important class of commands in REDUCE define substitutions for variables and
expressions to be made during the evaluation of expressions. Such substitutions use
the prefix operatoBUB various forms of the commandET, and rule sets.

10.1 SUB Operator

Syntax:
SUB(<substitution_list>,EXPRN1:algebraic):algebraic
where<substitution _list> is alist of one or more equations of the form
VAR:kernel=EXPRN:algebraic

or a kernel that evaluates to such a list.

The SUBoperator gives the algebraic result of replacing every occurrence of the
variableVARIn the expressioeXPRN1by the expressiolEXPRN Specifically,
EXPRNIis first evaluated using all available rules. Next the substitutions are made,
and finally the substituted expression is reevaluated. When more than one variable
occurs in the substitution list, the substitution is performed by recursively walking
down the tree representifgXPRN1 and replacing everyARfound by the ap-
propriateEXPRN The EXPRNare not themselves searched for any occurrences of
the variousVARs. The trivial cas6SUB(EXPRN1) returns the algebraic value of
EXPRN1

Examples:

121
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sub({x=aty,y=y+1},x"2+y"2) -> A + 2*A*Y + 2*Y + 2*Y + 1
and withs := {x=aty,y=y+1 },

2 2
sub(s,x"2+y"2) > A+ 2FAYY + 28+ 2%Y + 1
Note that the global assignmentsa+y , etc., do not take place.

EXPRN1can be any valid algebraic expression whose type is such that a substi-
tution process is defined for it (e.g., scalar expressions, lists and matrices). An
error will occur if an expression of an invalid type for substitution occurs either in
EXPRNor EXPRN1

The braces around the substitution list may also be omitted, as in:

2 2
sub(x=a+y,y=y+1,x"2+y"2) > A+ 2FAFY + 2FY + 2%Y + 1

10.2 LET Rules

Unlike substitutions introduced viaUB LET rules are global in scope and stay in
effect until replaced o€LEARed.

The simplest use of theET statement is in the form
LET <substitution list>

where<substitution list> is a list of rules separated by commas, each of
the form:

<variable> = <expression>

or
<prefix operator>(<argument>,...,.<argument>) = <expression>
or
<argument> <infix operator>,..., <argument> = <expression>
For example,

let {x => y2,
h(uyv) => u - v,
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cos(pi/3) => 1/2,

a*bh => c,
[+m => n,
w3 => 2*z - 3,
Z’10 => 0}

The list brackets can be left out if preferred. The above rules could also have been
entered as seven separhEeT statements.

After suchLET rules have been inpuX will always be evaluated as the square of
Y, and so on. This is so even if at the time tHET rule was input, the variabhg
had a value other thavi. (In contrast, the assignmexity™2  will set X equal to
the square of the current valueYfwhich could be quite different.)

The rulelet a*b=c  means that whenevex and B are both factors in an ex-
pression their product will be replaced ByFor examplea™5*b™7*w  would be
replaced byc"5*b"2*w

The rule forl+m will not only replace all occurrences fm by N, but will also
normally replacé. by n-m, but notMby n-I . A more complete description of this
case is given in Section 10.2.5.

The rule pertaining tav"3 will apply to any power ofWgreater than or equal to
the third.

Note especially the last examplet z"10=0 . This declaration means, in effect:
ignore the tenth or any higher power &f Such declarations, when appropriate,
often speed up a computation to a considerable degree. (See Section 10.4 for more
details.)

Any new operators occurring in SudtET rules will be automatically declared
OPERATORYy the system, if the rules are being read from a file. If they are being
entered interactively, the system will aBlEECLARE.. OPERATOR? AnswerY

orNand hif Return .

In each of these examples, substitutions are only made for the explicit expressions
given; i.e., none of the variables may be considered arbitrary in any sense. For
example, the command

let h(u,v) = u - v;
will causeh(u,v) to evaluate tdJ - V, but will not affecth(u,z) or Hwith

any arguments other than precisely the symhQls.

These simpld.ET rules are on the same logical level as assignments made with
the := operator. An assignmexit:= p+q cancelsaruléet x = y'2 made
earlier, and vice versa.

CAUTION:A recursive rule such as
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let x = x + 1;

is erroneous, since any subsequent evaluatiotvaduld lead to a non-terminating
chain of substitutions:

X >x+1->Kxx+21)+1->((x+1+1)+1->..
Similarly, coupled substitutions such as
letl =m+nn=1+r;

would lead to the same error. As a result, if you try to evaluat,anor N defined
as above, you will get an error such as

X improperly defined in terms of itself

Array and matrix elements can appear on the left-hand sideL&Tastatement.
However, because of thdirstant evaluatiomproperty, it is the value of the element
that is substituted for, rather than the element itself. E.qg.,

array a(b);
a2) = b;
let a(2) = c;

results inB being substituted b¢; the assignment faw(2) does not change.

Finally, if an error occurs in any equation ilET statement (including generalized
statements involvingFOR ALLand SUCH THAT) the remaining rules are not
evaluated.

10.2.1 FORALL...LET

If a substitution for all possible values of a given argument of an operator is re-
quired, the declaratioROR ALLmay be used. The syntax of such a command
is

FOR ALL <variable>,...,<variable>
<LET statement> <terminator>

e.g.,

for all x,y let h(x,y) = x-y;
for all x let k(x,y) = Xy;
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The first of these declarations would caus@,b) to be evaluated as-B,
h(u+v,u+w) to beV-W, etc. If the operator symbdH is used with more or
fewer argument places, not two, thET would have no effect, and no error would
result.

The second declaration would cauga,y) to be evaluated a&y , but would
have no effect olk(a,z) since the rule didn’'t safOR ALL Y....

Where we useX andY in the examples, any variables could have been used. This
use of a variable doesn't affect the value it may have outsidé Hiestatement.
However, you should remember what variables you actually used. If you want
to delete the rule subsequently, you must use the same variables GLE®R
command.

It is possible to use more complicated expressions as a templatd_foF atate-

ment, as explained in the section on substitutions for general expressions. In nearly
all cases, the rule will be accepted, and a consistent application made by the sys-
tem. However, if there is a sole constant or a sole free variable on the left-hand side
ofarule (e.g.let 2=3 orfor all x let x=2) , then the system is unable

to handle the rule, and the error message

Substitution for ... not allowed

will be issued. Any variable listed in thEOR ALL part will have its symbol
preceded by an equal sigkin the above example will appearaX. An error will
also occur if a variable in thEOR ALLpart is not properly matched on both sides
of theLET equation.

10.2.2 FORALL...SUCH THAT ...LET

If a substitution is desired for more than a single value of a variable in an operator or
other expression, but not all values, a conditional form ofR®&R ALL ...LET
declaration can be used.

Example:
for all x such that numberp x and x<0 let h(x)=0;
will causeh(-5) to be evaluated as 0, bdtof a positive integer, or of an argument

that is not an integer at all, would not be affected. Any boolean expression can
follow the SUCH THAkeywords.
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10.2.3 Removing Assignments and Substitution Rules

The user may remove all assignments and substitution rules from any expression
by the commandLEAR in the form

CLEAR <expression>,...,<expression><terminator>
e.g.
clear x, h(x,y);

Because of theiinstant evaluatiorproperty, array and matrix elements cannot be
cleared withCLEAR For example, ifA is an array, you must say

a3) := 0;
rather than
clear a(3);

to “clear” elemenfa(3) .

On the other hand, a whole array (or matrican be cleared by the command
clear a ; This means much more than resetting to 0 all the elemerts dhe
fact thatA is an array, and what its dimensions are, are forgottemh san be
redefined as another type of object, for example an operator.

The more general types bET declarations can also be deleted by ustid=AR
Simply repeat th&ET rule to be deleted, usirgLEARIn place ofLET, and omit-

ting the equal sign and right-hand part. The same dummy variables must be used
intheFOR AlLLpart, and the boolean expression in 81¢CH THAPpart must be
written the same way. (The placing of blanks doesn’t have to be identical.)

Example:TheLET rule
for all x such that numberp x and x<0 let h(x)=0;
can be erased by the command

for all x such that numberp x and x<0 clear h(x);

10.2.4 Overlapping LET Rules

CLEARIs not the only way to delete BET rule. A newLET rule identical to
the first, but with a different expression after the equal sign, replaces the first.
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Replacements are also made in other cases where the existing rule would be in
conflict with the new rule. For example, a rule o4 would replace a rule for

X"5 . The user should however be cautioned against having sdveTatules in

effect that relate to the same expression. No guarantee can be given as to which
rules will be applied by REDUCE or in what order. It is bes@tbEARan old rule

before entering a new relategET rule.

10.2.5 Substitutions for General Expressions

The examples of substitutions discussed in other sections have involved very sim-
ple rules. However, the substitution mechanism used in REDUCE is very general,
and can handle arbitrarily complicated rules without difficulty.

The general substitution mechanism used in REDUCE is discussed in Hearn, A.
C., "REDUCE, A User-Oriented Interactive System for Algebraic Simplification,”
Interactive Systems for Experimental Applied Mathematics, (edited by M. Klerer
and J. Reinfelds), Academic Press, New York (1968), 79-90, and Hearn. A. C.,
“The Problem of Substitution,” Proc. 1968 Summer Institute on Symbolic Mathe-
matical Computation, IBM Programming Laboratory Report FSC 69-0312 (1969).
For the reasons given in these references, REDUCE does not attempt to imple-
ment a general pattern matching algorithm. However, the present system uses far
more sophisticated techniques than those discussed in the above papers. Itis now
possible for the rules appearing in argumentsBT to have the form

<substitution expression> = <expression>

where any rule to which a sensible meaning can be assigned is permitted. However,
this meaning can vary according to the form<dubstitution expres-

sion> . The semantic rules associated with the application of the substitution are
completely consistent, but somewhat complicated by the pragmatic need to per-
form such substitutions as efficiently as possible. The following rules explain how
the majority of the cases are handled.

To begin with, the<substitution expression> is first partly simplified

by collecting like terms and putting identifiers (and kernels) in the system order.
However, no substitutions are performed on any part of the expression with the
exception of expressions with thestant evaluatiorproperty, such as array and
matrix elements, whose actual values are used. It should also be noted that the
system order used is not changeable by the user, even wikKQRODERommand.
Specific cases are then handled as follows:

1. If the resulting simplified rule has a left-hand side that is an identifier, an
expression with a top-level algebraic operator or a power, then the rule is
added without further change to the appropriate table.
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2. If the operator * appears at the top level of the simplified left-hand side, then
any constant arguments in that expression are moved to the right-hand side
of the rule. The remaining left-hand side is then added to the appropriate
table. For example,

let 2*x*y=3
becomes

let x*y=3/2

so thatx*y is added to the product substitution table, and when this rule is
applied, the expressiotty becomes 3/2, buX or Y by themselves are not
replaced.

3. If the operators, - or/ appear at the top level of the simplified left-hand
side, all but the first term is moved to the right-hand side of the rule. Thus
the rules

let I+m=n, x/2=y, a-b=c

become

let I=n-m, x=2*y, a=c+b.
One problem that can occur in this case is that if a quantified expression is moved
to the right-hand side, a given free variable might no longer appear on the left-hand
side, resulting in an error because of the unmatched free variable. E.g.,

for all x,y let f(x)+f(y)=x*y

would become

for all xy let f(x)=x*y-f(y)

which no longer ha¥ on both sides.
The fact that array and matrix elements are evaluated in the left-hand side of rules
can lead to confusion at times. Consider for example the statements

array a(b); let x+a(2)=3; let a(3)=4;

The left-hand side of the first rule will beconXe and the second 0. Thus the first
rule will be instantiated as a substitution f&r and the second will result in an
error.
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The order in which a list of rules is applied is not easily understandable without
a detailed knowledge of the system simplification protocol. It is also possible for
this order to change from release to release, as improved substitution techniques
are implemented. Users should therefore assume that the order of application of
rules is arbitrary, and program accordingly.

After a substitution has been made, the expression being evaluated is reexamined
in case a new allowed substitution has been generated. This process is continued
until no more substitutions can be made.

As mentioned elsewhere, when a substitution expression appears in a product, the
substitution is made if that expression divides the product. For example, the rule

let a™2*c = 3*z;

would caus&™2*c*x  to be replaced bg*Z*X anda™2*c™2 by 3*Z*C . If the
substitution is desired only when the substitution expression appears in a product
with the explicit powers supplied in the rule, the commahdTCHshould be used
instead.

For example,
match a’2*c = 3*z;

would causea™2*c*x to be replaced by*Z*X , buta™2*c"2 would not be
replaced. MATCHcan also be used with tHeOR ALL constructions described
above.

To remove substitution rules of the type discussed in this sectiogGLtEARcom-
mand can be used, combined, if necessary, with the $&di® ALLclause with
which the rule was defined, for example:

for all x clear log(e“x),e’log(x),cos(w*t+theta(x));

Note, however, that the arbitrary variable names in this oasgtbe the same as
those used in defining the substitution.

10.3 Rule Lists

Rule lists offer an alternative approach to defining substitutions that is different
from eitherSUBor LET. In fact, they provide the best features of both, since they
have all the capabilities afET, but the rules can also be applied locally as is pos-
sible with SURB In time, they will be used more and more in REDUCE. However,
since they are relatively new, much of the REDUCE code you see uses the older
constructs.
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A rule list is a list ofrulesthat have the syntax

<expression> => <expression> (WHEN <boolean expres-
sion>)

For example,

{cos("™X)*cos(y) => (cos(x+y)+cos(x-y))/2,
cos("n*pi) => (-1)’n when remainder(n,2)=0}

The tilde preceding a variable marks that variabléresfor that rule, much as a
variable in aFOR AlLLclause in aLET statement. The first occurrence of that
variable in each relevant rule must be so marked on input, otherwise inconsistent
results can occur. For example, the rule list

{cos("x)*cos(y) => (cos(x+y)+cos(x-y))/2,
cos(x)"2 => (1+cos(2x))/2}

designed to replace products of cosines, would not be correct, since the second
rule would only apply to the explicit argumeMt Later occurrences in the same
rule may also be marked, but this is optional (internally, all such rules are stored
with each relevant variable explicitly marked). The optioWAHENIause allows
constraints to be placed on the application of the rule, much aSieH THAT
clause in & ET statement.

A rule list may be named, for example
trigl := {cos("x)*cos("y) => (cos(x+y)+cos(x-y))/2,
cos("™X)*sin(’y) => (sin(x+y)-sin(x-y))/2,
sin("x)*sin("y) => (cos(x-y)-cos(x+y))/2,

cos("x)"2 => (1+cos(2*x))/2,
sin("x)"2 => (1-cos(2*x))/2};

Such named rule lists may be inspected as needed. E.g., the conmgand
would cause the above list to be printed.

Rule lists may be used in two ways. They can be globally instantiated by means of
the command.ET. For example,

let trigl;

would cause the above list of rules to be globally active from then on until cancelled
by the comman€LEARRULESas in

clearrules trigl;



10.3. RULELISTS 131

CLEARRULE®as the syntax
CLEARRULES <rule list>|<name of rule list>(,...) .

