
REDUCE
User’s and

Contributed Packages Manual

Version 3.8

Anthony C. Hearn
Santa Monica, CA
and Codemist Ltd.

Email: reduce@rand.org

July 2003

Copyright c©2004 Anthony C. Hearn. All rights reserved.

Registered system holders may reproduce all or any part of this publication
for internal purposes, provided that the source of the material is clearly
acknowledged, and the copyright notice is retained.

3

Preface

This volume has been prepared by Codemist Ltd. from the LATEX documen-
tation sources distributed with REDUCE 3.8. It incorporates the User’s
Manual, and documentation for all the User Contributed Packages as a sec-
ond Part. A common index and table of contents has been prepared. We
hope that this single volume will be more convenient for REDUCE users
than having two unrelated documents. Particularly in Part 2 the text of the
authors has been extensively edited and modified and so the responsibility
for any errors rests with us.

Parts I and III were written by Anthony C. Hearn. Part II is based on texts
by:
Werner Antweiler, Victor Adamchik, Joachim Apel, Alan Barnes, Andreas
Bernig, Yu. A. Blinkov, Russell Bradford, Chris Cannam, Hubert Caprasse,
C. Dicrescenzo, Alain Dresse, Ladislav Drska, James W. Eastwood, John
Fitch, Kerry Gaskell, Barbara L. Gates, Karin Gatermann, Hans-Gert
Gräbe, David Harper, David Hartley, Anthony C. Hearn, J. A. van Hulzen,
V. Ilyin, Stanley L. Kameny, Fujio Kako, C. Kazasov, Wolfram Koepf,
A. Kryukov, Richard Liska, Kevin McIsaac, Malcolm A. H. MacCallum, Her-
bert Melenk, H. M. Möller, Winfried Neun, Julian Padget, Matt Rebbeck,
F. Richard-Jung, A. Rodionov, Carsten and Franziska Schöbel, Rainer
Schöpf, Stephen Scowcroft, Eberhard Schrüfer, Fritz Schwarz, M. Spiri-
donova, A. Taranov, Lisa Temme, Walter Tietze, V. Tomov, E. Tournier,
Philip A. Tuckey, G. Üçoluk, Mathias Warns, Thomas Wolf, Francis
J. Wright and A. Yu. Zharkov.

February 2004
Codemist Ltd
“Alta”, Horsecombe Vale
Combe Down
Bath, England

4

Contents

I REDUCE User’s Manual 29

Abstract 33

1 Introductory Information 37

2 Structure of Programs 43

2.1 The REDUCE Standard Character Set 43

2.2 Numbers . 44

2.3 Identifiers . 45

2.4 Variables . 46

2.5 Strings . 47

2.6 Comments . 48

2.7 Operators . 48

3 Expressions 53

3.1 Scalar Expressions . 53

3.2 Integer Expressions . 54

3.3 Boolean Expressions . 55

3.4 Equations . 57

3.5 Proper Statements as Expressions 58

5

6 CONTENTS

4 Lists 59

4.1 Operations on Lists . 59

4.1.1 LIST . 60

4.1.2 FIRST . 60

4.1.3 SECOND . 60

4.1.4 THIRD . 60

4.1.5 REST . 60

4.1.6 . (Cons) Operator . 60

4.1.7 APPEND . 61

4.1.8 REVERSE . 61

4.1.9 List Arguments of Other Operators 61

4.1.10 Caveats and Examples 61

5 Statements 63

5.1 Assignment Statements . 64

5.1.1 Set Statement . 65

5.2 Group Statements . 65

5.3 Conditional Statements . 66

5.4 FOR Statements . 67

5.5 WHILE . . . DO . 69

5.6 REPEAT . . . UNTIL . 70

5.7 Compound Statements . 70

5.7.1 Compound Statements with GO TO 72

5.7.2 Labels and GO TO Statements 73

5.7.3 RETURN Statements 73

6 Commands and Declarations 75

6.1 Array Declarations . 75

CONTENTS 7

6.2 Mode Handling Declarations 76

6.3 END . 77

6.4 BYE Command . 77

6.5 SHOWTIME Command . 78

6.6 DEFINE Command . 78

7 Built-in Prefix Operators 79

7.1 Numerical Operators . 79

7.1.1 ABS . 80

7.1.2 CEILING . 80

7.1.3 CONJ . 80

7.1.4 FACTORIAL . 80

7.1.5 FIX . 81

7.1.6 FLOOR . 81

7.1.7 IMPART . 81

7.1.8 MAX/MIN . 81

7.1.9 NEXTPRIME . 82

7.1.10 RANDOM . 82

7.1.11 RANDOM NEW SEED 82

7.1.12 REPART . 83

7.1.13 ROUND . 83

7.1.14 SIGN . 83

7.2 Mathematical Functions . 83

7.3 DF Operator . 87

7.3.1 Adding Differentiation Rules 88

7.4 INT Operator . 88

7.4.1 Options . 89

7.4.2 Advanced Use . 90

8 CONTENTS

7.4.3 References . 90

7.5 LENGTH Operator . 90

7.6 MAP Operator . 91

7.7 MKID Operator . 92

7.8 PF Operator . 93

7.9 SELECT Operator . 93

7.10 SOLVE Operator . 94

7.10.1 Handling of Undetermined Solutions 96

7.10.2 Solutions of Equations Involving Cubics and Quartics 97

7.10.3 Other Options . 99

7.10.4 Parameters and Variable Dependency 100

7.11 Even and Odd Operators . 104

7.12 Linear Operators . 105

7.13 Non-Commuting Operators 106

7.14 Symmetric and Antisymmetric Operators 106

7.15 Declaring New Prefix Operators 107

7.16 Declaring New Infix Operators 108

7.17 Creating/Removing Variable Dependency 109

8 Display and Structuring of Expressions 111

8.1 Kernels . 111

8.2 The Expression Workspace 113

8.3 Output of Expressions . 114

8.3.1 LINELENGTH Operator 114

8.3.2 Output Declarations 115

8.3.3 Output Control Switches 116

8.3.4 WRITE Command . 120

8.3.5 Suppression of Zeros 122

CONTENTS 9

8.3.6 FORTRAN Style Output Of Expressions 122

8.3.7 Saving Expressions for Later Use as Input 125

8.3.8 Displaying Expression Structure 126

8.4 Changing the Internal Order of Variables 128

8.5 Obtaining Parts of Algebraic Expressions 128

8.5.1 COEFF Operator . 128

8.5.2 COEFFN Operator . 129

8.5.3 PART Operator . 130

8.5.4 Substituting for Parts of Expressions 131

9 Polynomials and Rationals 133

9.1 Controlling the Expansion of Expressions 134

9.2 Factorization of Polynomials 134

9.3 Cancellation of Common Factors 137

9.3.1 Determining the GCD of Two Polynomials 138

9.4 Working with Least Common Multiples 138

9.5 Controlling Use of Common Denominators 139

9.6 REMAINDER Operator . 139

9.7 RESULTANT Operator . 140

9.8 DECOMPOSE Operator . 141

9.9 INTERPOL operator . 142

9.10 Obtaining Parts of Polynomials and Rationals 142

9.10.1 DEG Operator . 143

9.10.2 DEN Operator . 143

9.10.3 LCOF Operator . 144

9.10.4 LPOWER Operator 145

9.10.5 LTERM Operator . 145

9.10.6 MAINVAR Operator 146

10 CONTENTS

9.10.7 NUM Operator . 146

9.10.8 REDUCT Operator 146

9.11 Polynomial Coefficient Arithmetic 147

9.11.1 Rational Coefficients in Polynomials 147

9.11.2 Real Coefficients in Polynomials 148

9.11.3 Modular Number Coefficients in Polynomials 149

9.11.4 Complex Number Coefficients in Polynomials 150

10 Substitution Commands 151

10.1 SUB Operator . 151

10.2 LET Rules . 152

10.2.1 FOR ALL . . . LET . 155

10.2.2 FOR ALL . . . SUCH THAT . . . LET 156

10.2.3 Removing Assignments and Substitution Rules 156

10.2.4 Overlapping LET Rules 157

10.2.5 Substitutions for General Expressions 157

10.3 Rule Lists . 160

10.4 Asymptotic Commands . 166

11 File Handling Commands 169

11.1 IN Command . 169

11.2 OUT Command . 170

11.3 SHUT Command . 171

12 Commands for Interactive Use 173

12.1 Referencing Previous Results 174

12.2 Interactive Editing . 174

12.3 Interactive File Control . 176

CONTENTS 11

13 Matrix Calculations 177

13.1 MAT Operator . 177

13.2 Matrix Variables . 178

13.3 Matrix Expressions . 178

13.4 Operators with Matrix Arguments 179

13.4.1 DET Operator . 179

13.4.2 MATEIGEN Operator 180

13.4.3 TP Operator . 181

13.4.4 Trace Operator . 181

13.4.5 Matrix Cofactors . 181

13.4.6 NULLSPACE Operator 182

13.4.7 RANK Operator . 183

13.5 Matrix Assignments . 183

13.6 Evaluating Matrix Elements 184

14 Procedures 185

14.1 Procedure Heading . 186

14.2 Procedure Body . 187

14.3 Using LET Inside Procedures 189

14.4 LET Rules as Procedures . 190

14.5 REMEMBER Statement . 192

15 User Contributed Packages 193

16 Symbolic Mode 197

16.1 Symbolic Infix Operators . 200

16.2 Symbolic Expressions . 200

16.3 Quoted Expressions . 200

16.4 Lambda Expressions . 201

12 CONTENTS

16.5 Symbolic Assignment Statements 202

16.6 FOR EACH Statement . 202

16.7 Symbolic Procedures . 202

16.8 Standard Lisp Equivalent of Reduce Input 203

16.9 Communicating with Algebraic Mode 203

16.9.1 Passing Algebraic Mode Values to Symbolic Mode . . 204

16.9.2 Passing Symbolic Mode Values to Algebraic Mode . . 207

16.9.3 Complete Example . 208

16.9.4 Defining Procedures for Intermode Communication . . 208

16.10Rlisp ’88 . 209

16.11References . 210

17 Calculations in High Energy Physics 211

17.1 High Energy Physics Operators 211

17.1.1 . (Cons) Operator . 211

17.1.2 G Operator for Gamma Matrices 212

17.1.3 EPS Operator . 213

17.2 Vector Variables . 214

17.3 Additional Expression Types 214

17.3.1 Vector Expressions . 214

17.3.2 Dirac Expressions . 215

17.4 Trace Calculations . 215

17.5 Mass Declarations . 216

17.6 Example . 216

17.7 Extensions to More Than Four Dimensions 218

18 REDUCE and Rlisp Utilities 219

18.1 The Standard Lisp Compiler 219

CONTENTS 13

18.2 Fast Loading Code Generation Program 220

18.3 The Standard Lisp Cross Reference Program 221

18.3.1 Restrictions . 222

18.3.2 Usage . 222

18.3.3 Options . 223

18.4 Prettyprinting Reduce Expressions 223

18.5 Prettyprinting Standard Lisp S-Expressions 224

19 Maintaining REDUCE 225

II Additional REDUCE Documentation 227

20 ALGINT: Integration of square roots 231

21 APPLYSYM: Infinitesimal symmetries 235

22 ARNUM: An algebraic number package 239

22.1 DEFPOLY . 239

22.2 SPLIT FIELD . 241

23 ASSIST: Various Useful Utilities 243

23.1 Control of Switches . 243

23.2 Manipulation of the List Structure 244

23.3 The Bag Structure and its Associated Functions 246

23.4 Sets and their Manipulation Functions 249

23.5 General Purpose Utility Functions 249

23.6 Properties and Flags . 253

23.7 Control Functions . 254

23.8 Handling of Polynomials . 256

23.9 Handling of Transcendental Functions 258

14 CONTENTS

23.10Coercion from lists to arrays and converse 259

23.11Handling of n–dimensional Vectors 259

23.12Handling of Grassmann Operators 259

23.13Handling of Matrices . 260

24 ATENSOR: Tensor Simplification 265

24.1 Basic tensors and tensor expressions 265

24.2 Operators for tensors . 266

24.3 Switches . 267

25 AVECTOR: Vector Algebra 269

25.1 Vector declaration and initialisation 269

25.2 Vector algebra . 270

25.3 Vector calculus . 271

25.4 Volume and Line Integration 274

26 BOOLEAN: A package for boolean algebra 277

26.1 Entering boolean expressions 277

26.2 Normal forms . 278

26.3 Evaluation of a boolean expression 280

27 CALI: Commutative Algebra 283

28 CAMAL: Celestial Mechanics 285

28.1 Operators for Fourier Series 285

28.2 A Short Example . 287

29 CGB: Comprehensive Gröbner Bases 289

29.1 Introduction . 289

29.2 Using the REDLOG Package 290

CONTENTS 15

29.3 Term Ordering Mode . 290

29.4 CGB: Comprehensive Gröbner Basis 290

29.5 GSYS: Gröbner System . 291

29.5.1 Switch CGBGEN: Only the Generic Case 292

29.6 GSYS2CGB: Gröbner System to CGB 292

29.7 Switch CGBREAL: Computing over the Real Numbers 293

29.8 Switches . 294

30 CHANGEVR: Change of Variables in DEs 295

30.1 An example: the 2-D Laplace Equation 296

31 COMPACT: Compacting expressions 297

32 CRACK: Overdetermined systems of DEs 299

33 CVIT:Dirac gamma matrix traces 303

34 DEFINT: Definite Integration for REDUCE 305

35 DESIR: Linear Homogeneous DEs 309

36 DFPART: Derivatives of generic functions 313

36.1 Generic Functions . 313

36.2 Partial Derivatives . 314

36.3 Substitutions . 316

37 DUMMY: Expressions with dummy vars 319

38 EDS: Exterior differential systems 323

38.1 Introduction . 323

38.2 Data Structures and Concepts 324

38.2.1 EDS . 324

16 CONTENTS

38.2.2 Coframing . 324

38.2.3 Systems and background coframing 324

38.2.4 Integral elements . 325

38.2.5 Properties and normal form 325

38.3 The EDS Package . 326

38.3.1 Constructing EDS objects 326

38.3.2 Inspecting EDS objects 327

38.3.3 Manipulating EDS objects 328

38.3.4 Analysing and Testing exterior systems 329

38.3.5 Switches . 330

38.3.6 Auxilliary functions 330

38.3.7 Experimental Functions 330

39 EXCALC: Differential Geometry 333

39.1 Declarations . 334

39.2 Exterior Multiplication . 335

39.3 Partial Differentiation . 336

39.4 Exterior Differentiation . 336

39.5 Inner Product . 337

39.6 Lie Derivative . 338

39.7 Hodge-* Duality Operator . 338

39.8 Variational Derivative . 339

39.9 Handling of Indices . 340

39.10Metric Structures . 341

39.11Riemannian Connections . 343

39.12Ordering and Structuring . 343

40 FIDE: Finite differences for PDEs 345

CONTENTS 17

41 FPS: Formal power series 349

42 GENTRAN: A code generation package 351

42.1 Simple Use . 352

42.2 Precision . 353

42.2.1 The EVAL Function 353

42.2.2 The :=: Operator . 354

42.2.3 The ::= Operator . 354

42.2.4 The ::=: Operator . 355

42.3 Explicit Type Declarations 356

42.4 Expression Segmentation . 357

42.5 Template Processing . 358

42.6 Output Redirection . 361

43 GEOMETRY: Plane geometry 363

43.1 Introduction . 363

43.2 Basic Data Types and Constructors 364

43.3 Procedures . 364

43.4 Examples . 368

44 GNUPLOT: Plotting Functions 371

45 GROEBNER: A Gröbner basis package 375

45.1 . 376

45.1.1 Term Ordering . 376

45.2 The Basic Operators . 377

45.2.1 Term Ordering Mode 377

45.2.2 GROEBNER: Calculation of a Gröbner Basis 377

45.2.3 GZERODIM?: Test of dim = 0 378

18 CONTENTS

45.2.4 GDIMENSION, GINDEPENDENT SETS 379

45.2.5 GLEXCONVERT: Conversion to a Lexical Base . . . 379

45.2.6 GROEBNERF: Factorizing Gröbner Bases 380

45.2.7 GREDUCE, PREDUCE: Reduction of Polynomials . 383

45.3 Ideal Decomposition & Equation System Solving 384

46 IDEALS: Arithmetic for polynomial ideals 385

46.1 Initialization . 385

46.2 Bases . 386

46.2.1 Operators . 386

47 INEQ: Support for solving inequalities 387

48 INVBASE: Involutive Bases 389

48.1 The Basic Operators . 389

48.1.1 Term Ordering . 389

48.1.2 Computing Involutive Bases 390

49 LAPLACE: Laplace transforms etc. 393

50 LIE: Classification of Lie algebras 397

50.1 liendmc1 . 397

50.2 lie1234 . 398

51 LIMITS: A package for finding limits 399

51.1 Normal entry points . 399

51.2 Direction-dependent limits . 400

52 LINALG: Linear algebra package 403

52.1 Introduction . 403

52.1.1 Basic matrix handling 403

CONTENTS 19

52.1.2 Constructors . 404

52.1.3 High level algorithms 404

52.1.4 Predicates . 404

52.2 Explanations . 404

52.3 Basic matrix handling . 405

52.4 Constructors . 407

52.5 Higher Algorithms . 411

52.6 Fast Linear Algebra . 413

53 MATHML : MathML Interface for REDUCE 415

54 MODSR: Modular solve and roots 419

55 MRVLIMIT: Limits of “exp-log” functions 421

56 NCPOLY: Ideals in non–comm case 425

56.1 Setup, Cleanup . 426

56.2 Left and right ideals . 427

56.3 Gröbner bases . 428

56.4 Left or right polynomial division 429

56.5 Left or right polynomial reduction 429

56.6 Factorisation . 429

56.7 Output of expressions . 430

57 NORMFORM: matrix normal forms 431

57.1 Smithex . 432

57.2 Smithex int . 432

57.3 Frobenius . 432

57.4 Ratjordan . 433

57.5 Jordansymbolic . 433

20 CONTENTS

57.6 Jordan . 434

58 NUMERIC: Solving numerical problems 437

58.1 Syntax . 437

58.1.1 Intervals, Starting Points 437

58.1.2 Accuracy Control . 438

58.2 Minima . 438

58.3 Roots of Functions/ Solutions of Equations 439

58.4 Integrals . 440

58.5 Ordinary Differential Equations 441

58.6 Bounds of a Function . 442

58.7 Chebyshev Curve Fitting . 443

58.8 General Curve Fitting . 444

58.9 Function Bases . 446

59 ODESOLVE: Ordinary differential eqns 449

59.1 Use . 450

59.2 Commentary . 451

60 ORTHOVEC: scalars and vectors 453

60.1 Initialisation . 453

60.2 Input-Output . 454

60.3 Algebraic Operations . 454

60.4 Differential Operations . 456

60.5 Integral Operations . 458

61 PHYSOP: Operator Calculus 461

61.1 The NONCOM2 Package . 461

61.2 The PHYSOP package . 462

CONTENTS 21

61.2.1 Type declaration commands 462

61.2.2 Ordering of operators in an expression 463

61.2.3 Arithmetic operations on operators 464

61.2.4 Special functions . 466

62 PM: A REDUCE pattern matcher 469

62.1 The Match Function . 470

62.2 Qualified Matching . 471

62.3 Substituting for replacements 471

62.4 Programming with Patterns 472

63 QSUM: q-hypergeometric sums 475

63.1 Elementary q-Functions . 475

63.2 The QGOSPER operator . 477

63.3 The QSUMRECURSION operator 477

63.4 Global Variables and Switches 478

64 RANDPOLY: Random polynomials 481

64.1 Optional arguments . 482

64.2 Advanced use of RANDPOLY 482

64.3 Examples . 484

65 RATAPRX: Rational Approximations 487

65.1 . 488

65.1.1 Periodic Representation 488

65.1.2 Continued Fractions 488

65.1.3 Padé Approximation 490

66 REACTEQN: Chemical reaction equations 493

22 CONTENTS

67 REDLOG: Logic System 495

67.1 Introduction . 495

67.1.1 Contexts . 495

67.1.2 Overview . 496

67.2 Context Selection . 497

67.3 Format and Handling of Formulas 497

67.3.1 First-order Operators 497

67.3.2 OFSF Operators . 498

67.3.3 DVFSF Operators . 498

67.3.4 ACFSF Operators . 499

67.3.5 Extended Built-in Commands 499

67.3.6 Global Switches . 499

67.4 Simplification . 499

67.4.1 Standard Simplifier . 499

67.4.2 Tableau Simplifier . 500

67.4.3 Gröbner Simplifier . 500

67.5 Normal Forms . 501

67.5.1 Boolean Normal Forms 501

67.5.2 Miscellaneous Normal Forms 501

67.6 Quantifier Elimination and Variants 501

67.6.1 Quantifier Elimination 501

67.6.2 Generic Quantifier Elimination 502

67.6.3 Linear Optimization 503

68 RESET: Reset REDUCE to its initial state 505

69 RESIDUE: A residue package 507

70 RLFI: REDUCE LaTeX formula interface 509

CONTENTS 23

71 ROOTS: A REDUCE root finding package 513

71.1 Top Level Functions . 513

71.1.1 Functions that refer to real roots only 513

71.1.2 Functions that return both real and complex roots . . 514

71.1.3 Other top level functions 515

71.2 Switches Used in Input . 516

71.3 Root Package Switches . 517

72 RSOLVE: Rational polynomial solver 519

72.1 Examples . 520

73 SCOPE: Source code optimisation package 521

74 SETS: A basic set theory package 525

74.1 Infix operator precedence . 525

74.2 Explicit set representation and MKSET 526

74.3 Union and intersection . 526

74.4 Symbolic set expressions . 526

74.5 Set difference . 527

74.6 Predicates on sets . 527

74.6.1 Set membership . 528

74.6.2 Set inclusion . 528

74.6.3 Set equality . 530

75 SPARSE: Sparse Matrices 531

75.1 Introduction . 531

75.2 Sparse Matrix Calculations 531

75.3 Linear Algebra Package for Sparse Matrices 532

75.3.1 Basic matrix handling 532

24 CONTENTS

75.3.2 Constructors . 532

75.3.3 High level algorithms 532

75.3.4 Predicates . 533

76 SPDE: Symmetry groups of PDE’s 535

76.1 System Functions and Variables 535

77 SPECFN: Package for special functions 539

77.1 Simplification and Approximation 541

77.2 Constants . 541

77.3 Functions . 541

78 SPECFN2: Special special functions 545

78.1 REDUCE operator HYPERGEOMETRIC 545

78.2 Enlarging the HYPERGEOMETRIC operator 546

79 SUM: A package for series summation 547

80 SUSY2: Super Symmetry 551

80.1 Operators . 552

80.1.1 Operators for constructing Objects 552

80.1.2 Commands . 553

80.2 Options . 555

81 SYMMETRY: Symmetric matrices 557

81.1 Operators for linear representations 557

81.2 Display Operators . 559

82 TAYLOR: Manipulation of Taylor series 561

83 TPS: A truncated power series package 567

CONTENTS 25

83.1 Basic Truncated Power Series 568

83.1.1 PS Operator . 568

83.1.2 PSORDLIM Operator 569

83.2 Controlling Power Series . 570

83.2.1 PSTERM Operator 570

83.2.2 PSORDER Operator 570

83.2.3 PSSETORDER Operator 570

83.2.4 PSDEPVAR Operator 571

83.2.5 PSEXPANSIONPT operator 571

83.2.6 PSFUNCTION Operator 571

83.2.7 PSCHANGEVAR Operator 571

83.2.8 PSREVERSE Operator 572

83.2.9 PSCOMPOSE Operator 572

83.2.10PSSUM Operator . 573

83.2.11Arithmetic Operations 574

83.2.12Differentiation . 575

83.3 Restrictions and Known Bugs 575

84 TRI: TeX REDUCE interface 577

84.1 Switches for TRI . 577

84.1.1 Adding Translations 578

84.2 Examples of Use . 579

85 TRIGSIMP: Trigonometric simplification 583

85.1 Simplifiying trigonometric expressions 583

85.2 Factorising trigonometric expressions 585

85.3 GCDs of trigonometric expressions 586

86 WU: Wu algorithm for poly systems 587

26 CONTENTS

87 XCOLOR: Color factor in gauge theory 589

88 XIDEAL: Gröbner for exterior algebra 593

88.1 Operators . 594

88.2 Switches . 595

88.3 Examples . 596

89 ZEILBERG: Indef & definite summation 599

89.1 The GOSPER summation operator 599

89.2 EXTENDED GOSPER operator 600

89.3 SUMRECURSION operator 601

89.4 HYPERRECURSION operator 601

89.5 HYPERSUM operator . 602

89.6 SUMTOHYPER operator . 603

89.7 Simplification Operators . 604

90 ZTRANS: Z-transform package 607

III Standard Lisp Report 611

91 The Standard Lisp Report 613

91.1 Introduction . 613

91.2 Preliminaries . 615

91.2.1 Primitive Data Types 615

91.2.2 Classes of Primitive Data Types 619

91.2.3 Structures . 619

91.2.4 Function Descriptions 620

91.2.5 Function Types . 621

91.2.6 Error and Warning Messages 622

CONTENTS 27

91.2.7 Comments . 622

91.3 Functions . 622

91.3.1 Elementary Predicates 622

91.3.2 Functions on Dotted-Pairs 625

91.3.3 Identifiers . 627

91.3.4 Property List Functions 629

91.3.5 Function Definition . 631

91.3.6 Variables and Bindings 633

91.3.7 Program Feature Functions 635

91.3.8 Error Handling . 638

91.3.9 Vectors . 639

91.3.10Boolean Functions and Conditionals 640

91.3.11Arithmetic Functions 641

91.3.12MAP Composite Functions 646

91.3.13Composite Functions 648

91.3.14The Interpreter . 653

91.3.15 Input and Output . 655

91.3.16LISP Reader . 660

91.4 System GLOBAL Variables 660

91.5 The Extended Syntax . 662

91.5.1 Definition . 662

91.5.2 The Extended Syntax Rules 664

IV Appendix 667

A Reserved Identifiers 669

Index 671

28 CONTENTS

Part I

REDUCE User’s Manual

29

31

REDUCE
User’s Manual

Version 3.8

Anthony C. Hearn
Santa Monica, CA, USA

Email: reduce@rand.org

July 2003

32

Copyright c©2003 Anthony C. Hearn. All rights reserved.

Registered system holders may reproduce all or any part of this publication
for internal purposes, provided that the source of the material is clearly
acknowledged, and the copyright notice is retained.

Abstract

This document provides the user with a description of the algebraic pro-
gramming system REDUCE. The capabilities of this system include:

1. expansion and ordering of polynomials and rational functions,

2. substitutions and pattern matching in a wide variety of forms,

3. automatic and user controlled simplification of expressions,

4. calculations with symbolic matrices,

5. arbitrary precision integer and real arithmetic,

6. facilities for defining new functions and extending program syntax,

7. analytic differentiation and integration,

8. factorization of polynomials,

9. facilities for the solution of a variety of algebraic equations,

10. facilities for the output of expressions in a variety of formats,

11. facilities for generating numerical programs from symbolic input,

12. Dirac matrix calculations of interest to high energy physicists.

33

34

Acknowledgment

The production of this version of the manual has been the result of the
contributions of a large number of individuals who have taken the time and
effort to suggest improvements to previous versions, and to draft new sec-
tions. Particular thanks are due to Gerry Rayna, who provided a draft
rewrite of most of the first half of the manual. Other people who have made
significant contributions have included John Fitch, Martin Griss, Stan Ka-
meny, Jed Marti, Herbert Melenk, Don Morrison, Arthur Norman, Eberhard
Schrüfer, Larry Seward and Walter Tietze. Finally, Richard Hitt produced
a TEX version of the REDUCE 3.3 manual, which has been a useful guide
for the production of the LATEX version of this manual.

