Redlog User Manual

A REDUCE Logic Package
Edition 3.0, for REDLOG Version 3.0 (REDUCE 3.8)
15 April 2004

by A. Dolzmann, A. Seidl, and T. Sturm

Copyright (©) 1995-2004 by A. Dolzmann, A. Seidl, and T. Sturm.

Acknowledgments

We acknowledge with pleasure the superb support by Herbert Melenk
and Winfried Neun of the Konrad-Zuse-Zentrum fuer Informationstechnik
Berlin, Germany, during this project. Furthermore, we wish to mention
numerous valuable mathematical ideas contributed by Volker Weispfenning,
University of Passau, Germany.

Redlog Home Page

There is a REDLOG home page maintained at
http://www.fmi.uni-passau.de/ redlog/.

It contains information on REDLOG, online versions of publications, and
a collection of examples that can be computed with REDLOG. This site will
also be used for providing update versions of REDLOG.

Support

For mathematical and technical support, contact
redlog@fmi.uni-passau.de.

Bug Reports and Comments

Send bug reports and comments to
redlog@fmi.uni-passau.de.
Any hint or suggestion is welcome. In particular, we are interested in
practical problems to the solution of which REDLOG has contributed.

Chapter 1: Introduction 2

1 Introduction

REDLOG stands for REDUCE logic system. It provides an extension of the
computer algebra system REDUCE to a computer logic system implementing
symbolic algorithms on first-order formulas wrt. temporarily fixed first-order
languages and theories.

This document serves as a user guide describing the usage of REDLOG
from the algebraic mode of REDUCE. For a detailed description of the system
design see [DS97a).

An overview on some of the application areas of REDLOG is given in
[DSW98]. See also Chapter 7 [References], page 37 for articles on REDLOG
applications.

1.1 Contexts

REDLOG is designed for working with several languages and theories in
the sense of first-order logic. Both a language and a theory make up a
context. In addition, a context determines the internal representation of
terms. There are the following contexts available:

OFSF OF stands for ordered fields, which is a little imprecise. The
quantifier elimination actually requires the more restricted class
of real closed fields, while most of the tool-like algorithms are
generally correct for ordered fields. One usually has in mind
real numbers with ordering when using OFSF.

DVFSF Discretely valued fields. This is for computing with formulas over
classes of p-adic valued extension fields of the rationals, usually
the fields of p-adic numbers for some prime p.

ACFSF Algebraically closed fields such as the complex numbers.

PASF Presssburger Arithmetic, i.e., the linear theory of integers with
congruences modulo m for m > 2 .

IBALP Initial Boolean algebras, basically quantified propositional logic.

DCFSF Differentially closed fields according to Robinson. There is no
natural example. The quantifier elimination is an optimized
version of the procedure by Seidenber (1956).

The trailing "-SF" stands for standard form, which is the representation
chosen for the terms within the implementation. Accordingly, "-LP" stands
for Lisp prefir. See Section 2.2 [Context Selection], page 5, for details on
selecting REDLOG contexts.

Chapter 1: Introduction 3

1.2 Overview

REDLOG origins from the implementation of quantifier elimination proce-
dures. Successfully applying such methods to both academic and real-world
problems, the authors have developed over the time a large set of formula-
manipulating tools, many of which are meanwhile interesting in their own
right:

e Numerous tools for comfortably inputing, decomposing, and analyzing
formulas. This includes, for instance, the construction of systematic
formulas via for-loops, and the extension of built-in commands such as
sub or part. See Chapter 3 [Format and Handling of Formulas], page 7.

e Several techniques for the simplification of formulas. The simplifiers
do not only operate on the boolean structure of the formulas but also
discover algebraic relationships. For this purpose, we make use of ad-
vanced algebraic concepts such as Groebner basis computations. For the
notion of simplification and a detailed description of the implemented
techniques for the contexts OFSF and ACFSF see [DS97|. For the DVFSF
context see [DS99]. See Chapter 4 [Simplification], page 15.

e Various normal form computations. The CNF /DNF computation includes
both boolean and algebraic simplification strategies [DS97]. The prenex
normal form computation minimizes the number of quantifier changes.
See Chapter 5 [Normal Forms], page 27.

o Quantifier elimination computes quantifier-free equivalents for given
first-order formulas.

For OFSF and DVFSF we use a technique based on elimination set ideas
[Wei88]. The OFSF implementation is restricted to at most quadratic
occurrences of the quantified variables, but includes numerous heuristic
strategies for coping with higher degrees. See [LW93], [Wei97] for details
on the method. The DVFSF implementation is restricted to formulas that
are linear in the quantified variables. The method is described in detail
in [Stu00].

The ACFSF quantifier elimination is based on comprehensive Groebner
basis computation. There are no degree restrictions for this context
[Wei92]. See Section 6.1 [Quantifier Elimination|, page 29.

e The contexts OFSF and ACFSF allow a variant of quantifier elimination
called generic quantifier elimination [DSW98]. There are certain non-
degeneracy assumptions made on the parameters, which considerably
speeds up the elimination.

For geometric theorem proving it has turned out that these assump-
tions correspond to reasonable geometric non-degeneracy conditions
[DSW98]. Generic quantifier elimination has turned out useful also
for physical applications such as network analysis [Stu97]. There is
no generic quantifier elimination available for DVFSF. See Section 6.2
[Generic Quantifier Elimination], page 34.

Chapter 1: Introduction 4

e The contexts OFSF and DVFSF provide variants of (generic) quantifier
elimination that additionally compute answers such as satisfying sample
points for existentially quantified formulas. This has been referred to as
the "extended quantifier elimination problem" [Wei97a]. See Section 6.1
[Quantifier Elimination], page 29.

e OFSF includes linear optimization techniques based on quantifier elimi-
nation [Wei94a|. See Section 6.4 [Linear Optimization|, page 35.

1.3 Conventions

To avoid ambiguities with other packages, all REDLOG functions and
switches are prefixed by "rl". The remaining part of the name is ex-
plained by the first sentence of the documentation of the single functions
and switches.

Some of the numerous switches of REDLOG have been introduced only for
finding the right fine tuning of the functions, or for internal experiments.
They should not be changed anymore, except for in very special situations.
For an easier orientation the switches are divided into three categories for
documentation:

Switch This is an ordinary switch, which usually selects strategies ap-
propriate for a particular input, or determines the required
trade-off between computation-speed and quality of the result.

Advanced Switch
They are used like ordinary switches. You need, however, a good
knowledge about the underlying algorithms for making use of it.

Fix Switch
You do not want to change it.

Chapter 2: Loading and Context Selection 5

2 Loading and Context Selection

2.1 Loading Redlog

At the beginning of each session REDLOG has to be loaded explicitly.
This is done by inputing the command load_package redlog; from within
a REDUCE session.

2.2 Context Selection

Fixing a context reflects the mathematical fact that first-order formulas
are defined over fixed languages specifying, e.g., valid function symbols and
relation symbols (predicates). After selecting a language, fixing a theory
such as "the theory of ordered fields", allows to assign a semantics to the
formulas. Both language and theory make up a REDLOG context. In addition,
a context determines the internal representation of terms.

As first-order formulas are not defined unless the language is known, and
meaningless unless the theory is known, it is impossible to enter a first-order
formula into REDLOG without specifying a context:

REDUCE 3.6, 15-Jul-95, patched to 30 Aug 98 ...
1: load_package redlog;
2: £ := a=0 and b=0;

**x*x*x*x select a context

See Section 1.1 [Contexts], page 2, for a summary of the available contexts
OFSF, DVFSF, and ACFSF. A context can be selected by the rlset command:

rlset [context [arguments...]] Function

rlset argument-list Function
Set current context. Valid choices for context are OFSF (ordered fields
standard form), DVFSF (discretely valued fields standard form), ACFSF
(algebraically closed fields standard form), PASF (Presburger arithmetic
standard form), IBALP (initial Boolean algebra Lisp prefix), and DCFSF
. With OFSF, ACFSF, PASF, IBALP, and DCFSF there are no further ar-
guments. With DVFSF an optional dvf_class_specification can be passed,
which defaults to 0. rlset returns the old setting as a list that can be
saved to be passed to rlset later. When called with no arguments (or
the empty list), rlset returns the current setting.

dvf_class_specification Data Structure
Zero, or a possibly negative prime gq.

Chapter 2: Loading and Context Selection 6

For ¢ = 0 all computations are uniformly correct for all p-adic valuations.

Both input and output then possibly involve a symbolic constant "p”,
which is being reserved.

For positive ¢, all computations take place wrt. the corresponding g-adic

valuation.
b

For negative ¢, the ”—" can be read as “up to”, i.e., all computations are
performed in such a way that they are correct for all p-adic valuations
with p < |q¢|. In this case, the knowledge of an upper bound for p supports
the quantifier elimination rlge/rlqgea [Stu00]. See Section 6.1 [Quantifier
Elimination], page 29.

The user will probably have a "favorite" context reflecting their particular
field of interest. To save the explicit declaration of the context with each
session, REDLOG provides a global variable rldeflang, which contains a
default context. This variable can be set already before loading ‘redlog’.
This is typically done within the ‘.reducerc’ profile:

lisp (rldeflang!* := ’(ofsf));
Notice that the Lisp list representation has to be used here.

rldeflang!* Fluid
Default language. This can be bound to a default context before loading
‘redlog’. More precisely, rldeflang!* contains the arguments of rlset
as a Lisp list. If rldeflang!* is non-nil, rlset is automatically executed
on rldeflang!* when loading ‘redlog’.

In addition, REDLOG evaluates an environment variable RLDEFLANG. This
allows to fix a default context within the shell already before starting RE-
DUCE. The syntax for setting environment variables depends on the shell.
For instance, in the GNU Bash or in the csh shell one would say export
RLDEFLANG=ofsf or setenv RLDEFLANG ofsf, respectively.

RLDEFLANG Environment Variable
Default language. This may be bound to a context in the sense of the
first argument of rlset. With RLDEFLANG set, any rldeflang!* binding
is overloaded.

Chapter 3: Format and Handling of Formulas 7

3 Format and Handling of Formulas

After loading REDLOG and selecting a context (see Chapter 2 [Loading
and Context Selection], page 5), there are first-order formulas available as an
additional type of symbolic expressions. That is, formulas are now subject
to symbolic manipulation in the same way as, say, polynomials or matrices
in conventional systems. There is nothing changed in the behavior of the
builtin facilities and of other packages.

3.1 First-order Operators

Though the operators and, or, and not are already sufficient for rep-
resenting boolean formulas, REDLOG provides a variety of other boolean
operators for the convenient mnemonic input of boolean formulas.

not Unary Operator
and n-ary Infix Operator
or n-ary Infix Operator
impl Binary Infix Operator
repl Binary Infix Operator
equiv Binary Infix Operator

The infix operator precedence is from strongest to weakest: and, or, impl,
repl, equiv.

See Section 3.9 [Extended Built-in Commands], page 11, for the descrip-
tion of extended for-loop actions that allow to comfortably input large sys-
tematic conjunctions and disjunctions.