The second way to use rule lists is to invoke them locally by meansVéH&RE
clause. For example

cos(a)*cos(b+c)
where {cos("X)*cos(y) => (cos(x+y)+cos(x-y))/2};

or
cos(a)*sin(b) where trigrules;
The syntax of an expression with/dHERI[Elause is:

<expression>
WHERE <rule>|<rule list>(,<rule>|<rule list> ...

so the first example above could also be written

cos(a)*cos(b+c)
where cos("x)*cos(y) => (cos(x+y)+cos(x-y))/2;

The effect of this construct is that the rule list(s) in IWeéIER[Elause only apply to
the expression on the left WYHEREThey have no effect outside the expression. In
particular, they do not affect previously defirdtHERElauses oLET statements.
For example, the sequence

let a=2;

a where a=>4;

a,
would result in the output

4

2
AlthoughWHERIHMBas a precedence less than any other infix operator, it still binds
higher than keywords such & SE, THEN DQ REPEATand so on. Thus the

expression

if a=2 then 3 else a+2 where a=3
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will parse as
if a=2 then 3 else (a+2 where a=3)

WHEREnNay be used to introduce auxiliary variables in symbolic mode expres-
sions, as described in Section 16.4. However, the symbolic mode use has different
semantics, so expressions do not carry from one mode to the other.

Compatibility Note:In order to provide compatibility with older versions of rule
lists released through the Network Library, it is currently possible to use an equal
sign interchangeably with the replacement signin rules andLET statements.
However, since this will change in future versions, the replacement sign is prefer-
able in rules and the equal sign in non-rule-balsEd statements.

Advanced Use of Rule Lists

Some advanced features of the rule list mechanism make it possible to write more
complicated rules than those discussed so far, and in many cases to write more
compact rule lists. These features are:

e Free operators
e Double slash operator

e Double tilde variables.

A free operator in the left hand side of a pattern will match any operator with
the same number of arguments. The free operator is written in the same style as
a variable. For example, the implementation of the product rule of differentiation
can be written as:

operator diff, I"f, I"g;

prule := {diff"f("x) * "g("x),x) =>
diff(f(x),x) * g(x) + diff(g(x).x) * ()}

let prule;
diff(sin(z)*cos(z),2);
cos(z)*diff(sin(z),z) + diff(cos(z),z)*sin(z)
The double slash operatormay be used as an alternative to a single slash (quo-

tient) in order to match quotients properly. E.g., in the example of the Gamma
function above, one can use;
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gammarule :=
{gamma("z)//(Cc*gamma("zz)) => gamma(z)/(c*gamma(zz-
1)*zz)
when fixp(zz -z) and (zz -z) >0,
gamma("z)//[gamma(zz) => gamma(z)/(gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0},

let gammarule;
gammay(z)/gamma(z+3);

1

3 2
z + 6* + 11*z + 6

The above example suffers from the fact that two rules had to be written in order to
perform the required operation. This can be simplified by the usmuable tilde

variables. E.g. the rule list

GGrule = {
gamma("z)//("c*gamma("zz)) => gamma(z)/(c*gamma(zz-
1)*zz)

when fixp(zz -z) and (zz -z) >0}

will implement the same operation in a much more compact way. In general, dou-
ble tilde variables are bound to the neutral element with respect to the operation in

which they are used.
Pattern given Argumentused Binding

"z + Wy X Z=X; y:O
Z+ 7y X+3 z=X; y=3 or z=3; y=X
z*Ty X z=x; y=1
Z*7y x*3 z=X; y=3 or z=3; y=X
zI17y X z=x;y=1
“z17y x/3 z=x;y=3

Remarks: A double tilde variable as the numerator of a pattern is not allowed.
Also, using double tilde variables may lead to recursion errors when the zero case

is not handled properly.
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let f{("a * "x,x) => a * f(x,x) when freeof (a,x);
f(z,2);

*rxxx f(z,z) improperly defined in terms of itself
% BUT:

let ff("a * "x,Xx)
=> a * ff(x,x) when freeof (a,x) and a neq 1,

ff(z,2);
ff(z,2)

ff(3*z,z2);
3*ff(z,z)
Displaying Rules Associated with an Operator

The operatoiSHOWRULE®kes a single identifier as argument, and returns in
rule-list form the operator rules associated with that argument. For example:

showrules log;
{LOG(E) => 1,
LOG(1) => 0,

X
LOG(E ) => "X,

1
DF(LOG("X),"X) => ----}
"X

Such rules can then be manipulated further as with any list. For exainple

first ws; has the valud.. Note that an operator may have other properties that
cannot be displayed in such a form, such as the fact it is an odd function, or has a
definition defined as a procedure.
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Order of Application of Rules

If rules have overlapping domains, their order of application is important. In gen-
eral, it is very difficult to specify this order precisely, so that it is best to assume
that the order is arbitrary. However, if only one operator is involved, the order of
application of the rules for this operator can be determined from the following:

1. Rules containing at least one free variable apply before all rules without free
variables.

2. Rules activated in the most rec&i5T command are applied first.

3. LET with several entries generate the same order of application as a corre-
sponding sequence of commands with one rule or rule set each.

4. Within a rule set, the rules containing at least one free variable are applied in
their given order. In other words, the first member of the list is applied first.

5. Consistent with the first item, any rule in a rule list that contains no free
variables is applied after all rules containing free variables.

Example: The following rule set enables the computation of exact values of the
Gamma function:

operator gamma,gamma_error;

gamma_rules =

{gamma("x)=>sqrt(pi)/2 when x=1/2,
gamma("n)=>factorial(n-1) when fixp n and n>0,
gamma("n)=>gamma_error(n) when fixp n,
gamma("x)=>(x-1)*gamma(x-1) when fixp(2*x) and x>1,
gamma("x)=>gamma(x+1)/x when fixp(2*x)};

Here, rule by rule, cases of known or definitely uncomputable values are sorted out;
e.g. the rule leading to the error expression will be applied for negative integers

only, since the positive integers are caught by the preceding rule, and the last rule
will apply for negative odd multiples df/2 only. Alternatively the first rule could

have been written as

gamma(1/2) => sqrt(pi)/2,

but then the case = 1/2 should be excluded in th&/HENpart of the last rule
explicitly because a rule without free variables cannot take precedence over the

other rules.



136 CHAPTER 10. SUBSTITUTION COMMANDS
10.4 Asymptotic Commands

In expansions of polynomials involving variables that are known to be small, it is
often desirable to throw away all powers of these variables beyond a certain point
to avoid unnecessary computation. The commag@ may be used to do this. For
example, if only powers aKup tox”7 are needed, the command

let X8 = 0;

will cause the system to delete all powersdfigher than 7.

CAUTION: This particular simplification works differently from most substitu-
tion mechanisms in REDUCE in that it is applied during polynomial manipulation
rather than to the whole evaluated expression. Thus, with the above rule in effect,
X"10/x"5  would give the result zero, since the numerator would simplify to zero.
Similarly x"20/x"10  would give aZero divisor error message, since both
numerator and denominator would first simplify to zero.

The method just described is not adequate when expressions involve several vari-
ables having different degrees of smallness. In this case, it is necessary to supply
an asymptotic weight to each variable and count up the total weight of each product
in an expanded expression before deciding whether to keep the term or not. There
are two associated commands in the system to permit this type of asymptotic con-
straint. The commanWEIGHT takes a list of equations of the form

<kernel form> = <number>

where<number> must be a positive integer (not just evaluate to a positive inte-
ger). This command assigns the weigimumber> to the relevant kernel form.

A check is then made in all algebraic evaluations to see if the total weight of the
term is greater than the weight level assigned to the calculation. If itis, the term is
deleted. To compute the total weight of a product, the individual weights of each
kernel form are multiplied by their corresponding powers and then added.

The weight level of the system is initially set to 1. The user may change this setting
by the command

wtlevel <number>;

which sets<number> as the new weight level of the systemnumber> must
evaluate to a positive integer. WTLEVEL will also allow NIL as an argument, in
which case the current weight level is returned.
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File Handling Commands

In many applications, it is desirable to load previously prepared REDUCE files
into the system, or to write output on other files. REDUCE offers four commands
for this purpose, namelyN , OUT, SHUT LOAD andLOADPACKAGEThe first
three operators are described har&ADand LOADPACKAGHEre discussed in
Section 18.2.

11.1 IN Command

This command takes a list of file names as argument and directs the system to
input each file (that should contain REDUCE statements and commands) into the
system. File names can either be an identifier or a string. The explicit format of
these will be system dependent and, in many cases, site dependent. The explicit
instructions for the implementation being used should therefore be consulted for
further details. For example:

in f1,"ggg.rr.s";

will first load file F1, thenggg.rr.s . When a semicolon is used as the terminator

of the IN statement, the statements in the file are echoed on the terminal or written
on the current output file. If $ is used as the terminator, the input is not shown.
Echoing of all or part of the input file can be prevented, even if a semicolon was
used, by placing aoff echo; command in the input file.

Files to be read usintN should end withEND; . Note the two semicolons! First

of all, this is protection against obscure difficulties the user will have if there are,
by mistake, mordBEGINs thanENDs on the file. Secondly, it triggers some file
control book-keeping which may improve system efficiencfEMDis omitted, an
error messagéEnd-of-file read" will occur.
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11.2 OUT Command

This command takes a single file name as argument, and directs output to that
file from then on, until anothe®UT changes the output file, @HUTcloses it.
Output can go to only one file at a time, although many can be open. If the file
has previously been used for output during the current job, an8HUOIT the new
output is appended to the end of the file. Any existing file is erased before its first
use for output in a job, or if it had be&@HUTbefore the nevDUT

To output on the terminal without closing the output file, the reserved file name T
(for terminal) may be used. For exampteit ofile; will direct output to the
file OFILE andout t;  will direct output to the user’s terminal.

The output sent to the file will be in the same form that it would have on the
terminal. In particulax™2 would appear on two lines, aon the lower line and

a 2 on the line above. If the purpose of the output file is to save results to be read
in later, this is not an appropriate form. We first must turn off &#&T switch that
specifies that output should be in standard mathematical notation.

Example:To create a fileABCDfrom which it will be possible to read — usiniyl
— the value of the expressiofiyZ

off echo$ % needed if your input is from a file.

off nat$ % output in IN-readable form. Each expression
% printed will end with a $ .

out abcd$ % output to new file

linelength 72$ % for systems with fixed input line length.

XYZ:=XyZ; % will output "XYZ := " followed by the value
% of XYZ

write ";end"$ % standard for ending files for IN

shut abcd$ % save ABCD, return to terminal output

on nat$ % restore usual output form

11.3 SHUT Command

This command takes a list of names of files that have been previously opened via
an OUTstatement and closes them. Most systems require this action by the user
before he ends the REDUCE job (if not sooner), otherwise the output may be lost.
If a file is shut and a furthe®UTcommand issued for the same file, the file is
erased before the new output is written.

If it is the current output file that is shut, output will switch to the terminal. At-
tempts to shut files that have not been opene@®by, or an input file, will lead to
errors.
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Commands for Interactive Use

REDUCE is designed as an interactive system, but naturally it can also operate in
a batch processing or background mode by taking its input command by command
from the relevant input stream. There is a basic difference, however, between in-
teractive and batch use of the system. In the former case, whenever the system
discovers an ambiguity at some point in a calculation, such as a forgotten type
assignment for instance, it asks the user for the correct interpretation. In batch
operation, it is not practical to terminate the calculation at such points and require
resubmission of the job, so the system makes the most obvious guess of the user’s
intentions and continues the calculation.

There is also a difference in the handling of errors. In the former case, the computa-
tion can continue since the user has the opportunity to correct the mistake. In batch
mode, the error may lead to consequent erroneous (and possibly time consuming)
computations. So in the default case, no further evaluation occurs, although the
remainder of the input is checked for syntax errors. A mess&geatinuing

with parsing only" informs the user that this is happening. On the other
hand, the switctERRCONTIif on, will cause the system to continue evaluating
expressions after such errors occur.

When a syntactical error occurs, the place where the system detected the error is
marked with three dollar signs ($$$). In interactive mode, the user can thé&buse

to correct the error, or retype the command. When a non-syntactical error occurs in

interactive mode, the command being evaluated at the time the last error occurred
is saved, and may later be reevaluated by the commR&ETRY

12.1 Referencing Previous Results

It is often useful to be able to reference results of previous computations during a
REDUCE session. For this purpose, REDUCE maintains a history of all interactive
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inputs and the results of all interactive computations during a given session. These
results are referenced by the command number that REDUCE prints automatically
in interactive mode. To use an input expression in a new computation, one writes
input( n), wheren is the command number. To use an output expression, one
writesWS(n) . WSreferences the previous command. E.g., if command number 1
wasINT(X-1,X) ;and the result of command number 7 &4 , then

2*input(1)-ws(7)°2;
would give the resultl , whereas
2*ws(1)-ws(7)°2;

would yield the same result, butithouta recomputation of the integral.

The operatoDISPLAY is available to display previous inputs. If its argument
is a positive integem say, then the previous n inputs are displayed. If its argu-
ment isALL (or in fact any non-numerical expression), then all previous inputs are
displayed.

12.2 Interactive Editing

It is possible when working interactively to edit any REDUCE input that comes
from the user’s terminal, and also some user-defined procedure definitions. At the
top level, one can access any previous command string by the comedéand ,

where n is the desired command number as prompted by the system in interactive
mode.ED, (i.e. no argument) accesses the previous command.

After EDhas been called, you can now edit the displayed string using a string editor
with the following commands:

B move pointer to beginning

C<character> replace next character lspharacter

D delete next character

E end editing and reread text

F<character> move pointer to next occurrence of
character

I<string><escape> insertstring in front of pointer

K<character> delete all characters untharacter

P print string from current pointer

Q give up with error exit

S<string><escape> search for first occurrence atring, posi-

tioning pointer just before it
space or X move pointer right one character.
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The above table can be displayed online by typing a question mark followed by a
carriage return to the editor. The editor prompts with an angle bracket. Commands
can be combined on a single line, and all command sequences must be followed by
a carriage return to become effective.

Thus, to change the commamd:= a+1; tox := a+2 ; and cause it to be
executed, the following edit command sequence could be used:

flc2e<return>.

The interactive editor may also be used to edit a user-defined procedure that has
not been compiled. To do this, one says:

editdef <id>;

where<id> is the name of the procedure. The procedure definition will then be
displayed in editing mode, and may then be edited and redefined on exiting from
the editor.

Some versions of REDUCE now include input editing that uses the capabilities of
modern window systems. Please consult your system dependent documentation to
see if this is possible. Such editing techniques are usually much easier to use then
EDor EDITDEF.

12.3 Interactive File Control

If input is coming from an external file, the system treats it as a batch processed
calculation. If the user desires interactive response in this case, he can include the
commandon int ; in the file. Likewise, he can issue the commaitl int

in the main program if he does not desire continual questioning from the system.
Regardless of the setting YT, input commands from a file are not kept in the
system, and so cannot be edited udiiy However, many implementations of RE-
DUCE provide a link to an external system editor that can be used for such editing.
The specific instructions for the particular implementation should be consulted for
information on this.

Two commands are available in REDUCE for interactive use of fiddJSE may

be inserted at any point in an input file. When this command is encountered on
input, the system prints the mess&@NT?on the user’s terminal and halts. If the
user responds (for yes), the calculation continues from that point in the file. If the
user respondsl (for no), control is returned to the terminal, and the user can input
further statements and commands. Later on he can use the conomand to
transfer control back to the point in the file following the IB&USEencountered.