35

36

Chapter 1

Introductory Information

REDUCE is a system for carrying out algebraic operations accurately, no
matter how complicated the expressions become. It can manipulate poly-
nomials in a variety of forms, both expanding and factoring them, and ex-
tract various parts of them as required. REDUCE can also do differenti-
ation and integration, but we shall only show trivial examples of this in
this introduction. Other topics not considered include the use of arrays, the
definition of procedures and operators, the specific routines for high energy
physics calculations, the use of files to eliminate repetitious typing and for
saving results, and the editing of the input text.

Also not considered in any detail in this introduction are the many opt-
ions that are available for varying computational procedures, output forms,
number systems used, and so on.

REDUCE is designed to be an interactive system, so that the user can
input an algebraic expression and see its value before moving on to the next
calculation. For those systems that do not support interactive use, or for
those calculations, especially long ones, for which a standard script can be
defined, REDUCE can also be used in batch mode. In this case, a sequence
of commands can be given to REDUCE and results obtained without any
user interaction during the computation.

In this introduction, we shall limit ourselves to the interactive use of RE-
DUCE, since this illustrates most completely the capabilities of the system.
When REDUCE is called, it begins by printing a banner message like:

REDUCE 3.8, 15-Jul-2003 ...

37

38 CHAPTER 1. INTRODUCTORY INFORMATION

where the version number and the system release date will change from time
to time. It then prompts the user for input by:

1:

You can now type a REDUCE statement, terminated by a semicolon to
indicate the end of the expression, for example:

(x+y+z)^2;

This expression would normally be followed by another character (a Return
on an ASCII keyboard) to “wake up” the system, which would then input
the expression, evaluate it, and return the result:

2 2 2
X + 2*X*Y + 2*X*Z + Y + 2*Y*Z + Z

Let us review this simple example to learn a little more about the way that
REDUCE works. First, we note that REDUCE deals with variables, and
constants like other computer languages, but that in evaluating the former, a
variable can stand for itself. Expression evaluation normally follows the rules
of high school algebra, so the only surprise in the above example might be
that the expression was expanded. REDUCE normally expands expressions
where possible, collecting like terms and ordering the variables in a specific
manner. However, expansion, ordering of variables, format of output and
so on is under control of the user, and various declarations are available to
manipulate these.

Another characteristic of the above example is the use of lower case on input
and upper case on output. In fact, input may be in either mode, but output
is usually in lower case. To make the difference between input and output
more distinct in this manual, all expressions intended for input will be shown
in lower case and output in upper case. However, for stylistic reasons, we
represent all single identifiers in the text in upper case.

Finally, the numerical prompt can be used to reference the result in a later
computation.

As a further illustration of the system features, the user should try:

for i:= 1:40 product i;

The result in this case is the value of 40!,

39

815915283247897734345611269596115894272000000000

You can also get the same result by saying

factorial 40;

Since we want exact results in algebraic calculations, it is essential that inte-
ger arithmetic be performed to arbitrary precision, as in the above example.
Furthermore, the FOR statement in the above is illustrative of a whole range
of combining forms that REDUCE supports for the convenience of the user.

Among the many options in REDUCE is the use of other number systems,
such as multiple precision floating point with any specified number of digits
— of use if roundoff in, say, the 100th digit is all that can be tolerated.

In many cases, it is necessary to use the results of one calculation in suc-
ceeding calculations. One way to do this is via an assignment for a variable,
such as

u := (x+y+z)^2;

If we now use U in later calculations, the value of the right-hand side of the
above will be used.

The results of a given calculation are also saved in the variable WS (for
WorkSpace), so this can be used in the next calculation for further process-
ing.

For example, the expression

df(ws,x);

following the previous evaluation will calculate the derivative of (x+y+z)^2
with respect to X. Alternatively,

int(ws,y);

would calculate the integral of the same expression with respect to y.

REDUCE is also capable of handling symbolic matrices. For example,

matrix m(2,2);

declares m to be a two by two matrix, and

40 CHAPTER 1. INTRODUCTORY INFORMATION

m := mat((a,b),(c,d));

gives its elements values. Expressions that include M and make algebraic
sense may now be evaluated, such as 1/m to give the inverse, 2*m - u*m^2
to give us another matrix and det(m) to give us the determinant of M.

REDUCE has a wide range of substitution capabilities. The system knows
about elementary functions, but does not automatically invoke many of their
well-known properties. For example, products of trigonometrical functions
are not converted automatically into multiple angle expressions, but if the
user wants this, he can say, for example:

(sin(a+b)+cos(a+b))*(sin(a-b)-cos(a-b))
where cos(~x)*cos(~y) = (cos(x+y)+cos(x-y))/2,

cos(~x)*sin(~y) = (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) = (cos(x-y)-cos(x+y))/2;

where the tilde in front of the variables X and Y indicates that the rules
apply for all values of those variables. The result of this calculation is

-(COS(2*A) + SIN(2*B))

See also the user-contributed packages ASSIST (chapter 23), CAMAL (chap-
ter 28) and TRIGSIMP (chapter 85).

Another very commonly used capability of the system, and an illustration
of one of the many output modes of REDUCE, is the ability to output
results in a FORTRAN compatible form. Such results can then be used in
a FORTRAN based numerical calculation. This is particularly useful as a
way of generating algebraic formulas to be used as the basis of extensive
numerical calculations.

For example, the statements

on fort;
df(log(x)*(sin(x)+cos(x))/sqrt(x),x,2);

will result in the output

ANS=(-4.*LOG(X)*COS(X)*X**2-4.*LOG(X)*COS(X)*X+3.*
. LOG(X)*COS(X)-4.*LOG(X)*SIN(X)*X**2+4.*LOG(X)*
. SIN(X)*X+3.*LOG(X)*SIN(X)+8.*COS(X)*X-8.*COS(X)-8.
. *SIN(X)*X-8.*SIN(X))/(4.*SQRT(X)*X**2)

41

These algebraic manipulations illustrate the algebraic mode of REDUCE.
REDUCE is based on Standard Lisp. A symbolic mode is also available for
executing Lisp statements. These statements follow the syntax of Lisp, e.g.

symbolic car ’(a);

Communication between the two modes is possible.

With this simple introduction, you are now in a position to study the ma-
terial in the full REDUCE manual in order to learn just how extensive the
range of facilities really is. If further tutorial material is desired, the seven
REDUCE Interactive Lessons by David R. Stoutemyer are recommended.
These are normally distributed with the system.

42 CHAPTER 1. INTRODUCTORY INFORMATION

Chapter 2

Structure of Programs

A REDUCE program consists of a set of functional commands which are
evaluated sequentially by the computer. These commands are built up from
declarations, statements and expressions. Such entities are composed of
sequences of numbers, variables, operators, strings, reserved words and de-
limiters (such as commas and parentheses), which in turn are sequences of
basic characters.

2.1 The REDUCE Standard Character Set

The basic characters which are used to build REDUCE symbols are the
following:

1. The 26 letters a through z

2. The 10 decimal digits 0 through 9

3. The special characters ! ” $ % ’ () * + , - . / : ; < > = { } <blank>

With the exception of strings and characters preceded by an exclamation
mark, the case of characters is ignored: depending of the underlying LISP
they will all be converted internally into lower case or upper case: ALPHA,
Alpha and alpha represent the same symbol. Most implementations allow
you to switch this conversion off. The operating instructions for a particular
implementation should be consulted on this point. For portability, we shall
limit ourselves to the standard character set in this exposition.

43

44 CHAPTER 2. STRUCTURE OF PROGRAMS

2.2 Numbers

There are several different types of numbers available in REDUCE. Integers
consist of a signed or unsigned sequence of decimal digits written without a
decimal point, for example:

-2, 5396, +32

In principle, there is no practical limit on the number of digits permitted
as exact arithmetic is used in most implementations. (You should however
check the specific instructions for your particular system implementation to
make sure that this is true.) For example, if you ask for the value of 22000

you get it displayed as a number of 603 decimal digits, taking up nine lines
of output on an interactive display. It should be borne in mind of course
that computations with such long numbers can be quite slow.

Numbers that aren’t integers are usually represented as the quotient of two
integers, in lowest terms: that is, as rational numbers.

In essentially all versions of REDUCE it is also possible (but not always
desirable!) to ask REDUCE to work with floating point approximations to
numbers again, to any precision. Such numbers are called real. They can
be input in two ways:

1. as a signed or unsigned sequence of any number of decimal digits with
an embedded or trailing decimal point.

2. as in 1. followed by a decimal exponent which is written as the letter
E followed by a signed or unsigned integer.

e.g. 32. +32.0 0.32E2 and 320.E-1 are all representations of 32.

The declaration SCIENTIFIC NOTATION controls the output format of float-
ing point numbers. At the default settings, any number with five or less
digits before the decimal point is printed in a fixed-point notation, e.g.,
12345.6. Numbers with more than five digits are printed in scientific no-
tation, e.g., 1.234567E+5. Similarly, by default, any number with eleven
or more zeros after the decimal point is printed in scientific notation. To
change these defaults, SCIENTIFIC NOTATION can be used in one of two ways.
SCIENTIFIC NOTATION m;, where m is a positive integer, sets the printing
format so that a number with more than m digits before the decimal point,
or m or more zeros after the decimal point, is printed in scientific notation.

2.3. IDENTIFIERS 45

SCIENTIFIC NOTATION {m,n}, with m and n both positive integers, sets the
format so that a number with more than m digits before the decimal point,
or n or more zeros after the decimal point is printed in scientific notation.

CAUTION: The unsigned part of any number may not begin with a dec-
imal point, as this causes confusion with the CONS (.) operator, i.e., NOT
ALLOWED: .5 -.23 +.12; use 0.5 -0.23 +0.12 instead.

2.3 Identifiers

Identifiers in REDUCE consist of one or more alphanumeric characters (i.e.
alphabetic letters or decimal digits) the first of which must be alphabetic.
The maximum number of characters allowed is implementation dependent,
although twenty-four is permitted in most implementations. In addition,
the underscore character () is considered a letter if it is within an identifier.
For example,

a az p1 q23p a_very_long_variable

are all identifiers, whereas

_a

is not.

A sequence of alphanumeric characters in which the first is a digit is inter-
preted as a product. For example, 2ab3c is interpreted as 2*ab3c. There
is one exception to this: If the first letter after a digit is E, the system will
try to interpret that part of the sequence as a real number, which may fail
in some cases. For example, 2E12 is the real number 2.0 ∗ 1012, 2e3c is
2000.0*C, and 2ebc gives an error.

Special characters, such as −, *, and blank, may be used in identifiers too,
even as the first character, but each must be preceded by an exclamation
mark in input. For example:

light!-years d!*!*n good! morning
!$sign !5goldrings

CAUTION: Many system identifiers have such special characters in their
names (especially * and =). If the user accidentally picks the name of one
of them for his own purposes it may have catastrophic consequences for his

46 CHAPTER 2. STRUCTURE OF PROGRAMS

REDUCE run. Users are therefore advised to avoid such names.

Identifiers are used as variables, labels and to name arrays, operators and
procedures.

Restrictions

The reserved words listed in another section may not be used as identifiers.
No spaces may appear within an identifier, and an identifier may not extend
over a line of text. (Hyphenation of an identifier, by using a reserved char-
acter as a hyphen before an end-of-line character is possible in some versions
of REDUCE).

2.4 Variables

Every variable is named by an identifier, and is given a specific type. The
type is of no concern to the ordinary user. Most variables are allowed to
have the default type, called scalar. These can receive, as values, the rep-
resentation of any ordinary algebraic expression. In the absence of such a
value, they stand for themselves.

Reserved Variables

Several variables in REDUCE have particular properties which should not
be changed by the user. These variables include:

E Intended to represent the base of the natural logarithms.
log(e), if it occurs in an expression, is automatically replaced
by 1. If ROUNDED is on, E is replaced by the value of E to the
current degree of floating point precision.

I Intended to represent the square root of −1. i^2 is replaced by
−1, and appropriately for higher powers of I. This applies only
to the symbol I used on the top level, not as a formal parameter
in a procedure, a local variable, nor in the context for i:= ...

INFINITY Intended to represent ∞ in limit and power series calculations
for example. Note however that the current system does not do

2.5. STRINGS 47

proper arithmetic on ∞. For example, infinity + infinity
is 2*infinity.

NIL In REDUCE (algebraic mode only) taken as a synonym for zero.
Therefore NIL cannot be used as a variable.

PI Intended to represent the circular constant. With ROUNDED on,
it is replaced by the value of π to the current degree of floating
point precision.

T Should not be used as a formal parameter or local variable in
procedures, since conflict arises with the symbolic mode meaning
of T as true.

Other reserved variables, such as LOW POW, described in other sections, are
listed in Appendix A.

Using these reserved variables inappropriately will lead to errors.

There are also internal variables used by REDUCE that have similar re-
strictions. These usually have an asterisk in their names, so it is unlikely a
casual user would use one. An example of such a variable is K!* used in the
asymptotic command package.

Certain words are reserved in REDUCE. They may only be used in the man-
ner intended. A list of these is given in the section “Reserved Identifiers”.
There are, of course, an impossibly large number of such names to keep in
mind. The reader may therefore want to make himself a copy of the list,
deleting the names he doesn’t think he is likely to use by mistake.

2.5 Strings

Strings are used in WRITE statements, in other output statements (such as
error messages), and to name files. A string consists of any number of
characters enclosed in double quotes. For example:

"A String".

Lower case characters within a string are not converted to upper case.

The string "" represents the empty string. A double quote may be included
in a string by preceding it by another double quote. Thus "a""b" is the
string a"b, and """" is the string ".

48 CHAPTER 2. STRUCTURE OF PROGRAMS

2.6 Comments

Text can be included in program listings for the convenience of human read-
ers, in such a way that REDUCE pays no attention to it. There are two
ways to do this:

1. Everything from the word COMMENT to the next statement terminator,
normally ; or $, is ignored. Such comments can be placed anywhere a
blank could properly appear. (Note that END and >> are not treated
as COMMENT delimiters!)

2. Everything from the symbol % to the end of the line on which it appears
is ignored. Such comments can be placed as the last part of any line.
Statement terminators have no special meaning in such comments.
Remember to put a semicolon before the % if the earlier part of the
line is intended to be so terminated. Remember also to begin each line
of a multi-line % comment with a % sign.

2.7 Operators

Operators in REDUCE are specified by name and type. There are two
types, infix and prefix. Operators can be purely abstract, just symbols
with no properties; they can have values assigned (using := or simple LET
declarations) for specific arguments; they can have properties declared for
some collection of arguments (using more general LET declarations); or they
can be fully defined (usually by a procedure declaration).

Infix operators have a definite precedence with respect to one another, and
normally occur between their arguments. For example:

a + b - c (spaces optional)
x<y and y=z (spaces required where shown)

Spaces can be freely inserted between operators and variables or operators
and operators. They are required only where operator names are spelled out
with letters (such as the AND in the example) and must be unambiguously
separated from another such or from a variable (like Y). Wherever one space
can be used, so can any larger number.

2.7. OPERATORS 49

Prefix operators occur to the left of their arguments, which are written as
a list enclosed in parentheses and separated by commas, as with normal
mathematical functions, e.g.,

cos(u)
df(x^2,x)
q(v+w)

Unmatched parentheses, incorrect groupings of infix operators and the like,
naturally lead to syntax errors. The parentheses can be omitted (replaced
by a space following the operator name) if the operator is unary and the
argument is a single symbol or begins with a prefix operator name:

cos y means cos(y)
cos (-y) – parentheses necessary
log cos y means log(cos(y))
log cos (a+b) means log(cos(a+b))

but

cos a*b means (cos a)*b
cos -y is erroneous (treated as a variable

“cos” minus the variable y)

A unary prefix operator has a precedence higher than any infix operator,
including unary infix operators. In other words, REDUCE will always in-
terpret cos y + 3 as (cos y) + 3 rather than as cos(y + 3).

Infix operators may also be used in a prefix format on input, e.g., +(a,b,c).
On output, however, such expressions will always be printed in infix form
(i.e., a + b + c for this example).

A number of prefix operators are built into the system with predefined prop-
erties. Users may also add new operators and define their rules for simplifi-
cation. The built in operators are described in another section.

Built-In Infix Operators

The following infix operators are built into the system. They are all defined
internally as procedures.

50 CHAPTER 2. STRUCTURE OF PROGRAMS

<infix operator>::= where|:=|or|and|member|memq|=|neq|eq|
>=|>|<=|<|+|-|*|/|^|**|.

These operators may be further divided into the following subclasses:

<assignment operator> ::= :=
<logical operator> ::= or|and|member|memq
<relational operator> ::= =|neq|eq|>=|>|<=|<
<substitution operator> ::= where
<arithmetic operator> ::= +|-|*|/|^|**
<construction operator> ::= .

MEMQ and EQ are not used in the algebraic mode of REDUCE. They are
explained in the section on symbolic mode. WHERE is described in the section
on substitutions.

In previous versions of REDUCE, not was also defined as an infix operator.
In the present version it is a regular prefix operator, and interchangeable
with null.

For compatibility with the intermediate language used by REDUCE, each
special character infix operator has an alternative alphanumeric identifier
associated with it. These identifiers may be used interchangeably with the
corresponding special character names on input. This correspondence is as
follows:

:= setq (the assignment operator)
= equal
>= geq
> greaterp
<= leq
< lessp
+ plus
- difference (if unary, minus)
* times
/ quotient (if unary, recip)
^ or ** expt (raising to a power)
. cons

Note: NEQ is used to mean not equal. There is no special symbol provided
for it.

The above operators are binary, except NOT which is unary and + and *

2.7. OPERATORS 51

which are nary (i.e., taking an arbitrary number of arguments). In addition,
- and / may be used as unary operators, e.g., /2 means the same as 1/2.
Any other operator is parsed as a binary operator using a left association
rule. Thus a/b/c is interpreted as (a/b)/c. There are two exceptions to
this rule: := and . are right associative. Example: a:=b:=c is interpreted
as a:=(b:=c). Unlike ALGOL and PASCAL, ^ is left associative. In other
words, a^b^c is interpreted as (a^b)^c.

The operators <, <=, >, >= can only be used for making comparisons be-
tween numbers. No meaning is currently assigned to this kind of comparison
between general expressions.

Parentheses may be used to specify the order of combination. If parentheses
are omitted then this order is by the ordering of the precedence list defined
by the right-hand side of the <infix operator> table at the beginning of
this section, from lowest to highest. In other words, WHERE has the lowest
precedence, and . (the dot operator) the highest.

52 CHAPTER 2. STRUCTURE OF PROGRAMS

Chapter 3

Expressions

REDUCE expressions may be of several types and consist of sequences of
numbers, variables, operators, left and right parentheses and commas. The
most common types are as follows:

3.1 Scalar Expressions

Using the arithmetic operations + - * / ^ (power) and parentheses, scalar
expressions are composed from numbers, ordinary “scalar” variables (iden-
tifiers), array names with subscripts, operator or procedure names with ar-
guments and statement expressions.

Examples:

x
x^3 - 2*y/(2*z^2 - df(x,z))
(p^2 + m^2)^(1/2)*log (y/m)
a(5) + b(i,q)

The symbol ** may be used as an alternative to the caret symbol (^) for
forming powers, particularly in those systems that do not support a caret
symbol.

Statement expressions, usually in parentheses, can also form part of a scalar
expression, as in the example

w + (c:=x+y) + z .

53

54 CHAPTER 3. EXPRESSIONS

When the algebraic value of an expression is needed, REDUCE determines
it, starting with the algebraic values of the parts, roughly as follows:

Variables and operator symbols with an argument list have the algebraic
values they were last assigned, or if never assigned stand for themselves.
However, array elements have the algebraic values they were last assigned,
or, if never assigned, are taken to be 0.

Procedures are evaluated with the values of their actual parameters.

In evaluating expressions, the standard rules of algebra are applied. Unfor-
tunately, this algebraic evaluation of an expression is not as unambiguous
as is numerical evaluation. This process is generally referred to as “simpli-
fication” in the sense that the evaluation usually but not always produces a
simplified form for the expression.

There are many options available to the user for carrying out such simplifi-
cation. If the user doesn’t specify any method, the default method is used.
The default evaluation of an expression involves expansion of the expression
and collection of like terms, ordering of the terms, evaluation of derivatives
and other functions and substitution for any expressions which have values
assigned or declared (see assignments and LET statements). In many cases,
this is all that the user needs.

The declarations by which the user can exercise some control over the way
in which the evaluation is performed are explained in other sections. For
example, if a real (floating point) number is encountered during evaluation,
the system will normally convert it into a ratio of two integers. If the
user wants to use real arithmetic, he can effect this by the command on
rounded;. Other modes for coefficient arithmetic are described elsewhere.

If an illegal action occurs during evaluation (such as division by zero) or
functions are called with the wrong number of arguments, and so on, an
appropriate error message is generated.

3.2 Integer Expressions

These are expressions which, because of the values of the constants and
variables in them, evaluate to whole numbers.

Examples:

2, 37 * 999, (x + 3)^2 - x^2 - 6*x

3.3. BOOLEAN EXPRESSIONS 55

are obviously integer expressions.

j + k - 2 * j^2

is an integer expression when J and K have values that are integers, or if not
integers are such that “the variables and fractions cancel out”, as in

k - 7/3 - j + 2/3 + 2*j^2.

3.3 Boolean Expressions

A boolean expression returns a truth value. In the algebraic mode of RE-
DUCE, boolean expressions have the syntactical form:

<expression> <relational operator> <expression>

or

<boolean operator> (<arguments>)

or

<boolean expression> <logical operator>
<boolean expression>.

Parentheses can also be used to control the precedence of expressions.

In addition to the logical and relational operators defined earlier as infix
operators, the following boolean operators are also defined:

56 CHAPTER 3. EXPRESSIONS

EVENP(U) determines if the number U is even or not;

FIXP(U) determines if the expression U is integer or not;

FREEOF(U,V) determines if the expression U does not contain the
kernel V anywhere in its structure;

NUMBERP(U) determines if U is a number or not;

ORDP(U,V) determines if U is ordered ahead of V by some canon-
ical ordering (based on the expression structure and
an internal ordering of identifiers);

PRIMEP(U) true if U is a prime object, i.e., any object other than
0 and plus or minus 1 which is only exactly divisible
by itself or a unit.

Examples:

j<1
x>0 or x=-2
numberp x
fixp x and evenp x
numberp x and x neq 0

Boolean expressions can only appear directly within IF, FOR, WHILE, and
UNTIL statements, as described in other sections. Such expressions cannot
be used in place of ordinary algebraic expressions, or assigned to a variable.

NB: For those familiar with symbolic mode, the meaning of some of these
operators is different in that mode. For example, NUMBERP is true only for
integers and reals in symbolic mode.

When two or more boolean expressions are combined with AND, they are
evaluated one by one until a false expression is found. The rest are not
evaluated. Thus

numberp x and numberp y and x>y

does not attempt to make the x>y comparison unless X and Y are both
verified to be numbers.

3.4. EQUATIONS 57

Similarly, evaluation of a sequence of boolean expressions connected by OR
stops as soon as a true expression is found.

NB: In a boolean expression, and in a place where a boolean expression
is expected, the algebraic value 0 is interpreted as false, while all other
algebraic values are converted to true. So in algebraic mode a procedure
can be written for direct usage in boolean expressions, returning say 1 or 0
as its value as in

procedure polynomialp(u,x);
if den(u)=1 and deg(u,x)>=1 then 1 else 0;

One can then use this in a boolean construct, such as

if polynomialp(q,z) and not polynomialp(q,y) then ...

In addition, any procedure that does not have a defined return value (for
example, a block without a RETURN statement in it) has the boolean value
false.

3.4 Equations

Equations are a particular type of expression with the syntax

<expression> = <expression>.

In addition to their role as boolean expressions, they can also be used as
arguments to several operators (e.g., SOLVE), and can be returned as values.

Under normal circumstances, the right-hand-side of the equation is evaluated
but not the left-hand-side. This also applies to any substitutions made by
the SUB operator. If both sides are to be evaluated, the switch EVALLHSEQP
should be turned on.

To facilitate the handling of equations, two selectors, LHS and RHS, which
return the left- and right-hand sides of a equation respectively, are provided.
For example,

lhs(a+b=c) -> a+b
and

rhs(a+b=c) -> c.

58 CHAPTER 3. EXPRESSIONS

3.5 Proper Statements as Expressions

Several kinds of proper statements deliver an algebraic or numerical result
of some kind, which can in turn be used as an expression or part of an
expression. For example, an assignment statement itself has a value, namely
the value assigned. So

2 * (x := a+b)

is equal to 2*(a+b), as well as having the “side-effect” of assigning the value
a+b to X. In context,

y := 2 * (x := a+b);

sets X to a+b and Y to 2*(a+b).

The sections on the various proper statement types indicate which of these
statements are also useful as expressions.

Chapter 4

Lists

A list is an object consisting of a sequence of other objects (including lists
themselves), separated by commas and surrounded by braces. Examples of
lists are:

{a,b,c}

{1,a-b,c=d}

{{a},{{b,c},d},e}.

The empty list is represented as

{}.

4.1 Operations on Lists

Several operators in the system return their results as lists, and a user can
create new lists using braces and commas. Alternatively, one can use the
operator LIST to construct a list. An important class of operations on lists
are MAP and SELECT operations. For details, please refer to the chapters
on MAP, SELECT and the FOR command. See also the documentation on
the ASSIST package.

To facilitate the use of lists, a number of operators are also available for
manipulating them. PART(<list>,n) for example will return the nth ele-
ment of a list. LENGTH will return the length of a list. Several operators are

59

60 CHAPTER 4. LISTS

also defined uniquely for lists. For those familiar with them, these operators
in fact mirror the operations defined for Lisp lists. These operators are as
follows:

4.1.1 LIST

The operator LIST is an alternative to the usage of curly brackets. LIST
accepts an arbitrary number of arguments and returns a list of its argu-
ments. This operator is useful in cases where operators have to be passed
as arguments. E.g.,

list(a,list(list(b,c),d),e); -> {{a},{{b,c},d},e}

4.1.2 FIRST

This operator returns the first member of a list. An error occurs if the
argument is not a list, or the list is empty.

4.1.3 SECOND

SECOND returns the second member of a list. An error occurs if the argument
is not a list or has no second element.

4.1.4 THIRD

This operator returns the third member of a list. An error occurs if the
argument is not a list or has no third element.

4.1.5 REST

REST returns its argument with the first element removed. An error occurs
if the argument is not a list, or is empty.

4.1.6 . (Cons) Operator

This operator adds (“conses”) an expression to the front of a list. For
example:

4.1. OPERATIONS ON LISTS 61

a . {b,c} -> {a,b,c}.

4.1.7 APPEND

This operator appends its first argument to its second to form a new list.
Examples:

append({a,b},{c,d}) -> {a,b,c,d}
append({{a,b}},{c,d}) -> {{a,b},c,d}.