REDUCE expects the user to know about the precedence of and over or. In
analogy to + and *, there are thus no parentheses output around conjunctions
within disjunctions. The following switch causes such subformulas to be
bracketed anyway. See Section 1.3 [Conventions], page 4, for the notion of a
"fix switch".

rlbrop Fix Switch
Bracket all operators. By default this switch is on, which causes some
private printing routines to be called for formulas: All subformulas are
bracketed completely making the output more readable.

Besides the boolean operators introduced above, first-order logic includes
the well-known existential quantifiers and universal quantifiers 3" and ”V”.

ex Binary Operator
all Binary Operator
These are the quantifiers. The first argument is the quantified variable,
the second one is the matrix formula. Optionally, one can input a list
of variables as first argument. This list is expanded into several nested
quantifiers.

Chapter 3: Format and Handling of Formulas 8

See Section 3.2 [Closures|, page 8, for automatically quantifying all vari-
ables except for an exclusion list.

For convenience, we also have boolean constants for the truth values.

true Variable
false Variable
These algebraic mode variables are reserved. They serve as truth values.

3.2 Closures

rlall formula [exceptionlist] Function
Universal closure. exceptionlist is a list of variables empty by default.
Returns formula with all free variables universally quantified, except for
those in exceptionlist.

rlex formula [exceptionlist] Function
Existential closure. exceptionlist is a list of variables empty by default.
Returns formula with all free variables existentially quantified, except for
those in exceptionlist.

3.3 OFSF Operators

The OFSF context implements ordered fields over the language of ordered
rings. Proceeding this way is very common in model theory since one wishes
to avoid functions which are only partially defined, such as division in the
language of ordered fields. Note that the OFSF quantifier elimination pro-
cedures (see Chapter 6 [Quantifier Elimination and Variants|, page 29) for
non-linear formulas actually operate over real closed fields. See Section 1.1
[Contexts|, page 2 and Section 2.2 [Context Selection], page 5 for details on
contexts.

equal Binary Infix operator
neq Binary Infix operator
leq Binary Infix operator
geq Binary Infix operator
lessp Binary Infix operator
greaterp Binary Infix operator

The above operators may also be written as =, <>, <= >= < and >,
respectively. For OFSF there is specified that all right hand sides must
be zero. Non-zero right hand sides in the input are hence subtracted
immediately to the corresponding left hand sides. There is a facility to
input chains of the above relations, which are also expanded immediately:

a<>b<c>d=f
= a-b <> 0 and b-c < 0 and c-d > 0 and d-f = 0
Here, only adjacent terms are related to each other.

Chapter 3: Format and Handling of Formulas 9

Though we use the language of ordered rings, the input of integer re-
ciprocals is allowed and treated correctly interpreting them as constants for
rational numbers. There are two switches that allow to input arbitrary re-
ciprocals, which are then resolved into proper formulas in various reasonable
ways. The user is welcome to experiment with switches like the following,
which are not marked as fiz switches. See Section 1.3 [Conventions], page 4,
for the classification of REDLOG switches.

rlnzden Switch
rlposden Switch
Non-zero/positive denominators. Both switches are off by default. If both
rlnzden and rlposden are on, the latter is active. Activating one of them,
allows the input of reciprocal terms. With rlnzden on, these terms are
assumed to be non-zero, and resolved by multiplication. When occurring
with ordering relations the reciprocals are resolved by multiplication with
their square preserving the sign.
(a/b)+c=0 and (a/d)+c>0;
2
= a + b*xc = 0 and axd + cxd > O
Turning rlposden on, guarantees the reciprocals to be strictly positive
which allows simple, i.e. non-square, multiplication also with ordering
relations.

(a/b)+c=0 and (a/d)+c>0;
= a + bxc =0 and a + cxd > 0

The non-zeroness or positivity assumptions made by using the above
switches can be stored in a variable, and then later be passed as a theory (see
Section 4.1 [Standard Simplifier], page 15) to certain REDLOG procedures.
Optionally, the system can be forced to add them to the formula at the input
stage:

rladdcond Switch
Add condition. This is off by default. With rladdcond on, non-
zeroness and positivity assumptions made due to the switches rlnzden
and rlposden are added to the formula at the input stage. With
rladdcond and rlposden on we get for instance:
(a/b)+c=0 and (a/d)+c>0;
= (b <> 0 and a + b*c = 0) and (d > 0 and a + c*d > 0)

3.4 DVFSF Operators

Discretely valued fields are implemented as a one-sorted language using
the operators |, |1, ~, and /~, which encode <, <, =, and # in the value
group, respectively. For details see [Wei88], [Stu00], or [DS99].

Chapter 3: Format and Handling of Formulas 10

equal Binary Infix operator
neq Binary Infix operator
div Binary Infix operator
sdiv Binary Infix operator
assoc Binary Infix operator
nassoc Binary Infix operator
The above operators may also be written as =, <>, |, ||, 7, and /7,

respectively. Integer reciprocals in the input are resolved correctly. DVFSF
allows the input of chains in analogy to OFSF. See Section 3.3 [OFSF
Operators|, page 8, for details.

With the DVFSF operators there is no treatment of parametric denomi-
nators available.

3.5 ACFSF Operators

equal Binary Infix operator

neq Binary Infix operator
The above operators may also be written as =, <>. As for OFSF, it is
specified that all right hand sides must be zero. In analogy to OFSF,
ACFSF allows also the input of chains and an appropriate treatment of
parametric denominators in the input. See Section 3.3 [OFSF Operators],
page 8, for details.

Note that the switch rlposden (see Section 3.3 [OFSF Operators|, page 8)
makes no sense for algebraically closed fields.

3.6 PASF Operators

equal Binary Infix operator
neq Binary Infix operator
leq Binary Infix operator
geq Binary Infix operator
lessp Binary Infix operator
greaterp Binary Infix operator

The above operators may also be written as =, <>, <=, >= <, and >,
respectively.

cong Ternary Prefix operator
ncong Ternary Prefix operator
The operators cong and ncong represent congruences with nonparametric
modulus.
As for OFSF, it is specified that all right hand sides must be zero. In
analogy to OFSF, PASF allows also the input of chains See Section 3.3
[OFSF Operators|, page 8, for details.

Chapter 3: Format and Handling of Formulas 11

3.7 IBALP Operators

bnot Unary operator
band n-ary Infix operator
bor n-ary Infix operator
bimpl Binary Infix operator
brepl Binary Infix operator
bequiv Binary Infix operator

The operator bnot may also be written as The operators band and
bor may also be written as & and |, resp. The operators bimpl, brepl,
and bequiv may be written as —>, <-, and <->, resp.

equal Binary Infix operator
The operator equal may also be written as =.

3.8 DCFSF Operators

d Binary Infix operator
The operator d denotes (higher) derivatives in the sense of differential
algebra. For instance, the differential equation

2 +x=0
is input as x d 1 ** 2 + x = 0. d binds stronger than all other operators.

equal Binary Infix operator
neq Binary Infix operator
The operator equal may also be written as =. The operator neq may also
be written as <>.

3.9 Extended Built-in Commands

Systematic conjunctions and disjunctions can be constructed in the alge-

braic mode in analogy to, e.g., for ... sum ...:
mkand for loop action
mkor for loop action

Make and/or. Actions for the construction of large systematic conjunc-
tions/disjunctions via for loops.
for i:=1:3 mkand
for j:=1:3 mkor
if j<>i then mkid(x,i)+mkid(x,j)=0;
= true and (false or false or x1 + x2 =0

Chapter 3: Format and Handling of Formulas 12

or x1 + x3 = 0)
and (false or x1 + x2 = 0 or false
or x2 + x3 = 0)
and (false or x1 + x3 = 0 or x2 + x3 = 0

or false)

Here the truth values come into existence due to the internal implementa-
tion of for-loops. They are always neutral in their context, and can be easily
removed via simplification (see Section 4.1 [Standard Simplifier], page 15, see
Section 3.10 [Global Switches], page 12).

The REDUCE substitution command sub can be applied to formulas using
the usual syntax.

substitution_list Data Structure
substitution_list is a list of equations each with a kernel left hand side.

sub substitution_list formula Function
Substitute. Returns the formula obtained from formula by applying the
substitutions given by substitution_list.

sub(a=x,ex(x,x-a<0 and all(x,x-b>0 or ex(a,a-b<0))));
= ex x0 (- x + x0 < 0 and all x0 (
-b+x0>0o0rexa (a-b<0)))

sub works in such a way that equivalent formulas remain equivalent after
substitution. In particular, quantifiers are treated correctly.

part formula nl [n2 [n3...]] Function
Extract a part. The part of formula is implemented analogously to that
for built-in types: in particular the Oth part is the operator.

Compare rlmatrix (see Section 3.11 [Basic Functions on Formulas],
page 13) for extracting the matriz part of a formula, i.e., removing all initial
quantifiers.

length formula Function
Length of formula. This is the number of arguments to the top-level
operator. The length is of particular interest with the n-ary operators
and and or. Notice that part (formula,length(formula)) is the part of
largest index.

3.10 Global Switches

There are three global switches that do not belong to certain procedures,
but control the general behavior of REDLOG.

Chapter 3: Format and Handling of Formulas 13

rlsimpl Switch
Simplify. By default this switch is off. With this switch on, the function
rlsimpl is applied at the expression evaluation stage. See Section 4.1
[Standard Simplifier], page 15.

Automatically performing formula simplification at the evaluation stage
is very similar to the treatment of polynomials or rational functions, which
are converted to some normal form. For formulas, however, the simplified
equivalent is by no means canonical.

rlrealtime Switch
Real time. By default this switch is off. If on it protocols the wall clock
time needed for REDLOG commands in seconds. In contrast to the built-in
time switch, the time is printed above the result.

rlverbose Advanced Switch
Verbose. By default this switch is off. It toggles verbosity output with
some REDLOG procedures. The verbosity output itself is not documented.