A top-levelpause; from the user’s terminal has no effect.
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Chapter 13

Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calculations
can be performed. To extend our syntax to this class of calculations we need to
add another prefix operatdy)AT and a further variable and expression type as
follows:

13.1 MAT Operator

This prefix operator is used to represent m matrices MAThasn arguments in-
terpreted as rows of the matrix, each of which is a ligh@xpressions representing
elements in that row. For example, the matrix

a b ¢
d e f
would be written asnat((a,b,c),(d,e,f))

Note that the single column matrix

(7)

becomesmat((x),(y)) . The inside parentheses are required to distinguish it
from the single row matrix
(= v)

that would be written amat((x,y))
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13.2 Matrix Variables

An identifier may be declared a matrix variable by the declaratl®TRIX The
size of the matrix may be declared explicitly in the matrix declaration, or by default
in assigning such a variable to a matrix expression. For example,

matrix x(2,1),y(3,4),z;

declaresX to be a 2 x 1 (column) matrixXy to be a 3 x 4 matrix and a matrix
whose size is to be declared later.

Matrix declarations can appear anywhere in a program. Once a symbol is declared
to name a matrix, it can not also be used to name an array, operator or a procedure,
or used as an ordinary variable. It can however be redeclared to be a matrix, and
its size may be changed at that time. Note however that matrices once declared
areglobal in scope, and so can then be referenced anywhere in the program. In
other words, a declaration within a block (or a procedure) does not limit the scope
of the matrix to that block, nor does the matrix go away on exiting the block (use
CLEARInstead for this purpose). An element of a matrix is referred to in the
expected manner; thug1,1) gives the first element of the matrix defined
above. References to elements of a matrix whose size has not yet been declared
leads to an error. All elements of a matrix whose size is declared are initialized to
0. As aresult, a matrix element hasiagtant evaluatiormproperty and cannot stand

for itself. If this is required, then an operator should be used to name the matrix
elements as in:

matrix m; operator x; m := mat((x(1,1),x(1,2));

13.3 Matrix Expressions

These follow the normal rules of matrix algebra as defined by the following syntax:

<matrix expression> ::=
MAT<matrix description>|<matrix vari-
able>|

<scalar expression>*<matrix expression>|
<matrix expression>*<matrix expression>
<matrix expression>+<matrix expression>|
<matrix expression>"<integer>|

<matrix expression>/<matrix expression>

Sums and products of matrix expressions must be of compatible size; otherwise an
error will result during their evaluation. Similarly, only square matrices may be
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raised to a power. A negative power is computed as the inverse of the matrix raised
to the corresponding positive powerb is interpreted aa*b™(-1)

Examples:

AssumingX andY have been declared as matrices, the following are matrix ex-
pressions

y
Yy 2*x-3*y"(-2)*x
y + mat((1,a),(b,c))/2

The computation of the quotient of two matrices normally uses a two-step elimina-
tion method due to Bareiss. An alternative method using Cramer’s method is also
available. This is usually less efficient than the Bareiss method unless the matrices
are large and dense, although we have no solid statistics on this as yet. To use
Cramer’s method instead, the switCiRAMERhhould be turned on.

13.4 Operators with Matrix Arguments

The operatot ENGTHapplied to a matrix returns a list of the number of rows and
columns in the matrix. Other operators useful in matrix calculations are defined
in the following subsections. Attention is also drawn to the LINALG (chap®r

and NORMFORM (chapte??) packages.

13.4.1 DET Operator
Syntax:
DET(EXPRN:matrix_expression):algebraic.

The operatoDETIs used to represent the determinant of a square matrix expres-
sion. E.g.,

det(y"2)

is a scalar expression whose value is the determinant of the square of theYnatrix
and

det mat((a,b,c),(d,e,f),(g,h.,));
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is a scalar expression whose value is the determinant of the matrix

Q@ Q.
> o
Sk 0

Determinant expressions have thetant evaluatiorproperty. In other words, the
statement

let det mat((a,b),(c,d)) = 2;

sets thesalueof the determinant to 2, and does not set up a rule for the determinant
itself.

13.4.2 MATEIGEN Operator
Syntax:
MATEIGEN(EXPRN:matrix_expression,ID):list.

MATEIGENcalculates the eigenvalue equation and the corresponding eigenvectors
of a matrix, using the variabl® to denote the eigenvalue. A square free decom-
position of the characteristic polynomial is carried out. The result is a list of lists
of 3 elements, where the first element is a square free factor of the characteristic
polynomial, the second its multiplicity and the third the corresponding eigenvector
(as am by 1 matrix). If the square free decomposition was successful, the product
of the first elements in the lists is the minimal polynomial. In the case of degener-
acy, several eigenvectors can exist for the same eigenvalue, which manifests itself
in the appearance of more than one arbitrary variable in the eigenvector. To extract
the various parts of the result use the operations defined on lists.

Example:The command
mateigen(mat((2,-1,1),(0,1,1),(-1,1,1))eta);
gives the output
{ETA - 1,2,

[ARBCOMPLEX(1)]

[ ]
[ARBCOMPLEX(1)]
[ ]
[ 0 ]
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}

{ETA - 2,1,
[ 0 ]

[ ]
[ARBCOMPLEX(2)]

[ ]
[ARBCOMPLEX(2)]

1}

13.4.3 TP Operator
Syntax:
TP(EXPRN:matrix_expression):matrix.

This operator takes a single matrix argument and returns its transpose.

13.4.4 Trace Operator
Syntax:
TRACE(EXPRN:matrix_expression):algebraic.

The operatof RACESs used to represent the trace of a square matrix.

13.4.5 Matrix Cofactors
Syntax:

COFACTOR(EXPRN:matrix_expression,ROW:integer, COLUMN:integer):
algebraic

The operatoCOFACTOIReturns the cofactor of the element in re®DVANnd col-
umn COLUMMf the matrix MATRIX Errors occur ifROWbr COLUMNMNIo not
simplify to integer expressions orMATRIXis not square.
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13.4.6 NULLSPACE Operator
Syntax:
NULLSPACE(EXPRN:matrix_expression):list

NULLSPACEalculates for a matriR a list of linear independent vectors (a basis)
whose linear combinations satisfy the equatibin= 0. The basis is provided in a
form such that as many upper components as possible are isolated.

Note that withb := nullspace a  the expressiotength b is thenullity of
A, and thatsecond length a - length b calculates theank of A. The
rank of a matrix expression can also be found more directly bR Koperator
described below.

Example:The command
nullspace mat((1,2,3,4),(5,6,7,8));

gives the output

{

b O N ' o
L

~—~ N —_————
P '
N
—_—
[a—

In addition to the REDUCE matrix formrNULLSPACEaccepts as input a matrix
given as a list of lists, that is interpreted as a row matrix. If that form of input
is chosen, the vectors in the result will be represented by lists as well. This addi-
tional input syntax facilitates the use MtULLSPACEN applications different from
classical linear algebra.
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13.4.7 RANK Operator
Syntax:
RANK(EXPRN:matrix_expression):integer

RANKcalculates the rank of its argument, that, IKEILLSPACEcan either be a
standard matrix expression, or a list of lists, that can be interpreted either as a row
matrix or a set of equations.

Example:
rank mat((a,b,c),(d,e,Mn);

returns the value 2.

13.5 Matrix Assignments

Matrix expressions may appear in the right-hand side of assignment statements. If
the left-hand side of the assignment, which must be a variable, has not already been
declared a matrix, it is declared by default to the size of the right-hand side. The
variable is then set to the value of the right-hand side.

Such an assignment may be used very conveniently to find the solution of a set of
linear equations. For example, to find the solution of the following set of equations

all*x(1) + al2*x(2)
a21*x(1) + a22*x(2)

yl
y2

we simply write

X = 1/mat((all,al2),(a21,a22))*mat((yl),(y2));

13.6 Evaluating Matrix Elements

Once an element of a matrix has been assigned, it may be referred to in standard
array element notation. Thy$2,1) refers to the element in the second row and
first column of the matrixY.
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Chapter 14

Procedures

It is often useful to name a statement for repeated use in calculations with varying
parameters, or to define a complete evaluation procedure for an operator. REDUCE
offers a procedural declaration for this purpose. Its general syntax is:

[<procedural type>] PROCEDURE <name>[<varlist>];<statement>;
where
<varlist> ::= (<variable>,...,<variable>)

This will be explained more fully in the following sections.

In the algebraic mode of REDUCE thgprocedure type>  can be omitted,

since the default iISaLGEBRAIC Procedures of typtNTEGERor REALmay also

be used. In the former case, the system checks that the value of the procedure is
an integer. At present, such checking is not done for a real procedure, although
this will change in the future when a more complete type checking mechanism is
installed. Users should therefore only use these types when appropriate. An empty
variable list may also be omitted.

All user-defined procedures are automatically declared to be operators.

In order to allow users relatively easy access to the whole REDUCE source pro-
gram, system procedures are not protected against user redefinition. If a procedure
is redefined, a message

*** <procedure name> REDEFINED
is printed. If this occurs, and the user is not redefining his own procedure, he is

well advised to rename it, and possibly start over (because redieaslyredefined
some internal procedure whose correct functioning may be required for his job!)
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All required procedures should be defined at the top level, since they have global
scope throughout a program. In particular, an attempt to define a procedure within
a procedure will cause an error to occur.

14.1 Procedure Heading

Each procedure has a heading consisting of the VRROCEDUREFEoptionally
preceded by the wordLGEBRAIQ, followed by the name of the procedure to be
defined, and followed by its formal parameters — the symbols that will be used in
the body of the definition to illustrate what is to be done. There are three cases:

1. No parameters. Simply follow the procedure name with a terminator (semi-
colon or dollar sign).

procedure abc;

When such a procedure is used in an expression or comrahog), , with
empty parentheses, must be written.

2. One parameter. Enclose it in parenthesefust leave at least one space,
then follow with a terminator.

procedure abc(x);
or
procedure abc X;

3. More than one parameter. Enclose them in parentheses, separated by com-
mas, then follow with a terminator.

procedure abc(x,y,z);

Referring to the last example, if later in some expression being evaluated the sym-
bols abc(u,p*q,123) appear, the operations of the procedure body will be
carried out as iX had the same value &sdoes,Y the same value gs*q does,

andZ the value 123. The values &f Y, Z, after the procedure body operations are
completed are unchanged. So, normally, are the valubs®RfQ, and (of course)

123. (This is technically referred to as call by value.)

The reader will have noted the wondrmallya few lines earlier. The call by value
protections can be bypassed if necessary, as described elsewhere.
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14.2 Procedure Body

Following the delimiter that ends the procedure heading mussbegtestatement
defining the action to be performed or the value to be delivered. A terminator must
follow the statement. If it is a semicolon, the name of the procedure just defined is
printed. It is not printed if a dollar sign is used.

If the result wanted is given by a formula of some kind, the body is just that for-
mula, using the variables in the procedure heading.

Simple Example:
If f(x) isto mean(x+5)*(x+6)/(x+7) , the entire procedure definition could
read

procedure f X; (X+5)*(x+6)/(x+7);
Thenf(10) would evaluate to 240/1%(a-6) to A*(A-1)/(A+1) , and so
on.
More Complicated Example:

Suppose we need a functip(n,x) that, for any positive integé¥, is the Legen-
dre polynomial of orden. We can define this operator using the textbook formula
defining these functions:

() 1 Jd" 1
pu(T) = — ——
nl dy" (2~ 9ay +1)

N

y=0

Put into words, the Legendre polynomjal(z) is the result of substituting = 0
in the nt" partial derivative with respect tp of a certain fraction involving: and
y, then dividing that by !.

This verbal formula can easily be written in REDUCE:
procedure p(n,x);
sub(y=0,df(1/(y"2-2*x*y+1)"(1/2),y,n))
/(for i:=1:n product i);
Having input this definition, the expression evaluation
2p(2,w);

would result in the output

2
W - 1.
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If the desired process is best described as a series of steps, then a group or com-
pound statement can be used.
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Example:

The above Legendre polynomial example can be rewritten as a series of steps in-
stead of a single formula as follows:

procedure p(n,x);

begin scalar seed,deriv,top,fact;
seed:=1/(y"2 - 2*x*y +1)7(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

Procedures may also be defined recursively. In other words, the procedure body can
include references to the procedure name itself, or to other procedures that them-
selves reference the given procedure. As an example, we can define the Legendre
polynomial through its standard recurrence relation:

procedure p(n,x);
if n<0 then rederr "Invalid argument to P(N,X)"
else if n=0 then 1
else if n=1 then x
else ((2*n-1)*x*p(n-1,x)-(n-1)*p(n-2,x))/n;

The operatoREDERRN the above example provides for a simple error exit from
an algebraic procedure (and also a block). It can take a string as argument.

It should be noted however that all the above definitionp@fx) are quite
inefficient if extensive use is to be made of such polynomials, since each call ef-
fectively recomputes all lower order polynomials. It would be better to store these
expressions in an array, and then use say the recurrence relation to compute only
those polynomials that have not already been derived. We leave it as an exercise
for the reader to write such a definition.

14.3 Using LET Inside Procedures

By using LET instead of an assignment in the procedure body it is possible to
bypass the call-by-value protection. Xfis a formal parameter or local variable
of the procedure (i.e. is in the heading or in a local declaration) L&idis used
instead of= to make an assignment ¥ e.g.

let x = 123;
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then it is the variable that is the value ¥that is changed. This effect also occurs
with local variables defined in a block. If the value X¥fis not a variable, but a

more general expression, then it is that expression that is used on the left-hand side
of theLET statement. For example Xfhad the valu@*q , itis asiflet p*q =

123 had been executed.

14.4 LET Rules as Procedures

The LET statement offers an alternative syntax and semantics for procedure defi-
nition.

In place of
procedure abc(x,y,z); <procedure body>;
one can write
for all x,y,z let abc(x,y,z) = <procedure body>;

There are several differences to note.

If the procedure body contains an assignment to one of the formal parameters, e.g.
X = 123;

in the PROCEDUREase it is a variable holding a copy of the first actual argument
that is changed. The actual argument is not changed.

In the LET case, the actual argument is changed. Thu8BiCis defined using
LET, andabc(u,v,w) is evaluated, the value &f changes to 123. That is, the
LET form of definition allows the user to bypass the protections that are enforced
by the call by value conventions of stand&&OCEDURG@&efinitions.

Example:We take our earlieFACTORIALprocedure and write it aslZET state-
ment.

for all n let factorial n =

begin scalar m,s;
m:=1; s:=n;

[1: if s=0 then return m;
m:=m*s;
s:=s-1;
go to I1

end;
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The reader will notice that we introduced a new local variaBleand set it equal

to N. The original form of the procedure contained the statememi-1; . If the

user asked for the value €dctorial(5) thenNwould correspond to, not just
have the value of, 5, and REDUCE would object to trying to execute the statement
5:=5-1.

If PQRis a procedure with no parameters,

procedure pqr;
<procedure body>;

it can be written as &ET statement quite simply:
let pgr = <procedure body>;

To call procedurePQR if defined in the latter form, the empty parentheses would
not be used: usBQRnot PQR() where a call on the procedure is needed.

The two notations for a procedure with no arguments can be combiR@Bcan
be defined in the standaRROCEDURBrm. Then aLET statement

let par = par();

would allow a user to usBQRinstead ofPQR() in calling the procedure.
A feature available with.ET-defined procedures and not with procedures defined
in the standard way is the possibility of defining partial functions.

for all x such that numberp x let uvw(x)=<procedure body>;

Now UVWof an integer would be calculated as prescribed by the procedure body,
while UVWbf a general argument, such a9r p+q (assuming these evaluate to
themselves) would simply staww(z) oruvw(p+q) as the case may be.