4.1.8 REVERSE

The operator REVERSE returns its argument with the elements in the reverse
order. It only applies to the top level list, not any lower level lists that may
occur. Examples are:

reverse({a,b,c}) -> {c,b,a}
reverse({{a,b,c},d}) -> {d,{a,b,c}}.

4.1.9 List Arguments of Other Operators

If an operator other than those specifically defined for lists is given a single
argument that is a list, then the result of this operation will be a list in which
that operator is applied to each element of the list. For example, the result
of evaluating log{a,b,c} is the expression {LOG(A),LOG(B),LOG(C)}.
There are two ways to inhibit this operator distribution. Firstly, the switch
LISTARGS, if on, will globally inhibit such distribution. Secondly, one can
inhibit this distribution for a specific operator by the declaration LISTARGP.
For example, with the declaration listargp log, log{a,b,c} would eval-
uate to LOG({A,B,C}).
If an operator has more than one argument, no such distribution occurs.

4.1.10 Caveats and Examples

Some of the natural list operations such as member or delete are available
only after loading the package ASSIST.

Please note that a non-list as second argument to CONS (a ”dotted pair”
in LISP terms) is not allowed and causes an ”invalid as list” error.

62 CHAPTER 4. LISTS

a := 17 . 4;

***** 17 4 invalid as list

Also, the initialization of a scalar variable is not the empty list – one has to
set list type variables explicitly, as in the following example:

load_package assist;

procedure lotto (n,m);
begin scalar list_1_n, luckies, hit;

list_1_n := {};
luckies := {};
for k:=1:n do list_1_n := k . list_1_n;
for k:=1:m do

<< hit := part(list_1_n,random(n-k+1) + 1);
list_1_n := delete(hit,list_1_n);
luckies := hit . luckies >>;

return luckies;
end; % In Germany, try lotto (49,6);

Another example: Find all coefficients of a multivariate polynomial with
respect to a list of variables:

procedure allcoeffs(q,lis); % q : polynomial, lis: list of vars
allcoeffs1 (list q,lis);

procedure allcoeffs1(q,lis);
if lis={} then q else
allcoeffs1(foreach qq in q join coeff(qq,first lis),rest lis);

Chapter 5

Statements

A statement is any combination of reserved words and expressions, and has
the syntax

<statement> ::= <expression>|<proper statement>

A REDUCE program consists of a series of commands which are statements
followed by a terminator:

<terminator> ::= ;|$

The division of the program into lines is arbitrary. Several statements can be
on one line, or one statement can be freely broken onto several lines. If the
program is run interactively, statements ending with ; or $ are not processed
until an end-of-line character is encountered. This character can vary from
system to system, but is normally the Return key on an ASCII terminal.
Specific systems may also use additional keys as statement terminators.

If a statement is a proper statement, the appropriate action takes place.

Depending on the nature of the proper statement some result or response
may or may not be printed out, and the response may or may not depend
on the terminator used.

If a statement is an expression, it is evaluated. If the terminator is a semi-
colon, the result is printed. If the terminator is a dollar sign, the result is
not printed. Because it is not usually possible to know in advance how large
an expression will be, no explicit format statements are offered to the user.
However, a variety of output declarations are available so that the output

63

64 CHAPTER 5. STATEMENTS

can be produced in different forms. These output declarations are explained
in Section 8.3.3.

The following sub-sections describe the types of proper statements in RE-
DUCE.

5.1 Assignment Statements

These statements have the syntax

<assignment statement> ::= <expression> := <expression>

The <expression> on the left side is normally the name of a variable, an
operator symbol with its list of arguments filled in, or an array name with
the proper number of integer subscript values within the array bounds. For
example:

a1 := b + c
h(l,m) := x-2*y (where h is an operator)
k(3,5) := x-2*y (where k is a 2-dim. array)

More general assignments such as a+b := c are also allowed. The effect of
these is explained in Section 10.2.5.

An assignment statement causes the expression on the right-hand-side to be
evaluated. If the left-hand-side is a variable, the value of the right-hand-
side is assigned to that unevaluated variable. If the left-hand-side is an
operator or array expression, the arguments of that operator or array are
evaluated, but no other simplification done. The evaluated right-hand-side
is then assigned to the resulting expression. For example, if A is a single-
dimensional array, a(1+1) := b assigns the value B to the array element
a(2).

If a semicolon is used as the terminator when an assignment is issued as a
command (i.e. not as a part of a group statement or procedure or other
similar construct), the left-hand side symbol of the assignment statement is
printed out, followed by a “:=”, followed by the value of the expression on
the right.

It is also possible to write a multiple assignment statement:

<expression> := ... := <expression> := <expression>

5.2. GROUP STATEMENTS 65

In this form, each <expression> but the last is set to the value of the
last <expression>. If a semicolon is used as a terminator, each expression
except the last is printed followed by a “:=” ending with the value of the
last expression.

5.1.1 Set Statement

In some cases, it is desirable to perform an assignment in which both the
left- and right-hand sides of an assignment are evaluated. In this case, the
SET statement can be used with the syntax:

SET(<expression>,<expression>);

For example, the statements

j := 23;
set(mkid(a,j),x);

assigns the value X to A23.

5.2 Group Statements

The group statement is a construct used where REDUCE expects a single
statement, but a series of actions needs to be performed. It is formed by
enclosing one or more statements (of any kind) between the symbols <<
and >>, separated by semicolons or dollar signs – it doesn’t matter which.
The statements are executed one after another.

Examples will be given in the sections on IF and other types of statements
in which the << . . .>> construct is useful.

If the last statement in the enclosed group has a value, then that is also the
value of the group statement. Care must be taken not to have a semicolon
or dollar sign after the last grouped statement, if the value of the group is
relevant: such an extra terminator causes the group to have the value NIL
or zero.

66 CHAPTER 5. STATEMENTS

5.3 Conditional Statements

The conditional statement has the following syntax:

<conditional statement> ::=
IF <boolean expression> THEN <statement> [ELSE <statement>]

The boolean expression is evaluated. If this is true, the first <statement>
is executed. If it is false, the second is.

Examples:

if x=5 then a:=b+c else d:=e+f

if x=5 and numberp y
then <<ff:=q1; a:=b+c>>
else <<ff:=q2; d:=e+f>>

Note the use of the group statement.
Conditional statements associate to the right; i.e.,

IF <a> THEN ELSE IF <c> THEN <d> ELSE <e>

is equivalent to:

IF <a> THEN ELSE (IF <c> THEN <d> ELSE <e>)

In addition, the construction

IF <a> THEN IF THEN <c> ELSE <d>

parses as

IF <a> THEN (IF THEN <c> ELSE <d>).

If the value of the conditional statement is of primary interest, it is often
called a conditional expression instead. Its value is the value of whichever
statement was executed. (If the executed statement has no value, the condi-
tional expression has no value or the value 0, depending on how it is used.)

Examples:

a:=if x<5 then 123 else 456;

5.4. FOR STATEMENTS 67

b:=u + v^(if numberp z then 10*z else 1) + w;

If the value is of no concern, the ELSE clause may be omitted if no action is
required in the false case.

if x=5 then a:=b+c;

Note: As explained in Section 3.3,a if a scalar or numerical expression is
used in place of the boolean expression – for example, a variable is written
there – the true alternative is followed unless the expression has the value
0.

5.4 FOR Statements

The FOR statement is used to define a variety of program loops. Its general
syntax is as follows:

FOR

〈var〉 := 〈number〉
{
STEP 〈number〉 UNTIL

:

}
〈number〉

EACH 〈var〉
{
IN
ON

}
〈list〉

〈action〉 〈exprn〉

where

〈action〉 ::= do|product|sum|collect|join.

The assignment form of the FOR statement defines an iteration over the
indicated numerical range. If expressions that do not evaluate to numbers
are used in the designated places, an error will result.

The FOR EACH form of the FOR statement is designed to iterate down a list.
Again, an error will occur if a list is not used.

The action DO means that <exprn> is simply evaluated and no value kept;
the statement returning 0 in this case (or no value at the top level). COLLECT
means that the results of evaluating <exprn> each time are linked together
to make a list, and JOIN means that the values of <exprn> are themselves
lists that are joined to make one list (similar to CONC in Lisp). Finally,
PRODUCT and SUM form the respective combined value out of the values of
<exprn>.

In all cases, <exprn> is evaluated algebraically within the scope of the cur-
rent value of <var>. If <action> is DO, then nothing else happens. In other

68 CHAPTER 5. STATEMENTS

cases, <action> is a binary operator that causes a result to be built up and
returned by FOR. In those cases, the loop is initialized to a default value (0
for SUM, 1 for PRODUCT, and an empty list for the other actions). The test
for the end condition is made before any action is taken. As in Pascal, if
the variable is out of range in the assignment case, or the <list> is empty
in the FOR EACH case, <exprn> is not evaluated at all.

Examples:

1. If A, B have been declared to be arrays, the following stores 52 through
102 in A(5) through A(10), and at the same time stores the cubes in
the B array:

for i := 5 step 1 until 10 do <<a(i):=i^2; b(i):=i^3>>

2. As a convenience, the common construction

STEP 1 UNTIL

may be abbreviated to a colon. Thus, instead of the above we could
write:

for i := 5:10 do <<a(i):=i^2; b(i):=i^3>>

3. The following sets C to the sum of the squares of 1,3,5,7,9; and D to
the expression x*(x+1)*(x+2)*(x+3)*(x+4):

c := for j:=1 step 2 until 9 sum j^2;
d := for k:=0 step 1 until 4 product (x+k);

4. The following forms a list of the squares of the elements of the list
{a,b,c}:

for each x in {a,b,c} collect x^2;

5. The following forms a list of the listed squares of the elements of the
list {a,b,c} (i.e., {{A^2},{B^2},{C^2}}):

for each x in {a,b,c} collect {x^2};

6. The following also forms a list of the squares of the elements of the
list {a,b,c}, since the JOIN operation joins the individual lists into
one list:

5.5. WHILE . . . DO 69

for each x in {a,b,c} join {x^2};

The control variable used in the FOR statement is actually a new variable,
not related to the variable of the same name outside the FOR statement. In
other words, executing a statement for i:= . . . doesn’t change the system’s
assumption that i2 = −1. Furthermore, in algebraic mode, the value of the
control variable is substituted in <exprn> only if it occurs explicitly in that
expression. It will not replace a variable of the same name in the value of
that expression. For example:

b := a; for a := 1:2 do write b;

prints A twice, not 1 followed by 2.

5.5 WHILE . . . DO

The FOR ...DO feature allows easy coding of a repeated operation in which
the number of repetitions is known in advance. If the criterion for repetition
is more complicated, WHILE ...DO can often be used. Its syntax is:

WHILE <boolean expression> DO <statement>

The WHILE ...DO controls the single statement following DO. If several state-
ments are to be repeated, as is almost always the case, they must be grouped
using the << . . .>> or BEGIN ...END as in the example below.

The WHILE condition is tested each time before the action following the DO is
attempted. If the condition is false to begin with, the action is not performed
at all. Make sure that what is to be tested has an appropriate value initially.

Example:

Suppose we want to add up a series of terms, generated one by one, until we
reach a term which is less than 1/1000 in value. For our simple example, let
us suppose the first term equals 1 and each term is obtained from the one
before by taking one third of it and adding one third its square. We would
write:

ex:=0; term:=1;
while num(term - 1/1000) >= 0 do

<<ex := ex+term; term:=(term + term^2)/3>>;
ex;

70 CHAPTER 5. STATEMENTS

As long as TERM is greater than or equal to (>=) 1/1000 it will be added to
EX and the next TERM calculated. As soon as TERM becomes less than 1/1000
the WHILE test fails and the TERM will not be added.

5.6 REPEAT . . . UNTIL

REPEAT ...UNTIL is very similar in purpose to WHILE ...DO. Its syntax is:

REPEAT <statement> UNTIL <boolean expression>

(PASCAL users note: Only a single statement – usually a group statement
– is allowed between the REPEAT and the UNTIL.)

There are two essential differences:

1. The test is performed after the controlled statement (or group of state-
ments) is executed, so the controlled statement is always executed at
least once.

2. The test is a test for when to stop rather than when to continue, so
its “polarity” is the opposite of that in WHILE ...DO.

As an example, we rewrite the example from the WHILE ...DO section:

ex:=0; term:=1;
repeat <<ex := ex+term; term := (term + term^2)/3>>

until num(term - 1/1000) < 0;
ex;

In this case, the answer will be the same as before, because in neither case
is a term added to EX which is less than 1/1000.

5.7 Compound Statements

Often the desired process can best (or only) be described as a series of
steps to be carried out one after the other. In many cases, this can be
achieved by use of the group statement. However, each step often provides
some intermediate result, until at the end we have the final result wanted.
Alternatively, iterations on the steps are needed that are not possible with

5.7. COMPOUND STATEMENTS 71

constructs such as WHILE or REPEAT statements. In such cases the steps
of the process must be enclosed between the words BEGIN and END forming
what is technically called a block or compound statement. Such a compound
statement can in fact be used wherever a group statement appears. The
converse is not true: BEGIN ...END can be used in ways that << . . .>>
cannot.

If intermediate results must be formed, local variables must be provided in
which to store them. Local means that their values are deleted as soon as
the block’s operations are complete, and there is no conflict with variables
outside the block that happen to have the same name. Local variables are
created by a SCALAR declaration immediately after the BEGIN:

scalar a,b,c,z;

If more convenient, several SCALAR declarations can be given one after an-
other:

scalar a,b,c;
scalar z;

In place of SCALAR one can also use the declarations INTEGER or REAL. In
the present version of REDUCE variables declared INTEGER are expected
to have only integer values, and are initialized to 0. REAL variables on the
other hand are currently treated as algebraic mode SCALARs.

CAUTION: INTEGER, REAL and SCALAR declarations can only be given im-
mediately after a BEGIN. An error will result if they are used after other
statements in a block (including ARRAY and OPERATOR declarations, which
are global in scope), or outside the top-most block (e.g., at the top level). All
variables declared SCALAR are automatically initialized to zero in algebraic
mode (NIL in symbolic mode).

Any symbols not declared as local variables in a block refer to the variables of
the same name in the current calling environment. In particular, if they are
not so declared at a higher level (e.g., in a surrounding block or as parameters
in a calling procedure), their values can be permanently changed.

Following the SCALAR declaration(s), if any, write the statements to be exe-
cuted, one after the other, separated by delimiters (e.g., ; or $) (it doesn’t
matter which). However, from a stylistic point of view, ; is preferred.

The last statement in the body, just before END, need not have a terminator
(since the BEGIN ...END are in a sense brackets confining the block state-

72 CHAPTER 5. STATEMENTS

ments). The last statement must also be the command RETURN followed by
the variable or expression whose value is to be the value returned by the
procedure. If the RETURN is omitted (or nothing is written after the word
RETURN) the procedure will have no value or the value zero, depending on
how it is used (and NIL in symbolic mode). Remember to put a terminator
after the END.

Example:

Given a previously assigned integer value for N, the following block will
compute the Legendre polynomial of degree N in the variable X:

begin scalar seed,deriv,top,fact;
seed:=1/(y^2 - 2*x*y +1)^(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

5.7.1 Compound Statements with GO TO

It is possible to have more complicated structures inside the BEGIN ...END
brackets than indicated in the previous example. That the individual lines
of the program need not be assignment statements, but could be almost
any other kind of statement or command, needs no explanation. For exam-
ple, conditional statements, and WHILE and REPEAT constructions, have an
obvious role in defining more intricate blocks.

If these structured constructs don’t suffice, it is possible to use labels and
GO TOs within a compound statement, and also to use RETURN in places
within the block other than just before the END. The following subsections
discuss these matters in detail. For many readers the following example,
presenting one possible definition of a process to calculate the factorial of N
for preassigned N will suffice:

Example:

begin scalar m;
m:=1;

l: if n=0 then return m;
m:=m*n;
n:=n-1;

5.7. COMPOUND STATEMENTS 73

go to l
end;

5.7.2 Labels and GO TO Statements

Within a BEGIN ...END compound statement it is possible to label state-
ments, and transfer to them out of sequence using GO TO statements. Only
statements on the top level inside compound statements can be labeled, not
ones inside subsidiary constructions like << . . .>>, IF . . . THEN . . . , WHILE
. . . DO . . . , etc.

Labels and GO TO statements have the syntax:

<go to statement> ::= GO TO <label> | GOTO <label>
<label> ::= <identifier>
<labeled statement> ::= <label>:<statement>

Note that statement names cannot be used as labels.

While GO TO is an unconditional transfer, it is frequently used in conditional
statements such as

if x>5 then go to abcd;

giving the effect of a conditional transfer.

Transfers using GO TOs can only occur within the block in which the GO
TO is used. In other words, you cannot transfer from an inner block to an
outer block using a GO TO. However, if a group statement occurs within a
compound statement, it is possible to jump out of that group statement to
a point within the compound statement using a GO TO.

5.7.3 RETURN Statements

The value corresponding to a BEGIN ...END compound statement, such as
a procedure body, is normally 0 (NIL in symbolic mode). By executing a
RETURN statement in the compound statement a different value can be re-
turned. After a RETURN statement is executed, no further statements within
the compound statement are executed.

Examples:

74 CHAPTER 5. STATEMENTS

return x+y;
return m;
return;

Note that parentheses are not required around the x+y, although they are
permitted. The last example is equivalent to return 0 or return nil,
depending on whether the block is used as part of an expression or not.

Since RETURN actually moves up only one block level, in a sense the casual
user is not expected to understand, we tabulate some cautions concerning
its use.

1. RETURN can be used on the top level inside the compound statement,
i.e. as one of the statements bracketed together by the BEGIN ...END

2. RETURN can be used within a top level << . . .>> construction within
the compound statement. In this case, the RETURN transfers control
out of both the group statement and the compound statement.

3. RETURN can be used within an IF . . . THEN . . . ELSE . . . on the top level
within the compound statement.

NOTE: At present, there is no construct provided to permit early termina-
tion of a FOR, WHILE, or REPEAT statement. In particular, the use of RETURN
in such cases results in a syntax error. For example,

begin scalar y;
y := for i:=0:99 do if a(i)=x then return b(i);
...

will lead to an error.

Chapter 6

Commands and Declarations

A command is an order to the system to do something. Some commands
cause visible results (such as calling for input or output); others, usually
called declarations, set options, define properties of variables, or define pro-
cedures. Commands are formally defined as a statement followed by a ter-
minator

<command> ::= <statement> <terminator>
<terminator> ::= ;|$

Some REDUCE commands and declarations are described in the following
sub-sections.

6.1 Array Declarations

Array declarations in REDUCE are similar to FORTRAN dimension state-
ments. For example:

array a(10),b(2,3,4);

Array indices each range from 0 to the value declared. An element of an
array is referred to in standard FORTRAN notation, e.g. A(2).

We can also use an expression for defining an array bound, provided the
value of the expression is a positive integer. For example, if X has the value
10 and Y the value 7 then array c(5*x+y) is the same as array c(57).

If an array is referenced by an index outside its range, an error occurs. If

75

76 CHAPTER 6. COMMANDS AND DECLARATIONS

the array is to be one-dimensional, and the bound a number or a variable
(not a more general expression) the parentheses may be omitted:

array a 10, c 57;

The operator LENGTH applied to an array name returns a list of its dimen-
sions.

All array elements are initialized to 0 at declaration time. In other words,
an array element has an instant evaluation property and cannot stand for
itself. If this is required, then an operator should be used instead.

Array declarations can appear anywhere in a program. Once a symbol is
declared to name an array, it can not also be used as a variable, or to name
an operator or a procedure. It can however be re-declared to be an array,
and its size may be changed at that time. An array name can also continue
to be used as a parameter in a procedure, or a local variable in a compound
statement, although this use is not recommended, since it can lead to user
confusion over the type of the variable.

Arrays once declared are global in scope, and so can then be referenced any-
where in the program. In other words, unlike arrays in most other languages,
a declaration within a block (or a procedure) does not limit the scope of the
array to that block, nor does the array go away on exiting the block (use
CLEAR instead for this purpose).

6.2 Mode Handling Declarations

The ON and OFF declarations are available to the user for controlling various
system options. Each option is represented by a switch name. ON and
OFF take a list of switch names as argument and turn them on and off
respectively, e.g.,

on time;

causes the system to print a message after each command giving the elapsed
CPU time since the last command, or since TIME was last turned off, or the
session began. Another useful switch with interactive use is DEMO, which
causes the system to pause after each command in a file (with the exception
of comments) until a Return is typed on the terminal. This enables a user
to set up a demonstration file and step through it command by command.

6.3. END 77

As with most declarations, arguments to ON and OFF may be strung together
separated by commas. For example,

off time,demo;

will turn off both the time messages and the demonstration switch.

We note here that while most ON and OFF commands are obeyed almost
instantaneously, some trigger time-consuming actions such as reading in
necessary modules from secondary storage.

A diagnostic message is printed if ON or OFF are used with a switch that is
not known to the system. For example, if you misspell DEMO and type

on demq;

you will get the message

***** DEMQ not defined as switch.

6.3 END

The identifier END has two separate uses.

1) Its use in a BEGIN ...END bracket has been discussed in connection with
compound statements.

2) Files to be read using IN should end with an extra END; command. The
reason for this is explained in the section on the IN command. This use
of END does not allow an immediately preceding END (such as the END of a
procedure definition), so we advise using ;END; there.

6.4 BYE Command

The command BYE; (or alternatively QUIT;) stops the execution of REDUCE,
closes all open output files, and returns you to the calling program (usually
the operating system). Your REDUCE session is normally destroyed.

78 CHAPTER 6. COMMANDS AND DECLARATIONS

6.5 SHOWTIME Command

SHOWTIME; prints the elapsed time since the last call of this command or, on
its first call, since the current REDUCE session began. The time is normally
given in milliseconds and gives the time as measured by a system clock. The
operations covered by this measure are system dependent.

6.6 DEFINE Command

The command DEFINE allows a user to supply a new name for any identi-
fier or replace it by any well-formed expression. Its argument is a list of
expressions of the form

<identifier> = <number>|<identifier>|<operator>|
<reserved word>|<expression>

Example:

define be==,x=y+z;

means that BE will be interpreted as an equal sign, and X as the expression
y+z from then on. This renaming is done at parse time, and therefore takes
precedence over any other replacement declared for the same identifier. It
stays in effect until the end of the REDUCE run.

The identifiers ALGEBRAIC and SYMBOLIC have properties which prevent
DEFINE from being used on them. To define ALG to be a synonym for
ALGEBRAIC, use the more complicated construction

put(’alg,’newnam,’algebraic);

Chapter 7

Built-in Prefix Operators

In the following subsections are descriptions of the most useful prefix oper-
ators built into REDUCE that are not defined in other sections (such as
substitution operators). Some are fully defined internally as procedures;
others are more nearly abstract operators, with only some of their proper-
ties known to the system.

In many cases, an operator is described by a prototypical header line as
follows. Each formal parameter is given a name and followed by its allowed
type. The names of classes referred to in the definition are printed in lower
case, and parameter names in upper case. If a parameter type is not com-
monly used, it may be a specific set enclosed in brackets { . . . }. Operators
that accept formal parameter lists of arbitrary length have the parameter
and type class enclosed in square brackets indicating that zero or more oc-
currences of that argument are permitted. Optional parameters and their
type classes are enclosed in angle brackets.

7.1 Numerical Operators

REDUCE includes a number of functions that are analogs of those found in
most numerical systems. With numerical arguments, such functions return
the expected result. However, they may also be called with non-numerical
arguments. In such cases, except where noted, the system attempts to
simplify the expression as far as it can. In such cases, a residual expression
involving the original operator usually remains. These operators are as

79

80 CHAPTER 7. BUILT-IN PREFIX OPERATORS

follows:

7.1.1 ABS

ABS returns the absolute value of its single argument, if that argument has
a numerical value. A non-numerical argument is returned as an absolute
value, with an overall numerical coefficient taken outside the absolute value
operator. For example:

abs(-3/4) -> 3/4
abs(2a) -> 2*ABS(A)
abs(i) -> 1
abs(-x) -> ABS(X)

7.1.2 CEILING

This operator returns the ceiling (i.e., the least integer greater than the given
argument) if its single argument has a numerical value. A non-numerical
argument is returned as an expression in the original operator. For example:

ceiling(-5/4) -> -1
ceiling(-a) -> CEILING(-A)

7.1.3 CONJ

This returns the complex conjugate of an expression, if that argument has
an numerical value. A non-numerical argument is returned as an expression
in the operators REPART and IMPART. For example:

conj(1+i) -> 1-I
conj(a+i*b) -> REPART(A) - REPART(B)*I - IMPART(A)*I

- IMPART(B)

7.1.4 FACTORIAL

If the single argument of FACTORIAL evaluates to a non-negative integer,
its factorial is returned. Otherwise an expression involving FACTORIAL is
returned. For example:

factorial(5) -> 120

7.1. NUMERICAL OPERATORS 81

factorial(a) -> FACTORIAL(A)

7.1.5 FIX

This operator returns the fixed value (i.e., the integer part of the given
argument) if its single argument has a numerical value. A non-numerical
argument is returned as an expression in the original operator. For example:

fix(-5/4) -> -1
fix(a) -> FIX(A)

7.1.6 FLOOR

This operator returns the floor (i.e., the greatest integer less than the given
argument) if its single argument has a numerical value. A non-numerical
argument is returned as an expression in the original operator. For example:

floor(-5/4) -> -2
floor(a) -> FLOOR(A)

7.1.7 IMPART

This operator returns the imaginary part of an expression, if that argu-
ment has an numerical value. A non-numerical argument is returned as an
expression in the operators REPART and IMPART. For example:

impart(1+i) -> 1
impart(a+i*b) -> REPART(B) + IMPART(A)

7.1.8 MAX/MIN

MAX and MIN can take an arbitrary number of expressions as their arguments.
If all arguments evaluate to numerical values, the maximum or minimum of
the argument list is returned. If any argument is non-numeric, an appropri-
ately reduced expression is returned. For example:

max(2,-3,4,5) -> 5
min(2,-2) -> -2.
max(a,2,3) -> MAX(A,3)

82 CHAPTER 7. BUILT-IN PREFIX OPERATORS

min(x) -> X

MAX or MIN of an empty list returns 0.

7.1.9 NEXTPRIME

NEXTPRIME returns the next prime greater than its integer argument, using
a probabilistic algorithm. A type error occurs if the value of the argument
is not an integer. For example:

nextprime(5) -> 7
nextprime(-2) -> 2
nextprime(-7) -> -5
nextprime 1000000 -> 1000003

whereas nextprime(a) gives a type error.

7.1.10 RANDOM

random(n) returns a random number r in the range 0 ≤ r < n. A type error
occurs if the value of the argument is not a positive integer in algebraic mode,
or positive number in symbolic mode. For example:

random(5) -> 3
random(1000) -> 191

whereas random(a) gives a type error.

7.1.11 RANDOM NEW SEED

random new seed(n) reseeds the random number generator to a sequence
determined by the integer argument n. It can be used to ensure that a
repeatable pseudo-random sequence will be delivered regardless of any pre-
vious use of RANDOM, or can be called early in a run with an argument derived
from something variable (such as the time of day) to arrange that different
runs of a REDUCE program will use different random sequences. When a
fresh copy of REDUCE is first created it is as if random new seed(1) has
been obeyed.

A type error occurs if the value of the argument is not a positive integer.