3.11 Basic Functions on Formulas

rlatnum formula Function
Number of atomic formulas. Returns the number of atomic formulas
contained in formula. Mind that truth values are not considered atomic
formulas.

multiplicity _list Data Structure
A list of 2-element-lists containing an object and the number of its oc-
currences. Names of functions returning multiplicity_lists typically end
on "ml".

rlat]l formula Function
List of atomic formulas. Returns the set of atomic formulas contained in
formula as a list.

rlatml formula Function
Multiplicity list of atomic formulas. Returns the atomic formulas con-
tained in formula in a multiplicity_list.

rlifacl formula Function
List of irreducible factors. Returns the set of all irreducible factors of the
nonzero terms occurring in formula.
rlifacl (x**2-1=0) ;
= {x + 1,x - 1}

Chapter 3: Format and Handling of Formulas 14

rlifacml formula Function
Multiplicity list of irreducible factors. Returns the set of all irreducible
factors of the nonzero terms occurring in formula in a multiplicity_list.

rlterml formula Function
List of terms. Returns the set of all nonzero terms occurring in formula.

rltermml formula Function
Multiplicity list of terms. Returns the set of all nonzero terms occurring
in formula in a multiplicity_list.

rlvarl formula Function
Variable lists. Returns both the list of variables occurring freely and that
of the variables occurring boundly in formula in a two-element list. Notice
that the two member lists are not necessarily disjoint.

rifvarl formula Function
Free variable list. Returns the variables occurring freely in formula as a
list.

rlbvarl formula Function
Bound variable list. Returns the variables occurring boundly in formula
as a list.

rlstruct formula [kernel] Function
Structure of a formula. kernel is v by default. Returns a list {f,s1}.
f is constructed from formula by replacing each occurrence of a term
with a kernel constructed by concatenating a number to kernel. The
substitution_list s1 contains all substitutions to obtain formula from f.

rlstruct (x*xy=0 and (x=0 or y>0),v);
= {vl =0 and (v2 = 0 or v3 > 0),
{vl = x*y,v2 = x,v3 = y}}

rlifstruct formula [kernel] Function
Irreducible factor structure of a formula. kernel is v by default. Returns
alist {f,sl}. £ is constructed from formula by replacing each occurrence
of an irreducible factor with a kernel constructed by adding a number
to kernel. The returned substitution_list s1 contains all substitutions to
obtain formula from f.

rlstruct(x*y=0 and (x=0 or y>0),v);
= {vi*v2 = 0 and (vl = 0 or v2 > 0),
{vl = x,v2 = y}}

rlmatrix formula Function
Matrix computation. Drops all leading quantifiers from formula.

Chapter 4: Simplification 15

4 Simplification

The goal of simplifying a first-order formula is to obtain an equivalent for-
mula over the same language that is somehow simpler. REDLOG knows three
kinds of simplifiers that focus mainly on reducing the size of the given for-
mula: The standard simplifier, tableau simplifiers, and Groebner simplifiers.
The OFSF versions of these are described in [DS97].

The ACFSF versions are the same as the OFSF versions except for tech-
niques that are particular to ordered fields such as treatment of square sums
in connection with ordering relations.

For DVFSF there is no Groebner simplifier available. The parts of the stan-
dard simplifier that are particular to valued fields are described in [DS99].
The tableau simplification is straightforwardly derived from the smart sim-
plifications described there.

Besides reducing the size of formulas, it is a reasonable simplification
goal, to reduce the degree of the quantified variables. Our method of de-
creasing the degree of quantified variables is described for OFsF in [DSW9S].
A suitable variant is available also in ACFSF but not in DVFSF.

4.1 Standard Simplifier

The Standard Simplifier is a fast simplification algorithm that is fre-
quently called internally by other REDLOG algorithms. It can be applied
automatically at the expression evaluation stage by turning on the switch
rlsimpl (see Section 3.10 [Global Switches|, page 12).

theory Data Structure
A list of atomic formulas assumed to hold.

rlsimpl formula [theory] Function

Simplify. formula is simplified recursively such that the result is equiva-
lent under the assumption that theory holds. Default for theory is the
empty theory {}. Theory inconsistency may but need not be detected by
rlsimpl. If theory is detected to be inconsistent, a corresponding error is
raised. Note that under an inconsistent theory, any formula is equivalent
to the input, i.e., the result is meaningless. theory should thus be chosen
carefully.

4.1.1 General Features of the Standard Simplifier

The standard simplifier rlsimpl includes the following features common
to all contexts:

e Replacement of atomic subformulas by simpler equivalents. These
equivalents are not necessarily atomic (switches rlsiexpl, rlsiexpla,
see Section 4.1.2 [General Standard Simplifier Switches|, page 16).

Chapter 4: Simplification 16

For details on the simplification on the atomic formula level, see
Section 4.1.3 [OFSF-specific Simplifications], page 18, Section 4.1.5
[ACFSF-specific Simplifications|, page 20, and Section 4.1.7 [DVFSF-
specific Simplifications], page 20.

e Proper treatment of truth values.

e Flattening nested n-ary operator levels and resolving involutive appli-
cations of not.

e Dropping not operator with atomic formula arguments by changing
the relation of the atomic formula appropriately. The languages of all
contexts allow to do so.

e Changing repl to impl.
e Producing a canonical ordering among the atomic formulas on a given

level (switch rlsisort, see Section 4.1.2 [General Standard Simplifier
Switches], page 16).

e Recognizing equal subformulas on a given level (switch rlsichk, see
Section 4.1.2 [General Standard Simplifier Switches], page 16).

e Passing down information that is collected during recursion (switches
rlsism, rlsiidem, see Section 4.1.2 [General Standard Simplifier
Switches], page 16). The technique of implicit theories used for this is
described in detail in [DS97] for OFSF/ACFSF, and in [DS99] for DVFSF.

e Considering interaction of atomic formulas on the same level and inter-
action with information inherited from higher levels (switch rlsism,
see Section 4.1.2 [General Standard Simplifier Switches|, page 16). The
smart simplification techniques used for this are beyond the scope of
this manual. They are described in detail in [DS97] for OFSF/ACFSF,
and in [DS99] for DVFSF.

4.1.2 General Standard Simplifier Switches

rlsiexpla Switch
Simplify explode always. By default this switch is on. It is relevant with
simplifications that allow to split one atomic formula into several simpler
ones. Consider, e.g., the following simplification toggled by the switch
rlsipd (see Section 4.1.4 [OFSF-specific Standard Simplifier Switches],
page 18). With rlsiexpla on, we obtain:

f := (a - 1)*x3 *x (a + 1)**4 >=0;
7 6 5 4 3 2
= a +a - 3%a - 3*%a + 3xa + 3%a -a-1>0

rlsimpl f;
= a-1>0o0ora+1=0

Chapter 4: Simplification 17

With rlsiexpla off, £ will simplify as in the description of the switch
rlsipd. rlsiexpla is not used in the DVFSF context. The DVFSF simpli-
fier behaves like rlsiexpla on.

rlsiexpl Switch
Simplify explode. By default this switch is on. Its role is very similar to
that of rlsiexpla, but it considers the operator the scope of which the
atomic formula occurs in: With rlsiexpl on

7 6 5 4 3 2
a +a -3*a - 3%a + 3*%a + 3%xa -a-1>0
simplifies as in the description of the switch rlsiexpla whenever it occurs
in a disjunction, and it simplifies as in the description of the switch r1sipd
(see Section 4.1.4 [OFSF-specific Standard Simplifier Switches|, page 18)
else. rlsiexpl is not used in the DVFSF context. The DVFSF simplifier
behaves like rlsiexpla on.

The user is not supposed to alter the settings of the following fix switches
(see Section 1.3 [Conventions|, page 4):

rlsism Fix Switch
Simplify smart. By default this switch is on. See the description of the
function rlsimpl (see Section 4.1 [Standard Simplifier|, page 15) for its
effects.
rlsimpl (x>0 and x+1<0);
= false

rlsichk Fix Switch
Simplify check. By default this switch is on enabling checking for equal
sibling subformulas:

rlsimpl((x>0 and x-1<0) or (x>0 and x-1<0));
= (x>0 and x-1<0)

rlsiidem Fix Switch
Simplify idempotent. By default this switch is on. It is relevant only with
switch rlsism on. Its effect is that rlsimpl (see Section 4.1 [Standard
Simplifier], page 15) is idempotent in the very most cases, i.e., an ap-
plication of rlsimpl to an already simplified formula yields the formula
itself.

rlsiso Fix Switch
Simplify sort. By default this switch is on. It toggles the sorting of the
atomic formulas on the single levels.
rlsimpl((a=0 and b=0) or (b=0 and a=0));
= a=0and b =0

Chapter 4: Simplification 18

4.1.3 OFSF-specific Simplifications

In the OFSF context, the atomic formula simplification includes the fol-
lowing:
e Evaluation of variable-free atomic formulas to truth values.

e Make the left hand sides primitive over the integers with positive head
coefficient.

e Evaluation of trivial square sums to truth values (switch rlsisqf, see
Section 4.1.4 [OFSF-specific Standard Simplifier Switches], page 18).
Additive splitting of trivial square sums (switch rlsitsqgspl, see Sec-
tion 4.1.4 [OFSF-specific Standard Simplifier Switches|, page 18).

e In ordering inequalities, perform parity decomposition (similar to
squarefree decomposition) of terms (switch rlsipd, see Section 4.1.4
[OFSF-specific Standard Simplifier Switches|, page 18) with the
option to split an atomic formula multiplicatively into two simpler
ones (switches rlsiexpl and rlsiexpla, see Section 4.1.2 [General
Standard Simplifier Switches|, page 16).

e In equations and non-ordering inequalities, replace left hand sides
by their squarefree parts (switch rlsiatdv, see Section 4.1.4 [OFSF-
specific Standard Simplifier Switches|, page 18). Optionally, per-
form factorization of equations and inequalities (switch rlsifac, see
Section 4.1.4 [OFSF-specific Standard Simplifier Switches|, page 18,
switches rlsiexpl and rlsiexpla, see Section 4.1.2 [General Standard
Simplifier Switches], page 16).

For further details on the simplification in ordered fields see the article
[DS97].

4.1.4 OFSF-specific Standard Simplifier Switches

rlsipw Switch
Simplification prefer weak orderings. Prefers weak orderings in contrast
to strict orderings with implicit theory simplification. rlsipw is off by
default, which leads to the following behavior:

rlsimpl(a<>0 and (a>=0 or b=0));
= a <> 0 and (a > 0 or b =0)
This meets the simplification goal of small satisfaction sets for the atomic
formulas. Turning on rlsipw will instead yield the following:
rlsimpl(a<>0 and (a>0 or b=0));
= a <> 0 and (a > 0 or b = 0)

Here we meet the simplification goal of convenient relations when strict
orderings are considered inconvenient.

Chapter 4: Simplification 19

rlsipo Switch
Simplification prefer orderings. Prefers orderings in contrast to inequal-
ities with implicit theory simplification. rlsipo is on by default, which
leads to the following behavior:

rlsimpl(a>=0 and (a<>0 or b=0));
= a>= 0 and (a > 0 or b = 0)
This meets the simplification goal of small satisfaction sets for the atomic
formulas. Turning it on leads, e.g., to the following behavior:
rlsimpl(a>=0 and (a>0 or b=0));
= a>>0and (a <> 0orb=0)
Here, we meet the simplification goal of convenient relations when order-
ings are considered inconvenient.

rlsiatadv Switch
Simplify atomic formulas advanced. By default this switch is on. Enables
sophisticated atomic formula simplifications based on squarefree part
computations and recognition of trivial square sums.

rlsimpl (ax*2 + 2%a*b + b**2 <> 0);
= a+b <> 0

rlsimpl(ax*2 + b**2 + 1 > 0);
= true
Furthermore, splitting of trivial square sums (switch rlsitsqspl), parity
decompositions (switch rlsipd), and factorization of equations and in-
equalities (switch rlsifac) are enabled.

rlsitsqspl Switch
Simplify split trivial square sum. This is on by default. It is ignored
with rlsiadv off. Trivial square sums are split additively depending on
rlsiexpl and rlsiexpla (see Section 4.1.2 [General Standard Simplifier
Switches], page 16):
rlsimpl (ax*2+b**2>0) ;
= a<>0o0rb<>0

rlsipd Switch
Simplify parity decomposition. By default this switch is on. It is ignored
with rlsiatadv off. rlsipd toggles the parity decomposition of terms
occurring with ordering relations.
f := (a - 1)*x3 x (a + 1)*x4 >= 0;
7 6 5 4 3 2
= a +a -3%a - 3%a + 3%a + 3*%a -a-1>0

rlsimpl f;

Chapter 4: Simplification 20

3 2
= a +a -a-1>0
The atomic formula is possibly split into two parts according to the set-
ting of the switches rlsiexpl and rlsiexpla (see Section 4.1.2 [General
Standard Simplifier Switches], page 16).

rlsifac Switch
Simplify factorization. By default this switch is on. It is ignored with
rlsiatadv off. Splits equations and inequalities via factorization of their
left hand side terms into a disjunction or a conjunction, respectively. This
is done in dependence on rlsiexpl and rlsiexpla (see Section 4.1.2
[General Standard Simplifier Switches], page 16).