14.5 REMEMBER Statement

Setting the remember option for an algebraic procedure by
REMEMBER (PROCNAME:procedure);

saves all intermediate results of such procedure evaluations, including recursive

calls. Subsequent calls to the procedure can then be determined from the saved
results, and thus the number of evaluations (or the complexity) can be reduced.

This mode of evalation costs extra memory, of course. In addition, the procedure

must be free of side—effects.
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The following examples show the effect of the remember statement on two well—
known examples.

procedure H(n); % Hofstadter's function
if numberp n then

<< chn = c¢cnn +1; % counts the calls

if n < 3 then 1 else H(n-H(n-1))+H(n-H(n-2))>>;
remember h;
> << cnn := 0; H(100); cnn>>;
100
% H has been called 100 times only.
procedure A(m,n); % Ackermann function
if m=0 then n+1 else

if n=0 then A(m-1,1) else

A(m-1,A(m,n-1));

remember a;

A(3,3);



Chapter 15

User Contributed Packages

The complete REDUCE system includes a number of packages contributed by
users that are provided as a service to the user community. Questions regarding
these packages should be directed to their individual authors.

All such packages have been precompiled as part of the installation process. How-
ever, many must be specifically loaded before they can be used. (Those that are
loaded automatically are so noted in their description.) You should also consult the
user notes for your particular implementation for further information on whether
this is necessary. If itis, the relevant command@ADPACKAGEwhich takes a

list of one or more package names as argument, for example:

load_package algint;

although this syntax may vary from implementation to implementation.

Nearly all these packages come with separate documentation and test files (except
those noted here that have no additional documentation), which is included, along
with the source of the package, in the REDUCE system distribution. These items
should be studied for any additional details on the use of a particular package.

The packages available in the current release of REDUCE are as follows:

15.1 ALGINT: Integration of square roots

This package, which is an extension of the basic integration package distributed
with REDUCE, will analytically integrate a wide range of expressions involving
square roots where the answer exists in that class of functions. It is an implemen-
tation of the work described in J.H. Davenport, “On the Integration of Algebraic
Functions”, LNCS 102, Springer Verlag, 1981. Both this and the source code

159
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should be consulted for a more detailed description of this work.
Once theALGINT package has been loaded, usifgADPACKAGEoONe enters
an expression for integration, as with the regular integrator, for example:

int(sqrt(x+sqgrt(x**2+1))/x,x);

If one later wishes to integrate expressions without using the facilities of this pack-
age, the switctALGINT should be turned off. This is turned on automatically
when the package is loaded.

The switches supported by the standard integrator (ERLNT) are also sup-
ported by this package. In addition, the swildRA if on, will give further tracing
information about the specific functioning of the algebraic integrator.

There is no additional documentation for this package.

Author: James H. Davenport.

15.2 APPLYSYM: Infinitesimal symmetries of differen-
tial equations

This package provides programs APPLYSYM, QUASILINPDE and DETRAFO
for applying infinitesimal symmetries of differential equations, the generalization
of special solutions and the calculation of symmetry and similarity variables.

Author: Thomas Wolf.

15.3 ARNUM: An algebraic number package

This package provides facilities for handling algebraic numbers as polynomial co-
efficients in REDUCE calculations. It includes facilities for introducing indetermi-
nates to represent algebraic numbers, for calculating splitting fields, and for factor-
ing and finding greatest common divisors in such domains.

Author: Eberhard Sclifer.

15.4 ASSIST: Useful utilities for various applications

ASSIST contains a large number of additional general purpose functions that allow
a user to better adapt REDUCE to various calculational strategies and to make the
programming task more straightforward and more efficient.

Author: Hubert Caprasse.
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15.5 AVECTOR: A vector algebra and calculus package

This package provides REDUCE with the ability to perform vector algebra using
the same notation as scalar algebra. The basic algebraic operations are supported,
as are differentiation and integration of vectors with respect to scalar variables,
cross product and dot product, component manipulation and application of scalar
functions (e.g. cosine) to a vector to yield a vector result.

Author: David Harper.

15.6 BOOLEAN: A package for boolean algebra

This package supports the computation with boolean expressions in the proposi-
tional calculus. The data objects are composed from algebraic expressions con-
nected by the infix boolean operateunsd, or, implies, equiv, and the unary prefix
operatomot. Booleanallows you to simplify expressions built from these oper-
ators, and to test properties like equivalence, subset property etc.

Author: Herbert Melenk.

15.7 CALI: A package for computational commutative
algebra

This package contains algorithms for computations in commutative algebra closely
related to the Gibner algorithm for ideals and modules. Its heart is a new imple-
mentation of the Gybner algorithm that also allows for the computation of syzy-
gies. This implementation is also applicable to submodules of free modules with
generators represented as rows of a matrix.

Author: Hans-Gert Gibe.

15.8 CAMAL: Calculations in celestial mechanics

This packages implements in REDUCE the Fourier transform procedures of the
CAMAL package for celestial mechanics.

Author: John P. Fitch.
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15.9 CHANGEVR: Change of Independent Variable(s) in
DEs

This package provides facilities for changing the independent variables in a differ-
ential equation. It is basically the application of the chain rule.

Author: G.Ugoluk.

15.10 COMPACT: Package for compacting expressions

COMPACT is a package of functions for the reduction of a polynomial in the pres-
ence of side relations. COMPACT applies the side relations to the polynomial so
that an equivalent expression results with as few terms as possible. For example,
the evaluation of

compact(s*(1-sin x"2)+c*(1-cos x"2)+sin X"2+cos X2,
{cos x"2+sin x"2=1});

yields the result

2 2
SIN(X) *C + COS(X) *S + 1 .

Author: Anthony C. Hearn.

15.11 CRACK: Solving overdetermined systems of PDEs
or ODEs

CRACK is a package for solving overdetermined systems of partial or ordinary
differential equations (PDEs, ODEs). Examples of programs which make use
of CRACK (finding symmetries of ODES/PDEs, first integrals, an equivalent La-
grangian or a "differential factorization” of ODES) are included. The application
of symmetries is also possible by using the APPLYSYM package.

Authors: Andreas Brand, Thomas Wolf.
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15.12 CVIT: Fast calculation of Dirac gamma matrix
traces

This package provides an alternative method for computing traces of Dirac gamma
matrices, based on an algorithm by Cvitanovich that treats gamma matrices as 3-j
symbols.

Authors: V.llyin, A.Kryukov, A.Rodionov, A.Taranov.

15.13 DEFINT: A definite integration interface

This package finds the definite integral of an expression in a stated interval. It
uses several techniques, including an innovative approach based on the Meijer G-
function, and contour integration.

Authors: Kerry Gaskell, Stanley M. Kameny, Winfried Neun.

15.14 DESIR: Differential linear homogeneous equation
solutions in the neighborhood of irregular and reg-
ular singular points

This package enables the basis of formal solutions to be computed for an ordinary
homogeneous differential equation with polynomial coefficients over Q of any or-
der, in the neighborhood of zero (regular or irregular singular point, or ordinary
point).

Documentation for this package is in plain text.

Authors: C. Dicrescenzo, F. Richard-Jung, E. Tournier.

15.15 DFPART: Derivatives of generic functions

This package supports computations with total and partial derivatives of formal
function objects. Such computations can be useful in the context of differential
eguations or power series expansions.

Author: Herbert Melenk.
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15.16 DUMMY: Canonical form of expressions with dummy
variables

This package allows a user to find the canonical form of expressions involving
dummy variables. In that way, the simplification of polynomial expressions can be
fully done. The indeterminates are general operator objects endowed with as few
properties as possible. In that way the package may be used in a large spectrum of
applications.

Author: Alain Dresse.

15.17 EXCALC: A differential geometry package

EXCALC is designed for easy use by all who are familiar with the calculus of Mod-
ern Differential Geometry. The program is currently able to handle scalar-valued
exterior forms, vectors and operations between them, as well as non-scalar valued
forms (indexed forms). It is thus an ideal tool for studying differential equations,
doing calculations in general relativity and field theories, or doing simple things
such as calculating the Laplacian of a tensor field for an arbitrary given frame.

Author: Eberhard Schifer.

15.18 FIDE: Finite difference method for partial differ-
ential equations

This package performs automation of the process of humerically solving partial
differential equations systems (PDES) by means of computer algebra. For PDES
solving, the finite difference method is applied. The computer algebra system RE-
DUCE and the numerical programming language FORTRAN are used in the pre-
sented methodology. The main aim of this methodology is to speed up the process
of preparing numerical programs for solving PDES. This process is quite often,
especially for complicated systems, a tedious and time consuming task.

Documentation for this package is in plain text.
Author: Richard Liska.

15.19 FPS: Automatic calculation of formal power series

This package can expand a specific class of functions into their corresponding
Laurent-Puiseux series.
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Authors: Wolfram Koepf and Winfried Neun.

15.20 GENTRAN: A code generation package

GENTRAN is an automatic code GENerator and TRANSslIator. It constructs com-
plete numerical programs based on sets of algorithmic specifications and symbolic
expressions. Formatted FORTRAN, RATFOR, PASCAL or C code can be gener-
ated through a series of interactive commands or under the control of a template
processing routine. Large expressions can be automatically segmented into subex-
pressions of manageable size, and a special file-handling mechanism maintains
stacks of open I/O channels to allow output to be sent to any number of files si-
multaneously and to facilitate recursive invocation of the whole code generation
process.

Author: Barbara L. Gates.

15.21 GNUPLOQOT: Display of functions and surfaces

This package is an interface to the popular GNUPLOT package. It allows you to
display functions in 2D and surfaces in 3D on a variety of output devices including
X terminals, PC monitors, and postscript and Latex printer files.

NOTE: The GNUPLOT package may not be included in all versions of REDUCE.
Author: Herbert Melenk.

15.22 GROEBNER: A Grobner basis package

GROEBNER is a package for the computation obrer Bases using the Buch-
berger algorithm and related methods for polynomial ideals and modules. It can be
used over a variety of different coefficient domains, and for different variable and
term orderings.

Grobner Bases can be used for various purposes in commutative algebra, e.g. for
elimination of variables, converting surd expressions to implicit polynomial form,
computation of dimensions, solution of polynomial equation systems etc. The
package is also used internally by tR®LVE operator.

Authors: Herbert Melenk, H.M. Nller and Winfried Neun.
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15.23 IDEALS: Arithmetic for polynomial ideals

This package implements the basic arithmetic for polynomial ideals by exploiting

the Gibbner bases package of REDUCE. In order to save computing time all inter-
mediate Gobner bases are stored internally such that time consuming repetitions
are inhibited.

Author: Herbert Melenk.

15.24 INEQ: Support for solving inequalities

This package supports the operat@qg_solvethat tries to solves single inequalities
and sets of coupled inequalities.

Author: Herbert Melenk.

15.25 INVBASE: A package for computing involutive
bases

Involutive bases are a new tool for solving problems in connection with multivari-
ate polynomials, such as solving systems of polynomial equations and analyzing
polynomial ideals. An involutive basis of polynomial ideal is nothing but a special
form of a redundant @bner basis. The construction of involutive bases reduces
the problem of solving polynomial systems to simple linear algebra.

Authors: A.Yu. Zharkov and Yu.A. Blinkov.

15.26 LAPLACE: Laplace transforms

This package can calculate ordinary and inverse Laplace transforms of expressions.
Documentation is in plain text.

Authors: C. Kazasov, M. Spiridonova, V. Tomov.

15.27 LIE: Functions for the classification of real n-dimensional
Lie algebras

LIE is a package of functions for the classification of real n-dimensional Lie al-
gebras. It consists of two moduleendmcl andlie1234 With the help of the
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functions in thdiendmcl module, real n-dimensional Lie algebrasvith a derived
algebraL®) of dimension 1 can be classified.

Authors: Carsten and Franziska 80kl.

15.28 LIMITS: A package for finding limits

LIMITS is a fast limit package for REDUCE for functions which are continuous
except for computable poles and singularities, based on some earlier work by lan
Cohen and John P. Fitch. The Truncated Power Series package is used for non-
critical points, at which the value of the function is the constant term in the expan-
sion around that point. L'Bpital’s rule is used in critical cases, with preprocessing

of co — oo forms and reformatting of product forms in order to be able to apply
I'H dpital’s rule. A limited amount of bounded arithmetic is also employed where
applicable.

This package definesldMIT operator, called with the syntax:

LIMIT(EXPRN:algebraic,VAR:kernel, LIMPOINT:algebraic):
algebraic.

For example:

limit(x*sin(1/x),x,infinity) > 1
limit(sin x/x"2,x,0) -> INFINITY

Direction-dependent limit operatok$MIT!+ andLIMIT!-  are also defined.
This package loads automatically.

Author: Stanley L. Kameny.

15.29 LINALG: Linear algebra package

This package provides a selection of functions that are useful in the world of linear
algebra.

Author: Matt Rebbeck.

15.30 MODSR: Modular solve and roots

This package supports solve (BOLVE) and roots (MROOTS) operators for
modular polynomials and modular polynomial systems. The moduli need not be
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primes. MSOLVE requires a modulus to be set. RDOTS takes the modulus as
a second argument. For example:

on modular; setmod 8;
m_solve(2x=4); > {{X=2},{X=6}}
m_solve({x"2-y"3=3});

>  {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}
m_solve({x=2,x"2-y"3=3}); -> {{X=2,Y=1}}

off modular;
m_roots(x"2-1,8); ->  {1,3,5,7}
m_roots(X"3-X,7); -> {0,1,6}

There is no further documentation for this package.
Author: Herbert Melenk.

15.31 NCPOLY: Non—commutative polynomial ideals

This package allows the user to set up automatically a consistent environment for
computing in an algebra where the non—commutativity is defined by Lie-bracket
commutators. The package uses the REDWGEcommechanism for elementary
polynomial arithmetic; the commutator rules are automatically computed from the
Lie brackets.

Authors: Herbert Melenk and Joachim Apel.

15.32 NORMFORM: Computation of matrix normal forms

This package contains routines for computing the following normal forms of ma-
trices:

e smithexint
e smithex

e frobenius

ratjordan

jordansymbolic

e jordan.

Author: Matt Rebbeck.
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15.33 NUMERIC: Solving numerical problems

This package implements basic algorithms of numerical analysis. These include:

e solution of algebraic equations by Newton’s method

num_solve({sin x=cos y, x + y = 1},{x=1,y=2})

solution of ordinary differential equations
num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5)

bounds of a function over an interval

bounds(sin x+x,x=(1 .. 2));

minimizing a function (Fletcher Reeves steepest descent)

num_min(sin(X)+x/5, x);

Chebyshev curve fitting

chebyshev _fit(sin x/x,x=(1 .. 3),5);

numerical quadrature
num_int(sin x,x=(0 .. pi));

Author: Herbert Melenk.

15.34 ODESOLVE:
Ordinary differential equations solver

The ODESOLVE package is a solver for ordinary differential equations. At the
present time it has very limited capabilities. It can handle only a single scalar
equation presented as an algebraic expression or equation, and it can solve only
first-order equations of simple types, linear equations with constant coefficients and
Euler equations. These solvable types are exactly those for which Lie symmetry
techniques give no useful information. For example, the evaluation of

depend(y,x);
odesolve(df(y,x)=x**2+e**x,y,X);
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yields the result

X 3
3*E + 3*ARBCONST(1) + X
fv= }
3

Main Author: Malcolm A.H. MacCallum.

Other contributors: Francis Wright, Alan Barnes.