7.2. MATHEMATICAL FUNCTIONS 83

7.1.12 REPART

This returns the real part of an expression, if that argument has an numer-
ical value. A non-numerical argument is returned as an expression in the
operators REPART and IMPART. For example:

repart(1+i) -> 1
repart(a+i*b) -> REPART(A) - IMPART(B)

7.1.13 ROUND

This operator returns the rounded value (i.e, the nearest integer) of its single
argument if that argument has a numerical value. A non-numeric argument
is returned as an expression in the original operator. For example:

round(-5/4) -> -1
round(a) -> ROUND(A)

7.1.14 SIGN

SIGN tries to evaluate the sign of its argument. If this is possible SIGN
returns one of 1, 0 or -1. Otherwise, the result is the original form or a
simplified variant. For example:

sign(-5) -> -1
sign(-a^2*b) -> -SIGN(B)

Note that even powers of formal expressions are assumed to be positive only
as long as the switch COMPLEX is off.

7.2 Mathematical Functions

REDUCE knows that the following represent mathematical functions that
can take arbitrary scalar expressions as their single argument:

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH DILOG EI EXP
HYPOT LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

84 CHAPTER 7. BUILT-IN PREFIX OPERATORS

where LOG is the natural logarithm (and equivalent to LN), and LOGB has two
arguments of which the second is the logarithmic base.

The derivatives of all these functions are also known to the system.

REDUCE knows various elementary identities and properties of these func-
tions. For example:

cos(-x) = cos(x) sin(-x) = - sin (x)
cos(n*pi) = (-1)^n sin(n*pi) = 0
log(e) = 1 e^(i*pi/2) = i
log(1) = 0 e^(i*pi) = -1
log(e^x) = x e^(3*i*pi/2) = -i

Beside these identities, there are a lot of simplifications for elementary func-
tions defined in the REDUCE system as rulelists. In order to view these,
the SHOWRULES operator can be used, e.g.

SHOWRULES tan;

{tan(~n*arbint(~i)*pi + ~(~ x)) => tan(x) when fixp(n),

tan(~x)

=> trigquot(sin(x),cos(x)) when knowledge_about(sin,x,tan)

,

~x + ~(~ k)*pi
tan(----------------)

~d

x k 1
=> - cot(---) when x freeof pi and abs(---)=---,

d d 2

~(~ w) + ~(~ k)*pi w + remainder(k,d)*pi
tan(--------------------) => tan(-----------------------)

~(~ d) d

k
when w freeof pi and ratnump(---) and fixp(k)

d

k

7.2. MATHEMATICAL FUNCTIONS 85

and abs(---)>=1,
d

tan(atan(~x)) => x,

2
df(tan(~x),~x) => 1 + tan(x) }

For further simplification, especially of expressions involving trigonometric
functions, see the TRIGSIMP package documentation.

Functions not listed above may be defined in the special functions package
SPECFN.

The user can add further rules for the reduction of expressions involving
these operators by using the LET command.

In many cases it is desirable to expand product arguments of logarithms, or
collect a sum of logarithms into a single logarithm. Since these are inverse
operations, it is not possible to provide rules for doing both at the same
time and preserve the REDUCE concept of idempotent evaluation. As an
alternative, REDUCE provides two switches EXPANDLOGS and COMBINELOGS
to carry out these operations. Both are off by default. Thus to expand
LOG(X*Y) into a sum of logs, one can say

ON EXPANDLOGS; LOG(X*Y);

and to combine this sum into a single log:

ON COMBINELOGS; LOG(X) + LOG(Y);

At the present time, it is possible to have both switches on at once, which
could lead to infinite recursion. However, an expression is switched from
one form to the other in this case. Users should not rely on this behavior,
since it may change in the next release.

The above transformations will only occur in general if PRECISE is off (it is
on by default), since it is possible to finish up on the wrong Riemann sheet
using such transformations.

The current version of REDUCE does a poor job of simplifying surds. In par-
ticular, expressions involving the product of variables raised to non-integer
powers do not usually have their powers combined internally, even though
they are printed as if those powers were combined. For example, the expres-

86 CHAPTER 7. BUILT-IN PREFIX OPERATORS

sion

x^(1/3)*x^(1/6);

will print as

SQRT(X)

but will have an internal form containing the two exponentiated terms. If
you now subtract sqrt(x) from this expression, you will not get zero. In-
stead, the confusing form

SQRT(X) - SQRT(X)

will result. To combine such exponentiated terms, the switch COMBINEEXPT
should be turned on.

The square root function can be input using the name SQRT, or the power
operation ^(1/2). On output, unsimplified square roots are normally rep-
resented by the operator SQRT rather than a fractional power. With the
default system switch settings, the argument of a square root is first sim-
plified, and any divisors of the expression that are perfect squares taken
outside the square root argument. The remaining expression is left under
the square root. Thus the expression

sqrt(-8a^2*b)

becomes

2*a*sqrt(-2*b).

Note that such simplifications can cause trouble if A is eventually given a
value that is a negative number. If it is important that the positive property
of the square root and higher even roots always be preserved, the switch
PRECISE should be on (the default value). This causes any non-numerical
factors taken out of surds to be represented by their absolute value form.
With PRECISE on then, the above example would become

2*abs(a)*sqrt(-2*b).

The statement that REDUCE knows very little about these functions applies
only in the mathematically exact off rounded mode. If ROUNDED is on, any
of the functions

7.3. DF OPERATOR 87

ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH
ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH EXP HYPOT
LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH

when given a numerical argument has its value calculated to the current
degree of floating point precision. In addition, real (non-integer valued)
powers of numbers will also be evaluated.

If the COMPLEX switch is turned on in addition to ROUNDED, these functions
will also calculate a real or complex result, again to the current degree of
floating point precision, if given complex arguments. For example, with on
rounded,complex;

2.3^(5.6i) -> -0.0480793490914 - 0.998843519372*I
cos(2+3i) -> -4.18962569097 - 9.10922789376*I

7.3 DF Operator

The operator DF is used to represent partial differentiation with respect to
one or more variables. It is used with the syntax:

DF(EXPRN:algebraic[,VAR:kernel<,NUM:integer>]):algebraic.

The first argument is the expression to be differentiated. The remaining
arguments specify the differentiation variables and the number of times they
are applied.

The number NUM may be omitted if it is 1. For example,

df(y,x) = ∂y/∂x
df(y,x,2) = ∂2y/∂x2

df(y,x1,2,x2,x3,2) = ∂5y/∂x2
1 ∂x2∂x

2
3.

The evaluation of df(y,x) proceeds as follows: first, the values of Y and X
are found. Let us assume that X has no assigned value, so its value is X.
Each term or other part of the value of Y that contains the variable X is
differentiated by the standard rules. If Z is another variable, not X itself,
then its derivative with respect to X is taken to be 0, unless Z has previously
been declared to DEPEND on X, in which case the derivative is reported as
the symbol df(z,x).

88 CHAPTER 7. BUILT-IN PREFIX OPERATORS

7.3.1 Adding Differentiation Rules

The LET statement can be used to introduce rules for differentiation of user-
defined operators. Its general form is

FOR ALL <var1>,...,<varn>
LET DF(<operator><varlist>,<vari>)=<expression>

where <varlist> ::= (<var1>,. . . ,<varn>), and <var1>,...,<varn> are the
dummy variable arguments of <operator>.

An analogous form applies to infix operators.

Examples:

for all x let df(tan x,x)= 1 + tan(x)^2;

(This is how the tan differentiation rule appears in the REDUCE source.)

for all x,y let df(f(x,y),x)=2*f(x,y),
df(f(x,y),y)=x*f(x,y);

Notice that all dummy arguments of the relevant operator must be declared
arbitrary by the FOR ALL command, and that rules may be supplied for
operators with any number of arguments. If no differentiation rule appears
for an argument in an operator, the differentiation routines will return as
result an expression in terms of DF. For example, if the rule for the dif-
ferentiation with respect to the second argument of F is not supplied, the
evaluation of df(f(x,z),z) would leave this expression unchanged. (No
DEPEND declaration is needed here, since f(x,z) obviously “depends on” Z.)

Once such a rule has been defined for a given operator, any future differ-
entiation rules for that operator must be defined with the same number of
arguments for that operator, otherwise we get the error message

Incompatible DF rule argument length for <operator>

7.4 INT Operator

INT is an operator in REDUCE for indefinite integration using a combination
of the Risch-Norman algorithm and pattern matching. It is used with the
syntax:

7.4. INT OPERATOR 89

INT(EXPRN:algebraic,VAR:kernel):algebraic.

This will return correctly the indefinite integral for expressions comprising
polynomials, log functions, exponential functions and tan and atan. The
arbitrary constant is not represented. If the integral cannot be done in
closed terms, it returns a formal integral for the answer in one of two ways:

1. It returns the input, INT(...,...) unchanged.

2. It returns an expression involving INTs of some other functions (some-
times more complicated than the original one, unfortunately).

Rational functions can be integrated when the denominator is factorizable by
the program. In addition it will attempt to integrate expressions involving
error functions, dilogarithms and other trigonometric expressions. In these
cases it might not always succeed in finding the solution, even if one exists.

Examples:

int(log(x),x) -> X*(LOG(X) - 1),
int(e^x,x) -> E**X.

The program checks that the second argument is a variable and gives an
error if it is not.

Note: If the int operator is called with 4 arguments, REDUCE will im-
plicitly call the definite integration package (DEFINT) and this package
will interpret the third and fourth arguments as the lower and upper limit
of integration, respectively. For details, consult the documentation on the
DEFINT package.

7.4.1 Options

The switch TRINT when on will trace the operation of the algorithm. It
produces a great deal of output in a somewhat illegible form, and is not of
much interest to the general user. It is normally off.

If the switch FAILHARD is on the algorithm will terminate with an error if
the integral cannot be done in closed terms, rather than return a formal
integration form. FAILHARD is normally off.

The switch NOLNR suppresses the use of the linear properties of integration

90 CHAPTER 7. BUILT-IN PREFIX OPERATORS

in cases when the integral cannot be found in closed terms. It is normally
off.

7.4.2 Advanced Use

If a function appears in the integrand that is not one of the functions EXP,
ERF, TAN, ATAN, LOG, DILOG then the algorithm will make an attempt to
integrate the argument if it can, differentiate it and reach a known function.
However the answer cannot be guaranteed in this case. If a function is known
to be algebraically independent of this set it can be flagged transcendental
by

flag(’(trilog),’transcendental);

in which case this function will be added to the permitted field descriptors
for a genuine decision procedure. If this is done the user is responsible for
the mathematical correctness of his actions.

The standard version does not deal with algebraic extensions. Thus inte-
gration of expressions involving square roots and other like things can lead
to trouble. A contributed package that supports integration of functions
involving square roots is available, however (ALGINT, chapter 20). In ad-
dition there is a definite integration package, DEFINT(chapter 34).

7.4.3 References

A. C. Norman & P. M. A. Moore, “Implementing the New Risch Algorithm”,
Proc. 4th International Symposium on Advanced Comp. Methods in Theor.
Phys., CNRS, Marseilles, 1977.

S. J. Harrington, “A New Symbolic Integration System in Reduce”, Comp.
Journ. 22 (1979) 2.

A. C. Norman & J. H. Davenport, “Symbolic Integration — The Dust
Settles?”, Proc. EUROSAM 79, Lecture Notes in Computer Science 72,
Springer-Verlag, Berlin Heidelberg New York (1979) 398-407.

7.5 LENGTH Operator

LENGTH is a generic operator for finding the length of various objects in the

7.6. MAP OPERATOR 91

system. The meaning depends on the type of the object. In particular, the
length of an algebraic expression is the number of additive top-level terms
its expanded representation.

Examples:

length(a+b) -> 2
length(2) -> 1.

Other objects that support a length operator include arrays, lists and ma-
trices. The explicit meaning in these cases is included in the description of
these objects.

7.6 MAP Operator

The MAP operator applies a uniform evaluation pattern to all members of
a composite structure: a matrix, a list, or the arguments of an operator
expression. The evaluation pattern can be a unary procedure, an operator,
or an algebraic expression with one free variable.

It is used with the syntax:

MAP(U:function,V:object)

Here object is a list, a matrix or an operator expression. Function can be
one of the following:

1. the name of an operator for a single argument: the operator is evalu-
ated once with each element of object as its single argument;

2. an algebraic expression with exactly one free variable, that is a vari-
able preceded by the tilde symbol. The expression is evaluated for
each element of object, where the element is substituted for the free
variable;

3. a replacement rule of the form var => rep where var is a variable
(a kernel without a subscript) and rep is an expression that contains
var. Rep is evaluated for each element of object where the element
is substituted for var. Var may be optionally preceded by a tilde.

The rule form for function is needed when more than one free variable
occurs.

92 CHAPTER 7. BUILT-IN PREFIX OPERATORS

Examples:

map(abs,{1,-2,a,-a}) -> {1,2,ABS(A),ABS(A)}
map(int(~w,x), mat((x^2,x^5),(x^4,x^5))) ->

[3 6]
[x x]
[---- ----]
[3 6]
[]
[5 6]
[x x]
[---- ----]
[5 6]

map(~w*6, x^2/3 = y^3/2 -1) -> 2*X^2=3*(Y^3-2)

You can use MAP in nested expressions. However, you cannot apply MAP to
a non-composed object, e.g. an identifier or a number.

7.7 MKID Operator

In many applications, it is useful to create a set of identifiers for naming
objects in a consistent manner. In most cases, it is sufficient to create
such names from two components. The operator MKID is provided for this
purpose. Its syntax is:

MKID(U:id,V:id|non-negative integer):id

for example

mkid(a,3) -> A3
mkid(apple,s) -> APPLES

while mkid(a+b,2) gives an error.

The SET operator can be used to give a value to the identifiers created by
MKID, for example

set(mkid(a,3),3);

will give A3 the value 2.

7.8. PF OPERATOR 93

7.8 PF Operator

PF(<exp>,<var>) transforms the expression <exp> into a list of partial frac-
tions with respect to the main variable, <var>. PF does a complete partial
fraction decomposition, and as the algorithms used are fairly unsophisti-
cated (factorization and the extended Euclidean algorithm), the code may
be unacceptably slow in complicated cases.

Example: Given 2/((x+1)^2*(x+2)) in the workspace, pf(ws,x); gives the
result

2 - 2 2
{-------,-------,--------------} .

X + 2 X + 1 2
X + 2*X + 1

If you want the denominators in factored form, use off exp;. Thus, with
2/((x+1)^2*(x+2)) in the workspace, the commands off exp; pf(ws,x);
give the result

2 - 2 2
{-------,-------,----------} .

X + 2 X + 1 2
(X + 1)

To recombine the terms, FOR EACH ...SUM can be used. So with the above
list in the workspace, for each j in ws sum j; returns the result

2

2
(X + 2)*(X + 1)

Alternatively, one can use the operations on lists to extract any desired term.

7.9 SELECT Operator

The SELECT operator extracts from a list, or from the arguments of an n–ary
operator, elements corresponding to a boolean predicate. It is used with the
syntax:

SELECT(U:function,V:list)

94 CHAPTER 7. BUILT-IN PREFIX OPERATORS

Function can be one of the following forms:

1. the name of an operator for a single argument: the operator is evalu-
ated once with each element of object as its single argument;

2. an algebraic expression with exactly one free variable, that is a vari-
able preceded by the tilde symbol. The expression is evaluated for
each element of 〈object〉, where the element is substituted for the free
variable;

3. a replacement rule of the form 〈var => rep〉 where var is a variable
(a kernel without subscript) and rep is an expression that contains
var. Rep is evaluated for each element of object where the element
is substituted for var. var may be optionally preceded by a tilde.

The rule form for function is needed when more than one free variable
occurs.

The result of evaluating function is interpreted as a boolean value corre-
sponding to the conventions of REDUCE. These values are composed with
the leading operator of the input expression.

Examples:

select(~w>0 , {1,-1,2,-3,3}) -> {1,2,3}
select(evenp deg(~w,y),part((x+y)^5,0):=list)

-> {X^5 ,10*X^3*Y^2 ,5*X*Y^4}
select(evenp deg(~w,x),2x^2+3x^3+4x^4) -> 4X^4 + 2X^2

7.10 SOLVE Operator

SOLVE is an operator for solving one or more simultaneous algebraic equat-
ions. It is used with the syntax:

SOLVE(EXPRN:algebraic[,VAR:kernel|,VARLIST:list of kernels])
:list.

EXPRN is of the form <expression> or { <expression1>,<expression2>,
. . . }. Each expression is an algebraic equation, or is the difference of the
two sides of the equation. The second argument is either a kernel or a list
of kernels representing the unknowns in the system. This argument may be
omitted if the number of distinct, non-constant, top-level kernels equals the

7.10. SOLVE OPERATOR 95

number of unknowns, in which case these kernels are presumed to be the
unknowns.

For one equation, SOLVE recursively uses factorization and decomposition,
together with the known inverses of LOG, SIN, COS, ^, ACOS, ASIN, and linear,
quadratic, cubic, quartic, or binomial factors. Solutions of equations built
with exponentials or logarithms are often expressed in terms of Lambert’s W
function. This function is (partially) implemented in the special functions
package.

Linear equations are solved by the multi-step elimination method due to
Bareiss, unless the switch CRAMER is on, in which case Cramer’s method is
used. The Bareiss method is usually more efficient unless the system is large
and dense.

Non-linear equations are solved using the Groebner basis package. Users
should note that this can be quite a time consuming process.

Examples:

solve(log(sin(x+3))^5 = 8,x);
solve(a*log(sin(x+3))^5 - b, sin(x+3));
solve({a*x+y=3,y=-2},{x,y});

SOLVE returns a list of solutions. If there is one unknown, each solution is an
equation for the unknown. If a complete solution was found, the unknown
will appear by itself on the left-hand side of the equation. On the other
hand, if the solve package could not find a solution, the “solution” will be
an equation for the unknown in terms of the operator ROOT OF. If there are
several unknowns, each solution will be a list of equations for the unknowns.
For example,

solve(x^2=1,x); -> {X=-1,X=1}

solve(x^7-x^6+x^2=1,x)
6

-> {X=ROOT_OF(X_ + X_ + 1,X_,TAG_1),X=1}

solve({x+3y=7,y-x=1},{x,y}) -> {{X=1,Y=2}}.

The TAG argument is used to uniquely identify those particular solutions.
Solution multiplicities are stored in the global variable ROOT MULTIPLICITIES
rather than the solution list. The value of this variable is a list of the mul-
tiplicities of the solutions for the last call of SOLVE. For example,

96 CHAPTER 7. BUILT-IN PREFIX OPERATORS

solve(x^2=2x-1,x); root_multiplicities;

gives the results

{X=1}

{2}

If you want the multiplicities explicitly displayed, the switch MULTIPLICITIES
can be turned on. For example

on multiplicities; solve(x^2=2x-1,x);

yields the result

{X=1,X=1}

7.10.1 Handling of Undetermined Solutions

When SOLVE cannot find a solution to an equation, it normally returns an
equation for the relevant indeterminates in terms of the operator ROOT OF.
For example, the expression

solve(cos(x) + log(x),x);

returns the result

{X=ROOT_OF(COS(X_) + LOG(X_),X_,TAG_1)} .

An expression with a top-level ROOT OF operator is implicitly a list with
an unknown number of elements (since we don’t always know how many
solutions an equation has). If a substitution is made into such an expression,
closed form solutions can emerge. If this occurs, the ROOT OF construct is
replaced by an operator ONE OF. At this point it is of course possible to
transform the result of the original SOLVE operator expression into a standard
SOLVE solution. To effect this, the operator EXPAND CASES can be used.

The following example shows the use of these facilities:

7.10. SOLVE OPERATOR 97

solve(-a*x^3+a*x^2+x^4-x^3-4*x^2+4,x);
2 3

{X=ROOT_OF(A*X_ - X_ + 4*X_ + 4,X_,TAG_2),X=1}

sub(a=-1,ws);

{X=ONE_OF({2,-1,-2},TAG_2),X=1}

expand_cases ws;

{X=2,X=-1,X=-2,X=1}

7.10.2 Solutions of Equations Involving Cubics and Quartics

Since roots of cubics and quartics can often be very messy, a switch
FULLROOTS is available, that, when off (the default), will prevent the pro-
duction of a result in closed form. The ROOT OF construct will be used in
this case instead.

In constructing the solutions of cubics and quartics, trigonometrical forms
are used where appropriate. This option is under the control of a switch
TRIGFORM, which is normally on.

The following example illustrates the use of these facilities:

let xx = solve(x^3+x+1,x);

xx;
3

{X=ROOT_OF(X_ + X_ + 1,X_)}

on fullroots;

xx;

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
{X=(I*(SQRT(3)*SIN(-----------------------)

3

98 CHAPTER 7. BUILT-IN PREFIX OPERATORS

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
- COS(-----------------------)))/SQRT(3),

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
X=(- I*(SQRT(3)*SIN(-----------------------)

3

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
+ COS(-----------------------)))/SQRT(

3

3),

- SQRT(31)*I
ATAN(---------------)

3*SQRT(3)
2*COS(-----------------------)*I

3
X=----------------------------------}

SQRT(3)

off trigform;

xx;
2/3

{X=(- (SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) - 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2)/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6
*3),

2/3
X=((SQRT(31) - 3*SQRT(3)) *SQRT(3)*I

7.10. SOLVE OPERATOR 99

2/3 2/3
- (SQRT(31) - 3*SQRT(3)) + 2 *SQRT(3)*I

2/3 1/3 1/3
+ 2)/(2*(SQRT(31) - 3*SQRT(3)) *6

1/6
*3),

2/3 2/3
(SQRT(31) - 3*SQRT(3)) - 2

X=-------------------------------------}
1/3 1/3 1/6

(SQRT(31) - 3*SQRT(3)) *6 *3

7.10.3 Other Options

If SOLVESINGULAR is on (the default setting), degenerate systems such as
x+y=0, 2x+2y=0 will be solved by introducing appropriate arbitrary con-
stants. The consistent singular equation 0=0 or equations involving func-
tions with multiple inverses may introduce unique new indeterminant ker-
nels ARBCOMPLEX(j), or ARBINT(j), (j=1,2,...), representing arbitrary com-
plex or integer numbers respectively. To automatically select the principal
branches, do off allbranch; . To avoid the introduction of new inde-
terminant kernels do OFF ARBVARS – then no equations are generated for
the free variables and their original names are used to express the solu-
tion forms. To suppress solutions of consistent singular equations do OFF
SOLVESINGULAR.

To incorporate additional inverse functions do, for example:

put(’sinh,’inverse,’asinh);
put(’asinh,’inverse,’sinh);

together with any desired simplification rules such as

for all x let sinh(asinh(x))=x, asinh(sinh(x))=x;

For completeness, functions with non-unique inverses should be treated as
^, SIN, and COS are in the SOLVE module source.

Arguments of ASIN and ACOS are not checked to ensure that the absolute

100 CHAPTER 7. BUILT-IN PREFIX OPERATORS

value of the real part does not exceed 1; and arguments of LOG are not
checked to ensure that the absolute value of the imaginary part does not
exceed π; but checks (perhaps involving user response for non-numerical
arguments) could be introduced using LET statements for these operators.

7.10.4 Parameters and Variable Dependency

The proper design of a variable sequence supplied as a second argument to
SOLVE is important for the structure of the solution of an equation system.
Any unknown in the system not in this list is considered totally free. E.g.
the call

solve({x=2*z,z=2*y},{z});

produces an empty list as a result because there is no function z = z(x, y)
which fulfills both equations for arbitrary x and y values. In such a case the
share variable requirements displays a set of restrictions for the parameters
of the system:

requirements;

{x - 4*y}

The non-existence of a formal solution is caused by a contradiction which
disappears only if the parameters of the initial system are set such that all
members of the requirements list take the value zero. For a linear system the
set is complete: a solution of the requirements list makes the initial system
solvable. E.g. in the above case a substitution x = 4y makes the equation
set consistent. For a non-linear system only one inconsistency is detected.
If such a system has more than one inconsistency, you must reduce them
one after the other. 1 The set shows you also the dependency among the
parameters: here one of x and y is free and a formal solution of the system
can be computed by adding it to the variable list of solve. The requirement
set is not unique – there may be other such sets.

A system with parameters may have a formal solution, e.g.

solve({x=a*z+1,0=b*z-y},{z,x});

1 The difference between linear and non–linear inconsistent systems is based on the
algorithms which produce this information as a side effect when attempting to find a
formal solution; example: solve({x = a, x = b, y = c, y = d}, {x, y} gives a set {a−b, c−d}
while solve({x2 = a, x2 = b, y2 = c, y2 = d}, {x, y} leads to {a− b}.

7.10. SOLVE OPERATOR 101

y a*y + b
{{z=---,x=---------}}

b b

which is not valid for all possible values of the parameters. The variable
assumptions contains then a list of restrictions: the solutions are valid only
as long as none of these expressions vanishes. Any zero of one of them
represents a special case that is not covered by the formal solution. In the
above case the value is

102 CHAPTER 7. BUILT-IN PREFIX OPERATORS

assumptions;

{b}

which excludes formally the case b = 0; obviously this special parameter
value makes the system singular. The set of assumptions is complete for
both, linear and non–linear systems.

SOLVE rearranges the variable sequence to reduce the (expected) computing
time. This behavior is controlled by the switch varopt, which is on by
default. If it is turned off, the supplied variable sequence is used or the
system kernel ordering is taken if the variable list is omitted. The effect is
demonstrated by an example:

s:= {y^3+3x=0,x^2+y^2=1};

solve(s,{y,x});

6 2
{{y=root_of(y_ + 9*y_ - 9,y_),

3
- y

x=-------}}
3

off varopt; solve(s,{y,x});

6 4 2
{{x=root_of(x_ - 3*x_ + 12*x_ - 1,x_),

4 2
x*(- x + 2*x - 10)

y=-----------------------}}
3

In the first case, solve forms the solution as a set of pairs (yi, x(yi)) be-
cause the degree of x is higher – such a rearrangement makes the internal
computation of the Gröbner basis generally faster. For the second case the
explicitly given variable sequence is used such that the solution has now the
form (xi, y(xi)). Controlling the variable sequence is especially important if
the system has one or more free variables. As an alternative to turning off
varopt, a partial dependency among the variables can be declared using the

7.10. SOLVE OPERATOR 103

depend statement: solve then rearranges the variable sequence but keeps
any variable ahead of those on which it depends.

104 CHAPTER 7. BUILT-IN PREFIX OPERATORS

on varopt;
s:={a^3+b,b^2+c}$
solve(s,{a,b,c});

3 6
{{a=arbcomplex(1),b= - a ,c= - a }}

depend a,c; depend b,c; solve(s,{a,b,c});

{{c=arbcomplex(2),

6
a=root_of(a_ + c,a_),

3
b= - a }}

Here solve is forced to put c after a and after b, but there is no obstacle to
interchanging a and b.

7.11 Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the
declarations EVEN and ODD respectively. Expressions involving an operator
declared in this manner are transformed if the first argument contains a
minus sign. Any other arguments are not affected. In addition, if say F is
declared odd, then f(0) is replaced by zero unless F is also declared non
zero by the declaration NONZERO. For example, the declarations

even f1; odd f2;

mean that

f1(-a) -> F1(A)
f2(-a) -> -F2(A)
f1(-a,-b) -> F1(A,-B)
f2(0) -> 0.

To inhibit the last transformation, say nonzero f2;.