4.1.5 ACFSF-specific Simplifications

In the ACFSF case the atomic formula simplification includes the following:
e Evaluation of variable-free atomic formulas to truth values.

e Make the left hand sides primitive over the integers with positive head
coefficient.

e Replace left hand sides of atomic formulas by their squarefree parts
(switch rlsiatdv, see Section 4.1.4 [OFSF-specific Standard Simplifier
Switches|, page 18). Optionally, perform factorization of equations and
inequalities (switch rlsifac, see Section 4.1.4 [OFSF-specific Standard
Simplifier Switches|, page 18, switches rlsiexpl and rlsiexpla, see
Section 4.1.2 [General Standard Simplifier Switches], page 16).

For details see the description of the simplification for ordered fields in
[DS97]. This can be easily adapted to algebraically closed fields.

4.1.6 ACFSF-specific Standard Simplifier Switches

The switches rlsiatadv and rlsifac have the same effects as in the
OFSF context (see Section 4.1.4 [OF SF-specific Standard Simplifier Switches],
page 18).

4.1.7 DVFSF-specific Simplifications

In the DVFSF case the atomic formula simplification includes the following:
e Evaluation of variable-free atomic formulas to truth values provided
that p is known.

e Equations and inequalities can be treated as in ACFSF (see Section 4.1.5
[ACFSF-specific Simplifications], page 20). Moreover powers of p can
be cancelled.

e With valuation relations, the GCD of both sides is cancelled and added
appropriately as an equation or inequality.

Chapter 4: Simplification 21

e Valuation relations involving zero sides can be evaluated or at least
turned into equations or inequalities.

e For concrete p, integer coefficients with valuation relations can be re-
placed by a power of p on one side of the relation.

e For unspecified p, polynomials in p can often be replaced by one mono-
mial.

e For unspecified p, valuation relations containing a monomial in p on one
side, and an integer on the other side can be transformed into z ~ 1 or
z /™ 1, where z is an integer.

For details on simplification in p-adic fields see the article [DS99].

Atomic formulas of the form z ~ 1 or z /~ 1, where z is an integer, can be
split into several ones via integer factorization. This simplification is often
reasonable on final results. It explicitly discovers those primes p for which
the formula holds. There is a special function for this simplification:

rlexplats formula Function
Explode atomic formulas. Factorize atomic formulas of the form z ~ 1 or
z /7 1, where z is an integer. rlexplats obeys the switches rlsiexpla
and rlsiexpl (see Section 4.1.2 [General Standard Simplifier Switches],
page 16), but not rlsifac (see Section 4.1.8 [DVFSF-specific Standard
Simplifier Switches]|, page 21).

4.1.8 DVFSF-specific Standard Simplifier Switches

The context DVFSF knows no special simplifier switches, and ignores the
general switches rlsiexpla and rlsiexpl (see Section 4.1.2 [General Stan-
dard Simplifier Switches], page 16). It behaves like rlsiexpla on. The
simplifier contains numerous sophisticated simplifications for atomic formu-
las in the style of rlsiatadv on (see Section 4.1.4 [OFSF-specific Standard
Simplifier Switches], page 18).

rlsifac Switch
Simplify factorization. By default this switch is on. Toggles certain sim-
plifications that require integer factorization. See Section 4.1.7 [DVFSF-
specific Simplifications], page 20, for details.

4.1.9 PASF-specific Simplifications

The main PASF-specific simplification feature is the content elimination
in atomic formulas.
f:=3*xx+6x*xy -9=0
rlsimpl f;
= x+2xy-3=0

Chapter 4: Simplification 22

f:=3*xx+6x*xy -7<0
rlsimpl f;
= x+2*xy-2<=0

f :=cong(3*xx+6*xy-3,0, 9);
rlsimpl f;
= x+2*y-1="0 (3
Futhermore evaluation of domain valued atomic formulas is performed.

f:=3=0
rlsimpl f;
= false

f := cong(y+x+z,0,1);
rlsimpl f;
= true

4.1.10 PASF-specific Standard Simplifier Switches

rlpasfsimplify formula Function
Simplifies the output formula after the elimination of each quantifier. By
default this switch is on.

rlpasfexpand formula Function
Expands the output formula (with range predicates) after the elimination
of each quantifier. This switch is by default off due to immense overhead
of the range predicate expantion.

rlsiatadv formula Function
Turns the advanced PASF-speciefic simplification of atomic formulas on.
See See Section 4.1.9 [PASF-specific Simplifications], page 21 for details.

4.2 Tableau Simplifier

Although our standard simplifier (see Section 4.1 [Standard Simplifier],
page 15) already combines information located on different boolean levels, it
preserves the basic boolean structure of the formula. The tableau methods,
in contrast, provide a technique for changing the boolean structure of a for-
mula by constructing case distinctions. Compared to the standard simplifier
they are much slower. For details on tableau simplification see [DS97].

cdl Data Structure
Case distinction list. This is a list of atomic formulas considered as a
disjunction.

Chapter 4: Simplification 23

rltab formula cdl Function
Tableau method. The result is a tableau wrt. cdl, i.e., a simplified equiv-

alent of the disjunction over the specializations wrt. all atomic formulas
in cdl.

rltab((a = 0 and (b = 0 or (d = 0 and e = 0))) or
(a =0 and ¢ = 0),{a=0,a<>0});
= (a=0and (b=0orc=0o0r (d=0and e = 0)))

rlatab formula Function
Automatic tableau method. Tableau steps wrt. a case distinction over the
signs of all terms occurring in formula are computed and the best result,
i.e., the result with the minimal number of atomic formulas is returned.

rlitab formula Function
Iterative automatic tableau method. formula is simplified by iterative
applications of rlatab. The exact procedure depends on the switch
rltabib.

rltabib Switch

Tableau iterate branch-wise. By default this switch is on. It controls
the procedure rlitab. If rltabib is off, rlatab is iteratively applied to
the argument formula as long as shorter results can be obtained. In case
rltabib is on, the corresponding next tableau step is not applied to the
last tableau result but independently to each single branch. The iteration
stops when the obtained formula is not smaller than the corresponding
input.

4.3 Groebner Simplifier

The Groebner simplifier is not available in the DVFSF context. It consid-
ers order theoretical and algebraic simplification rules between the atomic
formulas of the input formula. Currently the Groebner simplifier is not
idempotent. The name is derived from the main mathematical tool used
for simplification: Computing Groebner bases of certain subsets of terms
occurring in the atomic formulas.

For calling the Groebner simplifier there are the following functions:

rlgsc formula [theory] Function
rlgsd formula [theory] Function
rlgsn formula [theory] Function

Groebner simplifier. formula is a quantifier-free formula. Default for the-
ory is the empty theory {}. The functions differ in the boolean normal
form that is computed at the beginning. rlgsc computes a conjunc-
tive normal form, rlgsd computes a disjunctive normal form, and rlgsn
heuristically decides for either a conjunctive or a disjunctive normal form

Chapter 4: Simplification 24

depending on the structure of formula. After computing the correspond-
ing normal form, the formula is simplified using Groebner simplification
techniques. The returned formula is equivalent to the input formula wrt.
theory.

rlgsd(x=0 and ((y = 0 and x**2+2xy > 0) or
(z=0 and x**3+z >= 0)));
= x=0and z =0
rlgsc(x neq 0 or ((y neq O or x**2+2*x*y <= 0) and
(z neq 0 or x**3+z < 0)));
= x<>00rz<>0

The heuristic used by rlgsn is intended to find the smaller boolean nor-
mal form among CNF an DNF. Note that, anyway, the simplification of the
smaller normal form can lead to a larger final result than that of the larger
one.

The Groebner simplifiers use the Groebner package of REDUCE to com-
pute the various Groebner bases. By default, the revgradlex term order is
used, and no optimizations of the order between the variables are applied.
The other switches and variables of the Groebner package are not controlled
by the Groebner simplifier. They can be adjusted by the user.

In contrast to the standard simplifier r1simpl (see Section 4.1 [Standard
Simplifier], page 15), the Groebner simplifiers can in general produce formu-
las containing more atomic formulas than the input. This cannot happen if
the switches rlgsprod, rlgsred, and rlgssub are off and the input formula
is a simplified boolean normal form.

The functionality of the Groebner simplifiers rlgsc, rlgsd, and rlgsn
is controlled by numerous switches. In most cases the default settings lead
to a good simplification.

rlgsrad Switch
Groebner simplifier radical membership test. By default this switch is
on. If the switch is on the Groebner simplifier does not only use ideal
membership tests for simplification but also radical membership tests.
This leads to better simplifications but takes considerably more time.

rlgssub Switch
Groebner simplifier substitute. By default this switch is on. Certain
subsets of atomic formulas are substituted by equivalent ones. Both the
number of atomic formulas and the complexity of the terms may increase
or decrease independently.

rlgsbnf Switch
Groebner simplifier boolean normal form. By default this switch is on.
Then the simplification starts with a boolean normal form computation.
If the switch is off, the simplifiers expect a boolean normal form as the
argument formula.

Chapter 4: Simplification 25

rlgsred Switch
Groebner simplifier reduce polynomials. By default this switch is on. It
controls the reduction of the terms wrt. the computed Groebner bases.
The number of atomic formulas is never increased. Mind that by reduc-
tion the terms can become more complicated.

rlgsvb Advanced Switch
Groebner simplifier verbose. By default this switch is on. It toggles
verbosity output of the Groebner simplifier. Verbosity output is given if
and only if both rlverbose (see Section 3.10 [Global Switches], page 12)
and rlgsvb are on.

rlgsprod Advanced Switch
Groebner simplifier product. By default this switch is off. If this switch is
on then conjunctions of inequalities and disjunctions of equations are con-
tracted multiplicatively to one atomic formula. This reduces the number
of atomic formulas but in most cases it raises the complexity of the terms.
Most simplifications recognized by considering products are detected also
with rlgsprod off.

rlgserf Advanced Switch
Groebner simplifier evaluate reduced form. By default this switch is on.
It controls the evaluation of the atomic formulas to truth values. If this
switch is on, the standard simplifier (see Section 4.1 [Standard Simplifier],
page 15) is used to evaluate atomic formulas. Otherwise atomic formulas
are evaluated only if their left hand side is a domain element.

rlgsutord Advanced Switch
Groebner simplifier user defined term order. By default this switch is off.
Then all Groebner basis computations and reductions are performed with
respect to the revgradlex term order. If this switch is on, the Groebner
simplifier minds the term order selected with the torder statement. For
passing a variable list to torder, note that rlgsradmemv!* is used as the
tag variable for radical membership tests.

rlgsradmemv!* Fluid
Radical membership test variable. This fluid contains the tag variable
used for the radical membership test with switch rlgsrad on. It can be
used to pass the variable explicitly to torder with switch rlgsutord on.