15.35 ORTHOVEC: Manipulation of scalars and vectors

ORTHOVEC is a collection of REDUCE procedures and operations which provide

a simple-to-use environment for the manipulation of scalars and vectors. Opera-
tions include addition, subtraction, dot and cross products, division, modulus, div,
grad, curl, laplacian, differentiation, integration, and Taylor expansion.

Author: James W. Eastwood.

15.36 PHYSOP: Operator calculus in quantum theory

This package has been designed to meet the requirements of theoretical physicists
looking for a computer algebra tool to perform complicated calculations in quan-
tum theory with expressions containing operators. These operations consist mainly
of the calculation of commutators between operator expressions and in the evalua-
tions of operator matrix elements in some abstract space.

Author: Mathias Warns.

15.37 PM: A REDUCE pattern matcher

PM is a general pattern matcher similar in style to those found in systems such
as SMP and Mathematica, and is based on the pattern matcher described in Kevin
Mclsaac, “Pattern Matching Algebraic Identities”, SIGSAM Bulletin, 19 (1985),
4-13.

Documentation for this package is in plain text.

Author: Kevin Mclsaac.
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15.38 RANDPOLY: A random polynomial generator

This package is based on a port of the Maple random polynomial generator together
with some support facilities for the generation of random numbers and anonymous
procedures.

Author: Francis J. Wright.

15.39 REACTEQN: Support for chemical reaction equat-
lon systems

This package allows a user to transform chemical reaction systems into ordinary
differential equation systems (ODE) corresponding to the laws of pure mass action.

Documentation for this package is in plain text.
Author: Herbert Melenk.

15.40 RESET: Code to reset REDUCE to its initial state

This package defines a command RESETREDUCE that works through the history
of previous commands, and clears any values which have been assigned, plus any
rules, arrays and the like. It also sets the various switches to their initial values. It
is not complete, but does work for most things that cause a gradual loss of space. It
would be relatively easy to make it interactive, so allowing for selective resetting.

There is no further documentation on this package.
Author: John Fitch.

15.41 RESIDUE: A residue package

This package supports the calculation of residues of arbitrary expressions.

Author: Wolfram Koepf.

15.42 RLFI: REDUCE LaTeX formula interface

This package add$TgX syntax to REDUCE. Text generated by REDUCE in this
mode can be directly used ifTEX source documents. Various mathematical con-
structions are supported by the interface including subscripts, superscripts, font
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changing, Greek letters, divide-bars, integral and sum signs, derivatives, and so on.
Author: Richard Liska.

15.43 ROOTS: A REDUCE root finding package

This root finding package can be used to find some or all of the roots of a univariate
polynomial with real or complex coefficients, to the accuracy specified by the user.

It is designed so that it can be used as an independent package, or it may be called
from SOLVEiIf ROUNDEB on. For example, the evaluation of

on rounded,complex;
solve(x**3+x+5,x);

yields the result
{X= - 1.51598,X=0.75799 + 1.65035*,X=0.75799 - 1.65035*I}

This package loads automatically.

Author; Stanley L. Kameny.

15.44 RSOLVE:
Rational/integer polynomial solvers

This package provides operators that compute the exact rational zeros of a single
univariate polynomial using fast modular methods. The algorithm used is that
described by R. Loos (1983): Computing rational zeros of integral polynomials by
p-adic expansion$SIAM J. Computingl2, 286—293.

Author: Francis J. Wright.

15.45 SCOPE: REDUCE source code optimization pack-
age

SCOPE is a package for the production of an optimized form of a set of expres-
sions. It applies an heuristic search for common (sub)expressions to almost any set
of proper REDUCE assignment statements. The output is obtained as a sequence
of assignment statements. GENTRAN is used to facilitate expression output.

Author: J.A. van Hulzen.
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15.46 SETS: A basic set theory package

The SETS package provides algebraic-mode support for set operations on lists re-
garded as sets (or representing explicit sets) and on implicit sets represented by
identifiers.

Author: Francis J. Wright.

15.47 SPDE: Finding symmetry groups of PDE’s

The package SPDE provides a set of functions which may be used to determine
the symmetry group of Lie- or point-symmetries of a given system of partial dif-
ferential equations. In many cases the determining system is solved completely
automatically. In other cases the user has to provide additional input information
for the solution algorithm to terminate.

Author: Fritz Schwarz.

15.48 SPECFN: Package for special functions

This special function package is separated into two portions to make it easier to
handle. The packages are called SPECFN and SPECFN2. The first one is more
general in nature, whereas the second is devoted to special special functions. Doc-
umentation for the first package can be found in the file specfn.tex in the “doc”
directory, and examples in specfn.tst and specfmor.tst in the examples directory.

The package SPECFN is designed to provide algebraic and numerical manipula-
tions of several common special functions, namely:

e Bernoulli Numbers and Euler Numbers;

e Stirling Numbers;

e Binomial Coefficients;

e Pochhammer notation;

e The Gamma function;

e The Psi function and its derivatives;

e The Riemann Zeta function;

e The Bessel functions J and Y of the first and second kind;
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e The modified Bessel functions | and K;

e The Hankel functions H1 and H2;

e The Kummer hypergeometric functions M and U;

e The Beta function, and Struve, Lommel and Whittaker functions;
e The Airy functions;

e The Exponential Integral, the Sine and Cosine Integrals;
e The Hyperbolic Sine and Cosine Integrals;

e The Fresnel Integrals and the Error function;

e The Dilog function;

e Hermite Polynomials;

e Jacobi Polynomials;

e Legendre Polynomials;

e Spherical and Solid Harmonics;

e Laguerre Polynomials;

e Chebyshev Polynomials;

e Gegenbauer Polynomials;

e Euler Polynomials;

e Bernoulli Polynomials.

e Jacobi Elliptic Functions and Integrals;

e 3j symbols, 6j symbols and Clebsch Gordan coefficients;

Author: Chris Cannam, with contributions from Winfried Neun, Herbert Melenk,
Victor Adamchik, Francis Wright and several others.

15.49 SPECFN2: Package for special special functions

This package provides algebraic manipulations of generalized hypergeometric
functions and Meijer’s G function. Generalized hypergeometric functions are sim-
plified towards special functions and Meijer’s G function is simplified towards spe-
cial functions or generalized hypergeometric functions.

Author: Victor Adamchik, with major updates by Winfried Neun.
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15.50 SUM: A package for series summation

This package implements the Gosper algorithm for the summation of series. It
defines operatorSUMandPROD The operatoSUMreturns the indefinite or defi-

nite summation of a given expression, @ODreturns the product of the given
expression.

This package loads automatically.
Author: Fujio Kako.

15.51 SYMMETRY: Operations on symmetric matrices

This package computes symmetry-adapted bases and block diagonal forms of ma-
trices which have the symmetry of a group. The package is the implementation
of the theory of linear representations for small finite groups such as the dihedral
groups.

Author: Karin Gatermann.

15.52 TAYLOR: Manipulation of Taylor series

This package carries out the Taylor expansion of an expression in one or more
variables and efficient manipulation of the resulting Taylor series. Capabilities
include basic operations (addition, subtraction, multiplication and division) and
also application of certain algebraic and transcendental functions.

Author: Rainer Scpf.

15.53 TPS: A truncated power series package

This package implements formal Laurent series expansions in one variable using
the domain mechanism of REDUCE. This means that power series objects can be
added, multiplied, differentiated etc., like other first class objects in the system.
A lazy evaluation scheme is used and thus terms of the series are not evaluated
until they are required for printing or for use in calculating terms in other power
series. The series are extendible giving the user the impression that the full infinite
series is being manipulated. The errors that can sometimes occur using series that
are truncated at some fixed depth (for example when a term in the required series
depends on terms of an intermediate series beyond the truncation depth) are thus
avoided.
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Authors: Alan Barnes and Julian Padget.

15.54 TRI: TeX REDUCE interface

This package provides facilities written in REDUCE-Lisp for typesetting RE-
DUCE formulas using @X. The TeX-REDUCE-Interface incorporates three levels

of TeXoutput: without line breaking, with line breaking, and with line breaking

plus indentation.

Author: Werner Antweiler.

15.55 TRIGSIMP: Simplification and factorization of trigono-
metric and hyperbolic functions

TRIGSIMP is a useful tool for all kinds of trigonometric and hyperbolic simpli-
fication and factorization. There are three procedures included in TRIGSIMP:
trigsimp, trigfactorize and triggcd. The first is for finding simplifications of
trigonometric or hyperbolic expressions with many options, the second for factoriz-
ing them and the third for finding the greatest common divisor of two trigonometric
or hyperbolic polynomials.

Author: Wolfram Koepf.

15.56 WU: Wu algorithm for polynomial systems

This is a simple implementation of the Wu algorithm implemented in REDUCE
working directly from “A Zero Structure Theorem for Polynomial-Equations-
Solving,” Wu Wen-tsun, Institute of Systems Science, Academia Sinica, Beijing.

Author: Russell Bradford.

15.57 XCOLOR: Color factor in some field theories

This package calculates the color factor in non-abelian gauge field theories using
an algorithm due to Cvitanovich.

Documentation for this package is in plain text.

Author: A. Kryukov.
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15.58 XIDEAL: Gr 6bner Bases for exterior algebra

XIDEAL constructs Gébner bases for solving the left ideal membership problem:
Grobner left ideal bases or GLIBs. For graded ideals, where each form is homo-
geneous in degree, the distinction between left and right ideals vanishes. Further-
more, if the generating forms are all homogeneous, then thbr@r bases for the
non-graded and graded ideals are identical. In this case, XIDEAL is able to save
time by truncating the @bner basis at some maximum degree if desired.

Author: David Hartley.

15.59 ZEILBERG: A package for indefinite and definite
summation

This package is a careful implementation of the Gosper and Zeilberger algorithms
for indefinite and definite summation of hypergeometric terms, respectively. Ex-
tensions of these algorithms are also included that are valid for ratios of products
of powers, factorialsl} function terms, binomial coefficients, and shifted factorials
that are rational-linear in their arguments.

Authors: Gregor Silting and Wolfram Koepf.

15.60 ZTRANS: Z-transform package

This package is an implementation of tHetransform of a sequence. This is the
discrete analogue of the Laplace Transform.

Authors: Wolfram Koepf and Lisa Temme.
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Chapter 16

Symbolic Mode

At the system level, REDUCE is based on a version of the programming language
Lisp known asStandard Lispwhich is described in J. Marti, Hearn, A. C., Griss,

M. L. and Griss, C., “Standard LISP Report” SIGPLAN Notices, ACM, New York,
14, No 10 (1979) 48-68. We shall assume in this section that the reader is familiar
with the material in that paper. This also assumes implicitly that the reader has
a reasonable knowledge about Lisp in general, say at the level of the LISP 1.5
Programmer’s Manual (McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T.
P. and Levin, M. I., “LISP 1.5 Programmer’s Manual”, M.1.T. Press, 1965) or any
of the books mentioned at the end of this section. Persons unfamiliar with this
material will have some difficulty understanding this section.

Although REDUCE is designed primarily for algebraic calculations, its source lan-
guage is general enough to allow for a full range of Lisp-like symbolic calculations.
To achieve this generality, however, it is necessary to provide the user with two
modes of evaluation, namely an algebraic mode and a symbolic mode. To enter
symbolic mode, the user typsgmbolic;  (orlisp; ) and to return to algebraic
mode one typealgebraic; . Evaluations proceed differently in each mode so
the user is advised to check what mode he is in if a puzzling error arises. He can
find his mode by typing

eval_mode;

The current mode will then be printed AkGEBRAICor SYMBOLIC

Expression evaluation may proceed in either mode at any level of a calculation,
provided the results are passed from mode to mode in a compatible manner. One
simply prefixes the relevant expression by the appropriate mode. If the mode name
prefixes an expression at the top level, it will then be handled as if the global system
mode had been changed for the scope of that particular calculation.

For example, if the current modeAd GEBRAIC then the commands

179
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symbolic car ’'(a);
X+y;

will cause the first expression to be evaluated and printed in symbolic mode and
the second in algebraic mode. Only the second evaluation will thus affect the
expression workspace. On the other hand, the statement

X + symbolic car '(12);

will result in the algebraic valug+12.

The use oSYMBOLIC(and equivalenth ALGEBRAIQ in this manner is the same

as any operator. That means that parentheses could be omitted in the above ex-
amples since the meaning is obvious. In other cases, parentheses must be used, as
in

symbolic(x = ’a);

Omitting the parentheses, as in
symbolic x = a;

would be wrong, since it would parse as
symbolic(x) = a;

For convenience, it is assumed that any operator whitde@rgument is quoted is
being evaluated in symbolic mode, regardless of the mode in effect at that time.
Thus, the first example above could be equally well written:

car '(a);

Except where explicit limitations have been made, most REDUCE algebraic con-
structions carry over into symbolic mode. However, there are some differences.
First, expression evaluation now becomes Lisp evaluation. Secondly, assignment
statements are handled differently, as we shall discuss shortly. Thirdly, local vari-
ables and array elements are initializedNtb. rather tharD. (In fact, any variables

not explicitly declaredNTEGERare also initialized tdNIL in algebraic mode, but

the algebraic evaluator recognizZdd. as0.) Finally, function definitions follow

the conventions of Standard Lisp.

To begin with, we mention a few extensions to our basic syntax which are designed
primarily if not exclusively for symbolic mode.
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16.1 Symbolic Infix Operators

There are three binary infix operators in REDUCE intended for use in symbolic
mode, namely .(CONS), EQ and MEMQ The precedence of these operators
was given in another section.

16.2 Symbolic Expressions

These consist of scalar variables and operators and follow the normal rules of the
Lisp meta language.

Examples:

X
car u . reverse Vv
simp (u+v'2)

16.3 Quoted Expressions

Because symbolic evaluation requires that each variable or expression has a value,
it is necessary to add to REDUCE the concept of a quoted expression by analogy
with the LispQUOTHunction. This is provided by the single quote markFor
example,

'a represents the Lisp S-expressigiiote a)
‘(@ b c) represents the Lisp S-expressigmiote (a b c))

Note, however, that strings are constants and therefore evaluate to themselves in
symbolic mode. Thus, to print the striig String" , one would write

prin2 "A String";
Within a quoted expression, identifier syntax rules are those of REDUCE. Thus

(A 1. B) isthe list consisting of the three eleme#s. , andB, whereadA
. B) isthe dotted pair oA andB.

16.4 Lambda Expressions

LAMBDAexpressions provide the means for constructing LLisMBDAexpres-
sions in symbolic mode. They may not be used in algebraic mode.
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Syntax:
<LAMBDA expression> :.=
LAMBDA <varlist><terminator><statement>
where
<varlist> ::= (<variable>,...,<variable>)
e.g.,

lambda (x,y); car x . cdr y;
is equivalent to the LishAMBD/Aexpression
(lambda (x y) (cons (car x) (cdr y)))

The parentheses may be omitted in specifying the variable list if desired.

LAMBD-Aexpressions may be used in symbolic mode in place of prefix operators,
or as an argument of the reserved wetdNCTION

In those cases wherelBAMBDAexpression is used to introduce local variables
to avoid recomputation, WHEREtatement can also be used. For example, the
expression

(lambda (x,y); list(car x,cdr x,car y,cdr y))
(reverse u,reverse V)

can also be written
{car x,cdr x,car y,cdr y} where x=reverse u,y=reverse v

Where possibleWWHEREByntax is preferred ttAMBDAsyntax, since it is more
natural.