7.12. LINEAR OPERATORS 105

7.12 Linear Operators

An operator can be declared to be linear in its first argument over powers of
its second argument. If an operator F is so declared, F of any sum is broken
up into sums of Fs, and any factors that are not powers of the variable are
taken outside. This means that F must have (at least) two arguments. In
addition, the second argument must be an identifier (or more generally a
kernel), not an expression.

Example:

If F were declared linear, then

5
f(a*x^5+b*x+c,x) -> F(X ,X)*A + F(X,X)*B + F(1,X)*C

More precisely, not only will the variable and its powers remain within the
scope of the F operator, but so will any variable and its powers that had
been declared to DEPEND on the prescribed variable; and so would any ex-
pression that contains that variable or a dependent variable on any level,
e.g. cos(sin(x)).

To declare operators F and G to be linear operators, use:

linear f,g;

The analysis is done of the first argument with respect to the second; any
other arguments are ignored. It uses the following rules of evaluation:

f(0) -> 0
f(-y,x) -> -F(Y,X)
f(y+z,x) -> F(Y,X)+F(Z,X)
f(y*z,x) -> Z*F(Y,X) if Z does not depend on X
f(y/z,x) -> F(Y,X)/Z if Z does not depend on X

To summarize, Y “depends” on the indeterminate X in the above if either of
the following hold:

1. Y is an expression that contains X at any level as a variable, e.g.:
cos(sin(x))

2. Any variable in the expression Y has been declared dependent on X by
use of the declaration DEPEND.

106 CHAPTER 7. BUILT-IN PREFIX OPERATORS

The use of such linear operators can be seen in the paper Fox, J.A. and A. C.
Hearn, “Analytic Computation of Some Integrals in Fourth Order Quantum
Electrodynamics” Journ. Comp. Phys. 14 (1974) 301-317, which contains
a complete listing of a program for definite integration of some expressions
that arise in fourth order quantum electrodynamics.

7.13 Non-Commuting Operators

An operator can be declared to be non-commutative under multiplication
by the declaration NONCOM.

Example:

After the declaration
noncom u,v;
the expressions u(x)*u(y)-u(y)*u(x) and u(x)*v(y)-v(y)*u(x) will re-
main unchanged on simplification, and in particular will not simplify to
zero.

Note that it is the operator (U and V in the above example) and not the
variable that has the non-commutative property.

The LET statement may be used to introduce rules of evaluation for such
operators. In particular, the boolean operator ORDP is useful for introducing
an ordering on such expressions.

Example:

The rule

for all x,y such that x neq y and ordp(x,y)
let u(x)*u(y)= u(y)*u(x)+comm(x,y);

would introduce the commutator of u(x) and u(y) for all X and Y. Note that
since ordp(x,x) is true, the equality check is necessary in the degenerate
case to avoid a circular loop in the rule.

7.14 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments
by the declaration SYMMETRIC. For example

7.15. DECLARING NEW PREFIX OPERATORS 107

symmetric u,v;

means that any expression involving the top level operators U or V will have
its arguments reordered to conform to the internal order used by REDUCE.
The user can change this order for kernels by the command KORDER.

For example, u(x,v(1,2)) would become u(v(2,1),x), since numbers are
ordered in decreasing order, and expressions are ordered in decreasing order
of complexity.

Similarly the declaration ANTISYMMETRIC declares an operator antisymmet-
ric. For example,

antisymmetric l,m;

means that any expression involving the top level operators L or M will have
its arguments reordered to conform to the internal order of the system, and
the sign of the expression changed if there are an odd number of argument
interchanges necessary to bring about the new order.

For example, l(x,m(1,2)) would become -l(-m(2,1),x) since one inter-
change occurs with each operator. An expression like l(x,x) would also be
replaced by 0.

7.15 Declaring New Prefix Operators

The user may add new prefix operators to the system by using the declara-
tion OPERATOR. For example:

operator h,g1,arctan;

adds the prefix operators H, G1 and ARCTAN to the system.

This allows symbols like h(w), h(x,y,z), g1(p+q), arctan(u/v) to be
used in expressions, but no meaning or properties of the operator are implied.
The same operator symbol can be used equally well as a 0-, 1-, 2-, 3-, etc.-
place operator.

To give a meaning to an operator symbol, or express some of its properties,
LET statements can be used, or the operator can be given a definition as a
procedure.

If the user forgets to declare an identifier as an operator, the system will

108 CHAPTER 7. BUILT-IN PREFIX OPERATORS

prompt the user to do so in interactive mode, or do it automatically in non-
interactive mode. A diagnostic message will also be printed if an identifier
is declared OPERATOR more than once.

Operators once declared are global in scope, and so can then be referenced
anywhere in the program. In other words, a declaration within a block (or
a procedure) does not limit the scope of the operator to that block, nor
does the operator go away on exiting the block (use CLEAR instead for this
purpose).

7.16 Declaring New Infix Operators

Users can add new infix operators by using the declarations INFIX and
PRECEDENCE. For example,

infix mm;
precedence mm,-;

The declaration infix mm; would allow one to use the symbol MM as an infix
operator:

a mm b instead of mm(a,b).

The declaration precedence mm,-; says that MM should be inserted into the
infix operator precedence list just after the − operator. This gives it higher
precedence than − and lower precedence than * . Thus

a - b mm c - d means a - (b mm c) - d,

while

a * b mm c * d means (a * b) mm (c * d).

Both infix and prefix operators have no transformation properties unless LET
statements or procedure declarations are used to assign a meaning.

We should note here that infix operators so defined are always binary:

a mm b mm c means (a mm b) mm c.

7.17. CREATING/REMOVING VARIABLE DEPENDENCY 109

7.17 Creating/Removing Variable Dependency

There are several facilities in REDUCE, such as the differentiation operator
and the linear operator facility, that can utilize knowledge of the dependency
between various variables, or kernels. Such dependency may be expressed
by the command DEPEND. This takes an arbitrary number of arguments and
sets up a dependency of the first argument on the remaining arguments. For
example,

depend x,y,z;

says that X is dependent on both Y and Z.

depend z,cos(x),y;

says that Z is dependent on COS(X) and Y.

Dependencies introduced by DEPEND can be removed by NODEPEND. The
arguments of this are the same as for DEPEND. For example, given the above
dependencies,

nodepend z,cos(x);

says that Z is no longer dependent on COS(X), although it remains dependent
on Y.

110 CHAPTER 7. BUILT-IN PREFIX OPERATORS

Chapter 8

Display and Structuring of
Expressions

In this section, we consider a variety of commands and operators that permit
the user to obtain various parts of algebraic expressions and also display their
structure in a variety of forms. Also presented are some additional concepts
in the REDUCE design that help the user gain a better understanding of
the structure of the system.

8.1 Kernels

REDUCE is designed so that each operator in the system has an evaluation
(or simplification) function associated with it that transforms the expression
into an internal canonical form. This form, which bears little resemblance
to the original expression, is described in detail in Hearn, A. C., “REDUCE
2: A System and Language for Algebraic Manipulation,” Proc. of the Sec-
ond Symposium on Symbolic and Algebraic Manipulation, ACM, New York
(1971) 128-133.

The evaluation function may transform its arguments in one of two alter-
native ways. First, it may convert the expression into other operators in
the system, leaving no functions of the original operator for further manip-
ulation. This is in a sense true of the evaluation functions associated with
the operators +, * and / , for example, because the canonical form does
not include these operators explicitly. It is also true of an operator such

111

112 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

as the determinant operator DET because the relevant evaluation function
calculates the appropriate determinant, and the operator DET no longer ap-
pears. On the other hand, the evaluation process may leave some residual
functions of the relevant operator. For example, with the operator COS, a
residual expression like COS(X) may remain after evaluation unless a rule
for the reduction of cosines into exponentials, for example, were introduced.
These residual functions of an operator are termed kernels and are stored
uniquely like variables. Subsequently, the kernel is carried through the cal-
culation as a variable unless transformations are introduced for the operator
at a later stage.

In those cases where the evaluation process leaves an operator expression
with non-trivial arguments, the form of the argument can vary depending
on the state of the system at the point of evaluation. Such arguments are
normally produced in expanded form with no terms factored or grouped
in any way. For example, the expression cos(2*x+2*y) will normally be
returned in the same form. If the argument 2*x+2*y were evaluated at the
top level, however, it would be printed as 2*(X+Y). If it is desirable to have
the arguments themselves in a similar form, the switch INTSTR (for “internal
structure”), if on, will cause this to happen.

In cases where the arguments of the kernel operators may be reordered,
the system puts them in a canonical order, based on an internal intrinsic
ordering of the variables. However, some commands allow arguments in the
form of kernels, and the user has no way of telling what internal order the
system will assign to these arguments. To resolve this difficulty, we introduce
the notion of a kernel form as an expression that transforms to a kernel on
evaluation.

Examples of kernel forms are:

a
cos(x*y)
log(sin(x))

whereas

a*b
(a+b)^4

are not.

We see that kernel forms can usually be used as generalized variables, and

8.2. THE EXPRESSION WORKSPACE 113

most algebraic properties associated with variables may also be associated
with kernels.

8.2 The Expression Workspace

Several mechanisms are available for saving and retrieving previously evalu-
ated expressions. The simplest of these refers to the last algebraic expression
simplified. When an assignment of an algebraic expression is made, or an
expression is evaluated at the top level, (i.e., not inside a compound state-
ment or procedure) the results of the evaluation are automatically saved in
a variable WS that we shall refer to as the workspace. (More precisely, the
expression is assigned to the variable WS that is then available for further
manipulation.)

Example:

If we evaluate the expression (x+y)^2 at the top level and next wish to
differentiate it with respect to Y, we can simply say

df(ws,y);

to get the desired answer.

If the user wishes to assign the workspace to a variable or expression for
later use, the SAVEAS statement can be used. It has the syntax

SAVEAS <expression>

For example, after the differentiation in the last example, the workspace
holds the expression 2*x+2*y. If we wish to assign this to the variable Z we
can now say

saveas z;

If the user wishes to save the expression in a form that allows him to use
some of its variables as arbitrary parameters, the FOR ALL command can be
used.

Example:

for all x saveas h(x);

114 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

with the above expression would mean that h(z) evaluates to 2*Y+2*Z.

A further method for referencing more than the last expression is described
in the section on interactive use of REDUCE.

8.3 Output of Expressions

A considerable degree of flexibility is available in REDUCE in the printing
of expressions generated during calculations. No explicit format statements
are supplied, as these are in most cases of little use in algebraic calculations,
where the size of output or its composition is not generally known in advance.
Instead, REDUCE provides a series of mode options to the user that should
enable him to produce his output in a comprehensible and possibly pleasing
form.

The most extreme option offered is to suppress the output entirely from any
top level evaluation. This is accomplished by turning off the switch OUTPUT
which is normally on. It is useful for limiting output when loading large files
or producing “clean” output from the prettyprint programs.

In most circumstances, however, we wish to view the output, so we need to
know how to format it appropriately. As we mentioned earlier, an algebraic
expression is normally printed in an expanded form, filling the whole output
line with terms. Certain output declarations, however, can be used to affect
this format. To begin with, we look at an operator for changing the length
of the output line.

8.3.1 LINELENGTH Operator

This operator is used with the syntax

LINELENGTH(NUM:integer):integer

and sets the output line length to the integer NUM. It returns the previous
output line length (so that it can be stored for later resetting of the output
line if needed).

8.3. OUTPUT OF EXPRESSIONS 115

8.3.2 Output Declarations

We now describe a number of switches and declarations that are available
for controlling output formats. It should be noted, however, that the trans-
formation of large expressions to produce these varied output formats can
take a lot of computing time and space. If a user wishes to speed up the
printing of the output in such cases, he can turn off the switch PRI. If this is
done, then output is produced in one fixed format, which basically reflects
the internal form of the expression, and none of the options below apply.
PRI is normally on.

With PRI on, the output declarations and switches available are as follows:

ORDER Declaration

The declaration ORDER may be used to order variables on output. The syntax
is:

order v1,...vn;

where the vi are kernels. Thus,

order x,y,z;

orders X ahead of Y, Y ahead of Z and all three ahead of other variables not
given an order. order nil; resets the output order to the system default.
The order of variables may be changed by further calls of ORDER, but then
the reordered variables would have an order lower than those in earlier ORDER
calls. Thus,

order x,y,z;
order y,x;

would order Z ahead of Y and X. The default ordering is usually alphabetic.

FACTOR Declaration

This declaration takes a list of identifiers or kernels as argument. FACTOR
is not a factoring command (use FACTORIZE or the FACTOR switch for this
purpose); rather it is a separation command. All terms involving fixed
powers of the declared expressions are printed as a product of the fixed

116 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

powers and a sum of the rest of the terms.

All expressions involving a given prefix operator may also be factored by
putting the operator name in the list of factored identifiers. For example:

factor x,cos,sin(x);

causes all powers of X and SIN(X) and all functions of COS to be factored.

Note that FACTOR does not affect the order of its arguments. You should
also use ORDER if this is important.

The declaration remfac v1,...,vn; removes the factoring flag from the
expressions v1 through vn.

8.3.3 Output Control Switches

In addition to these declarations, the form of the output can be modified
by switching various output control switches using the declarations ON and
OFF. We shall illustrate the use of these switches by an example, namely the
printing of the expression

x^2*(y^2+2*y)+x*(y^2+z)/(2*a) .

The relevant switches are as follows:

ALLFAC Switch

This switch will cause the system to search the whole expression, or any
sub-expression enclosed in parentheses, for simple multiplicative factors and
print them outside the parentheses. Thus our expression with ALLFAC off
will print as

2 2 2 2
(2*X *Y *A + 4*X *Y*A + X*Y + X*Z)/(2*A)

and with ALLFAC on as

2 2
X*(2*X*Y *A + 4*X*Y*A + Y + Z)/(2*A) .

ALLFAC is normally on, and is on in the following examples, except where
otherwise stated.

8.3. OUTPUT OF EXPRESSIONS 117

DIV Switch

This switch makes the system search the denominator of an expression for
simple factors that it divides into the numerator, so that rational fractions
and negative powers appear in the output. With DIV on, our expression
would print as

2 2 (-1) (-1)
X*(X*Y + 2*X*Y + 1/2*Y *A + 1/2*A *Z) .

DIV is normally off.

LIST Switch

This switch causes the system to print each term in any sum on a separate
line. With LIST on, our expression prints as

2
X*(2*X*Y *A

+ 4*X*Y*A

2
+ Y

+ Z)/(2*A) .

LIST is normally off.

NOSPLIT Switch

Under normal circumstances, the printing routines try to break an expres-
sion across lines at a natural point. This is a fairly expensive process. If
you are not overly concerned about where the end-of-line breaks come, you
can speed up the printing of expressions by turning off the switch NOSPLIT.
This switch is normally on.

RAT Switch

This switch is only useful with expressions in which variables are factored
with FACTOR. With this mode, the overall denominator of the expression is

118 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

printed with each factored sub-expression. We assume a prior declaration
factor x; in the following output. We first print the expression with RAT
off:

2 2
(2*X *Y*A*(Y + 2) + X*(Y + Z))/(2*A) .

With RAT on the output becomes:

8.3. OUTPUT OF EXPRESSIONS 119

2 2
X *Y*(Y + 2) + X*(Y + Z)/(2*A) .

RAT is normally off.

Next, if we leave X factored, and turn on both DIV and RAT, the result
becomes

2 (-1) 2
X *Y*(Y + 2) + 1/2*X*A *(Y + Z) .

Finally, with X factored, RAT on and ALLFAC off we retrieve the original
structure

2 2 2
X *(Y + 2*Y) + X*(Y + Z)/(2*A) .

RATPRI Switch

If the numerator and denominator of an expression can each be printed in
one line, the output routines will print them in a two dimensional notation,
with numerator and denominator on separate lines and a line of dashes in
between. For example, (a+b)/2 will print as

A + B

2

Turning this switch off causes such expressions to be output in a linear form.

REVPRI Switch

The normal ordering of terms in output is from highest to lowest power. In
some situations (e.g., when a power series is output), the opposite ordering
is more convenient. The switch REVPRI if on causes such a reverse ordering
of terms. For example, the expression y*(x+1)^2+(y+3)^2 will normally
print as

2 2
X *Y + 2*X*Y + Y + 7*Y + 9

whereas with REVPRI on, it will print as

120 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

2 2
9 + 7*Y + Y + 2*X*Y + X *Y.

8.3.4 WRITE Command

In simple cases no explicit output command is necessary in REDUCE, since
the value of any expression is automatically printed if a semicolon is used as
a delimiter. There are, however, several situations in which such a command
is useful.

In a FOR, WHILE, or REPEAT statement it may be desired to output something
each time the statement within the loop construct is repeated.

It may be desired for a procedure to output intermediate results or other
information while it is running. It may be desired to have results labeled
in special ways, especially if the output is directed to a file or device other
than the terminal.

The WRITE command consists of the word WRITE followed by one or more
items separated by commas, and followed by a terminator. There are three
kinds of items that can be used:

1. Expressions (including variables and constants). The expression is
evaluated, and the result is printed out.

2. Assignments. The expression on the right side of the := operator is
evaluated, and is assigned to the variable on the left; then the symbol
on the left is printed, followed by a “:=”, followed by the value of
the expression on the right – almost exactly the way an assignment
followed by a semicolon prints out normally. (The difference is that if
the WRITE is in a FOR statement and the left-hand side of the assign-
ment is an array position or something similar containing the variable
of the FOR iteration, then the value of that variable is inserted in the
printout.)

3. Arbitrary strings of characters, preceded and followed by double-quote
marks (e.g., "string").

The items specified by a single WRITE statement print side by side on one
line. (The line is broken automatically if it is too long.) Strings print exactly
as quoted. The WRITE command itself however does not return a value.

8.3. OUTPUT OF EXPRESSIONS 121

The print line is closed at the end of a WRITE command evaluation. Therefore
the command WRITE ""; (specifying nothing to be printed except the empty
string) causes a line to be skipped.

Examples:

1. If A is X+5, B is itself, C is 123, M is an array, and Q=3, then

write m(q):=a," ",b/c," THANK YOU";

will set M(3) to x+5 and print

M(Q) := X + 5 B/123 THANK YOU

The blanks between the 5 and B, and the 3 and T, come from the
blanks in the quoted strings.

2. To print a table of the squares of the integers from 1 to 20:

for i:=1:20 do write i," ",i^2;

3. To print a table of the squares of the integers from 1 to 20, and at the
same time store them in positions 1 to 20 of an array A:

for i:=1:20 do <<a(i):=i^2; write i," ",a(i)>>;

This will give us two columns of numbers. If we had used

for i:=1:20 do write i," ",a(i):=i^2;

we would also get A(i) := repeated on each line.

4. The following more complete example calculates the famous f and g
series, first reported in Sconzo, P., LeSchack, A. R., and Tobey, R.,
“Symbolic Computation of f and g Series by Computer”, Astronomical
Journal 70 (May 1965).

x1:= -sig*(mu+2*eps)$
x2:= eps - 2*sig^2$
x3:= -3*mu*sig$
f:= 1$
g:= 0$
for i:= 1 step 1 until 10 do begin

f1:= -mu*g+x1*df(f,eps)+x2*df(f,sig)+x3*df(f,mu);

122 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

write "f(",i,") := ",f1;
g1:= f+x1*df(g,eps)+x2*df(g,sig)+x3*df(g,mu);
write "g(",i,") := ",g1;
f:=f1$
g:=g1$

end;

A portion of the output, to illustrate the printout from the WRITE
command, is as follows:

... <prior output> ...

2
F(4) := MU*(3*EPS - 15*SIG + MU)

G(4) := 6*SIG*MU

2
F(5) := 15*SIG*MU*(- 3*EPS + 7*SIG - MU)

2
G(5) := MU*(9*EPS - 45*SIG + MU)

... <more output> ...

8.3.5 Suppression of Zeros

It is sometimes annoying to have zero assignments (i.e. assignments of the
form <expression> := 0) printed, especially in printing large arrays with
many zero elements. The output from such assignments can be suppressed
by turning on the switch NERO.

8.3.6 FORTRAN Style Output Of Expressions

It is naturally possible to evaluate expressions numerically in REDUCE by
giving all variables and sub-expressions numerical values. However, as we
pointed out elsewhere the user must declare real arithmetical operation by
turning on the switch ROUNDED. However, it should be remembered that
arithmetic in REDUCE is not particularly fast, since results are interpreted
rather than evaluated in a compiled form. The user with a large amount

8.3. OUTPUT OF EXPRESSIONS 123

of numerical computation after all necessary algebraic manipulations have
been performed is therefore well advised to perform these calculations in a
FORTRAN or similar system. For this purpose, REDUCE offers facilities
for users to produce FORTRAN compatible files for numerical processing.

First, when the switch FORT is on, the system will print expressions in a
FORTRAN notation. Expressions begin in column seven. If an expression
extends over one line, a continuation mark (.) followed by a blank appears
on subsequent cards. After a certain number of lines have been produced
(according to the value of the variable CARD NO), a new expression is started.
If the expression printed arises from an assignment to a variable, the variable
is printed as the name of the expression. Otherwise the expression is given
the default name ANS. An error occurs if identifiers or numbers are outside
the bounds permitted by FORTRAN.

A second option is to use the WRITE command to produce other programs.

Example:

The following REDUCE statements

on fort;
out "forfil";
write "C this is a fortran program";
write " 1 format(e13.5)";
write " u=1.23";
write " v=2.17";
write " w=5.2";
x:=(u+v+w)^11;
write "C it was foolish to expand this expression";
write " print 1,x";
write " end";
shut "forfil";
off fort;

will generate a file forfil that contains:

c this is a fortran program
1 format(e13.5)

u=1.23
v=2.17
w=5.2
ans1=1320.*u**3*v*w**7+165.*u**3*w**8+55.*u**2*v**9+495.*u

. **2*v**8*w+1980.*u**2*v**7*w**2+4620.*u**2*v**6*w**3+

124 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

. 6930.*u**2*v**5*w**4+6930.*u**2*v**4*w**5+4620.*u**2*v**3*

. w**6+1980.*u**2*v**2*w**7+495.*u**2*v*w**8+55.*u**2*w**9+

. 11.*u*v**10+110.*u*v**9*w+495.*u*v**8*w**2+1320.*u*v**7*w

. **3+2310.*u*v**6*w**4+2772.*u*v**5*w**5+2310.*u*v**4*w**6

. +1320.*u*v**3*w**7+495.*u*v**2*w**8+110.*u*v*w**9+11.*u*w

. **10+v**11+11.*v**10*w+55.*v**9*w**2+165.*v**8*w**3+330.*

. v**7*w**4+462.*v**6*w**5+462.*v**5*w**6+330.*v**4*w**7+

. 165.*v**3*w**8+55.*v**2*w**9+11.*v*w**10+w**11
x=u**11+11.*u**10*v+11.*u**10*w+55.*u**9*v**2+110.*u**9*v*

. w+55.*u**9*w**2+165.*u**8*v**3+495.*u**8*v**2*w+495.*u**8

. *v*w**2+165.*u**8*w**3+330.*u**7*v**4+1320.*u**7*v**3*w+

. 1980.*u**7*v**2*w**2+1320.*u**7*v*w**3+330.*u**7*w**4+462.

. *u**6*v**5+2310.*u**6*v**4*w+4620.*u**6*v**3*w**2+4620.*u

. **6*v**2*w**3+2310.*u**6*v*w**4+462.*u**6*w**5+462.*u**5*

. v**6+2772.*u**5*v**5*w+6930.*u**5*v**4*w**2+9240.*u**5*v

. **3*w**3+6930.*u**5*v**2*w**4+2772.*u**5*v*w**5+462.*u**5

. *w**6+330.*u**4*v**7+2310.*u**4*v**6*w+6930.*u**4*v**5*w

. **2+11550.*u**4*v**4*w**3+11550.*u**4*v**3*w**4+6930.*u**

. 4*v**2*w**5+2310.*u**4*v*w**6+330.*u**4*w**7+165.*u**3*v

. **8+1320.*u**3*v**7*w+4620.*u**3*v**6*w**2+9240.*u**3*v**

. 5*w**3+11550.*u**3*v**4*w**4+9240.*u**3*v**3*w**5+4620.*u

. **3*v**2*w**6+ans1
c it was foolish to expand this expression

print 1,x
end

If the arguments of a WRITE statement include an expression that requires
continuation records, the output will need editing, since the output routine
prints the arguments of WRITE sequentially, and the continuation mechanism
therefore generates its auxiliary variables after the preceding expression has
been printed.

Finally, since there is no direct analog of list in FORTRAN, a comment line
of the form

c ***** invalid fortran construct (list) not printed

will be printed if you try to print a list with FORT on.

FORTRAN Output Options

There are a number of methods available to change the default format of
the FORTRAN output.

8.3. OUTPUT OF EXPRESSIONS 125

The breakup of the expression into subparts is such that the number of
continuation lines produced is less than a given number. This number can
be modified by the assignment

card_no := <number>;

where <number> is the total number of cards allowed in a statement. The
default value of CARD NO is 20.

The width of the output expression is also adjustable by the assignment

fort_width := <integer>;

which sets the total width of a given line to <integer>. The initial FOR-
TRAN output width is 70.

REDUCE automatically inserts a decimal point after each isolated integer
coefficient in a FORTRAN expression (so that, for example, 4 becomes 4.
). To prevent this, set the PERIOD mode switch to OFF.

FORTRAN output is normally produced in lower case. If upper case is
desired, the switch FORTUPPER should be turned on.

Finally, the default name ANS assigned to an unnamed expression and its
subparts can be changed by the operator VARNAME. This takes a single
identifier as argument, which then replaces ANS as the expression name.
The value of VARNAME is its argument.

Further facilities for the production of FORTRAN and other language out-
put are provided by the SCOPE and GENTRAN packagesdescribed in chap-
ters 42 and 73.

8.3.7 Saving Expressions for Later Use as Input

It is often useful to save an expression on an external file for use later as
input in further calculations. The commands for opening and closing output
files are explained elsewhere. However, we see in the examples on output
of expressions that the standard “natural” method of printing expressions
is not compatible with the input syntax. So to print the expression in an
input compatible form we must inhibit this natural style by turning off the
switch NAT. If this is done, a dollar sign will also be printed at the end of
the expression.

126 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

Example:

The following sequence of commands

off nat; out "out"; x := (y+z)^2; write "end";
shut "out"; on nat;

will generate a file out that contains

X := Y**2 + 2*Y*Z + Z**2$
END$

8.3.8 Displaying Expression Structure

In those cases where the final result has a complicated form, it is often
convenient to display the skeletal structure of the answer. The operator
STRUCTR, that takes a single expression as argument, will do this for you.
Its syntax is:

STRUCTR(EXPRN:algebraic[,ID1:identifier[,ID2:identifier]]);

The structure is printed effectively as a tree, in which the subparts are laid
out with auxiliary names. If the optional ID1 is absent, the auxiliary names
are prefixed by the root ANS. This root may be changed by the operator
VARNAME. If the optional ID1 is present, and is an array name, the subparts
are named as elements of that array, otherwise ID1 is used as the root prefix.
(The second optional argument ID2 is explained later.)

The EXPRN can be either a scalar or a matrix expression. Use of any other
will result in an error.