4.4 Degree Decreaser

The quantifier elimination procedures of REDLOG (see Section 6.1 [Quan-
tifier Elimination], page 29) obey certain degree restrictions on the bound
variables. For this reason, there are degree-decreasing simplifiers available,

Chapter 4: Simplification 26

which are automatically applied by the corresponding quantifier elimination
procedures. There is no degree decreaser for the DVFSF context available.

rldecdeg formula Function
Decrease degrees. Returns a formula equivalent to formula, hopefully
decreasing the degrees of the bound variables. In the OFSF context there
are in general some sign conditions on the variables added, which slightly
increases the number of contained atomic formulas.

rldecdeg ex({b,x},m*x**4711+b**8>0) ;
= ex b (b > 0 and ex x (b + m*xx > 0))

rldecdegl formula [varlist] Function

Decrease degrees subroutine. This provides a low-level entry point to the
degree decreaser. The variables to be decreased are not determined by
regarding quantifiers but are explicitly given by varlist, where the empty
varlist selects all free variables of £. The return value is a list {f,1}. £
is a formula, and 1 is a list {...,{v,d},...}, where v is from varlist
and d is an integer. f has been obtained from formula by substituting
v for v¥*d. The sign conditions necessary with the OFSF context are
not generated automatically, but have to be constructed by hand for the
variables v with even degree d in 1.

rldecdegl (m*x**4711+b**8>0,{b,x}) ;
= {b + m*x > 0,{{x,4711},{b,8}}}

Chapter 5: Normal Forms 27

5 Normal Forms

5.1 Boolean Normal Forms

For computing small boolean normal forms, see also the documentation of
the procedures rlgsc and rlgsd (Section 4.3 [Groebner Simplifier], page 23).

rlenf formula Function
Conjunctive normal form. formula is a quantifier-free formula. Returns
a conjunctive normal form of formula.

rlcnf(a = 0 and b =0 or b = 0 and ¢ = 0);
= (a=0o0orc=0) and b =0

rldnf formula Function
Disjunctive normal form. formula is a quantifier-free formula. Returns a
disjunctive normal form of formula.

rldnf((a = 0 or b =0) and (b =0 or c = 0));
= (a=0and c =0) or b=0

rlbnfsm Switch
Boolean normal form smart. By default this switch is off. If on, simplifier
recognized implication [DS97] is applied by rlcnf and rldnf. This leads
to smaller normal forms but is considerably time consuming.

rlbnfsac Fix Switch
Boolean normal forms subsumption and cut. By default this switch is on.
With boolean normal form computation, subsumption and cut strategies
are applied by rlcnf and rldnf to decrease the number of clauses. We
give an example:

rldnf (x=0 and y<0 or x=0 and y>0 or x=0 and y<>0 and z=0);
= (x =0 and y <> 0)

5.2 Miscellaneous Normal Forms

rlnnf formula Function
Negation normal form. Returns a negation normal form of formula. This
is an and-or-combination of atomic formulas. Note that in all contexts,
we use languages such that all negations can be encoded by relations
(see Chapter 3 [Format and Handling of Formulas], page 7). We give an
example:

Chapter 5: Normal Forms 28

rlonf(a = 0 equiv b > 0);
= (a=0and b>0) or (a<>0 and b <= 0)
rlnnf accepts formulas containing quantifiers, but it does not eliminate
quantifiers.

rlpnf formula Function
Prenex normal form. Returns a prenex normal form of formula. The
number of quantifier changes in the result is minimal among all prenex
normal forms that can be obtained from formula by only moving quanti-
fiers to the outside.

When formula contains two quantifiers with the same variable such as in
Jz(z = 0) A Jz(x #£0)

there occurs a name conflict. It is resolved according to the following
rules:

e Every bound variable that stands in conflict with any other variable
is renamed.

e Free variables are never renamed.

Hence rlpnf applied to the above example formula yields

rlpnf (ex(x,x=0) and ex(x,x<>0));
= ex x0 ex x1 (x0 = 0 and x1 <> 0)

rlapnf formula Function
Anti-prenex normal form. Returns a formula equivalent to formula where
all quantifiers are moved to the inside as far as possible.

rlapnf ex(x,all(y,x=0 or (y=0 and x=z)));
= ex x (x=0) or (all y (y = 0) and ex x (x - z = 0))

rltnf formula terml Function
Term normal form. terml is a list of terms. This combines DNF
computation with tableau ideas (see Section 4.2 [Tableau Simplifier],
page 22). A typical choice for terml is rlterml formula. If the switch
rltnft is off, then rltnf (formula,rlterml formula) returns a DNF.

rltnft Switch
Term normal form tree variant. By default this switch is on causing rltnf
to return a deeply nested formula.

Chapter 6: Quantifier Elimination and Variants 29

6 Quantifier Elimination and Variants

Quantifier elimination computes quantifier-free equivalents for given first-
order formulas.

For OFSF there are two methods available:

1. Virtual substitution based on elimination set ideas [Wei88]. This imple-
mentation is restricted to at most quadratic occurrences of the quanti-
fied variables, but includes numerous heuristic strategies for coping with
higher degrees. See [LW93], [Wei97] for details of the method.

2. Partial cylindrical algebraic decomposition (CAD) introduced by Collins
and Hong [CH91]. There are no degree restrictions with CAD.

For DVFSF we use the virtual substitution method that is also available
for OrFsr. Here, the implementation is restricted to linear occurrences of
the quantified variables. There are also heuristic strategies for coping with
higher degrees included. The method is described in detail in [Stu00].

The ACFSF quantifier elimination is based on comprehensive Groebner
basis computation; there are no degree restrictions for this context [Wei92].

6.1 Quantifier Elimination

6.1.1 Virtual Substitution

rlqe formula [theory] Function
Quantifier elimination by virtual substitution. Returns a quantifier-free
equivalent of formula (wrt. theory). In the contexts OFSF and DVFSF,
formula has to obey certain degree restrictions. There are various tech-
niques for decreasing the degree of the input and of intermediate results
built in. In case that not all variables can be eliminated, the resulting
formula is not quantifier-free but still equivalent.

For degree decreasing heuristics see, e.g., Section 4.4 [Degree Decreaser],
page 25, or the switches rlgeqsc/rlqgesgsc.

elimination_answer Data Structure
A list of condition—solution pairs, i.e., a list of pairs consisting of a
quantifier-free formula and a set of equations.

rlgea formula [theory] Function
Quantifier elimination with answer. Returns an elimination_answer ob-
tained the following way: formula is wlog. prenex. All quantifier blocks
but the outermost one are eliminated. For this outermost block, the
constructive information obtained by the elimination is saved:

Chapter 6: Quantifier Elimination and Variants 30

e In case the considered block is existential, for each evaluation of the
free variables we know the following: Whenever a condition holds,
then formula is true under the given evaluation, and the solution
is one possible evaluation for the outer block variables satisfying the
matrix.

e The universally quantified case is dual: Whenever a condition is false,
then formula is false, and the solution is one possible counterexam-
ple.

As an example we show how to find conditions and solutions for a system
of two linear constraints:

rlgea ex(x,x+b1>=0 and a2*x+b2<=0);
2 - b2
= {{a2 #*bl - a2*b2 >= 0 and a2 <> 0,{x = ——————- 3},
a2
{a2 < 0 or (a2 = 0 and b2 <= 0),{x = infinity1}}}

The answer can contain constants named infinity or epsilon, both
indexed by a number: All infinity’s are positive and infinite, and all
epsilon’s are positive and infinitesimal wrt. the considered field. Nothing
is known about the ordering among the infinity’s and epsilon’s though
this can be relevant for the points to be solutions. With the switch
rounded on, the epsilon’s are evaluated to zero. rlgea is not available
in the context ACFSF.

rlqgeqsc Switch

rlgesqgsc Switch
Quantifier elimination (super) quadratic special case. By default these
switches are off. They are relevant only in OFSF. If turned on, alterna-
tive elimination sets are used for certain special cases by rlqe/rlqgea
and rlgge/rlggea. (see Section 6.2 [Generic Quantifier Elimination],
page 34). They will possibly avoid violations of the degree restrictions,
but lead to larger results in general. Former versions of REDLOG without
these switches behaved as if rlqeqsc was on and rlgesqgsc was off.

rlqedfs Advanced Switch

Quantifier elimination depth first search. By default this switch is off.
It is also ignored in the ACFSF context. It is ignored with the switch
rlgeheu on, which is the default for OFsF. Turning rlgedfs on makes
rlge/rlqgea and rlgqge/rlggea (see Section 6.2 [Generic Quantifier Elim-
ination], page 34) work in a depth first search manner instead of breadth
first search. This saves space, and with decision problems, where variable-
free atomic formulas can be evaluated to truth values, it might save time.
In general, it leads to larger results.

Chapter 6: Quantifier Elimination and Variants 31

rlgeheu Advanced Switch
Quantifier elimination search heuristic. By default this switch is on in
OFSF and off in DVFSF. It is ignored in ACFSF. Turning rlgeheu on causes
the switch rlgedfs to be ignored. rlge/rlqgea and rlgqge/rlgqea (see
Section 6.2 [Generic Quantifier Elimination], page 34) will then decide
between breadth first search and depth first search for each quantifier
block, where DFS is chosen when the problem is a decision problem.

rlgepnf Advanced Switch

Quantifier elimination compute prenex normal form. By default this
switch is on, which causes that rlpnf (see Section 5.2 [Miscellaneous Nor-
mal Forms|, page 27) is applied to formula before starting the elimination
process. If the argument formula to rlge/rlqea or rlgge/rlggea (see
Section 6.2 [Generic Quantifier Elimination|, page 34) is already prenex,
this switch can be turned off. This may be useful with formulas con-
taining equiv since rlpnf applies rlnnf, (see Section 5.2 [Miscellaneous
Normal Forms], page 27), and resolving equivalences can double the size
of a formula. rlgepnf is ignored in ACFSF, since NNF is necessary for
elimination there.

rlgesr Fix Switch
Quantifier elimination separate roots. This is off by default. It is relevant
only in OFSF for rlge/rlgge and for all but the outermost quantifier
block in rlgea/rlggea. For rlgea and rlggea see Section 6.2 [Generic
Quantifier Elimination|, page 34. It affects the technique for substituting
the two solutions of a quadratic constraint during elimination.