16.5 Symbolic Assignment Statements

In symbolic mode, if the left side of an assignment statement is a variaBEET®

of the right-hand side to that variable occurs. If the left-hand side is an expression,
it must be of the form of an array element, otherwise an error will result. For exam-
ple,x:=y translates intdSETQ X Y) whereasa(3) := 3 will be valid if A

has been previously declared a single dimensioned array of at least four elements.
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16.6 FOR EACH Statement

The FOR EACHorm of theFORstatement, designed for iteration down a list, is
more general in symbolic mode. Its syntax is:

FOR EACH ID:identifier {INJON} LST:list
{DO|COLLECT|JOIN|PRODUCT|SUM} EXPRN:S-expr

As in algebraic mode, if the keywoldll is used, iteration is on each element of the
list. With ON iteration is on the whole list remaining at each point in the iteration.
As a result, we have the following equivalence between each fofr®O&t EACH
and the various mapping functions in Lisp:

DO COLLECT JOIN
IN | MAPC MAPCAR MAPCAN
ON| MAP  MAPLIST MAPCON

Example:To list each element of the ligh b ¢) :

for each x in (@ b c) collect list x;

16.7 Symbolic Procedures

All the functions described in the Standard Lisp Report are available to users in
symbolic mode. Additional functions may also be defined as symbolic procedures.
For example, to define the Lisp functi?é&SOCthe following could be used:

symbolic procedure assoc(u,v);
if null v then nil
else if u = caar v then car v
else assoc(u, cdr v);

If the default mode were symbolic, th&YMBOLICcould be omitted in the above
definition. MACR®may be defined by prefixing the keywd® OCEDUREy the
word MACRQ(In fact, ordinary functions may be defined with the keywBXPR
prefixingPROCEDUR&s was used in the Standard Lisp Report.) For example, we
could define mMACRO CONSCODIs

symbolic macro procedure conscons I,
expand(cdr 1,’cons);
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Another form of macro, th&€ MACR@ also available. These are described in the
Standard Lisp Report. The Report also defines a function BgéPR However,

its use is discouraged since it is hard to implement efficiently, and most uses can be
replaced by macros. At the present time, there afeEMPRs in the core REDUCE
system.

16.8 Standard Lisp Equivalent of Reduce Input

A user can obtain the Standard Lisp equivalent of his REDUCE input by turning
on the switchDEFN(for definition). The system then prints the Lisp translation
of his input but does not evaluate it. Normal operation is resumed \BiieNis
turned off.

16.9 Communicating with Algebraic Mode

One of the principal motivations for a user of the algebraic facilities of REDUCE to
learn about symbolic mode is that it gives one access to a wider range of techniques
than is possible in algebraic mode alone. For example, if a user wishes to use parts
of the system defined in the basic system source code, or refine their algebraic
code definitions to make them more efficient, then it is necessary to understand the
source language in fairly complete detail. Moreover, it is also necessary to know a
little more about the way REDUCE operates internally. Basically, REDUCE con-
siders expressions in two forms: prefix form, which follow the normal Lisp rules

of function composition, and so-called canonical form, which uses a completely
different syntax.

Once these details are understood, the most critical problem faced by a user is how
to make expressions and procedures communicate between symbolic and algebraic
mode. The purpose of this section is to teach a user the basic principles for this.

If one wants to evaluate an expression in algebraic mode, and then use that ex-
pression in symbolic mode calculations, or vice versa, the easiest way to do this
is to assign a variable to that expression whose value is easily obtainable in both
modes. To facilitate this, a declarati®HARHEs available.SHAREakes a list of
identifiers as argument, and marks these variables as having recognizable values in
both modes. The declaration may be used in either mode.

E.g.,
share x,y;

says thaX andY will receive values to be used in both modes.
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If a SHAREleclaration is made for a variable with a previously assigned algebraic
value, that value is also made available in symbolic mode.

16.9.1 Passing Algebraic Mode Values to Symbolic Mode

If one wishes to work with parts of an algebraic mode expression in symbolic
mode, one simply makes an assignment of a shared variable to the relevant expres-
sion in algebraic mode. For example, if one wishes to work \@attb)"2 , one

would say, in algebraic mode:

X = (at+b)™2;

assuming thaX was declared shared as above. If we now change to symbolic mode
and say

X,
its value will be printed as a prefix form with the syntax:
(*SQ <standard quotient> T)

This particular format reflects the fact that the algebraic mode processor currently
likes to transfer prefix forms from command to command, but doesn't like to re-
convert standard forms (which represent polynomials) and standard quotients back
to a true Lisp prefix form for the expression (which would result in excessive com-
putation). Sa@*SQ is used to tell the algebraic processor that it is dealing with a
prefix form which is really a standard quotient and the second argumient\IL )

tells it whether it needs further processing (essentiallglegady simplifiedlag).

So to get the true standard quotient form in symbolic mode, one @&0sof the
variable. E.g.,

z = cadr x;

would store inZ the standard quotient form f¢a+b) 2

Once you have this expression, you can now manipulate it as you wish. To facilitate
this, a standard set of selectors and constructors are available for getting at parts of
the form. Those presently defined are as follows:
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REDUCE Selectors
DENR denominator of standard quotient
LC leading coefficient of polynomial
LDEG leading degree of polynomial
LPOW leading power of polynomial
LT leading term of polynomial
MVAR main variable of polynomial
NUMR numerator (of standard quotient)
PDEG degree of a power
RED reductum of polynomial
TC coefficient of a term
TDEG degree of aterm
TPOW power of a term

REDUCE Constructors

.+ add aterm to a polynomial
[/ divide (two polynomials to get quotient)
X multiply power by coefficient to produce term

raise a variable to a power

For example, to find the numerator of the standard quotient above, one could say:
numr z;

or to find the leading term of the numerator:
It numr z;

Conversion between various data structures is facilitated by the use of a set of
functions defined for this purpose. Those currently implemented include:
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*A2F  convert an algebraic expression to a standard form. If result is
rational, an error results;

I*A2K  converts an algebraic expression to a kernel. If this is not possible,
an error results;

I*F2A  converts a standard form to an algebraic expression;
*F2Q  convert a standard form to a standard quotient;
I*K2F  convert a kernel to a standard form;

I*K2Q  convert a kernel to a standard quotient;

*P2F  convert a standard power to a standard form;

*P2Q  convert a standard power to a standard quotient;

I*Q2F  convert a standard quotient to a standard form. If the quotient de-
nominator is not 1, an error results;

I*Q2K  convert a standard quotient to a kernel. If this is not possible, an
error results;

*T2F convert a standard term to a standard form

I*T2Q  convert a standard term to a standard quotient.

16.9.2 Passing Symbolic Mode Values to Algebraic Mode

In order to pass the value of a shared variable from symbolic mode to algebraic
mode, the only thing to do is make sure that the value in symbolic mode is a
prefix expression. E.g., one us@xpt (plus a b) 2) for (a+b)™2 , or

the format fsq <standard quotient> t ) as described above. However, if
you have been working with parts of a standard form they will probably not be in
this form. In that case, you can do the following:

1. If it is a standard quotient, cdfREPSQon it. This takes a standard quo-
tient as argument, and returns a prefix expression. Alternatively, you can
call MK!I*SQ on it, which returns a prefix form like*§Q <standard
quotient> T)  and avoids translation of the expression into a true prefix
form.

2. If it is a standard form, calPREPFon it. This takes a standard form as
argument, and returns the equivalent prefix expression. Alternatively, you
can convert it to a standard quotient and then [dlI*SQ.

3. Ifitis a part of a standard form, you must usually first build up a standard
form out of it, and then go to step 2. The conversion functions described
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earlier may be used for this purpose. For example,

(a) If Zis an expression which is a tertWJ2F Z is a standard form.
(b) If Zis a standard powerP2F Z is a standard form.
(c) If Zis a variable, you can pass it direct to algebraic mode.

For example, to pass the leading term(@¥b)"2 back to algebraic mode, one
could say:

y:= mkl*sq *t2q It numr z;

whereY has been declared shared as above. If you now go back to algebraic mode,
you can work withY in the usual way.

16.9.3 Complete Example

The following is the complete code for doing the above steps. The end result will
be that the square of the leading term(@ft- b)? is calculated.

share x.y; % declare X and Y as shared
X = (a+b)'2; % store (a+b)2 in X

symbolic; % transfer to symbolic mode

z = cadr x; % store a true standard quo-
tient in Z

It numr z; % print the leading term of the

% numerator of Z
y = mkl*sq *t2qg It numr z; % store the prefix form of this
% leading term in Y

algebraic; % return to algebraic mode
y'2; % evaluate square of the lead-
ing term

% of (ath)2

16.9.4 Defining Procedures for Intermode Communication

If one wishes to define a procedure in symbolic mode for use as an operator in alge-
braic mode, it is necessary to declare this fact to the system by using the declaration
OPERATOI symbolic mode. Thus

symbolic operator leadterm;

would declare the procedutEEADTERNMsS an algebraic operator. This declaration
mustbe made in symbolic mode as the effect in algebraic mode is different. The
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value of such a procedure must be a prefix form.

The algebraic processor will pass arguments to such procedures in prefix form.
Therefore if you want to work with the arguments as standard quotients you must
first convert them to that form by using the functi8iMP!* . This function takes

a prefix form as argument and returns the evaluated standard quotient.

For example, if you want to define a proceduEBADTERNMVhich gives the leading
term of an algebraic expression, one could do this as follows:

symbolic operator leadterm; % Declare LEADTERM as a symbolic
% mode procedure to be used in
% algebraic mode.

symbolic procedure leadterm u; % Define LEADTERM.
mk!*sq *t2g It numr simp!* u;

Note that this operator has a different effect than the opetatBRM. In the latter

case, the calculation is done with respect to the second argument of the operator. In
the example here, we simply extract the leading term with respect to the system’s
choice of main variable.

Finally, if you wish to use the algebraic evaluator on an argument in a symbolic
mode definition, the functioREVALcan be used. The one argumentREVAL
must be the prefix form of an expressidREVALreturns the evaluated expression
as atrue Lisp prefix form.

16.10 Rlisp '88

Rlisp '88 is a superset of the Rlisp that has been traditionally used for the support
of REDUCE. It is fully documented in the book Matrti, J.B., “RLISP '88: An Evo-
lutionary Approach to Program Design and Reuse”, World Scientific, Singapore
(1993). Rlisp '88 adds to the traditional Rlisp the following facilities:

. more general versions of the looping constrticts, repeat andwhile ;
. support for a backquote construct;

. support for active comments;

1
2
3
4. support for vectors of the form name[index];
5. support for simple structures;

6

. support for records.
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In addition, “~" is a letter in Rlisp '88. In other word#\-B is an identifier, not

the difference of the identifierd and B. If the latter construct is required, it is
necessary to put spaces around the - character. For compatibility between the two
versions of Rlisp, we recommend this convention be used in all symbolic mode
programs.

To use Rlisp '88, typ®n rlisp88; . This switches to symbolic mode with the
Rlisp '88 syntax and extensions. While in this environment, it is impossible to
switch to algebraic mode, or prefix expressions by “algebraic”. However, symb-
olic mode programs written in Rlisp ’88 may be run in algebraic mode provided the
rlisp88 package has been loaded. We also expect that many of the extensions de-
fined in Rlisp '88 will migrate to the basic Rlisp over time. To return to traditional
Rlisp or to switch to algebraic mode, say “off rlisp88”.

16.11 References

There are a number of useful books which can give you further information about
LISP. Here is a selection:

Allen, J.R., “The Anatomy of LISP”, McGraw Hill, New York, 1978.

McCarthy J., P.W. Abrahams, J. Edwards, T.P. Hart and M.l. Levin, “LISP 1.5
Programmer’s Manual”, M.I.T. Press, 1965.

Touretzky, D.S, “LISP: A Gentle Introduction to Symbolic Computation”, Harper
& Row, New York, 1984.

Winston, P.H. and Horn, B.K.P., “LISP”, Addison-Wesley, 1981.
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Calculations in High Energy
Physics

A set of REDUCE commands is provided for users interested in symbolic calcula-
tions in high energy physics. Several extensions to our basic syntax are necessary,
however, to allow for the different data structures encountered.

17.1 High Energy Physics Operators

We begin by introducing three new operators required in these calculations.

17.1.1 . (Cons) Operator
Syntax:

(EXPRNZ1:vector_expression)
. (EXPRNZ2:vector_expression):algebraic.

The binary. operator, which is normally used to denote the addition of an element
to the front of a list, can also be used in algebraic mode to denote the scalar product
of two Lorentz four-vectors. For this to happen, the second argument must be
recognizable as a vector expression at the time of evaluation. With this meaning,
this operator is often referred to as tihat operator. In the present system, the index
handling routines all assume that Lorentz four-vectors are used, but these routines
could be rewritten to handle other cases.

Components of vectors can be represented by including representations of unit vec-
tors in the system. Thus EOrepresents the unit vect¢t,0,0,0) , (p.eo)
represents the zeroth component of the four-vector P. Our metric and notation fol-
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lows Bjorken and Drell “Relativistic Quantum Mechanics” (McGraw-Hill, New
York, 1965). Similarly, an arbitrary componelRtmay be represented lfp.u)

If contraction over components of vectors is required, then the declatatioBX
must be used. Thus

index u;

declaredJ as an index, and the simplification of

p.u * q.u

would result in

P.Q

The metric tensog”” may be represented Ilfy.v) . If contraction ovetJ andV
is required, then they should be declared as indices.

Errors occur if indices are not properly matched in expressions.

If a user later wishes to remove the index property from specific vectors, he can
do it with the declaratioREMIND Thusremind v1...vn; removes the index
flags from the variable¥1 throughVn. However, these variables remain vectors

in the system.

17.1.2 G Operator for Gamma Matrices
Syntax:

G(ID:identifier[, EXPRN:vector_expression])
:gamma_matrix_expression.

G is an n-ary operator used to denote a producty ohatrices contracted with
Lorentz four-vectors. Gamma matrices are associated with fermion lines in a Feyn-
man diagram. If more than one such line occurs, then a different setnatrices
(operating in independent spin spaces) is required to represent each line. To facil-
itate this, the first argument @ is a line identification identifier (not a number)
used to distinguish different lines.

Thus

g(I1,p) * 9(12,0)

denotes the product of.p associated with a fermion line identified bB%, and
~.q associated with another line identifiedle? and wherep andq are Lorentz
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four-vectors. A product of matrices associated with the same line may be written
in a contracted form.

Thus

g(11,p1,p2,...,p3) = g(I1,p1)*g(I1,p2)*...*g(11,p3) .

The vectorA is reserved in arguments of G to denote the speciahtrixy°. Thus

g(l,a) 7P associated with the line

g(l,p,a)

~.p xy®  associated with the link.

~* (associated with the line) may be written ag(l,u) , with U flagged as an
index if contraction ovelis required.

The notation of Bjorken and Drell is assumed in all operations involvimgatri-
ces.

17.1.3 EPS Operator
Syntax:

EPS(EXPRN1:vector_expression,...,EXPRN4.vector_exp)
:vector_exp.

The operatoEPS has four arguments, and is used only to denote the completely
antisymmetric tensor of order 4 and its contraction with Lorentz four-vectors. Thus

+1 if 4,4, k, 1 is an even permutation of 0,1,2,3
€kl = 4 —1 ifanodd permutation
0 otherwise

A contraction of the form¥;;,,.,p,.q, may be written agps(i,j,p,q) , with |
andJ flagged as indices, and so on.