Example:

Let us suppose that the workspace contains ((A+B)^2+C)^3+D. Then the
input STRUCTR WS; will (with EXP off) result in the output:

8.3. OUTPUT OF EXPRESSIONS 127

ANS3

where

3
ANS3 := ANS2 + D

2
ANS2 := ANS1 + C

ANS1 := A + B

The workspace remains unchanged after this operation, since STRUCTR in
the default situation returns no value (if STRUCTR is used as a sub-expression,
its value is taken to be 0). In addition, the sub-expressions are normally only
displayed and not retained. If you wish to access the sub-expressions with
their displayed names, the switch SAVESTRUCTR should be turned on. In this
case, STRUCTR returns a list whose first element is a representation for the
expression, and subsequent elements are the sub-expression relations. Thus,
with SAVESTRUCTR on, STRUCTR WS in the above example would return

3 2
{ANS3,ANS3=ANS2 + D,ANS2=ANS1 + C,ANS1=A + B}

The PART operator can be used to retrieve the required parts of the ex-
pression. For example, to get the value of ANS2 in the above, one could
say:

part(ws,3,2);

If FORT is on, then the results are printed in the reverse order; the algorithm
in fact guaranteeing that no sub-expression will be referenced before it is
defined. The second optional argument ID2 may also be used in this case to
name the actual expression (or expressions in the case of a matrix argument).

Example:

Let us suppose that M, a 2 by 1 matrix, contains the elements ((a+b)^2
+ c)^3 + d and (a + b)*(c + d) respectively, and that V has been
declared to be an array. With EXP off and FORT on, the statement
structr(2*m,v,k); will result in the output

V(1)=A+B
V(2)=V(1)**2+C
V(3)=V(2)**3+D

128 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

V(4)=C+D
K(1,1)=2.*V(3)
K(2,1)=2.*V(1)*V(4)

8.4 Changing the Internal Order of Variables

The internal ordering of variables (more specifically kernels) can have a
significant effect on the space and time associated with a calculation. In
its default state, REDUCE uses a specific order for this which may vary
between sessions. However, it is possible for the user to change this internal
order by means of the declaration KORDER. The syntax for this is:

korder v1,...,vn;

where the Vi are kernels. With this declaration, the Vi are ordered internally
ahead of any other kernels in the system. V1 has the highest order, V2 the
next highest, and so on. A further call of KORDER replaces a previous one.
KORDER NIL; resets the internal order to the system default.

Unlike the ORDER declaration, that has a purely cosmetic effect on the way
results are printed, the use of KORDER can have a significant effect on compu-
tation time. In critical cases then, the user can experiment with the ordering
of the variables used to determine the optimum set for a given problem.

8.5 Obtaining Parts of Algebraic Expressions

There are many occasions where it is desirable to obtain a specific part
of an expression, or even change such a part to another expression. A
number of operators are available in REDUCE for this purpose, and will be
described in this section. In addition, operators for obtaining specific parts
of polynomials and rational functions (such as a denominator) are described
in another section.

8.5.1 COEFF Operator

Syntax:

COEFF(EXPRN:polynomial,VAR:kernel)

8.5. OBTAINING PARTS OF ALGEBRAIC EXPRESSIONS 129

COEFF is an operator that partitions EXPRN into its various coefficients with
respect to VAR and returns them as a list, with the coefficient independent
of VAR first.

Under normal circumstances, an error results if EXPRN is not a polynomial
in VAR, although the coefficients themselves can be rational as long as they
do not depend on VAR. However, if the switch RATARG is on, denominators
are not checked for dependence on VAR, and are taken to be part of the
coefficients.

Example:

coeff((y^2+z)^3/z,y);

returns the result

2
{Z ,0,3*Z,0,3,0,1/Z}.

whereas

coeff((y^2+z)^3/y,y);

gives an error if RATARG is off, and the result

3 2
{Z /Y,0,3*Z /Y,0,3*Z/Y,0,1/Y}

if RATARG is on.

The length of the result of COEFF is the highest power of VAR encountered
plus 1. In the above examples it is 7. In addition, the variable HIGH POW is
set to the highest non-zero power found in EXPRN during the evaluation, and
LOW POW to the lowest non-zero power, or zero if there is a constant term.
If EXPRN is a constant, then HIGH POW and LOW POW are both set to zero.

8.5.2 COEFFN Operator

The COEFFN operator is designed to give the user a particular coefficient of
a variable in a polynomial, as opposed to COEFF that returns all coefficients.
COEFFN is used with the syntax

COEFFN(EXPRN:polynomial,VAR:kernel,N:integer)

130 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

It returns the nth coefficient of VAR in the polynomial EXPRN.

8.5.3 PART Operator

Syntax:

PART(EXPRN:algebraic[,INTEXP:integer])

This operator works on the form of the expression as printed or as it would
have been printed at that point in the calculation bearing in mind all the
relevant switch settings at that point. The reader therefore needs some
familiarity with the way that expressions are represented in prefix form in
REDUCE to use these operators effectively. Furthermore, it is assumed
that PRI is ON at that point in the calculation. The reason for this is that
with PRI off, an expression is printed by walking the tree representing the
expression internally. To save space, it is never actually transformed into
the equivalent prefix expression as occurs when PRI is on. However, the
operations on polynomials described elsewhere can be equally well used in
this case to obtain the relevant parts.

The evaluation proceeds recursively down the integer expression list. In
other words,

PART(<expression>,<integer1>,<integer2>)
-> PART(PART(<expression>,<integer1>),<integer2>)

and so on, and

PART(<expression>) -> <expression>.

INTEXP can be any expression that evaluates to an integer. If the integer is
positive, then that term of the expression is found. If the integer is 0, the
operator is returned. Finally, if the integer is negative, the counting is from
the tail of the expression rather than the head.

For example, if the expression a+b is printed as A+B (i.e., the ordering of the
variables is alphabetical), then

part(a+b,2) -> B
part(a+b,-1) -> B

and
part(a+b,0) -> PLUS

8.5. OBTAINING PARTS OF ALGEBRAIC EXPRESSIONS 131

An operator ARGLENGTH is available to determine the number of arguments
of the top level operator in an expression. If the expression does not contain
a top level operator, then −1 is returned. For example,

arglength(a+b+c) -> 3
arglength(f()) -> 0
arglength(a) -> -1

8.5.4 Substituting for Parts of Expressions

PART may also be used to substitute for a given part of an expression. In
this case, the PART construct appears on the left-hand side of an assignment
statement, and the expression to replace the given part on the right-hand
side.

For example, with the normal settings of the REDUCE switches:

xx := a+b;
part(xx,2) := c; -> A+C
part(c+d,0) := -; -> C-D

Note that xx in the above is not changed by this substitution. In addition,
unlike expressions such as array and matrix elements that have an instant
evaluation property, the values of part(xx,2) and part(c+d,0) are also
not changed.

132 CHAPTER 8. DISPLAY AND STRUCTURING OF EXPRESSIONS

Chapter 9

Polynomials and Rationals

Many operations in computer algebra are concerned with polynomials and
rational functions. In this section, we review some of the switches and
operators available for this purpose. These are in addition to those that
work on general expressions (such as DF and INT) described elsewhere. In
the case of operators, the arguments are first simplified before the operations
are applied. In addition, they operate only on arguments of prescribed
types, and produce a type mismatch error if given arguments which cannot
be interpreted in the required mode with the current switch settings. For
example, if an argument is required to be a kernel and a/2 is used (with no
other rules for A), an error

A/2 invalid as kernel

will result.

With the exception of those that select various parts of a polynomial or
rational function, these operations have potentially significant effects on the
space and time associated with a given calculation. The user should there-
fore experiment with their use in a given calculation in order to determine
the optimum set for a given problem.

One such operation provided by the system is an operator LENGTH which
returns the number of top level terms in the numerator of its argument. For
example,

length ((a+b+c)^3/(c+d));

has the value 10. To get the number of terms in the denominator, one would

133

134 CHAPTER 9. POLYNOMIALS AND RATIONALS

first select the denominator by the operator DEN and then call LENGTH, as in

length den ((a+b+c)^3/(c+d));

Other operations currently supported, the relevant switches and operators,
and the required argument and value modes of the latter, follow.

9.1 Controlling the Expansion of Expressions

The switch EXP controls the expansion of expressions. If it is off, no expan-
sion of powers or products of expressions occurs. Users should note however
that in this case results come out in a normal but not necessarily canoni-
cal form. This means that zero expressions simplify to zero, but that two
equivalent expressions need not necessarily simplify to the same form.

Example: With EXP on, the two expressions

(a+b)*(a+2*b)

and

a^2+3*a*b+2*b^2

will both simplify to the latter form. With EXP off, they would remain
unchanged, unless the complete factoring (ALLFAC) option were in force.
EXP is normally on.

Several operators that expect a polynomial as an argument behave differ-
ently when EXP is off, since there is often only one term at the top level. For
example, with EXP off

length((a+b+c)^3/(c+d));

returns the value 1.

9.2 Factorization of Polynomials

REDUCE is capable of factorizing univariate and multivariate polynomials
that have integer coefficients, finding all factors that also have integer coef-
ficients. The package for doing this was written by Dr. Arthur C. Norman

9.2. FACTORIZATION OF POLYNOMIALS 135

and Ms. P. Mary Ann Moore at The University of Cambridge. It is de-
scribed in P. M. A. Moore and A. C. Norman, “Implementing a Polynomial
Factorization and GCD Package”, Proc. SYMSAC ’81, ACM (New York)
(1981), 109-116.

The easiest way to use this facility is to turn on the switch FACTOR, which
causes all expressions to be output in a factored form. For example, with
FACTOR on, the expression A^2-B^2 is returned as (A+B)*(A-B).

It is also possible to factorize a given expression explicitly. The operator
FACTORIZE that invokes this facility is used with the syntax

FACTORIZE(EXPRN:polynomial[,INTEXP:prime integer]):list,

the optional argument of which will be described later. Thus to find and
display all factors of the cyclotomic polynomial x105 − 1, one could write:

factorize(x^105-1);

The result is a list of factor,exponent pairs. In the above example, there is
no overall numerical factor in the result, so the results will consist only of
polynomials in x. The number of such polynomials can be found by using the
operator LENGTH. If there is a numerical factor, as in factorizing 12x2 − 12,
that factor will appear as the first member of the result. It will however not
be factored further. Prime factors of such numbers can be found, using a
probabilistic algorithm, by turning on the switch IFACTOR. For example,

on ifactor; factorize(12x^2-12);

would result in the output

{{2,2},{3,1},{X + 1,1},{X - 1,1}}.

If the first argument of FACTORIZE is an integer, it will be decomposed into
its prime components, whether or not IFACTOR is on.

Note that the IFACTOR switch only affects the result of FACTORIZE. It has
no effect if the FACTOR switch is also on.

The order in which the factors occur in the result (with the exception of
a possible overall numerical coefficient which comes first) can be system
dependent and should not be relied on. Similarly it should be noted that
any pair of individual factors can be negated without altering their product,
and that REDUCE may sometimes do that.

136 CHAPTER 9. POLYNOMIALS AND RATIONALS

The factorizer works by first reducing multivariate problems to univariate
ones and then solving the univariate ones modulo small primes. It normally
selects both evaluation points and primes using a random number genera-
tor that should lead to different detailed behavior each time any particular
problem is tackled. If, for some reason, it is known that a certain (probably
univariate) factorization can be performed effectively with a known prime,
P say, this value of P can be handed to FACTORIZE as a second argument.
An error will occur if a non-prime is provided to FACTORIZE in this manner.
It is also an error to specify a prime that divides the discriminant of the
polynomial being factored, but users should note that this condition is not
checked by the program, so this capability should be used with care.

Factorization can be performed over a number of polynomial coefficient do-
mains in addition to integers. The particular description of the relevant
domain should be consulted to see if factorization is supported. For exam-
ple, the following statements will factorize x4 + 1 modulo 7:

setmod 7;
on modular;
factorize(x^4+1);

The factorization module is provided with a trace facility that may be useful
as a way of monitoring progress on large problems, and of satisfying curios-
ity about the internal workings of the package. The most simple use of this
is enabled by issuing the REDUCE command on trfac; . Following this,
all calls to the factorizer will generate informative messages reporting on
such things as the reduction of multivariate to univariate cases, the choice
of a prime and the reconstruction of full factors from their images. Further
levels of detail in the trace are intended mainly for system tuners and for the
investigation of suspected bugs. For example, TRALLFAC gives tracing infor-
mation at all levels of detail. The switch that can be set by on timings;
makes it possible for one who is familiar with the algorithms used to deter-
mine what part of the factorization code is consuming the most resources.
on overview; reduces the amount of detail presented in other forms of trace.
Other forms of trace output are enabled by directives of the form

symbolic set!-trace!-factor(<number>,<filename>);

where useful numbers are 1, 2, 3 and 100, 101, This facility is intended
to make it possible to discover in fairly great detail what just some small
part of the code has been doing — the numbers refer mainly to depths of
recursion when the factorizer calls itself, and to the split between its work
forming and factorizing images and reconstructing full factors from these.
If NIL is used in place of a filename the trace output requested is directed

9.3. CANCELLATION OF COMMON FACTORS 137

to the standard output stream. After use of this trace facility the generated
trace files should be closed by calling

symbolic close!-trace!-files();

NOTE: Using the factorizer with MCD off will result in an error.

9.3 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors in the
numerators and denominators of expressions, at the option of the user. The
system will perform this greatest common divisor computation if the switch
GCD is on. (GCD is normally off.)

A check is automatically made, however, for common variable and numer-
ical products in the numerators and denominators of expressions, and the
appropriate cancellations made.

When GCD is on, and EXP is off, a check is made for square free factors in
an expression. This includes separating out and independently checking the
content of a given polynomial where appropriate. (For an explanation of
these terms, see Anthony C. Hearn, “Non-Modular Computation of Poly-
nomial GCDs Using Trial Division”, Proc. EUROSAM 79, published as
Lecture Notes on Comp. Science, Springer-Verlag, Berlin, No 72 (1979)
227-239.)

Example: With EXP off and GCD on, the polynomial a*c+a*d+b*c+b*d would
be returned as (A+B)*(C+D).

Under normal circumstances, GCDs are computed using an algorithm de-
scribed in the above paper. It is also possible in REDUCE to compute
GCDs using an alternative algorithm, called the EZGCD Algorithm, which
uses modular arithmetic. The switch EZGCD, if on in addition to GCD, makes
this happen.

In non-trivial cases, the EZGCD algorithm is almost always better than the
basic algorithm, often by orders of magnitude. We therefore strongly advise
users to use the EZGCD switch where they have the resources available for
supporting the package.

For a description of the EZGCD algorithm, see J. Moses and D.Y.Y. Yun,
“The EZ GCD Algorithm”, Proc. ACM 1973, ACM, New York (1973) 159-

138 CHAPTER 9. POLYNOMIALS AND RATIONALS

166.

NOTE: This package shares code with the factorizer, so a certain amount
of trace information can be produced using the factorizer trace switches.

9.3.1 Determining the GCD of Two Polynomials

This operator, used with the syntax

GCD(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the greatest common divisor of the two polynomials EXPRN1 and
EXPRN2.

Examples:

gcd(x^2+2*x+1,x^2+3*x+2) -> X+1
gcd(2*x^2-2*y^2,4*x+4*y) -> 2*X+2*Y
gcd(x^2+y^2,x-y) -> 1.

9.4 Working with Least Common Multiples

Greatest common divisor calculations can often become expensive if exten-
sive work with large rational expressions is required. However, in many
cases, the only significant cancellations arise from the fact that there are of-
ten common factors in the various denominators which are combined when
two rationals are added. Since these denominators tend to be smaller and
more regular in structure than the numerators, considerable savings in both
time and space can occur if a full GCD check is made when the denominators
are combined and only a partial check when numerators are constructed. In
other words, the true least common multiple of the denominators is com-
puted at each step. The switch LCM is available for this purpose, and is
normally on.

In addition, the operator LCM, used with the syntax

LCM(EXPRN1:polynomial,EXPRN2:polynomial):polynomial,

returns the least common multiple of the two polynomials EXPRN1 and
EXPRN2.

9.5. CONTROLLING USE OF COMMON DENOMINATORS 139

Examples:

lcm(x^2+2*x+1,x^2+3*x+2) -> X**3 + 4*X**2 + 5*X + 2
lcm(2*x^2-2*y^2,4*x+4*y) -> 4*(X**2 - Y**2)

9.5 Controlling Use of Common Denominators

When two rational functions are added, REDUCE normally produces an
expression over a common denominator. However, if the user does not want
denominators combined, he or she can turn off the switch MCD which controls
this process. The latter switch is particularly useful if no greatest common
divisor calculations are desired, or excessive differentiation of rational func-
tions is required.

CAUTION: With MCD off, results are not guaranteed to come out in either
normal or canonical form. In other words, an expression equivalent to zero
may in fact not be simplified to zero. This option is therefore most useful
for avoiding expression swell during intermediate parts of a calculation.

MCD is normally on.

9.6 REMAINDER Operator

This operator is used with the syntax

REMAINDER(EXPRN1:polynomial,EXPRN2:polynomial):polynomial.

It returns the remainder when EXPRN1 is divided by EXPRN2. This is the
true remainder based on the internal ordering of the variables, and not the
pseudo-remainder. The pseudo-remainder and in general pseudo-division
of polynomials can be calculated after loading the polydiv package. Please
refer to the documentation of this package for details.

Examples:

remainder((x+y)*(x+2*y),x+3*y) -> 2*Y**2
remainder(2*x+y,2) -> Y.

CAUTION: In the default case, remainders are calculated over the inte-
gers. If you need the remainder with respect to another domain, it must be

140 CHAPTER 9. POLYNOMIALS AND RATIONALS

declared explicitly.

Example:

remainder(x^2-2,x+sqrt(2)); -> X^2 - 2
load_package arnum;
defpoly sqrt2**2-2;
remainder(x^2-2,x+sqrt2); -> 0

9.7 RESULTANT Operator

This is used with the syntax

RESULTANT(EXPRN1:polynomial,EXPRN2:polynomial,VAR:kernel):
polynomial.

It computes the resultant of the two given polynomials with respect to the
given variable, the coefficients of the polynomials can be taken from any
domain. The result can be identified as the determinant of a Sylvester
matrix, but can often also be thought of informally as the result obtained
when the given variable is eliminated between the two input polynomials. If
the two input polynomials have a non-trivial GCD their resultant vanishes.

The switch Bezout controls the computation of the resultants. It is off by
default. In this case a subresultant algorithm is used. If the switch Bezout
is turned on, the resultant is computed via the Bezout Matrix. However, in
the latter case, only polynomial coefficients are permitted.

9.8. DECOMPOSE OPERATOR 141

The sign conventions used by the resultant function follow those in R. Loos,
“Computing in Algebraic Extensions” in “Computer Algebra — Symbolic
and Algebraic Computation”, Second Ed., Edited by B. Buchberger, G.E.
Collins and R. Loos, Springer-Verlag, 1983. Namely, with A and B not
dependent on X:

deg(p)*deg(q)
resultant(p(x),q(x),x)= (-1) *resultant(q,p,x)

deg(p)
resultant(a,p(x),x) = a

resultant(a,b,x) = 1

Examples:

2
resultant(x/r*u+y,u*y,u) -> - y

calculation in an algebraic extension:

load arnum;
defpoly sqrt2**2 - 2;

resultant(x + sqrt2,sqrt2 * x +1,x) -> -1

or in a modular domain:

setmod 17;
on modular;

resultant(2x+1,3x+4,x) -> 5

9.8 DECOMPOSE Operator

The DECOMPOSE operator takes a multivariate polynomial as argument, and
returns an expression and a list of equations from which the original poly-
nomial can be found by composition. Its syntax is:

DECOMPOSE(EXPRN:polynomial):list.

142 CHAPTER 9. POLYNOMIALS AND RATIONALS

For example:

decompose(x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-
218900*x^3+65690*x^2-7700*x+234)

2 2 2
-> {U + 35*U + 234, U=V + 10*V, V=X - 22*X}

2
decompose(u^2+v^2+2u*v+1) -> {W + 1, W=U + V}

Users should note however that, unlike factorization, this decomposition is
not unique.

9.9 INTERPOL operator

Syntax:

INTERPOL(<values>,<variable>,<points>);

where <values> and <points> are lists of equal length and <variable> is
an algebraic expression (preferably a kernel).

INTERPOL generates an interpolation polynomial f in the given variable of
degree length(<values>)-1. The unique polynomial f is defined by the prop-
erty that for corresponding elements v of <values> and p of <points> the
relation f(p) = v holds.

The Aitken-Neville interpolation algorithm is used which guarantees a stable
result even with rounded numbers and an ill-conditioned problem.

9.10 Obtaining Parts of Polynomials and Ratio-
nals

These operators select various parts of a polynomial or rational function
structure. Except for the cost of rearrangement of the structure, these op-
erations take very little time to perform.

For those operators in this section that take a kernel VAR as their second
argument, an error results if the first expression is not a polynomial in VAR,
although the coefficients themselves can be rational as long as they do not
depend on VAR. However, if the switch RATARG is on, denominators are not

9.10. OBTAINING PARTS OF POLYNOMIALS AND RATIONALS 143

checked for dependence on VAR, and are taken to be part of the coefficients.

9.10.1 DEG Operator

This operator is used with the syntax

DEG(EXPRN:polynomial,VAR:kernel):integer.

It returns the leading degree of the polynomial EXPRN in the variable VAR.
If VAR does not occur as a variable in EXPRN, 0 is returned.

Examples:

deg((a+b)*(c+2*d)^2,a) -> 1
deg((a+b)*(c+2*d)^2,d) -> 2
deg((a+b)*(c+2*d)^2,e) -> 0.

Note also that if RATARG is on,

deg((a+b)^3/a,a) -> 3

since in this case, the denominator A is considered part of the coefficients of
the numerator in A. With RATARG off, however, an error would result in this
case.

9.10.2 DEN Operator

This is used with the syntax:

DEN(EXPRN:rational):polynomial.

It returns the denominator of the rational expression EXPRN. If EXPRN is a
polynomial, 1 is returned.

Examples:

den(x/y^2) -> Y**2
den(100/6) -> 3

[since 100/6 is first simplified to 50/3]
den(a/4+b/6) -> 12
den(a+b) -> 1

144 CHAPTER 9. POLYNOMIALS AND RATIONALS

9.10.3 LCOF Operator

LCOF is used with the syntax

LCOF(EXPRN:polynomial,VAR:kernel):polynomial.

It returns the leading coefficient of the polynomial EXPRN in the variable
VAR. If VAR does not occur as a variable in EXPRN, EXPRN is returned.

9.10. OBTAINING PARTS OF POLYNOMIALS AND RATIONALS 145

Examples:

lcof((a+b)*(c+2*d)^2,a) -> C**2+4*C*D+4*D**2
lcof((a+b)*(c+2*d)^2,d) -> 4*(A+B)
lcof((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

9.10.4 LPOWER Operator

Syntax:

LPOWER(EXPRN:polynomial,VAR:kernel):polynomial.

LPOWER returns the leading power of EXPRN with respect to VAR. If EXPRN
does not depend on VAR, 1 is returned.

Examples:

lpower((a+b)*(c+2*d)^2,a) -> A
lpower((a+b)*(c+2*d)^2,d) -> D**2
lpower((a+b)*(c+2*d),e) -> 1

9.10.5 LTERM Operator

Syntax:

LTERM(EXPRN:polynomial,VAR:kernel):polynomial.

LTERM returns the leading term of EXPRN with respect to VAR. If EXPRN
does not depend on VAR, EXPRN is returned.

Examples:

lterm((a+b)*(c+2*d)^2,a) -> A*(C**2+4*C*D+4*D**2)
lterm((a+b)*(c+2*d)^2,d) -> 4*D**2*(A+B)
lterm((a+b)*(c+2*d),e) -> A*C+2*A*D+B*C+2*B*D

Compatibility Note: In some earlier versions of REDUCE, LTERM returned 0
if the EXPRN did not depend on VAR. In the present version, EXPRN is always
equal to LTERM(EXPRN,VAR) + REDUCT(EXPRN,VAR).

146 CHAPTER 9. POLYNOMIALS AND RATIONALS

9.10.6 MAINVAR Operator

Syntax:

MAINVAR(EXPRN:polynomial):expression.

Returns the main variable (based on the internal polynomial representation)
of EXPRN. If EXPRN is a domain element, 0 is returned.

Examples:

Assuming A has higher kernel order than B, C, or D:

mainvar((a+b)*(c+2*d)^2) -> A
mainvar(2) -> 0

9.10.7 NUM Operator

Syntax:

NUM(EXPRN:rational):polynomial.

Returns the numerator of the rational expression EXPRN. If EXPRN is a poly-
nomial, that polynomial is returned.

Examples:

num(x/y^2) -> X
num(100/6) -> 50
num(a/4+b/6) -> 3*A+2*B
num(a+b) -> A+B

9.10.8 REDUCT Operator

Syntax:

REDUCT(EXPRN:polynomial,VAR:kernel):polynomial.

Returns the reductum of EXPRN with respect to VAR (i.e., the part of EXPRN
left after the leading term is removed). If EXPRN does not depend on the
variable VAR, 0 is returned.

Examples:

9.11. POLYNOMIAL COEFFICIENT ARITHMETIC 147

reduct((a+b)*(c+2*d),a) -> B*(C + 2*D)
reduct((a+b)*(c+2*d),d) -> C*(A + B)
reduct((a+b)*(c+2*d),e) -> 0

Compatibility Note: In some earlier versions of REDUCE, REDUCT returned
EXPRN if it did not depend on VAR. In the present version, EXPRN is always
equal to LTERM(EXPRN,VAR) + REDUCT(EXPRN,VAR).

9.11 Polynomial Coefficient Arithmetic

REDUCE allows for a variety of numerical domains for the numerical co-
efficients of polynomials used in calculations. The default mode is integer
arithmetic, although the possibility of using real coefficients has been dis-
cussed elsewhere. Rational coefficients have also been available by using in-
teger coefficients in both the numerator and denominator of an expression,
using the ON DIV option to print the coefficients as rationals. However, RE-
DUCE includes several other coefficient options in its basic version which
we shall describe in this section. All such coefficient modes are supported
in a table-driven manner so that it is straightforward to extend the range of
possibilities. A description of how to do this is given in R.J. Bradford, A.C.
Hearn, J.A. Padget and E. Schrüfer, “Enlarging the REDUCE Domain of
Computation,” Proc. of SYMSAC ’86, ACM, New York (1986), 100–106.

9.11.1 Rational Coefficients in Polynomials

Instead of treating rational numbers as the numerator and denominator of a
rational expression, it is also possible to use them as polynomial coefficients
directly. This is accomplished by turning on the switch RATIONAL.

Example: With RATIONAL off, the input expression a/2 would be converted
into a rational expression, whose numerator was A and denominator 2. With
RATIONAL on, the same input would become a rational expression with nu-
merator 1/2*A and denominator 1. Thus the latter can be used in operations
that require polynomial input whereas the former could not.

148 CHAPTER 9. POLYNOMIALS AND RATIONALS

9.11.2 Real Coefficients in Polynomials

The switch ROUNDED permits the use of arbitrary sized real coefficients in
polynomial expressions. The actual precision of these coefficients can be set
by the operator PRECISION. For example, precision 50; sets the precision
to fifty decimal digits. The default precision is system dependent and can
be found by precision 0;. In this mode, denominators are automatically
made monic, and an appropriate adjustment is made to the numerator.

Example: With ROUNDED on, the input expression a/2 would be converted
into a rational expression whose numerator is 0.5*A and denominator 1.