The following two functions rlgeipo and rlgews are experimental im-
plementations. The idea there is to overcome the obvious disadvantages of
prenex normal forms with elimination set methods. In most cases, however,
the classical method rlqe has turned out superior.

rlgeipo formula [theory] Function
Quantifier elimination by virtual substitution in position. Returns a
quantifier-free equivalent to formula by iteratively making formula anti-
prenex (see Section 5.2 [Miscellaneous Normal Forms|, page 27) and elim-
inating one quantifier.

rlgews formula [theory] Function
Quantifier elimination by virtual substitution with selection. formula
has to be prenex, if the switch rlgepnf is off. Returns a quantifier-
free equivalent to formula by iteratively selecting a quantifier from the
innermost block, moving it inside as far as possible, and then eliminating
it. rlgews is not available in ACFSF.

Chapter 6: Quantifier Elimination and Variants 32

6.1.2 Cylindrical Algebraic Decomposition

rlcad formula Function
Cylindrical algebraic decomposition. Returns a quantifier-free equivalent
of formula. Works only in context OFSF. There are no degree restrictions
on formula.

rlcadfac Advanced Switch
Factorisation. This is on by default.

rlcadbaseonly Switch
Base phase only. Turned off by default.

rlcadprojonly Switch
Projection phase only. Turned off by default.

rlcadextonly Switch
Extension phase only. Turned off by default.

rlcadpartial Switch
Partial CAD. This is turned on by default.

rlcadfulldimonly Advanced Switch
Full dimensional cells only. This is turned off by default. Only stacks over
full dimensional cells are built. Such cells have rational sample points. To
do this ist sound only in special cases as consistency problems (existenially
quantified, strict inequalities).

rlcadtrimtree Switch
Trim tree. This is turned on by default. Frees unused part of the con-
structed partial CAD-tree, and hence saves space. However, afterwards
it is not possible anymore to find out how many cells were calculated
beyond free variable space.

rlcadrawformula Advanced Switch
Raw formula. Turned off by default. If turned on, a variable-free DNF is
returned (if simple solution formula construction succeeds). Otherwise,
the raw result is simplified with rldnf.

rlcadisoallroots Advanced Switch
Isolate all roots. This is off by default. Turning this switch on allows
to find out, how much time is consumed more without incremental root
isolation.

Chapter 6: Quantifier Elimination and Variants 33

rlcadrawformula Advanced Switch
Raw formula. Turned off by default. If turned on, a variable-free DNF is
returned (if simple solution formula construction succeeds). Otherwise,
the raw result is simplified with rldnf.

rlcadisoallroots Advanced Switch
Isolate all roots. This is off by default. Turning this switch on allows
to find out, how much time is consumed more without incremental root
isolation.

rlcadaproj Advanced Switch

rlcadaprojalways Advanced Switch
Augmented projection (always). By default, rlcadaproj is turned on
and rlcadaprojalways is turned off. If rlcadaproj is turned off, no
augmented projection is performed. Otherwerwise, if turned on, aug-
mented projection is performed always (if rlcadaprojalways is turned
on) or just for the free variable space (rlcadaprojalways turned off).

rlcadhongproj Switch
Hong projection. This is on by default. If turned on, Hong’s improvement
for the projection operator is used.

rlcadverbose Switch
Verbose. This is off by default. With rladverbose on, additional verbose
information is displayed.

rlcaddebug Switch
Debug. This is turned off by default. Performes a self-test at several
places, if turned on.

rlanuexverbose Advanced Switch
Verbose. This is off by default. With ranuexverbose on, additional
verbose information is displayed. Not of much importance any more.

rlanuexdifferentroots Advanced Switch
Different roots. Unused for the moment and maybe redundant soon.

rlanuexdebug Switch
Debug. This is off by default. Performes a self-test at several places, if
turned on.

rlanuexpsremseq Switch
Pseudo remainder sequences. This is turned off by default. This switch
decides, whether division or pseudo division is used for sturm chains.

Chapter 6: Quantifier Elimination and Variants 34

rlanuexgcdnormalize Advanced Switch
GCD normalize. This is turned on by default. If turned on, the GCD is
normalized to 1, if it is a constant polynomial.

rlanuexsgnopt Advanced Switch
Sign optimization. This is turned off by default. If turned on, it is tried to
determine the sign of a constant polynomial by calculating a containment.

6.1.3 Hermitian Quantifier Elimination

rlhqge formula Function
Hermitian quantifier elimination. Returns a quantifier-free equivalent of
formula. Works only in context OFSF. There are no degree restrictions
on formula.

6.2 Generic Quantifier Elimination

The following variant of rlge (see Section 6.1 [Quantifier Elimination],
page 29) enlarges the theory by inequalities, i.e., <>-atomic formulas, wher-
ever this supports the quantifier elimination process. For geometric prob-
lems, it has turned out that in most cases the additional assumptions made
are actually geometric non-degeneracy conditions. The method has been
described in detail in [DSW98]. It has also turned out useful for physical
problems such as network analysis [Stu97].

rlgqe formula [theory [exceptionlist]] Function

Generic quantifier elimination. rlgge is not available in ACFSF and
DVFSF. exceptionlist is a list of variables empty by default. Returns
a list {th,f} such that th is a superset of theory adding only inequali-
ties, and f is a quantifier-free formula equivalent to formula assuming th.
The added inequalities contain neither bound variables nor variables from
exceptionlist. For restrictions and options, compare rlge (see Section 6.1
[Quantifier Elimination], page 29).

rlgqea formula [theory [exceptionlist]| Function
Generic quantifier elimination with answer. rlggea is not available in
ACFSF and DVFSF. exceptionlist is a list of variables empty by default.
Returns a list consisting of an extended theory and an elimination_answer.
Compare rlgea/rlgge (see Section 6.1 [Quantifier Elimination], page 29).

After applying generic quantifier elimination the user might feel that the
result is still too large while the theory is still quite weak. The following
function rlgentheo simplifies a formula by making further assumptions.

Chapter 6: Quantifier Elimination and Variants 35

rlgentheo theory formula [exceptionlist] Function
Generate theory. rlgentheo is not available in DVFSF. formula is a
quantifier-free formula; exceptionlist is a list of variables empty by default.
rlgentheo extends theory with inequalities not containing any variables
from exceptionlist as long as the simplification result is better wrt. this
extended theory. Returns a list {extended theory, simplified formula}.

rlgegenct Switch
Quantifier elimination generate complex theory. This is on by default,
which allows rlgentheo to assume inequalities over non-monomial terms
with the generic quantifier elimination.

rlgcad formula Function
Generic cylindrical algebraic decomposition. rlgcad is available only for
OFSF. Compare rlcad (see Section 6.1 [Quantifier Elimination], page 29)
and rlgge (see Section 6.2 [Generic Quantifier Elimination], page 34).

rlghqe formula Function
Generic Hermitian quantifier elimination. rlghqe is available only for
OFsF. Compare rlhge (see Section 6.1 [Quantifier Elimination], page 29)
and rlgge (see Section 6.2 [Generic Quantifier Elimination], page 34).

6.3 Local Quantifier Elimination

In contrast to the generic quantifier elimination (see Section 6.2 [Generic
Quantifier Elimination|, page 34) the following variant of rlge (see Sec-
tion 6.1 [Quantifier Elimination|, page 29) enlarges the theory by arbitrary
atomic formulas, wherever this supports the quantifier elimination process.
This is done in such a way that the theory holds for the suggested point
specified by the user. The method has been described in detail in [DW0O].

rllqge formula theory suggestedpoint Function

Local quantifier elimination. rllge is not available in ACFSF and DVFSF.
suggestedpoint is a list of equations var=value where var is a free vari-
able and value is a rational number. Returns a list {th,f} such that th
is a superset of theory, and f is a quantifier-free formula equivalent to
formula assuming th. The added inequalities contains exclusively vari-
ables occuring on the left hand sides of equiations in suggestedpoint. For
restrictions and options, compare rlge (see Section 6.1 [Quantifier Elim-
ination], page 29).

6.4 Linear Optimization

In the context OFSF, there is a linear optimization method implemented,
which uses quantifier elimination (see Section 6.1 [Quantifier Elimination],

Chapter 6: Quantifier Elimination and Variants 36

page 29) encoding the target function by an additional constraint including
a dummy variable. This optimization technique has been described in
[Wei9%4a].

rlopt constraints target Function

Linear optimization. rlopt is available only in OFSF. constraints is a
list of parameter-free atomic formulas built with =, <=, or >=; target is a
polynomial over the rationals. target is minimized subject to constraints.
The result is either "infeasible" or a two-element list, the first entry of
which is the optimal value, and the second entry is a list of points—each
one given as a substitution_list—where target takes this value. The point
list does, however, not contain all such points. For unbound problems the
result is {-infinity,{}}.

rloptls Switch
Optimization one solution. This is off by default. rloptils is relevant
only for OFsSF. If on, rlopt returns at most one solution point.

Chapter 7: References 37

7 References

Most of the references listed here are available on

[CHY1]

[Dol99]

[DGS9S]

[DS97]

[DS97a]

[DS97b]

[DS99)]

[DSW98]

[DSW98a]

[DW00]

http://www.fmi.uni-passau.de/“redlog/.

George E. Collins and Hoon Hong. Partial cylindrical algebraic
decomposition for quantifier elimination. Journal of Symbolic
Computation, 12(3):299-328, September 1991.

Andreas Dolzmann. Solving Geometric Problems with Real
Quantifier Elimination. Technical Report MIP-9903, FMI, Uni-
versitaet Passau, D-94030 Passau, Germany, January 1999.

Andreas Dolzmann, Oliver Gloor, and Thomas Sturm. Ap-
proaches to parallel quantifier elimination. In Oliver Gloor, edi-
tor, Proceedings of the 1998 International Symposium on Sym-
bolic and Algebraic Computation (ISSAC 98), pages 88-95, Ro-
stock, Germany, August 1998. ACM, ACM Press, New York.

Andreas Dolzmann and Thomas Sturm. Simplification of
quantifier-free formulae over ordered fields. Journal of Symbolic
Computation, 24(2):209-231, August 1997.

Andreas Dolzmann and Thomas Sturm. Redlog: Computer al-
gebra meets computer logic. ACM SIGSAM Bulletin, 31(2):2-9,
June 1997.

Andreas Dolzmann and Thomas Sturm. Guarded expressions
in practice. In Wolfgang W. Kuechlin, editor, Proceedings of
the 1997 International Symposium on Symbolic and Algebraic
Computation (ISSAC 97), pages 376-383, New York, July 1997.
ACM, ACM Press.

Andreas Dolzmann and Thomas Sturm. P-adic constraint solv-
ing. Technical Report MIP-9901, FMI, Universitaet Passau, D-
94030 Passau, Germany, January 1999. To appear in the pro-
ceedings of the ISSAC 99.

Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning.
A new approach for automatic theorem proving in real geome-
try. Journal of Automated Reasoning, 21(3):357-380, December
1998.

Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning.
Real quantifier elimination in practice. In B. H. Matzat, G.-M.
Greuel, and G. Hiss, editors, Algorithmic Algebra and Number
Theory, pages 221-248. Springer, Berlin, 1998.

Andreas Dolzmann and Volker Weispfenning. Local Quantifier
Elimination. In Carlo Traverso, editor, Proceedings of the 2000

Chapter 7: References 38

[LW93]

[Stu97]

[Stu00]

[SWO97a]

[SWOS]

[SW98a]

[Weiss]

[Wei92]

[Wei94a]

[Wei94b]

[Wei95]

International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC 00), pages 86-94, St Andrews, Scotland, August
2000. ACM, ACM Press, New York.

Ruediger Loos and Volker Weispfenning. Applying linear quan-
tifier elimination. The Computer Journal, 36(5):450-462, 1993.
Special issue on computational quantifier elimination.

Thomas Sturm. Reasoning over networks by symbolic methods.
Technical Report MIP-9719, FMI, Universitaet Passau, D-94030
Passau, Germany, December 1997. To appear in AAECC.

Thomas Sturm. Linear problems in valued fields. Journal of
Symbolic Computation, 30(2):207-219, August 2000.

Thomas Sturm and Volker Weispfenning. Rounding and blend-
ing of solids by a real elimination method. In Achim Sydow,
editor, Proceedings of the 15th IMACS World Congress on
Scientific Computation, Modelling, and Applied Mathematics
(IMACS 97), pages 727-732, Berlin, August 1997. IMACS, Wis-
senschaft & Technik Verlag.

Thomas Sturm and Volker Weispfenning. Computational ge-
ometry problems in Redlog. In Dongming Wang, editor, Auto-
mated Deduction in Geometry, volume 1360 of Lecture Notes
in Artificial Intelligence (Subseries of LNCS), pages 58-86,
Springer-Verlag Berlin Heidelberg, 1998.

Thomas Sturm and Volker Weispfenning. An algebraic approach
to offsetting and blending of solids. Technical Report MIP-9804,
FMI, Universitaet Passau, D-94030 Passau, Germany, May 1998.

Volker Weispfenning. The complexity of linear problems in
fields. Journal of Symbolic Computation, 5(1):3-27, February,
1988.

Volker Weispfenning. Comprehensive Groebner Bases. Journal
of Symbolic Computation, 14:1-29, July, 1992.

Volker Weispfenning. Parametric linear and quadratic optimiza-
tion by elimination. Technical Report MIP-9404, FMI, Univer-
sitaet Passau, D-94030 Passau, Germany, April 1994.

Volker Weispfenning. Quantifier elimination for real algebra—
the cubic case. In Proceedings of the International Symposium
on Symbolic and Algebraic Computation in Oxford, pages 258—
263, New York, July 1994. ACM Press.

Volker Weispfenning. Solving parametric polynomial equations
and inequalities by symbolic algorithms. In J. Fleischer et al.,
editors, Computer Algebra in Science and Engineering, pages
163-179, World Scientific, Singapore, 1995.

Chapter 7: References 39

[Wei97]

[Wei97a]

Volker Weispfenning. Quantifier elimination for real algebra—
the quadratic case and beyond. Applicable Algebra in Engi-
neering Communication and Computing, 8(2):85-101, February
1997.

Volker Weispfenning. Simulation and optimization by quantifier
elimination. Journal of Symbolic Computation, 24(2):189-208,
August 1997.

Functions

Functions

40

Documentation of Functions

all ..o 7
and ... 7
ASSOC ot ettt e 10
B

band 11
bequiv.......... L 11
bimpl...... 11
bnot.........l 11
bOT .o 11
brepl...... ... 11
(o3 o~ 10
D

o 11
div. .. 10
E

equal, 8, 10, 11
equiv..... 7
K et 7
F

for. 11
== P 8, 10

I

impl. ... 7
L

length. 12
legq. oo 8, 10
1ESSP .ttt 8, 10
M
mkand............. 11
111 o3 o 11
DNASSOC .« ettt ee et 10
NCONE ot eeve ettt ieaenn 10
o 1=T o 8, 10, 11
NOE .« ottt 7
OF ottt e e 7
P

Part ... 12

Functions

R

Tepl .. 7
rlall........... ... i, 8
rlapnf........ L 28
rlatab........... i 23
rlatl......... 13
rlatml............. 13
rlatnum............... 13
rlbvarl........coiiniiiia.. 14
rlcad....... ... 32
rlenf 27
rldecdeg..........c.oiiiiiii... 26
rldecdegl.................. 26
rldnf........ i 27
TleX .ottt 8
rlexplats........................... 21
rlfvarl............oiiiiiii 14
rlgcad. ... 35
rlgentheo........................... 35
rlghge................. ... 35
rlgge. ... 34
Tlggea. ..ot 34
TIgSC .ot 23
rlgsd..........oiii i 23
TIgSn. ... 23
rlhge................. 34
rlifacl........... 13

A
and ... 12
E
equUiv... ... 31
F
for ..o 7

41
rlifacml.......... 14
rlifstruct, 14
rlitab........coviii 23
rllge. ... 35
rlmatriX. . ..covitinin i 14
rlnnf 27
rlopt ... 36
rlpasfexpand 22
rlpasfsimplify..................... 22
rlpnf 28
rlge . ..o 29
rlgea.o 29
rlgeipo............. i 31
TlQeWS ..ot 31
rlset......... il 5
rlsiatadv............ 22
rlsimpl............ 15
rlstruct........ ..., 14
rltab........oviii 23
rlterml....... ...t 14
rltermml........ ... 14
rltnf 28
rlvarl..... ...t 14
S
sdiv.... ... 10
sub ... 12
impl........ 16
L
load_packageooun.... 5
N
DO .« ettt 16
O
OF ettt 12

Functions

P

Part......... 3, 12
R

repl. 16
rlatab.............. L 23
rlenf ... 27
rldnf 27
rlgentheo....................... 34, 35
rlgge ... 30, 31, 35
rlggea ..o 30, 31

rlgsd ... 24, 27
TIGSN ..o 24
rlitab.............. 23
rlmatrix.......... i, 12
rlonf 31
TIOpt . oo 36
rlpnf 31
rlge oo 6, 30, 31, 34, 35
rlgea.......cooiiiiiiii... 6, 30, 31
rlgeipo..........oiiiiiiii 31
TLEWS . oo vt 31
rlset..... ... 6
rlsimpl 13, 16, 17, 19, 21, 22, 24

Functions

rlterml................ ..., 28

43

Switches and Variables

Switches and Variables

Documentation of Switches and Variables

rladdcond................., 9
rlanuexdebug 33
rlanuexdifferentroots.............. 33
rlanuexgcdnormalize................ 34
rlanuexpsSremseqoooun.. 33
rlanuexsgnopt 34
rlanuexverbose 33
rlbnfsac............. 27
rlbnfsm............l 27
rlbrop.... ... 7
rlcadaproj 33
rlcadaprojalways 33
rlcadbaseonly 32
rlcaddebug 33
rlcadextonly 32
rlcadfac............................ 32
rlcadfulldimonly................... 32
rlcadhongproj 33
rlcadisoallroots................ 32, 33
rlcadpartial 32
rlcadprojonly 32
rlcadrawformula................. 32, 33
rlcadtrimtree 32
rlcadverbose 33
RLDEFLANG. 6
rldeflang!* 6
rlgsbnf........... 24
rlgserf........... 25
rlgsprod............. .., 25

rlgsrad........ooiiiiiiiiieiii 24

44
rlgsradmemv!* 25
rlgsred................ ... 25
rlgssub. ...t 24
rlgsutord........................... 25
rlgsvb. ... 25
rlnzden.................. .. 9
rloptls.........oiiii i 36
rlposden................, 9
rlgedfs................ 30
rlgegenct............. 35
rlgeheu........... 30
rlgepnf.......... il 31
T1QegSC .o 30
TlgesSgSC. ..ot 30
T1QeST ..ot 31
rlrealtime 13
rlsiatadv........................... 19
rlsichk............................. 17
rlsiexpl........c.ooiiiiiiiiia.. 17
rlsiexpla........................... 16
rlsifac.......... 20, 21
rlsiidem............ 17
rlsimpl............ 13
rlsipd.........l 19
rlsipo.......oiiiii 19
Tlsipw.....cooiiii 18
rlsism.............. il 17
rlsiso.........oiiiii 17
rlsitsgspl 19
rltabib........... 23
rltnft... 28
rlverbose............ 13
T
172 o1 1= 8

Switches and Variables

References to Switches and Variables

F

false........ooo il 30
R

rlanuexdebug 33
rlanuexdifferentroots.............. 33
rlanuexgcdnormalize................ 34
rlanuexpsSremseqoovuuun.. 33
rlanuexsgnopt 34
rlanuexverbose..................... 33
rlcad...........iii 32
rlcadaproj 33
rlcadaprojalways................... 33
rlcadbaseonly 32
rlcaddebug 33
rlcadextonly 32
rlcadfac............................ 32
rlcadfulldimonly................... 32
rlcadhongprojcoovin.... 33
rlcadisoallroots................ 32, 33
rlcadpartial 32
rlcadprojonly 32
rlcadrawformula................. 32, 33
rlcadtrimtree 32
rlcadverbose 33
rldeflang!* 6
rlgsprod............. 24
rlgsrad............................ 25
rlgsred........... ... 24

rlgssub.............iiiiiiii 24

45
rlgsutord............... 25
rlhge..........oo i 34
rlnzden............... 9
rlposdenooiin... 9, 10
rlgedfs......... 31
rlgeheu........................ L.l 30
rlgepnf......l 31
rlgeqscC. ...t 29
rlgesqgscC. ... 29
rlsiadv..........., 19
rlsiatadv.................... 19, 20, 21
rlsiatdv........................ 18, 20
rlsichk............. 16
rlsiexpl.............. 15, 18, 19, 20, 21
rlsiexpla...... 15, 16, 17, 18, 19, 20, 21
rlsifac.................. 18, 19, 20, 21
rlsiidem................ 16
rlsimpl......... 15
rlsipd.........coooiiin... 16, 17, 18, 19
TLSISM oot 16, 17
rlsisort.......... ..., 16
rlsisqf.....l 18
rlsitsgspl...................... 18, 19
rltabib........... L. 23
rltnft........ L. 28
rlverbose............. 25
rounded................ ..., 30
T
time....... 13
true......... 30

Data Structures

Data Structures

Documentation of Data Structures

cdl .. 22
dvf_class_specification............ 5
elimination_answer................. 29

cdl ... 23
dvf_class_specification............ 5
elimination_answer 29, 34

46
multiplicity_list.................. 13
substitution_list.................. 12
T
theory.............. 15
multiplicity_list 13, 14
substitution_list........... 12, 14, 36
T

theory 9, 15, 23, 29, 31, 34, 35

Index

Index

‘.reducerc’ profile.................... 6

A

ACFSF... 2, 3, 5, 10, 15, 16, 20, 29, 30, 31,
34, 35
additively split atomic formula. ... 16, 17,