17.2 Vector Variables

Apart from the line identification identifier in th& operator, all other arguments
of the operators in this section are vectors. Variables used as such must be declared
so by the type declaratiodECTOR for example:

vector pl,p2;
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declared?1 andP2 to be vectors. Variables declared as indices or given a mass are
automatically declared vector by these declarations.

17.3 Additional Expression Types

Two additional expression types are necessary for high energy calculations, namely

17.3.1 \Vector Expressions

These follow the normal rules of vector combination. Thus the product of a scalar
or numerical expression and a vector expression is a vector, as are the sum and
difference of vector expressions. If these rules are not followed, error messages are
printed. Furthermore, if the system finds an undeclared variable where it expects
a vector variable, it will ask the user in interactive mode whether to make that
variable a vector or not. In batch mode, the declaration will be made automatically
and the user informed of this by a message.

Examples:

AssumingP andQhave been declared vectors, the following are vector expressions

p
2*q/3
2**y*p - p.g*a/(3*q.q)

whereap*q andp/q are not.

17.3.2 Dirac Expressions

These denote those expressions which invelweatrices. Ay matrix is implicitly

a 4 x 4 matrix, and so the product, sum and difference of such expressions, or the
product of a scalar and Dirac expression is again a Dirac expression. There are
no Dirac variables in the system, so whenever a scalar variable appears in a Dirac
expression without an associatethatrix expression, an implicit unit 4 by 4 matrix

is assumed. For examplg(l,p) + m denoteg(l,p) + m*<unit 4 by

4 matrix> . Multiplication of Dirac expressions, as for matrix expressions, is of
course non-commutative.
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17.4 Trace Calculations

When a Dirac expression is evaluated, the system computes one quarter of the trace
of eachy matrix product in the expansion of the expression. One quarter of each
trace is taken in order to avoid confusion between the trace of the ddasary,
andMrepresentind * <unit 4 by 4 matrix> . Contraction over indices
occurring in such expressions is also performed. If an unmatched index is found in
such an expression, an error occurs.

The algorithms used for trace calculations are the best available at the time this
system was produced. For example, in addition to the algorithm developed by
Chisholm for contracting indices in products of traces, REDUCE uses the elegant
algorithm of Kahane for contracting indicesymatrix products. These algorithms

are described in Chisholm, J. S. R., Il Nuovo Cimento X, 30, 426 (1963) and
Kahane, J., Journal Math. Phys. 9, 1732 (1968).

It is possible to prevent the trace calculation over any line identifier by the declara-
tion NOSPURFor example,

nospur 11,12;
will mean that no traces are takenpmatrix terms involving the line numbets
andL2. However, in some calculations involving more than one line, a catastrophic
error

This NOSPUR option not implemented

can occur (for the reason stated!) If you encounter this error, please let us know!

A trace of ay matrix expression involving a line identifier which has been declared
NOSPURnay be later taken by making the declarat&PUR

See also the CVIT package for an alternative mechanism (chapter

17.5 Mass Declarations

It is often necessary to put a particle “on the mass shell” in a calculation. This can,
of course, be accomplished withL&T command such as

let p.p= m™2;

but an alternative method is provided by two commadé@sSSandMSHELLMASS
takes a list of equations of the form:

<vector variable> = <scalar variable>
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for example,
mass pl=m, ql=mu;

The only effect of this command is to associate the relevant scalar variable as a
mass with the corresponding vector. If we now say

mshell <vector variable>,...,<vector variable>;
and a mass has been associated with these arguments, a substitution of the form
<vector variable>.<vector variable> = <mass>"2

is set up. An error results if the variable has no preassigned mass.

17.6 Example

We give here as an example of a simple calculation in high energy physics the
computation of the Compton scattering cross-section as given in Bjorken and Drell
Egs. (7.72) through (7.74). We wish to compute the trace of

oﬁ (k:’>2 (’y.pf + m) (’y.e"y.e'y.k:i n ’y.e’y.e”y.kf) (y.pi + m)
2 \ k 2m 2k.p; 2k’ .p; 2m

<fy.ki*y.e'y.e' N y.kf’y.elv.e)
2]{3.}?2‘ Qk,.pi

wherek; andk; are the four-momenta of incoming and outgoing photons (with
polarization vectors ande’ and laboratory energidsandk’ respectively) ang;,
py are incident and final electron four-momenta.

"2 ,
Omitting therefore an overall factgf;% (%) we need to find one quarter of the
trace of

/ /
v.e'v.ev.k;  y.ey.e 'y.k:f> '
(v-ps+m) ( s STy (v-pi +m)
(’y.kw.ey.e’ N 'y.kf’y.e'y.e)
Qk.pi 2k’.pi

A straightforward REDUCE program for this, with appropriate substitutions (using
P1for p;, PFfor ps, Kl for k; andKF for k) is

on div; % this gives output in same form as Bjorken and Drell.
mass ki= 0, kf= 0, pl= m, pf= m; vector e,ep;
% if e is used as a vector, it loses its scalar identity as
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% the base of natural logarithms.

mshell ki kf,p1,pf;

let pl.e= 0, pl.ep= 0, pl.pf= m™2+ki.kf, pl.ki= m*k,pl.kf=
m*kp, pf.e= -kf.e, pf.ep= ki.ep, pf.ki= m*kp, pf.kf=
m*k, ki.e= 0, ki.kf= m*(k-kp), kf.ep= 0, e.e= -1,
ep.ep=-1;

for all p let gp(p)= g(l,p)+m;

comment this is just to save us a lot of writing;

ap(pN*(g(l,ep,e,ki)/(2*ki.pl) + g(l,e,ep,kf)/(2*kf.pl))

* gp(pl)*(g(l,ki,e,ep)/(2*ki.p1l) + g(l,kf,ep,e)/

(2*kf.p1))$

write "The Compton cxn is",ws;

(We useP1 instead oPl in the above to avoid confusion with the reserved variable
PI).
This program will print the following result

(-1) (-1) 2

The Compton cxn is 1/2*K*KP + 1/2*K *KP + 2*E.EP -
1

17.7 Extensions to More Than Four Dimensions

In our discussion so far, we have assumed that we are working in the normal four
dimensions of QED calculations. However, in most cases, the programs will also
work in an arbitrary number of dimensions. The command

vecdim <expression>;
sets the appropriate dimension. The dimension can be symbolic as well as numer-

ical. Users should note however, that tBeSoperator and thes symbol @) are
not properly defined in other than four dimensions and will lead to an error if used.
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Chapter 18

REDUCE and Rlisp Utilities

REDUCE and its associated support language system Rlisp include a number of
utilities which have proved useful for program development over the years. The
following are supported in most of the implementations of REDUCE currently
available.

18.1 The Standard Lisp Compiler

Many versions of REDUCE include a Standard Lisp compiler that is automatically
loaded on demand. You should check your system specific user guide to make sure
you have such a compiler. To make the compiler active, the sWi@klBhould be
turned on. Any further definitions input after this will be compiled automatically. If
the compiler used is a derivative version of the original Griss-Hearn compiler, (M.
L. Griss and A. C. Hearn, “A Portable LISP Compiler’, SOFTWARE — Practice
and Experience 11 (1981) 541-605), there are other switches that might also be
used in this regard. However, these additional switches are not supported in all
compilers. They are as follows:
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PLAP If ON, causes the printing of the portable macros produced by the
compiler;

PGWD If ON, causes the printing of the actual assembly language instruc-
tions generated from the macros;

PWRDS If ON, causes a statistic message of the form
<function> COMPILED, <words> WORDS, <words>
LEFT
to be printed. The first number is the number of words of binary
program space the compiled function took, and the second
number the number of words left unused in binary program space.

18.2 Fast Loading Code Generation Program

In most versions of REDUCE, it is possible to take any set of Lisp, Rlisp or RE-
DUCE commands and build a fast loading version of them. In Rlisp or REDUCE,
one does the following:

faslout <filename>;
<commands or IN statements>
faslend;

To load such a file, one uses the comm&@AD e.g. load foo; or load
foo,bah;

This process produces a fast-loading version of the original file. In some imple-
mentations, this means another file is created with the same name but a different
extension. For example, in PSL-based systems, the extendiofiids binary). In
CSL-based systems, however, this process adds the fast-loading code to a single
file in which all such code is stored. Particular functions are provided by CSL for
managing this file, and described in the CSL user documentation.

In doing this build, as with the production of a Standard Lisp form of such state-
ments, it is important to remember that some of the commands must be instantiated
during the building process. For example, macros must be expanded, and some
property list operations must happen. The REDUCE sources should be consulted
for further details on this.

To avoid excessive printout, input statements should be followed by a $ instead of
the semicolon. With OADhowever, the input doesn’t print out regardless of which
terminator is used with the command.



18.3. THE STANDARD LISP CROSS REFERENCE PROGRAM 201

If you subsequently change the source files used in producing a fast loading file,
don't forget to repeat the above process in order to update the fast loading file
correspondingly. Remember also that the text which is read in during the creation
of the fast load file, in the compiling process described abovetistored in your
REDUCE environment, but only translated and output. If you want to use the file
just created, you must then us®ADto load the output of the fast-loading file
generation program.

When the file to be loaded contains a complete package for a given application,
LOADPACKAGEather tharLOADshould be used. The syntax is the same. How-
ever,LOADPACKAGHoes some additional bookkeeping such as recording that
this package has now been loaded, that is required for the correct operation of the
system.

18.3 The Standard Lisp Cross Reference Program

CREFis a Standard Lisp program for processing a set of Standard LISP function
definitions to produce:

1. A“summary” showing:

(a) Alist of files processed;

(b) A list of “entry points” (functions which are not called or are only
called by themselves);

(c) A list of undefined functions (functions called but not defined in this
set of functions);

(d) Alist of variables that were used non-locally but not declaz&®BAL
or FLUID before their use;

(e) Alist of variables that were declar&.OBALbut not used aBLUIDS,
i.e., bound in a function;

(f) Alist of FLUID variables that were not bound in a function so that one
might consider declaring the@LOBAIs;

(g) Alistof all GLOBALvariables present;
(h) Alist of all FLUID variables present;
(i) Alist of all functions present.

2. A*global variable usage” table, showing for each non-local variable:

(&) Functions in which it is used as a declarddJID or GLOBAL
(b) Functions in which it is used but not declared;
(c) Functions in which itis bound;
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(d) Functions in which itis changed IBETQ
3. A*function usage” table showing for each function:

(@) Where it is defined;

(b) Functions which call this function;
(c) Functions called by it;

(d) Non-local variables used.

The program will also check that functions are called with the correct number of
arguments, and print a diagnostic message otherwise.

The output is alphabetized on the first seven characters of each function name.

18.3.1 Restrictions

Algebraic procedures in REDUCE are treated as if they were symbolic, so that
algebraic constructs will actually appear as calls to symbolic functions, such as
AEVAL

18.3.2 Usage

To invoke the cross reference program, the sw@&EFis used.on cref causes

the cref program to load and the cross-referencing process to begin. After all the
required definitions are loadedff cref  will cause the cross-reference listing

to be produced. For example, if you wish to cross-reference all functions in the
file tst.red , and produce the cross-reference listing in thetBtecrf |, the
following sequence can be used:

out "tst.crf";
on cref;
in "tst.red"$
off cref;
shut "tst.crf";

To process more than one file, moke statements may be added before the call of
off cref ,orthelN statement changed to include a list of files.

18.3.3 Options

Functions with the flagNOLIST will not be examined or output. Initially, all
Standard Lisp functions are so flagged. (In fact, they are kept onNQEIST!* |
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so if you wish to see referencesat functions, therCREFshould be first loaded
with the commandibad cref , and this variable then set MIL ).

It should also be remembered that any macros with the property liSEX&AND

or, if the switchFORCHSs on, without the property list flal OEXPANDwill be
expanded before the definition is seen by the cross-reference program, so this flag
can also be used to select those macros you require expanded and those you do not.

18.4 Prettyprinting Reduce Expressions

REDUCE includes a module for printing REDUCE syntax in a standard format.
This module is activated by the swit€fRET, which is normally off.

Since the system converts algebraic input into an equivalent symbolic form, the
printing program tries to interpret this as an algebraic expression before printing
it. In most cases, this can be done successfully. However, there will be occasional
instances where results are printed in symbolic mode form that bears little resem-
blance to the original input, even though it is formally equivalent.

If you want to prettyprint a whole file, sayff output,msg; and (hopefully)
only clean output will result. Unlik©EFN input is also evaluated witARET on.

18.5 Prettyprinting Standard Lisp S-Expressions

REDUCE includes a module for printing S-expressions in a standard format. The
Standard Lisp function for this purposeRRETTYPRINTwhich takes a Lisp ex-
pression and prints the formatted equivalent.

Users can also have their REDUCE input printed in this form by use of the switch
DEFN This is in fact a convenient way to convert REDUCE (or Rlisp) syntax into
Lisp. off msg; will prevent warning messages from being printed.

NOTE: WhenDEFNis on, input is not evaluated.
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Chapter 19

Maintaining REDUCE

REDUCE continues to evolve both in terms of the number of facilities available,
and the power of the individual facilities. Corrections are made as bugs are discov-
ered, and awkward features simplified. In order to provide users with easy access to
such enhancements REDUCE network librarnhas been established from which
material can be extracted by anyone with electronic mail access to the Internet
computer network.

In addition to miscellaneous documents, source and utility files, the library in-
cludes a bibliography of papers referencing REDUCE which contains over 800
entries. Instructions on using this library are sent to all registered REDUCE users
who provide a network address. If you would like a more complete list of the con-
tents of the library, send teeduce-netlib@rand.orghe single line messagend
indexor help. The current REDUCE information package can be obtained from the
network library by including on a separate lisend info-packagand a demonstra-

tion file by including the linesend demonstratiorif you prefer, hard copies of the
information package and the bibliography are available from the REDUCE secre-
tary at RAND, 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138
(reduce@rand.ory Copies of the network library are also maintained at other ad-
dresses. At the time of writingeduce-netlib@can.rdndreduce-netlib@pi.cc.u-
tokyo.ac.jpmay also be used insteadrefluce-netlib@rand.org

A World Wide Web REDUCE server with URL
http://www.rrz.uni-koeln.de/REDUCE/

is also supported. In addition to general information about REDUCE, this server
has pointers to the network library, the demonstration versions, examples of RE-
DUCE programming, a set of manuals, and the REDUCE online help system.

Finally, there is a REDUCE electronic forum accessible from the same networks.
This enables REDUCE users to raise questions and discuss ideas concerning the
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use and development of REDUCE with other users. Additions and changes to the
network library and new releases of REDUCE are also announced in this forum.
Any user with appropriate electronic mail access is encouraged to register for mem-
bership in this forum. To do so, send a message requesting inclusion to
reduce-forum-request@rand.org



Appendix A

Reserved Identifiers

We list here all identifiers that are normally reserved in REDUCE including names
of commands, operators and switches initially in the system. Excluded are words
that are reserved in specific implementations of the system.