Internally, REDUCE uses floating point numbers up to the precision sup-
ported by the underlying machine hardware, and so-called bigfloats for higher
precision or whenever necessary to represent numbers whose value cannot
be represented in floating point. The internal precision is two decimal digits
greater than the external precision to guard against roundoff inaccuracies.
Bigfloats represent the fraction and exponent parts of a floating-point num-
ber by means of (arbitrary precision) integers, which is a more precise rep-
resentation in many cases than the machine floating point arithmetic, but
not as efficient. If a case arises where use of the machine arithmetic leads
to problems, a user can force REDUCE to use the bigfloat representation at
all precisions by turning on the switch ROUNDBF. In rare cases, this switch is
turned on by the system, and the user informed by the message

ROUNDBF turned on to increase accuracy

Rounded numbers are normally printed to the specified precision. How-
ever, if the user wishes to print such numbers with less precision, the print-
ing precision can be set by the command PRINT PRECISION. For example,
print precision 5; will cause such numbers to be printed with five digits
maximum.

Under normal circumstances when ROUNDED is on, REDUCE converts the
number 1.0 to the integer 1. If this is not desired, the switch NOCONVERT can
be turned on.

Numbers that are stored internally as bigfloats are normally printed with a
space between every five digits to improve readability. If this feature is not
required, it can be suppressed by turning off the switch BFSPACE.

Further information on the bigfloat arithmetic may be found in T. Sasaki,
“Manual for Arbitrary Precision Real Arithmetic System in REDUCE”,
Department of Computer Science, University of Utah, Technical Note No.

9.11. POLYNOMIAL COEFFICIENT ARITHMETIC 149

TR-8 (1979).

When a real number is input, it is normally truncated to the precision
in effect at the time the number is read. If it is desired to keep the full
precision of all numbers input, the switch ADJPREC (for adjust precision) can
be turned on. While on, ADJPREC will automatically increase the precision,
when necessary, to match that of any integer or real input, and a message
printed to inform the user of the precision increase.

When ROUNDED is on, rational numbers are normally converted to rounded
representation. However, if a user wishes to keep such numbers in a rational
form until used in an operation that returns a real number, the switch
ROUNDALL can be turned off. This switch is normally on.

Results from rounded calculations are returned in rounded form with two
exceptions: if the result is recognized as 0 or 1 to the current precision, the
integer result is returned.

9.11.3 Modular Number Coefficients in Polynomials

REDUCE includes facilities for manipulating polynomials whose coefficients
are computed modulo a given base. To use this option, two commands must
be used; SETMOD <integer>, to set the prime modulus, and ON MODULAR to
cause the actual modular calculations to occur. For example, with setmod
3; and on modular;, the polynomial (a+2*b)^3 would become A^3+2*B^3.

The argument of SETMOD is evaluated algebraically, except that non-modular
(integer) arithmetic is used. Thus the sequence

setmod 3; on modular; setmod 7;

will correctly set the modulus to 7.

Modular numbers are by default represented by integers in the interval [0,p-
1] where p is the current modulus. Sometimes it is more convenient to use an
equivalent symmetric representation in the interval [-p/2+1,p/2], or more
precisely [-floor((p-1)/2), ceiling((p-1)/2)], especially if the modular num-
bers map objects that include negative quantities. The switch BALANCED MOD
allows you to select the symmetric representation for output.

Users should note that the modular calculations are on the polynomial co-
efficients only. It is not currently possible to reduce the exponents since no
check for a prime modulus is made (which would allow xp−1 to be reduced

150 CHAPTER 9. POLYNOMIALS AND RATIONALS

to 1 mod p). Note also that any division by a number not co-prime with
the modulus will result in the error “Invalid modular division”.

9.11.4 Complex Number Coefficients in Polynomials

Although REDUCE routinely treats the square of the variable i as equivalent
to −1, this is not sufficient to reduce expressions involving i to lowest terms,
or to factor such expressions over the complex numbers. For example, in
the default case,

factorize(a^2+1);

gives the result

{{A**2+1,1}}

and

(a^2+b^2)/(a+i*b)

is not reduced further. However, if the switch COMPLEX is turned on, full
complex arithmetic is then carried out. In other words, the above factoriza-
tion will give the result

{{A + I,1},{A - I,1}}

and the quotient will be reduced to A-I*B.

The switch COMPLEX may be combined with ROUNDED to give complex real
numbers; the appropriate arithmetic is performed in this case.

Complex conjugation is used to remove complex numbers from denomina-
tors of expressions. To do this if COMPLEX is off, you must turn the switch
RATIONALIZE on.

Chapter 10

Substitution Commands

An important class of commands in REDUCE define substitutions for vari-
ables and expressions to be made during the evaluation of expressions. Such
substitutions use the prefix operator SUB, various forms of the command
LET, and rule sets.

10.1 SUB Operator

Syntax:

SUB(<substitution_list>,EXPRN1:algebraic):algebraic

where <substitution list> is a list of one or more equations of the form

VAR:kernel=EXPRN:algebraic

or a kernel that evaluates to such a list.

The SUB operator gives the algebraic result of replacing every occurrence of
the variable VAR in the expression EXPRN1 by the expression EXPRN. Specif-
ically, EXPRN1 is first evaluated using all available rules. Next the substitu-
tions are made, and finally the substituted expression is reevaluated. When
more than one variable occurs in the substitution list, the substitution is
performed by recursively walking down the tree representing EXPRN1, and
replacing every VAR found by the appropriate EXPRN. The EXPRN are not
themselves searched for any occurrences of the various VARs. The trivial

151

152 CHAPTER 10. SUBSTITUTION COMMANDS

case SUB(EXPRN1) returns the algebraic value of EXPRN1.

Examples:

2 2
sub({x=a+y,y=y+1},x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

and with s := {x=a+y,y=y+1},

2 2
sub(s,x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

Note that the global assignments x:=a+y, etc., do not take place.

EXPRN1 can be any valid algebraic expression whose type is such that a sub-
stitution process is defined for it (e.g., scalar expressions, lists and matrices).
An error will occur if an expression of an invalid type for substitution occurs
either in EXPRN or EXPRN1.

The braces around the substitution list may also be omitted, as in:

2 2
sub(x=a+y,y=y+1,x^2+y^2) -> A + 2*A*Y + 2*Y + 2*Y + 1

10.2 LET Rules

Unlike substitutions introduced via SUB, LET rules are global in scope and
stay in effect until replaced or CLEARed.

The simplest use of the LET statement is in the form

LET <substitution list>

where <substitution list> is a list of rules separated by commas, each of
the form:

<variable> = <expression>

or

<prefix operator>(<argument>,...,<argument>) = <expression>

or

10.2. LET RULES 153

<argument> <infix operator>,..., <argument> = <expression>

For example,

let {x => y^2,
h(u,v) => u - v,
cos(pi/3) => 1/2,
a*b => c,
l+m => n,
w^3 => 2*z - 3,
z^10 => 0}

The list brackets can be left out if preferred. The above rules could also
have been entered as seven separate LET statements.

After such LET rules have been input, X will always be evaluated as the
square of Y, and so on. This is so even if at the time the LET rule was input,
the variable Y had a value other than Y. (In contrast, the assignment x:=y^2
will set X equal to the square of the current value of Y, which could be quite
different.)

The rule let a*b=c means that whenever A and B are both factors in an
expression their product will be replaced by C. For example, a^5*b^7*w
would be replaced by c^5*b^2*w.

The rule for l+m will not only replace all occurrences of l+m by N, but will also
normally replace L by n-m, but not M by n-l. A more complete description
of this case is given in Section 10.2.5.

The rule pertaining to w^3 will apply to any power of W greater than or equal
to the third.

Note especially the last example, let z^10=0. This declaration means, in
effect: ignore the tenth or any higher power of Z. Such declarations, when
appropriate, often speed up a computation to a considerable degree. (See
Section 10.4 for more details.)

Any new operators occurring in such LET rules will be automatically declared
OPERATOR by the system, if the rules are being read from a file. If they are
being entered interactively, the system will ask DECLARE ... OPERATOR? .
Answer Y or N and hit Return .

In each of these examples, substitutions are only made for the explicit ex-
pressions given; i.e., none of the variables may be considered arbitrary in
any sense. For example, the command

154 CHAPTER 10. SUBSTITUTION COMMANDS

let h(u,v) = u - v;

will cause h(u,v) to evaluate to U - V, but will not affect h(u,z) or H with
any arguments other than precisely the symbols U,V.

These simple LET rules are on the same logical level as assignments made
with the := operator. An assignment x := p+q cancels a rule let x = y^2
made earlier, and vice versa.

CAUTION: A recursive rule such as

let x = x + 1;

is erroneous, since any subsequent evaluation of X would lead to a non-
terminating chain of substitutions:

x -> x + 1 -> (x + 1) + 1 -> ((x + 1) + 1) + 1 -> ...

Similarly, coupled substitutions such as

let l = m + n, n = l + r;

would lead to the same error. As a result, if you try to evaluate an X, L or
N defined as above, you will get an error such as

X improperly defined in terms of itself

Array and matrix elements can appear on the left-hand side of a LET state-
ment. However, because of their instant evaluation property, it is the value
of the element that is substituted for, rather than the element itself. E.g.,

array a(5);
a(2) := b;
let a(2) = c;

results in B being substituted by C; the assignment for a(2) does not change.

Finally, if an error occurs in any equation in a LET statement (including
generalized statements involving FOR ALL and SUCH THAT), the remaining
rules are not evaluated.

10.2. LET RULES 155

10.2.1 FOR ALL . . . LET

If a substitution for all possible values of a given argument of an operator
is required, the declaration FOR ALL may be used. The syntax of such a
command is

FOR ALL <variable>,...,<variable>
<LET statement> <terminator>

e.g.,

for all x,y let h(x,y) = x-y;
for all x let k(x,y) = x^y;

The first of these declarations would cause h(a,b) to be evaluated as A-B,
h(u+v,u+w) to be V-W, etc. If the operator symbol H is used with more or
fewer argument places, not two, the LET would have no effect, and no error
would result.

The second declaration would cause k(a,y) to be evaluated as a^y, but
would have no effect on k(a,z) since the rule didn’t say FOR ALL Y

Where we used X and Y in the examples, any variables could have been
used. This use of a variable doesn’t affect the value it may have outside the
LET statement. However, you should remember what variables you actually
used. If you want to delete the rule subsequently, you must use the same
variables in the CLEAR command.

It is possible to use more complicated expressions as a template for a LET
statement, as explained in the section on substitutions for general expres-
sions. In nearly all cases, the rule will be accepted, and a consistent appli-
cation made by the system. However, if there is a sole constant or a sole
free variable on the left-hand side of a rule (e.g., let 2=3 or for all x let
x=2), then the system is unable to handle the rule, and the error message

Substitution for ... not allowed

will be issued. Any variable listed in the FOR ALL part will have its symbol
preceded by an equal sign: X in the above example will appear as =X. An
error will also occur if a variable in the FOR ALL part is not properly matched
on both sides of the LET equation.

156 CHAPTER 10. SUBSTITUTION COMMANDS

10.2.2 FOR ALL . . . SUCH THAT . . . LET

If a substitution is desired for more than a single value of a variable in an
operator or other expression, but not all values, a conditional form of the
FOR ALL ...LET declaration can be used.

Example:

for all x such that numberp x and x<0 let h(x)=0;

will cause h(-5) to be evaluated as 0, but H of a positive integer, or of an
argument that is not an integer at all, would not be affected. Any boolean
expression can follow the SUCH THAT keywords.

10.2.3 Removing Assignments and Substitution Rules

The user may remove all assignments and substitution rules from any ex-
pression by the command CLEAR, in the form

CLEAR <expression>,...,<expression><terminator>

e.g.

clear x, h(x,y);

Because of their instant evaluation property, array and matrix elements
cannot be cleared with CLEAR. For example, if A is an array, you must say

a(3) := 0;

rather than

clear a(3);

to “clear” element a(3).

On the other hand, a whole array (or matrix) A can be cleared by the com-
mand clear a; This means much more than resetting to 0 all the elements
of A. The fact that A is an array, and what its dimensions are, are forgotten,
so A can be redefined as another type of object, for example an operator.

The more general types of LET declarations can also be deleted by using
CLEAR. Simply repeat the LET rule to be deleted, using CLEAR in place of

10.2. LET RULES 157

LET, and omitting the equal sign and right-hand part. The same dummy
variables must be used in the FOR ALL part, and the boolean expression in
the SUCH THAT part must be written the same way. (The placing of blanks
doesn’t have to be identical.)

Example: The LET rule

for all x such that numberp x and x<0 let h(x)=0;

can be erased by the command

for all x such that numberp x and x<0 clear h(x);

10.2.4 Overlapping LET Rules

CLEAR is not the only way to delete a LET rule. A new LET rule identical
to the first, but with a different expression after the equal sign, replaces
the first. Replacements are also made in other cases where the existing rule
would be in conflict with the new rule. For example, a rule for x^4 would
replace a rule for x^5. The user should however be cautioned against having
several LET rules in effect that relate to the same expression. No guarantee
can be given as to which rules will be applied by REDUCE or in what order.
It is best to CLEAR an old rule before entering a new related LET rule.

10.2.5 Substitutions for General Expressions

The examples of substitutions discussed in other sections have involved very
simple rules. However, the substitution mechanism used in REDUCE is very
general, and can handle arbitrarily complicated rules without difficulty.

The general substitution mechanism used in REDUCE is discussed in Hearn,
A. C., “REDUCE, A User-Oriented Interactive System for Algebraic Sim-
plification,” Interactive Systems for Experimental Applied Mathematics,
(edited by M. Klerer and J. Reinfelds), Academic Press, New York (1968),
79-90, and Hearn. A. C., “The Problem of Substitution,” Proc. 1968 Sum-
mer Institute on Symbolic Mathematical Computation, IBM Programming
Laboratory Report FSC 69-0312 (1969). For the reasons given in these refer-
ences, REDUCE does not attempt to implement a general pattern matching
algorithm. However, the present system uses far more sophisticated tech-
niques than those discussed in the above papers. It is now possible for the
rules appearing in arguments of LET to have the form

158 CHAPTER 10. SUBSTITUTION COMMANDS

<substitution expression> = <expression>

where any rule to which a sensible meaning can be assigned is permitted.
However, this meaning can vary according to the form of <substitution
expression>. The semantic rules associated with the application of the
substitution are completely consistent, but somewhat complicated by the
pragmatic need to perform such substitutions as efficiently as possible. The
following rules explain how the majority of the cases are handled.

To begin with, the <substitution expression> is first partly simplified by
collecting like terms and putting identifiers (and kernels) in the system order.
However, no substitutions are performed on any part of the expression with
the exception of expressions with the instant evaluation property, such as
array and matrix elements, whose actual values are used. It should also be
noted that the system order used is not changeable by the user, even with
the KORDER command. Specific cases are then handled as follows:

1. If the resulting simplified rule has a left-hand side that is an identifier,
an expression with a top-level algebraic operator or a power, then the
rule is added without further change to the appropriate table.

2. If the operator * appears at the top level of the simplified left-hand
side, then any constant arguments in that expression are moved to the
right-hand side of the rule. The remaining left-hand side is then added
to the appropriate table. For example,

let 2*x*y=3

becomes

let x*y=3/2

so that x*y is added to the product substitution table, and when
this rule is applied, the expression x*y becomes 3/2, but X or Y by
themselves are not replaced.

3. If the operators +, - or / appear at the top level of the simplified left-
hand side, all but the first term is moved to the right-hand side of the
rule. Thus the rules

let l+m=n, x/2=y, a-b=c

become

10.2. LET RULES 159

let l=n-m, x=2*y, a=c+b.

One problem that can occur in this case is that if a quantified expression is
moved to the right-hand side, a given free variable might no longer appear
on the left-hand side, resulting in an error because of the unmatched free
variable. E.g.,

for all x,y let f(x)+f(y)=x*y

would become

for all x,y let f(x)=x*y-f(y)

which no longer has Y on both sides.

The fact that array and matrix elements are evaluated in the left-hand side
of rules can lead to confusion at times. Consider for example the statements

array a(5); let x+a(2)=3; let a(3)=4;

The left-hand side of the first rule will become X, and the second 0. Thus
the first rule will be instantiated as a substitution for X, and the second will
result in an error.

The order in which a list of rules is applied is not easily understandable
without a detailed knowledge of the system simplification protocol. It is
also possible for this order to change from release to release, as improved
substitution techniques are implemented. Users should therefore assume
that the order of application of rules is arbitrary, and program accordingly.

After a substitution has been made, the expression being evaluated is reex-
amined in case a new allowed substitution has been generated. This process
is continued until no more substitutions can be made.

As mentioned elsewhere, when a substitution expression appears in a prod-
uct, the substitution is made if that expression divides the product. For
example, the rule

let a^2*c = 3*z;

would cause a^2*c*x to be replaced by 3*Z*X and a^2*c^2 by 3*Z*C. If the
substitution is desired only when the substitution expression appears in a
product with the explicit powers supplied in the rule, the command MATCH
should be used instead.

160 CHAPTER 10. SUBSTITUTION COMMANDS

For example,

match a^2*c = 3*z;

would cause a^2*c*x to be replaced by 3*Z*X, but a^2*c^2 would not be
replaced. MATCH can also be used with the FOR ALL constructions described
above.

To remove substitution rules of the type discussed in this section, the CLEAR
command can be used, combined, if necessary, with the same FOR ALL clause
with which the rule was defined, for example:

for all x clear log(e^x),e^log(x),cos(w*t+theta(x));

Note, however, that the arbitrary variable names in this case must be the
same as those used in defining the substitution.

10.3 Rule Lists

Rule lists offer an alternative approach to defining substitutions that is dif-
ferent from either SUB or LET. In fact, they provide the best features of both,
since they have all the capabilities of LET, but the rules can also be applied
locally as is possible with SUB. In time, they will be used more and more in
REDUCE. However, since they are relatively new, much of the REDUCE
code you see uses the older constructs.

A rule list is a list of rules that have the syntax

<expression> => <expression> (WHEN <boolean expression>)

For example,

{cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(~n*pi) => (-1)^n when remainder(n,2)=0}

The tilde preceding a variable marks that variable as free for that rule, much
as a variable in a FOR ALL clause in a LET statement. The first occurrence
of that variable in each relevant rule must be so marked on input, otherwise
inconsistent results can occur. For example, the rule list

{cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(x)^2 => (1+cos(2x))/2}

10.3. RULE LISTS 161

designed to replace products of cosines, would not be correct, since the
second rule would only apply to the explicit argument X. Later occurrences
in the same rule may also be marked, but this is optional (internally, all
such rules are stored with each relevant variable explicitly marked). The
optional WHEN clause allows constraints to be placed on the application of
the rule, much as the SUCH THAT clause in a LET statement.

A rule list may be named, for example

trig1 := {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2,
cos(~x)^2 => (1+cos(2*x))/2,
sin(~x)^2 => (1-cos(2*x))/2};

Such named rule lists may be inspected as needed. E.g., the command
trig1; would cause the above list to be printed.

Rule lists may be used in two ways. They can be globally instantiated by
means of the command LET. For example,

let trig1;

would cause the above list of rules to be globally active from then on until
cancelled by the command CLEARRULES, as in

clearrules trig1;

CLEARRULES has the syntax

CLEARRULES <rule list>|<name of rule list>(,...) .

The second way to use rule lists is to invoke them locally by means of a
WHERE clause. For example

cos(a)*cos(b+c)
where {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2};

or

cos(a)*sin(b) where trigrules;

The syntax of an expression with a WHERE clause is:

162 CHAPTER 10. SUBSTITUTION COMMANDS

<expression>
WHERE <rule>|<rule list>(,<rule>|<rule list> ...)

so the first example above could also be written

cos(a)*cos(b+c)
where cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2;

The effect of this construct is that the rule list(s) in the WHERE clause only
apply to the expression on the left of WHERE. They have no effect outside
the expression. In particular, they do not affect previously defined WHERE
clauses or LET statements. For example, the sequence

let a=2;
a where a=>4;
a;

would result in the output

4

2

Although WHERE has a precedence less than any other infix operator, it still
binds higher than keywords such as ELSE, THEN, DO, REPEAT and so on. Thus
the expression

if a=2 then 3 else a+2 where a=3

will parse as

if a=2 then 3 else (a+2 where a=3)

WHERE may be used to introduce auxiliary variables in symbolic mode ex-
pressions, as described in Section 16.4. However, the symbolic mode use has
different semantics, so expressions do not carry from one mode to the other.

Compatibility Note: In order to provide compatibility with older versions
of rule lists released through the Network Library, it is currently possible
to use an equal sign interchangeably with the replacement sign => in rules
and LET statements. However, since this will change in future versions, the
replacement sign is preferable in rules and the equal sign in non-rule-based
LET statements.

10.3. RULE LISTS 163

Advanced Use of Rule Lists

Some advanced features of the rule list mechanism make it possible to write
more complicated rules than those discussed so far, and in many cases to
write more compact rule lists. These features are:

• Free operators

• Double slash operator

• Double tilde variables.

A free operator in the left hand side of a pattern will match any operator
with the same number of arguments. The free operator is written in the
same style as a variable. For example, the implementation of the product
rule of differentiation can be written as:

operator diff, !~f, !~g;

prule := {diff(~f(~x) * ~g(~x),x) =>
diff(f(x),x) * g(x) + diff(g(x),x) * f(x)};

let prule;

diff(sin(z)*cos(z),z);

cos(z)*diff(sin(z),z) + diff(cos(z),z)*sin(z)

The double slash operator may be used as an alternative to a single slash
(quotient) in order to match quotients properly. E.g., in the example of the
Gamma function above, one can use:

gammarule :=
{gamma(~z)//(~c*gamma(~zz)) => gamma(z)/(c*gamma(zz-1)*zz)

when fixp(zz -z) and (zz -z) >0,
gamma(~z)//gamma(~zz) => gamma(z)/(gamma(zz-1)*zz)

when fixp(zz -z) and (zz -z) >0};

let gammarule;

gamma(z)/gamma(z+3);

1

164 CHAPTER 10. SUBSTITUTION COMMANDS

3 2
z + 6*z + 11*z + 6

The above example suffers from the fact that two rules had to be written in
order to perform the required operation. This can be simplified by the use
of double tilde variables. E.g. the rule list

GGrule := {
gamma(~z)//(~~c*gamma(~zz)) => gamma(z)/(c*gamma(zz-1)*zz)
when fixp(zz -z) and (zz -z) >0};

will implement the same operation in a much more compact way. In general,
double tilde variables are bound to the neutral element with respect to the
operation in which they are used.

Pattern given Argument used Binding

˜z + ˜˜y x z=x; y=0
˜z + ˜˜y x+3 z=x; y=3 or z=3; y=x

˜z * ˜˜y x z=x; y=1
˜z * ˜˜y x*3 z=x; y=3 or z=3; y=x

˜z / ˜˜y x z=x; y=1
˜z / ˜˜y x/3 z=x; y=3

Remarks: A double tilde variable as the numerator of a pattern is not al-
lowed. Also, using double tilde variables may lead to recursion errors when
the zero case is not handled properly.

let f(~~a * ~x,x) => a * f(x,x) when freeof (a,x);

f(z,z);

***** f(z,z) improperly defined in terms of itself

% BUT:

let ff(~~a * ~x,x)
=> a * ff(x,x) when freeof (a,x) and a neq 1;

ff(z,z);
ff(z,z)

10.3. RULE LISTS 165

ff(3*z,z);
3*ff(z,z)

Displaying Rules Associated with an Operator

The operator SHOWRULES takes a single identifier as argument, and returns
in rule-list form the operator rules associated with that argument. For
example:

showrules log;

{LOG(E) => 1,

LOG(1) => 0,

~X
LOG(E) => ~X,

1
DF(LOG(~X),~X) => ----}

~X

Such rules can then be manipulated further as with any list. For example
rhs first ws; has the value 1. Note that an operator may have other
properties that cannot be displayed in such a form, such as the fact it is an
odd function, or has a definition defined as a procedure.

Order of Application of Rules

If rules have overlapping domains, their order of application is important.
In general, it is very difficult to specify this order precisely, so that it is
best to assume that the order is arbitrary. However, if only one operator
is involved, the order of application of the rules for this operator can be
determined from the following:

1. Rules containing at least one free variable apply before all rules without
free variables.

2. Rules activated in the most recent LET command are applied first.

166 CHAPTER 10. SUBSTITUTION COMMANDS

3. LET with several entries generate the same order of application as a
corresponding sequence of commands with one rule or rule set each.

4. Within a rule set, the rules containing at least one free variable are
applied in their given order. In other words, the first member of the
list is applied first.

5. Consistent with the first item, any rule in a rule list that contains no
free variables is applied after all rules containing free variables.

Example: The following rule set enables the computation of exact values of
the Gamma function:

operator gamma,gamma_error;
gamma_rules :=
{gamma(~x)=>sqrt(pi)/2 when x=1/2,
gamma(~n)=>factorial(n-1) when fixp n and n>0,
gamma(~n)=>gamma_error(n) when fixp n,
gamma(~x)=>(x-1)*gamma(x-1) when fixp(2*x) and x>1,
gamma(~x)=>gamma(x+1)/x when fixp(2*x)};

Here, rule by rule, cases of known or definitely uncomputable values are
sorted out; e.g. the rule leading to the error expression will be applied for
negative integers only, since the positive integers are caught by the preceding
rule, and the last rule will apply for negative odd multiples of 1/2 only.
Alternatively the first rule could have been written as

gamma(1/2) => sqrt(pi)/2,

but then the case x = 1/2 should be excluded in the WHEN part of the last
rule explicitly because a rule without free variables cannot take precedence
over the other rules.

10.4 Asymptotic Commands

In expansions of polynomials involving variables that are known to be small,
it is often desirable to throw away all powers of these variables beyond a
certain point to avoid unnecessary computation. The command LET may be
used to do this. For example, if only powers of X up to x^7 are needed, the
command

let x^8 = 0;

10.4. ASYMPTOTIC COMMANDS 167

will cause the system to delete all powers of X higher than 7.

CAUTION: This particular simplification works differently from most sub-
stitution mechanisms in REDUCE in that it is applied during polynomial
manipulation rather than to the whole evaluated expression. Thus, with the
above rule in effect, x^10/x^5 would give the result zero, since the numera-
tor would simplify to zero. Similarly x^20/x^10 would give a Zero divisor
error message, since both numerator and denominator would first simplify
to zero.

The method just described is not adequate when expressions involve several
variables having different degrees of smallness. In this case, it is necessary
to supply an asymptotic weight to each variable and count up the total
weight of each product in an expanded expression before deciding whether
to keep the term or not. There are two associated commands in the system
to permit this type of asymptotic constraint. The command WEIGHT takes
a list of equations of the form

<kernel form> = <number>

where <number> must be a positive integer (not just evaluate to a positive
integer). This command assigns the weight <number> to the relevant kernel
form. A check is then made in all algebraic evaluations to see if the total
weight of the term is greater than the weight level assigned to the calculation.
If it is, the term is deleted. To compute the total weight of a product, the
individual weights of each kernel form are multiplied by their corresponding
powers and then added.

The weight level of the system is initially set to 1. The user may change
this setting by the command

wtlevel <number>;

which sets <number> as the new weight level of the system. <number> must
evaluate to a positive integer. WTLEVEL will also allow NIL as an argu-
ment, in which case the current weight level is returned.