19
advanced atomic formula simplification

................................ 19
advanced Switch...................... 4
algebraic simplification............... 23
algebraically closed field 2
ANSWETL & oot oo e e 4,29, 34
anti-prenex normal form 28, 31
atomic formula list................... 13
atomic formula multiplicity list 13
atomic formula simplification .. 18, 19, 20
atomic formulas 13
automatic simplification.............. 13
automatic tableau 23
available contexts..................... 2
B
Booleanand......................... 11
boolean constant...................... 8
Boolean equivalence.................. 11
Boolean implication.................. 11
boolean normal form.......... 23, 24, 27
Booleannot 11
boolean operator...................... 7
Booleanor................. 11
Boolean replication 11
bound variables...................... 14
bracket......... 7
branch-wise tableau iteration 23
breadth first search............... 30, 31

bugreport.............. 1

47
C
CAD. . 29
cancel GCD L L 20
cancel powersof p................... 20
canonical ordering 16
case distinction 22
CGB ittt 3, 29
chains of binary relations........... 8, 10
chains of binary relations in the input.
................................ 10
change boolean structure............. 22
closure............. 8
ONF .ot 23, 27
complex numbers 2
complex theory 35
complexity of terms 24, 25, 35
comprehensive Groebner basis 29
comprehensive Groebner Basis. 3, 29
condition—solution pairs.............. 29
CONGIUETICE . vt ovveeeeeieeeennn 10
conjunction 7,11
conjunctive normal form 23, 27
constraint L L. 36
context default 6
context selection.................... .. 5
contexts available..................... 2
contract atomic formulas............. 25
convenient relations............... 18, 19
count atomic formulas................ 13
counterexample...................... 30
CUb .o 27

cylindrical algebraic decomposition ... 29,
32

DCFSF . oottt e 5
decision problem 30, 31
decrease degree................... 26, 29
decrease number of clauses 27
deeply nested formula................ 28
default context 6

Index

default language 6
degree 25
degree restriction 25, 29, 30
denominator 9, 10
depth first search................. 30, 31
derivation 11
discretely valued field............. 2,5,9
disjunction........................ 7,11
disjunctive normal form 23, 27, 28
divisibility........... 10
division oL 9
DNF ... 23, 27, 28

DVFSF. ... 2, 3, 4, 5, 10, 15, 16, 17, 20, 21,
23, 26, 29, 31, 34, 35

E

elimination set....................... 29
epsilon.............. .o 30
equal subformulas 16, 17
equation........... 8, 10, 11
equivalence..................... . 7
evaluate atomic formulas ... 18, 20, 25, 30
evaluate reduced form................ 25
existential closure..................... 8
explode atomic formulas.............. 21
explode terms.................... 16, 17
expression input 7,8, 10, 11
expression output.............. 7
extend theory 34, 35
extended quantifier elimination 29
F

factorization. 13, 14, 18, 19, 20, 21
factors (irreducible)............... 13, 14
fix Switch 4
flatten nested operators 16
for loop action.................... ... 11
formula structure 14
free variables 14

functions............................. 5

48

G
GCD ottt 20
generate theory...................... 35
generic cylindrical algebraic decomposition

................................ 35
generic Hermitian quantifier elimination

................................ 35
generic quantifier elimination. 34, 35
geometric problem................. 3, 34
greatest common divisor.............. 20
Groebner basis 23
Groebner simplifier 23
H
Hermitian quantifier elimination 34
heuristic L 31
homepage 1
|
IBALP ..o 5
ideal membership test................ 24
idempotent simplification............. 17
implication 7
implicit theory................ 16, 18, 19
inequality 8, 10, 11
infeasible 36
infinity................. 30
input facilities............... 7,8, 10, 11
integer factorization.................. 21
Inverse............. ..o i 9
involutivemot 16
irreducible factors 13, 14
irreducible factors list 13
irreducible factors multiplicity list. 14
iterative tableau..................... 23

Index

L

language..................... ... 5, 27
language default 6
language selection..................... 5
length......... 12
linear optimization................... 36
list of atomic formulas................ 13
list of irreducible factors.............. 13
listof terms 14
list(s) of variables.................... 14
loading REDLOGc.uun... 5
local quantifier elimination 35

M

matrix of a formula 14
move quantifiers inside 28
multiple occurrences 17

multiplicatively split atomic formula .. 16,
17, 18, 20, 21

multiplicity list of atomic formulas.... 13

multiplicity list of irreducible factors .. 14

multiplicity list of terms.............. 14

N

negation il 7
negation normal form 27
network analysis................... 3, 34
NNF .ot 27
non-degeneracy conditions............ 34
non-ordering inequalities 18
normal form 13, 23, 24, 27, 28
number of atomic formulas 13

O

OFSF .. 2, 3,4, 5,8, 10, 15, 16, 18, 20, 26,
29, 30, 31, 35, 36

optimization.............., 36

ordered field 2,8

orderingoiiiii... 8, 10

49
ordering constraint................... 18
ordering inequality 18
ordering relations 19
P
p-adic number............ 2,5
p-adic valuation 5
parametric denominator............ 9, 10
parity decomposition 18, 19
partial cylindrical algebraic decomposition
................................ 29
PASF . . e 5
physical problems.................... 34
PNF .ot 28
polynomial reduction 23, 25
positive head coefficient 18, 20
powerof p......... 20, 21
predicates 5
prefer orderings...................... 19
prefer weak orderings 18
prenex normal form............... 28, 31
primitive over the integers......... 18, 20
protocol L 13, 25
Q
quadratic constraint.................. 31
quadratic special case 30
quantifier 7,8, 14, 28
quantifier block................ 31
quantifier changes.................... 28
quantifier elimination ... 8, 29, 30, 31, 32,
34, 35
quantifier-free equivalent 29, 31

Index

R

radical membership test........... 24, 25
rational numbers...................... 9
real closed field..................... 2,8
real numbers 2
realtime............................ 13
reciprocal 9
reduce polynomials 23, 25
relations 5
remove quantifiers 14
rename variables..................... 28
replication. 7
revgradlex 25

S

sample solution 29
SAVE SPACE . . o v veve e 30
save time.............. 30
search heuristic...................... 31
separate roots 31
set of atomic formulas................ 13
set of irreducible factors.............. 13
set of variables 14
sign conditions 26

simplification . . .
21, 23, 35

simplification of atomic formulas.. 18, 19,
20

13, 15, 16, 17, 18, 19, 20,

simplifier recognized implication 27
small satisfaction sets 19
smart BNF computation 27
smart simplification............... 16, 17
solution.................... 30, 36
solution points....................... 29
sort atomic formulas 17

split atomic formula ... 16, 17, 18, 19, 20,

21
split trivial square sum............... 19
squarefree part................ 18, 19, 20
standard simplifier................ 15, 25

starting REDLOGouvenenen... 5

50
strict divisibility 10
strict orderings 18
structure of formula.................. 14
substitution............ 12, 14, 24, 26, 31
subsumption 27
super quadratic special case 30
SUPPOTt « o vt 1
switch ... o 4
T
tableau 23, 28
tag variable L 25
term list 14
term multiplicity list 14
term normal form................. ... 28
termorder 25
theory L. 5, 34
theory (implicit)..................... 16
time ... 13
trivial square sum 18, 19

truth value ... 8, 12, 13, 16, 18, 20, 25, 30

U

universal closure 8
unsplit atomic formulas 25
update ... 1

valuation (p-adic)..................... 5
valuation relation................. 20, 21
valued field............., 5
variable list(s) 14
variable renaming.................... 28
variable-free atomic formula....... 18, 20
verbosity output.................. 13, 25
virtual substitution 29

Index

A%

wall clock time

weak divisibility
weak orderings

Short Contents

1 Introduction .. eeeveeeeeeeesoeoesoesesoesasocos 2
2 Loading and Context Selection, 5
3 Format and Handling of Formulas.................... 7
4 Simplification . v v v e eeeeeeoeeessseoeseccooossas 15
5 Normal FOorms « .o v v v vt v e v vt v eveeseoesseoesnnas 27
6 Quantifier Elimination and Variants. . .« o o oo v v v v v v v n 29
7 References ..o uove e oo eeeeeeeeeeseeessosasnnnas 37
Functions . e o v v v v v o et v e ottt eeoeseeeessossessesse 40
Switches and VariableS . o o v v v v v vt e e v e e eeeonns 44
Data StructureS. o v o o o v e v e s v v oo s vesesoossoocasonoas 46

ii

Table of Contents

Introduction............................... 2

1.1 Comtexts .ottt 2

1.2 OVEIVIEW . o oe et e e 3

1.3 Conventionsoeeiuniiiin 4

2 Loading and Context Selection 5
2.1 Loading Redlogc o i 5

2.2 Context Selection 5

3 Format and Handling of Formulas........... 7
3.1 First-order Operators.......... ..., 7

3.2 ClOSUTES . v v e vttt e et 8

3.3 OFSFE Operatorsouuuineni i 8

3.4 DVFSF Operators.oouuuineiniie i 9

3.5 ACFSFE Operators., 10

3.6 PASFE Operatorscooiiiinnneiiiann.. 10

3.7 IBALP Operatorscoeuiuneeiineniinennnan... 11

3.8 DCFSF Operators.covuinen i 11

3.9 Extended Built-in Commands........................... 11

3.10 Global Switches.............coo ... 12

3.11 Basic Functions on Formulas........................... 13

4 Simplification................, 15
4.1 Standard Simplifier........... 15

4.1.1 General Features of the Standard Simplifier. 15

4.1.2 General Standard Simplifier Switches............ 16

4.1.3 OFSF-specific Simplifications................... 18

4.1.4 OFSF-specific Standard Simplifier Switches. 18

4.1.5 ACFSF-specific Simplifications.................. 20

4.1.6 ACFSF-specific Standard Simplifier Switches 20

4.1.7 DVFSF-specific Simplifications 20

4.1.8 DVFSF-specific Standard Simplifier Switches 21

4.1.9 PASF-specific Simplifications 21

4.1.10 PASF-specific Standard Simplifier Switches. 22

4.2 Tableau Simplifier......... 22

4.3 Groebmer Simplifier 23

4.4 Degree Decreaser.oouviuiin i 25

5 Normal Forms............................ 27
5.1 Boolean Normal Forms 27

5.2 Miscellaneous Normal Forms 27

6 Quantifier Elimination and Variants........ 29
6.1 Quantifier Elimination................. 29

6.1.1 Virtual Substitution 29

6.1.2 Cylindrical Algebraic Decomposition 32

6.1.3 Hermitian Quantifier Elimination 34

6.2 Generic Quantifier Elimination 34

6.3 Local Quantifier Elimination............................ 35

6.4 Linear Optimization.............., 35

7 Referencescoiiiiiiieinininnnnnn. 37
Functions........c.ou it enenenennn 40
Documentation of Functions i ... 40
References to Functions i 41
Switches and Variables....................... 44
Documentation of Switches and Variables..................... 44
References to Switches and Variables 45
Data Structures.c.ooviiiiienennnnn. 46
Documentation of Data Structures 46
References to Data Structures. ..., .. 46