Commands

Boolean Operators

Infix Operators

ALGEBRAIC ANTISYMMETRIC ARRAY BYE CLEAR
CLEARRULES COMMENT CONT DECOMPOSE DEFINE
DEPEND DISPLAY ED EDITDEF END EVEN FACTOR
FOR FORALL FOREACH GO GOTO IF IN INDEX INFIX
INPUT INTEGER KORDER LET LINEAR LISP LIS-
TARGP LOAD LOAPACKAGE MASS MATCH MATRIX
MSHELL NODEPEND NONCOM NONZERO NOSPUR ODD
OFF ON OPERATOR ORDER OUT PAUSE PRECEDENCE
PRINT_PRECISION PROCEDURE QUIT REAL REMFAC
REMIND RETRY RETURN SAVEAS SCALAR SETMOD
SHARE SHOWTIME SHUT SPUR SYMBOLIC SYMMET-
RIC VECDIM VECTOR WEIGHT WRITE WTLEVEL

EVENP FIXP FREEOF NUMBERP ORDP PRIMEP

==>=><=<=>+*/"* WHERE SETQ OR AND
MEMBER MEMQ EQUAL NEQ EQ GEQ GREATERP LEQ
LESSP PLUS DIFFERENCE MINUS TIMES QUOTIENT
EXPT CONS

Numerical Operators ABS ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC

ASECH ASIN ASINH ATAN ATANH ATAN2 COS COSH
COT COTH CSC CSCH EXP FACTORIAL FIX FLOOR
HYPOT LN LOG LOGB LOG10 NEXTPRIME ROUND SEC
SECH SIN SINH SQRT TAN TANH
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Prefix Operators

Reserved Variables

Switches

Other Reserved Ids

APPENDIX A. RESERVED IDENTIFIERS

APPEND ARGLENGTH CEILING COEFF COEFFN CO-
FACTOR CONJ DEG DEN DET DF DILOG EI EPS ERF
FACTORIZE FIRST GCD G IMPART INT INTERPOL
LCM LCOF LENGTH LHS LINELENGTH LTERM MAIN-
VAR MAT MATEIGEN MAX MIN MKID NULLSPACE NUM
PART PF PRECISION RANDOM RANDNBWSEED
RANK REDERR REDUCT REMAINDER REPART REST
RESULTANT REVERSE RHS SECOND SET SHOWRULES
SIGN SOLVE STRUCTR SUB SUM THIRD TP TRACE
VARNAME

CARDNO E EVALMODE FORWIDTH
HIGH.POW | INFINITY KI* LOW _POW NIL
PI ROOTMULTIPLICITY T

ADJPREC ALGINT ALLBRANCH ALLFAC BFSPACE
COMBINEEXPT COMBINELOGS COMP COMPLEX
CRAMER CREF DEFN DEMO DIV ECHO ERRCONT
EVALLHSEQP EXP EXPANDLOGS EZGCD FACTOR
FORT FULLROOTS GCD IFACTOR INT INTSTR LCM
LIST LISTARGS MCD MODULAR MSG MULTIPLICI-
TIES NAT NERO NOSPLIT OUTPUT PERIOD PRECISE
PRET PRI RAT RATARG RATIONAL RATIONALIZE
RATPRI REVPRI RLISP88 ROUNDALL ROUNDBF
ROUNDED SAVESTRUCTR SOLVESINGULAR TIME
TRA TRFAC TRIGFORM TRINT

BEGIN DO EXPR FEXPR INPUT LAMBDA LISP MACRO
PRODUCT REPEAT SMACRO SUM UNTIL WHEN WHILE
WS
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(CONS) , 34
3j and 6] symbols, 173

ABS 53

ACOS$57, 60
ACOSH57, 60
ACOT57, 60
ACOTHS57, 60
ACS(C57, 60
ACSCH57, 60
ADJPREC117
Airy functions, 173
Airy _Ai, 173
Airy _Aiprime
Airy Bi, 173
Airy _Biprime ,173
ALGEBRAIG 179

Algebraic mode, 179, 184, 185
ALGINT, 159, 160
ALLBRANCH72

ALLFAC, 87, 90
ANTISYMMETRIC78
APPEND34

APPLYSYM160

ARBVARS72

ARGLENGTHLO1

ARNUM160

ARRAY 49

ASEC 57, 60

ASECH57, 60

ASIN, 57, 60

ASINH, 57, 60

Assignment, 38, 41, 45, 182, 185
ASSIST, 160

assumptions , 74

Asymptotic command, 123, 136

, 173
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ATAN 57, 60, 63
ATANZ 57, 60
ATANH 57, 60
AVECTOR161

BALANCEDMOD118
BEGIN ...END , 44-46
Bernoulli 173
Bernoulli numbers, 173
Bessel functions, 173
Bessell ,173

Besseld , 173

BesselK , 173

BesselY , 173

Beta , 173

Beta function, 173
Bezout , 109
BFSPACE117

Binomial , 173
Binomial coefficients, 173
Block, 44, 46
BOOLEAN161
Boolean, 29
BOUNDS169
BYE 51

CALI, 161

Call by value, 152, 155
CAMAL.161

Canonical form, 83
CARDNQ 93

CEILING, 54
CHANGEVRL62
Character set, 19
Chebyshev fit, 169

Chebyshev polynomials, 173
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ChebyshevT , 173
ChebyshevU , 173
CLEAR 126, 129
CLEARRULES130
Clebsch Gordan coefficients, 173
Clebsch _Gordan, 173
COEFE 99

Coefficient, 116, 118
COEFFN100
COFACTORLI47
COLLECT40
COMBINEEXP;159
COMBINELOGS9
Command, 49

Command terminator, 137
COMMENTD3

COMP199

COMPACT1I62

Compiler, 199
COMPLEX119

Complex coefficient, 118
Compound statement, 43, 45
Conditional statement, 39, 40
CONJ 54

Constructor, 185

CONT 141

C0S57,60

COSH57, 60

COT 57, 60

COTH57, 60

CRACK162

CRAMERBS, 145

CREF 201, 202

Cross reference, 201
CS(C 57,60

CSCH57, 60

CVIT, 163

Declaration, 49
DECOMPOSEI10
DEFINE, 51, 52
DEFINT, 163
DEFN 184, 203
DEG 112

INDEX

Degree, 112

DEMO50

DEN 103, 112
DEPENDS8O0
depend, 75

DESIR, 163

DET, 83, 145

DF, 61, 62

DFPART 163
Differentiation, 61, 62, 80
Digamma, 173
Digamma function, 173
DILOG, 57, 63

Dilog ,173
Dilogarithm function, 173
Diracy matrix, 192
DISPLAY, 140

Display, 83

Displaying structure, 96
DIV, 88, 116

DQ 40-42

Dollar sign, 37

Dot product, 191
DUMMY164

E, 22

ECHQ137

ED 139, 140
EDITDEF, 141

Ei, 57

EllipticE , 173
ElliptickF , 173
EllipticTheta , 173
END 51

EPS 193

Equation, 30, 31

ERF, 63
ERRCONTL39

Euler , 173

Euler numbers, 173
Euler polynomials, 173
EulerP , 173
EVALMODEL79
EVALLHSEQP31
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EVEN 76

Even operator, 76
EVENR 29

EXCALC 164
Exclamation mark, 19
EXP, 57, 60, 63, 104, 107
EXPANDCASES 69
EXPANDLOGS9
EXPR 183
Expression, 27
EZGCD107

FACTORS87, 104, 105
FACTORIAL 54, 156
Factorization, 104
FACTORIZE 105
Fast loading of code, 200
FEXPR 184

FIDE, 164

File handling, 137
FIRST, 34

FIX , 54

FIXP, 29

FLOORS55

FOR 47

FOR ALL 124,125
FOR EACH41, 42, 183
FORT 93
FORTWIDTH 95
FORTRAN, 93, 95
FORTUPPER95

FPS, 164

FREEOF-29
FULLROOTS70
Function, 157

G 192

Gammal73

Gamma function, 173

GCD107

Gegenbauer polynomials, 173

GegenbauerP , 173

Generalized Hypergeometric funct-
ions, 174
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GENTRANL65
GNUPLOJ165

GO T0O45
GROEBNER65
Groebner, 68

Group statement, 39, 43

Hankel functions, 173

Hankell , 173

Hankel2 , 173

Hermite polynomials, 173

HermiteP , 173

High energy trace, 195

High energy vector expression, 191,
194

HIGH.POW100

History, 139

HYPOT57, 60

1,22

IDEALS, 166

Identifier, 21

IF, 39

IFACTOR 105

IMPART, 54-56

IN, 137

Indefinite integration, 62

INDEX, 192

INEQ, 166

INFINITY |, 22

INFIX , 79

Infix operator, 24—26

INPUT, 140

Input, 137

Instant evaluation, 50, 102, 124, 144,
146

INT, 62, 141

INTEGER 44

Integer, 28

Integration, 62, 77

Interactive use, 139, 141

INTERPOL 111

Introduction, 15

INTSTR, 84
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INVBASE, 166

Jacobi Elliptic Functions and Inte-
grals, 173

Jacobi’s polynomials, 173

Jacobiamplitude , 173

Jacobicn , 173

Jacobidn , 173

JacobiP , 173

Jacobisn |, 173

JacobiZeta ,173

JOIN, 40

Kernel, 83, 87, 99
kernel form, 84
KORDER99

Kummer functions, 173
KummerM 173
Kummery 173

Label, 45

Laguerre polynomials, 173

LaguerreP , 173

LAMBDA181

Lambert’'s W, 68

LAPLACE 166

LCM 108

LCOF 112

Leading coefficient, 113

Legendre polynomials, 153, 173

LegendreP , 173

LENGTHS33, 50, 64, 103, 105, 145

LET, 59, 61, 73, 78-80, 122, 130,
155, 156

LHS, 31

LIE , 166

LIMITS , 167

LINALG, 167

LINEAR, 77

Linear operator, 77, 80

LINELENGTH 86

LISP, 179

Lisp, 179

LIST, 88

List, 33

INDEX

list ,67

List operation, 33, 35
LISTARGP, 35
LISTARGS, 35

LN, 57, 60

LOAD 200
LOADPACKAGE159, 201
LOG 57, 60, 63
LOG1Q 57, 60
LOGB57, 60

Lommel functions, 173
Lommell, 173
Lommel2, 173
Loop, 40, 41
LOWPOW100
LPOWERL14

LTERM 114, 189

MACRQ183

MAINVAR 114

MAR 64

map, 67

MASS$194, 195

MAT 143, 144
MATCH129

MATEIGEN 146
Mathematical function, 57
MATRIX 144

Matrix assignment, 149
Matrix calculations, 143
MAX 55

MCD106, 108

Meijer’s G function, 174
MIN, 55

Minimum, 169

MKID, 65

Mode, 50

Mode communication, 184
MODSR167
MODULARL18

Modular coefficient, 118
MSG203

MSHELL.195

Multiple assignment statement, 38
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MULTIPLICITIES , 69

NAT, 96

NCPOLY168
NERQ93

Newton’s method, 169
NEXTPRIME55
NOCONVERT17
NODEPENB0
Non-commuting operator, 78
NONCOMS8
NONZER(O/6
NORMFORI68
NOSPLIT, 88
NOSPUR195
NULLSPACE148
NUM115

NUMINT , 169
NUMMIN, 169
NUMODESOLVEL69
NUMSOLVE 169
Number, 19, 20
NUMBERRP29
Numerical operator, 53
Numerical precision, 22

OoDD76

Odd operator, 76
ODESOLVEL69

OFF, 50, 51

ON 50, 51

ONEOF 69

OPERATORL88

Operator, 24, 26

Operator precedence, 25, 26
ORDERS6, 99

ORDPR29, 78

Orthogonal polynomials, 173
ORTHOVEQ70

OuUT 137,138

OUTPUT85

Output, 91, 95

Output declaration, 86

PART, 33, 98, 100

PAUSE 141

Percent sign, 23

PERIOD 95

PF, 66

PHYSOP170

PI, 22

PLOT, 165

PM 170

Pochhammer, 173
Pochhammer’s symbol, 173
Polygamma, 173
Polygamma functions, 173
Polynomial, 103
Polynomial equations, 165
PRECEDENCE9
PRECISE, 60
PRECISION, 116

Prefix, 53, 79, 80

Prefix operator, 24, 25
PRET, 203
PRETTYPRINT 203
Prettyprinting, 203

PRI, 86

PRIMEP, 29
PRINT_PRECISION, 117
PROCEDURHE51
Procedure body, 153, 155
Procedure heading, 152
PRODUCHO, 41
Program, 23

Program structure, 19
Proper statement, 31, 37
PS, 175

PSEUDIVIDE , 109
PSEUDCREMAINDER109
Psi, 173

Psi function, 173

Quadrature, 169
QUIT, 51
QUOTE181

RANDOM6
RANDONNEWSEED 56
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RANDPOLY171 SAVEAS 85

RANK 149 SAVESTRUCTS8

RAT, 89 Saving an expression, 96
RATARG100, 111 SCALAR44

RATIONAL 116 Scalar, 27

Rational coefficient, 116 SCIENTIFIC _NOTATION 20
Rational function, 103 SCOPE172
RATIONALIZE, 119 SEC 57, 60

RATPRI, 90 SECH57, 60
REACTEQNL71 SECOND34

REAL 44 SELECT 67

Real, 20, 21 Selector, 185

Real coefficient, 116 Semicolon, 37
REDERR155 SET, 38, 65
REDUCT115 SETMOD118
REMAINDER108 SETS 173
REMEMBERS57 SHARE 184
REMFAC87 SHOWRULE334
REMIND 192 SHOWTIMBE1
REPART54-56 SHUT 137, 138
REPEAT 43-45, 47 Side effect, 31
requirements , 73 SIGN, 57

Reserved variable, 22 Simplification, 28, 83
RESET 171 SIN, 57, 60

RESIDUE 171 SINH, 57, 60

REST, 34 SixjSymbol , 173
RESULTANT109 SMACRQ184

RETRY 139 SolidHarmonicY , 173
RETURN44-46 SOLVE 67, 68, 72, 165
REVERSE35 SOLVESINGULAR72
REVPRI, 90 SPDE 173

RHS 31 SPECFN59, 173

RLFI, 171 SPECFN2174

Rlisp, 199 Spherical and Solid Harmonics, 173
RLISP88, 190 SphericalHarmonicY , 173
ROOTOF 68, 69 SPUR 195

ROOTS172 SQRT57, 60

ROUND57 Standard form, 185
ROUNDALJ117 Standard quotient, 185
ROUNDBFL17 Statement, 37
ROUNDE®2, 28, 60, 93, 116 Stirling numbers, 173
RSOLVE172 Stirlingl , 173

Rule lists, 129 Stirling2 , 173

String, 23
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STRUCTR96, 98
Structuring, 83
Struve functions, 173
StruveH , 173
StruveL , 173
SUR 31, 121
Substitution, 121
SUCH THAT125
SUM40, 41, 175
Switch, 50, 51
SYMBOLIGC 179

Symbolic mode, 179, 180, 184, 185

Symbolic procedure, 183
SYMMETRIC78
SYMMETRW75

T, 22

TAN 57, 60, 63
TANH 57, 60
TAYLOR175
Terminator, 37
THIRD, 34
ThreejSymbol , 173
TIME, 50

TP, 147

TPS, 175

TRA 160

TRACE 147
TRFAG 106

TRI, 176
TRIGFORM70
TRIGSIMP, 58, 176
TRINT, 160

UNTIL, 40
User packages, 159

Variable, 22

Variable elimination, 165
VARNAMBE6

varopt , 75

VECDIM 197
VECTOR193

WEIGHT 136

215

WHEN130
WHEREL131

WHILE, 42, 44, 45, 47
Whittaker functions, 173
WhittakerM , 173
Whittakerw , 173
Workspace, 84
WRITE 91

WS 17, 140
WTLEVEI_136
Wy176

XCOLOR176
XIDEAL, 177

ZEILBERG, 177

Zeta , 173

Zeta function (Riemann’s), 173
ZTRANS 177