168 CHAPTER 10. SUBSTITUTION COMMANDS

Chapter 11

File Handling Commands

In many applications, it is desirable to load previously prepared REDUCE
files into the system, or to write output on other files. REDUCE offers four
commands for this purpose, namely, IN, OUT, SHUT, LOAD, and LOAD PACKAGE.
The first three operators are described here; LOAD and LOAD PACKAGE are
discussed in Section 18.2.

11.1 IN Command

This command takes a list of file names as argument and directs the system
to input each file (that should contain REDUCE statements and commands)
into the system. File names can either be an identifier or a string. The
explicit format of these will be system dependent and, in many cases, site
dependent. The explicit instructions for the implementation being used
should therefore be consulted for further details. For example:

in f1,"ggg.rr.s";

will first load file F1, then ggg.rr.s. When a semicolon is used as the
terminator of the IN statement, the statements in the file are echoed on the
terminal or written on the current output file. If $ is used as the terminator,
the input is not shown. Echoing of all or part of the input file can be
prevented, even if a semicolon was used, by placing an off echo; command
in the input file.

Files to be read using IN should end with ;END;. Note the two semicolons!

169

170 CHAPTER 11. FILE HANDLING COMMANDS

First of all, this is protection against obscure difficulties the user will have if
there are, by mistake, more BEGINs than ENDs on the file. Secondly, it triggers
some file control book-keeping which may improve system efficiency. If END
is omitted, an error message "End-of-file read" will occur.

11.2 OUT Command

This command takes a single file name as argument, and directs output to
that file from then on, until another OUT changes the output file, or SHUT
closes it. Output can go to only one file at a time, although many can be
open. If the file has previously been used for output during the current
job, and not SHUT, the new output is appended to the end of the file. Any
existing file is erased before its first use for output in a job, or if it had been
SHUT before the new OUT.

To output on the terminal without closing the output file, the reserved file
name T (for terminal) may be used. For example, out ofile; will direct
output to the file OFILE and out t; will direct output to the user’s terminal.

The output sent to the file will be in the same form that it would have on
the terminal. In particular x^2 would appear on two lines, an X on the lower
line and a 2 on the line above. If the purpose of the output file is to save
results to be read in later, this is not an appropriate form. We first must
turn off the NAT switch that specifies that output should be in standard
mathematical notation.

Example: To create a file ABCD from which it will be possible to read – using
IN – the value of the expression XYZ:

off echo$ % needed if your input is from a file.
off nat$ % output in IN-readable form. Each expression

% printed will end with a $.
out abcd$ % output to new file
linelength 72$ % for systems with fixed input line length.
xyz:=xyz; % will output "XYZ := " followed by the value

% of XYZ
write ";end"$ % standard for ending files for IN
shut abcd$ % save ABCD, return to terminal output
on nat$ % restore usual output form

11.3. SHUT COMMAND 171

11.3 SHUT Command

This command takes a list of names of files that have been previously opened
via an OUT statement and closes them. Most systems require this action by
the user before he ends the REDUCE job (if not sooner), otherwise the
output may be lost. If a file is shut and a further OUT command issued for
the same file, the file is erased before the new output is written.

If it is the current output file that is shut, output will switch to the terminal.
Attempts to shut files that have not been opened by OUT, or an input file,
will lead to errors.

172 CHAPTER 11. FILE HANDLING COMMANDS

Chapter 12

Commands for Interactive
Use

REDUCE is designed as an interactive system, but naturally it can also oper-
ate in a batch processing or background mode by taking its input command
by command from the relevant input stream. There is a basic difference,
however, between interactive and batch use of the system. In the former
case, whenever the system discovers an ambiguity at some point in a cal-
culation, such as a forgotten type assignment for instance, it asks the user
for the correct interpretation. In batch operation, it is not practical to ter-
minate the calculation at such points and require resubmission of the job,
so the system makes the most obvious guess of the user’s intentions and
continues the calculation.

There is also a difference in the handling of errors. In the former case, the
computation can continue since the user has the opportunity to correct the
mistake. In batch mode, the error may lead to consequent erroneous (and
possibly time consuming) computations. So in the default case, no further
evaluation occurs, although the remainder of the input is checked for syntax
errors. A message "Continuing with parsing only" informs the user that
this is happening. On the other hand, the switch ERRCONT, if on, will cause
the system to continue evaluating expressions after such errors occur.

When a syntactical error occurs, the place where the system detected the
error is marked with three dollar signs ($$$). In interactive mode, the user
can then use ED to correct the error, or retype the command. When a non-
syntactical error occurs in interactive mode, the command being evaluated

173

174 CHAPTER 12. COMMANDS FOR INTERACTIVE USE

at the time the last error occurred is saved, and may later be reevaluated
by the command RETRY.

12.1 Referencing Previous Results

It is often useful to be able to reference results of previous computations
during a REDUCE session. For this purpose, REDUCE maintains a history
of all interactive inputs and the results of all interactive computations during
a given session. These results are referenced by the command number that
REDUCE prints automatically in interactive mode. To use an input expres-
sion in a new computation, one writes input(n), where n is the command
number. To use an output expression, one writes WS(n). WS references the
previous command. E.g., if command number 1 was INT(X-1,X); and the
result of command number 7 was X-1, then

2*input(1)-ws(7)^2;

would give the result -1, whereas

2*ws(1)-ws(7)^2;

would yield the same result, but without a recomputation of the integral.

The operator DISPLAY is available to display previous inputs. If its argument
is a positive integer, n say, then the previous n inputs are displayed. If its
argument is ALL (or in fact any non-numerical expression), then all previous
inputs are displayed.

12.2 Interactive Editing

It is possible when working interactively to edit any REDUCE input that
comes from the user’s terminal, and also some user-defined procedure defini-
tions. At the top level, one can access any previous command string by the
command ed(n), where n is the desired command number as prompted by
the system in interactive mode. ED; (i.e. no argument) accesses the previous
command.

After ED has been called, you can now edit the displayed string using a string
editor with the following commands:

12.2. INTERACTIVE EDITING 175

B move pointer to beginning
C<character> replace next character by character
D delete next character
E end editing and reread text
F<character> move pointer to next occurrence of

character
I<string><escape> insert string in front of pointer
K<character> delete all characters until character
P print string from current pointer
Q give up with error exit
S<string><escape> search for first occurrence of string, po-

sitioning pointer just before it
space or X move pointer right one character.

The above table can be displayed online by typing a question mark followed
by a carriage return to the editor. The editor prompts with an angle bracket.
Commands can be combined on a single line, and all command sequences
must be followed by a carriage return to become effective.

Thus, to change the command x := a+1; to x := a+2; and cause it to be
executed, the following edit command sequence could be used:

f1c2e<return>.

The interactive editor may also be used to edit a user-defined procedure that
has not been compiled. To do this, one says:

editdef <id>;

where <id> is the name of the procedure. The procedure definition will
then be displayed in editing mode, and may then be edited and redefined
on exiting from the editor.

Some versions of REDUCE now include input editing that uses the capa-
bilities of modern window systems. Please consult your system dependent
documentation to see if this is possible. Such editing techniques are usually
much easier to use then ED or EDITDEF.

176 CHAPTER 12. COMMANDS FOR INTERACTIVE USE

12.3 Interactive File Control

If input is coming from an external file, the system treats it as a batch
processed calculation. If the user desires interactive response in this case,
he can include the command on int; in the file. Likewise, he can issue the
command off int; in the main program if he does not desire continual ques-
tioning from the system. Regardless of the setting of INT, input commands
from a file are not kept in the system, and so cannot be edited using ED.
However, many implementations of REDUCE provide a link to an external
system editor that can be used for such editing. The specific instructions for
the particular implementation should be consulted for information on this.

Two commands are available in REDUCE for interactive use of files. PAUSE;
may be inserted at any point in an input file. When this command is encoun-
tered on input, the system prints the message CONT? on the user’s terminal
and halts. If the user responds Y (for yes), the calculation continues from
that point in the file. If the user responds N (for no), control is returned
to the terminal, and the user can input further statements and commands.
Later on he can use the command cont; to transfer control back to the
point in the file following the last PAUSE encountered. A top-level pause;
from the user’s terminal has no effect.

Chapter 13

Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calcula-
tions can be performed. To extend our syntax to this class of calculations
we need to add another prefix operator, MAT, and a further variable and
expression type as follows:

13.1 MAT Operator

This prefix operator is used to represent n×mmatrices. MAT has n arguments
interpreted as rows of the matrix, each of which is a list of m expressions
representing elements in that row. For example, the matrix

(
a b c
d e f

)

would be written as mat((a,b,c),(d,e,f)).

Note that the single column matrix
(
x
y

)

becomes mat((x),(y)). The inside parentheses are required to distinguish
it from the single row matrix

(
x y

)

that would be written as mat((x,y)).

177

178 CHAPTER 13. MATRIX CALCULATIONS

13.2 Matrix Variables

An identifier may be declared a matrix variable by the declaration MATRIX.
The size of the matrix may be declared explicitly in the matrix declara-
tion, or by default in assigning such a variable to a matrix expression. For
example,

matrix x(2,1),y(3,4),z;

declares X to be a 2 x 1 (column) matrix, Y to be a 3 x 4 matrix and Z a
matrix whose size is to be declared later.

Matrix declarations can appear anywhere in a program. Once a symbol
is declared to name a matrix, it can not also be used to name an array,
operator or a procedure, or used as an ordinary variable. It can however
be redeclared to be a matrix, and its size may be changed at that time.
Note however that matrices once declared are global in scope, and so can
then be referenced anywhere in the program. In other words, a declaration
within a block (or a procedure) does not limit the scope of the matrix to that
block, nor does the matrix go away on exiting the block (use CLEAR instead
for this purpose). An element of a matrix is referred to in the expected
manner; thus x(1,1) gives the first element of the matrix X defined above.
References to elements of a matrix whose size has not yet been declared leads
to an error. All elements of a matrix whose size is declared are initialized
to 0. As a result, a matrix element has an instant evaluation property and
cannot stand for itself. If this is required, then an operator should be used
to name the matrix elements as in:

matrix m; operator x; m := mat((x(1,1),x(1,2));

13.3 Matrix Expressions

These follow the normal rules of matrix algebra as defined by the following
syntax:

<matrix expression> ::=
MAT<matrix description>|<matrix variable>|
<scalar expression>*<matrix expression>|
<matrix expression>*<matrix expression>
<matrix expression>+<matrix expression>|
<matrix expression>^<integer>|
<matrix expression>/<matrix expression>

13.4. OPERATORS WITH MATRIX ARGUMENTS 179

Sums and products of matrix expressions must be of compatible size; oth-
erwise an error will result during their evaluation. Similarly, only square
matrices may be raised to a power. A negative power is computed as the
inverse of the matrix raised to the corresponding positive power. a/b is
interpreted as a*b^(-1).

Examples:

Assuming X and Y have been declared as matrices, the following are matrix
expressions

y
y^2*x-3*y^(-2)*x
y + mat((1,a),(b,c))/2

The computation of the quotient of two matrices normally uses a two-step
elimination method due to Bareiss. An alternative method using Cramer’s
method is also available. This is usually less efficient than the Bareiss
method unless the matrices are large and dense, although we have no solid
statistics on this as yet. To use Cramer’s method instead, the switch CRAMER
should be turned on.

13.4 Operators with Matrix Arguments

The operator LENGTH applied to a matrix returns a list of the number of rows
and columns in the matrix. Other operators useful in matrix calculations are
defined in the following subsections. Attention is also drawn to the LINALG
(chapter 52) and NORMFORM (chapter 57) packages.

13.4.1 DET Operator

Syntax:

DET(EXPRN:matrix_expression):algebraic.

The operator DET is used to represent the determinant of a square matrix
expression. E.g.,

det(y^2)

is a scalar expression whose value is the determinant of the square of the

180 CHAPTER 13. MATRIX CALCULATIONS

matrix Y, and

det mat((a,b,c),(d,e,f),(g,h,j));

is a scalar expression whose value is the determinant of the matrix

a b c
d e f
g h j

Determinant expressions have the instant evaluation property. In other
words, the statement

let det mat((a,b),(c,d)) = 2;

sets the value of the determinant to 2, and does not set up a rule for the
determinant itself.

13.4.2 MATEIGEN Operator

Syntax:

MATEIGEN(EXPRN:matrix_expression,ID):list.

MATEIGEN calculates the eigenvalue equation and the corresponding eigen-
vectors of a matrix, using the variable ID to denote the eigenvalue. A square
free decomposition of the characteristic polynomial is carried out. The re-
sult is a list of lists of 3 elements, where the first element is a square free
factor of the characteristic polynomial, the second its multiplicity and the
third the corresponding eigenvector (as an n by 1 matrix). If the square free
decomposition was successful, the product of the first elements in the lists is
the minimal polynomial. In the case of degeneracy, several eigenvectors can
exist for the same eigenvalue, which manifests itself in the appearance of
more than one arbitrary variable in the eigenvector. To extract the various
parts of the result use the operations defined on lists.

Example: The command

mateigen(mat((2,-1,1),(0,1,1),(-1,1,1)),eta);

gives the output

13.4. OPERATORS WITH MATRIX ARGUMENTS 181

{{ETA - 1,2,

[ARBCOMPLEX(1)]
[]
[ARBCOMPLEX(1)]
[]
[0]

},

{ETA - 2,1,

[0]
[]
[ARBCOMPLEX(2)]
[]
[ARBCOMPLEX(2)]

}}

13.4.3 TP Operator

Syntax:

TP(EXPRN:matrix_expression):matrix.

This operator takes a single matrix argument and returns its transpose.

13.4.4 Trace Operator

Syntax:

TRACE(EXPRN:matrix_expression):algebraic.

The operator TRACE is used to represent the trace of a square matrix.

13.4.5 Matrix Cofactors

Syntax:

COFACTOR(EXPRN:matrix_expression,ROW:integer,COLUMN:integer):

182 CHAPTER 13. MATRIX CALCULATIONS

algebraic

The operator COFACTOR returns the cofactor of the element in row ROW and
column COLUMN of the matrix MATRIX. Errors occur if ROW or COLUMN do not
simplify to integer expressions or if MATRIX is not square.

13.4.6 NULLSPACE Operator

Syntax:

NULLSPACE(EXPRN:matrix_expression):list

NULLSPACE calculates for a matrix A a list of linear independent vectors (a
basis) whose linear combinations satisfy the equation Ax = 0. The basis
is provided in a form such that as many upper components as possible are
isolated.

Note that with b := nullspace a the expression length b is the nullity of
A, and that second length a - length b calculates the rank of A. The
rank of a matrix expression can also be found more directly by the RANK
operator described below.

Example: The command

nullspace mat((1,2,3,4),(5,6,7,8));

gives the output

{
[1]
[]
[0]
[]
[- 3]
[]
[2]
,
[0]
[]
[1]
[]
[- 2]
[]

13.5. MATRIX ASSIGNMENTS 183

[1]
}

In addition to the REDUCE matrix form, NULLSPACE accepts as input a
matrix given as a list of lists, that is interpreted as a row matrix. If that
form of input is chosen, the vectors in the result will be represented by lists
as well. This additional input syntax facilitates the use of NULLSPACE in
applications different from classical linear algebra.

13.4.7 RANK Operator

Syntax:

RANK(EXPRN:matrix_expression):integer

RANK calculates the rank of its argument, that, like NULLSPACE can either
be a standard matrix expression, or a list of lists, that can be interpreted
either as a row matrix or a set of equations.

Example:

rank mat((a,b,c),(d,e,f));

returns the value 2.

13.5 Matrix Assignments

Matrix expressions may appear in the right-hand side of assignment state-
ments. If the left-hand side of the assignment, which must be a variable, has
not already been declared a matrix, it is declared by default to the size of
the right-hand side. The variable is then set to the value of the right-hand
side.

Such an assignment may be used very conveniently to find the solution of
a set of linear equations. For example, to find the solution of the following
set of equations

a11*x(1) + a12*x(2) = y1
a21*x(1) + a22*x(2) = y2

184 CHAPTER 13. MATRIX CALCULATIONS

we simply write

x := 1/mat((a11,a12),(a21,a22))*mat((y1),(y2));

13.6 Evaluating Matrix Elements

Once an element of a matrix has been assigned, it may be referred to in
standard array element notation. Thus y(2,1) refers to the element in the
second row and first column of the matrix Y.

Chapter 14

Procedures

It is often useful to name a statement for repeated use in calculations with
varying parameters, or to define a complete evaluation procedure for an
operator. REDUCE offers a procedural declaration for this purpose. Its
general syntax is:

[<procedural type>] PROCEDURE <name>[<varlist>];<statement>;

where

<varlist> ::= (<variable>,...,<variable>)

This will be explained more fully in the following sections.

In the algebraic mode of REDUCE the <procedure type> can be omitted,
since the default is ALGEBRAIC. Procedures of type INTEGER or REAL may
also be used. In the former case, the system checks that the value of the
procedure is an integer. At present, such checking is not done for a real
procedure, although this will change in the future when a more complete
type checking mechanism is installed. Users should therefore only use these
types when appropriate. An empty variable list may also be omitted.

All user-defined procedures are automatically declared to be operators.

In order to allow users relatively easy access to the whole REDUCE source
program, system procedures are not protected against user redefinition. If
a procedure is redefined, a message

*** <procedure name> REDEFINED

185

186 CHAPTER 14. PROCEDURES

is printed. If this occurs, and the user is not redefining his own procedure,
he is well advised to rename it, and possibly start over (because he has
already redefined some internal procedure whose correct functioning may be
required for his job!)

All required procedures should be defined at the top level, since they have
global scope throughout a program. In particular, an attempt to define a
procedure within a procedure will cause an error to occur.

14.1 Procedure Heading

Each procedure has a heading consisting of the word PROCEDURE (optionally
preceded by the word ALGEBRAIC), followed by the name of the procedure
to be defined, and followed by its formal parameters – the symbols that will
be used in the body of the definition to illustrate what is to be done. There
are three cases:

1. No parameters. Simply follow the procedure name with a terminator
(semicolon or dollar sign).

procedure abc;

When such a procedure is used in an expression or command, abc(),
with empty parentheses, must be written.

2. One parameter. Enclose it in parentheses or just leave at least one
space, then follow with a terminator.

procedure abc(x);

or

procedure abc x;

3. More than one parameter. Enclose them in parentheses, separated by
commas, then follow with a terminator.

procedure abc(x,y,z);

14.2. PROCEDURE BODY 187

Referring to the last example, if later in some expression being evaluated
the symbols abc(u,p*q,123) appear, the operations of the procedure body
will be carried out as if X had the same value as U does, Y the same value
as p*q does, and Z the value 123. The values of X, Y, Z, after the procedure
body operations are completed are unchanged. So, normally, are the values
of U, P, Q, and (of course) 123. (This is technically referred to as call by
value.)

The reader will have noted the word normally a few lines earlier. The call
by value protections can be bypassed if necessary, as described elsewhere.

14.2 Procedure Body

Following the delimiter that ends the procedure heading must be a single
statement defining the action to be performed or the value to be delivered.
A terminator must follow the statement. If it is a semicolon, the name of
the procedure just defined is printed. It is not printed if a dollar sign is
used.

If the result wanted is given by a formula of some kind, the body is just that
formula, using the variables in the procedure heading.

Simple Example:

If f(x) is to mean (x+5)*(x+6)/(x+7), the entire procedure definition could
read

procedure f x; (x+5)*(x+6)/(x+7);

Then f(10) would evaluate to 240/17, f(a-6) to A*(A-1)/(A+1), and so
on.

More Complicated Example:

Suppose we need a function p(n,x) that, for any positive integer N, is the
Legendre polynomial of order n. We can define this operator using the
textbook formula defining these functions:

pn(x) =
1
n!

dn

dyn

1

(y2 − 2xy + 1)
1
2

∣∣∣∣∣
y=0

Put into words, the Legendre polynomial pn(x) is the result of substituting
y = 0 in the nth partial derivative with respect to y of a certain fraction

188 CHAPTER 14. PROCEDURES

involving x and y, then dividing that by n!.

This verbal formula can easily be written in REDUCE:

procedure p(n,x);
sub(y=0,df(1/(y^2-2*x*y+1)^(1/2),y,n))

/(for i:=1:n product i);

Having input this definition, the expression evaluation

2p(2,w);

would result in the output

2
3*W - 1 .

If the desired process is best described as a series of steps, then a group or
compound statement can be used.

14.3. USING LET INSIDE PROCEDURES 189

Example:

The above Legendre polynomial example can be rewritten as a series of steps
instead of a single formula as follows:

procedure p(n,x);
begin scalar seed,deriv,top,fact;

seed:=1/(y^2 - 2*x*y +1)^(1/2);
deriv:=df(seed,y,n);
top:=sub(y=0,deriv);
fact:=for i:=1:n product i;
return top/fact

end;

Procedures may also be defined recursively. In other words, the procedure
body can include references to the procedure name itself, or to other proce-
dures that themselves reference the given procedure. As an example, we can
define the Legendre polynomial through its standard recurrence relation:

procedure p(n,x);
if n<0 then rederr "Invalid argument to P(N,X)"
else if n=0 then 1
else if n=1 then x
else ((2*n-1)*x*p(n-1,x)-(n-1)*p(n-2,x))/n;

The operator REDERR in the above example provides for a simple error exit
from an algebraic procedure (and also a block). It can take a string as
argument.

It should be noted however that all the above definitions of p(n,x) are quite
inefficient if extensive use is to be made of such polynomials, since each call
effectively recomputes all lower order polynomials. It would be better to
store these expressions in an array, and then use say the recurrence relation
to compute only those polynomials that have not already been derived. We
leave it as an exercise for the reader to write such a definition.

14.3 Using LET Inside Procedures

By using LET instead of an assignment in the procedure body it is possible
to bypass the call-by-value protection. If X is a formal parameter or local
variable of the procedure (i.e. is in the heading or in a local declaration),
and LET is used instead of := to make an assignment to X, e.g.

190 CHAPTER 14. PROCEDURES

let x = 123;

then it is the variable that is the value of X that is changed. This effect
also occurs with local variables defined in a block. If the value of X is not
a variable, but a more general expression, then it is that expression that is
used on the left-hand side of the LET statement. For example, if X had the
value p*q, it is as if let p*q = 123 had been executed.

14.4 LET Rules as Procedures

The LET statement offers an alternative syntax and semantics for procedure
definition.

In place of

procedure abc(x,y,z); <procedure body>;

one can write

for all x,y,z let abc(x,y,z) = <procedure body>;

There are several differences to note.

If the procedure body contains an assignment to one of the formal parame-
ters, e.g.

x := 123;

in the PROCEDURE case it is a variable holding a copy of the first actual
argument that is changed. The actual argument is not changed.

In the LET case, the actual argument is changed. Thus, if ABC is defined using
LET, and abc(u,v,w) is evaluated, the value of U changes to 123. That is,
the LET form of definition allows the user to bypass the protections that are
enforced by the call by value conventions of standard PROCEDURE definitions.

Example: We take our earlier FACTORIAL procedure and write it as a LET
statement.

for all n let factorial n =
begin scalar m,s;
m:=1; s:=n;

14.4. LET RULES AS PROCEDURES 191

l1: if s=0 then return m;
m:=m*s;
s:=s-1;
go to l1

end;

The reader will notice that we introduced a new local variable, S, and set
it equal to N. The original form of the procedure contained the statement
n:=n-1;. If the user asked for the value of factorial(5) then N would
correspond to, not just have the value of, 5, and REDUCE would object to
trying to execute the statement 5 := 5− 1.

If PQR is a procedure with no parameters,

procedure pqr;
<procedure body>;

it can be written as a LET statement quite simply:

let pqr = <procedure body>;

To call procedure PQR, if defined in the latter form, the empty parentheses
would not be used: use PQR not PQR() where a call on the procedure is
needed.

The two notations for a procedure with no arguments can be combined. PQR
can be defined in the standard PROCEDURE form. Then a LET statement

let pqr = pqr();

would allow a user to use PQR instead of PQR() in calling the procedure.

A feature available with LET-defined procedures and not with procedures
defined in the standard way is the possibility of defining partial functions.

for all x such that numberp x let uvw(x)=<procedure body>;

Now UVW of an integer would be calculated as prescribed by the procedure
body, while UVW of a general argument, such as Z or p+q (assuming these
evaluate to themselves) would simply stay uvw(z) or uvw(p+q) as the case
may be.

192 CHAPTER 14. PROCEDURES

14.5 REMEMBER Statement

Setting the remember option for an algebraic procedure by

REMEMBER (PROCNAME:procedure);

saves all intermediate results of such procedure evaluations, including recur-
sive calls. Subsequent calls to the procedure can then be determined from
the saved results, and thus the number of evaluations (or the complexity)
can be reduced. This mode of evalation costs extra memory, of course. In
addition, the procedure must be free of side–effects.

The following examples show the effect of the remember statement on two
well–known examples.

procedure H(n); % Hofstadter’s function
if numberp n then
<< cnn := cnn +1; % counts the calls
if n < 3 then 1 else H(n-H(n-1))+H(n-H(n-2))>>;

remember h;

> << cnn := 0; H(100); cnn>>;

100

% H has been called 100 times only.

procedure A(m,n); % Ackermann function

if m=0 then n+1 else
if n=0 then A(m-1,1) else
A(m-1,A(m,n-1));

remember a;

A(3,3);

Chapter 15

User Contributed Packages

The complete REDUCE system includes a number of packages contributed
by users that are provided as a service to the user community. Questions
regarding these packages should be directed to their individual authors.

All such packages have been precompiled as part of the installation process.
However, many must be specifically loaded before they can be used. (Those
that are loaded automatically are so noted in their description.) You should
also consult the user notes for your particular implementation for further
information on whether this is necessary. If it is, the relevant command is
LOAD PACKAGE, which takes a list of one or more package names as argument,
for example:

load_package algint;

although this syntax may vary from implementation to implementation.

Nearly all these packages come with separate documentation and test files
(except those noted here that have no additional documentation), which
is included, along with the source of the package, in the REDUCE system
distribution. These items should be studied for any additional details on
the use of a particular package.

Part 2 of this manual contains short documentation for the packages

• ALGINT: Integration of square roots (chapter 20);

• APPLYSYM: Infinitesimal symmetries of differential equations (chap-

193

194 CHAPTER 15. USER CONTRIBUTED PACKAGES

ter 21);

• ARNUM: An algebraic number package (chapter 22);

• ASSIST: Useful utilities for various applications (chapter 23);

• AVECTOR: A vector algebra and calculus package (chapter 25);

• BOOLEAN: A package for boolean algebra (chapter 26);

• CALI: A package for computational commutative algebra (chapter 27);

• CAMAL: Calculations in celestial mechanics (chapter 28);

• CHANGEVR: Change of Independent Variable(s) in DEs (chapter 30);

• COMPACT: Package for compacting expressions (chapter 31);

• CONTFR: Approximation of a number by continued fractions (chap-
ter ??);

• CRACK: Solving overdetermined systems of PDEs or ODEs (chap-
ter 32);

• CVIT: Fast calculation of Dirac gamma matrix traces (chapter 33);

• DEFINT: A definite integration interface for REDUCE (chapter 34);

• DESIR: Differential linear homogeneous equation solutions in the
neighborhood of irregular and regular singular points (chapter 35);

• DFPART: Derivatives of generic functions (chapter 36);

• DUMMY: Canonical form of expressions with dummy variables (chap-
ter 37);

• EXCALC: A differential geometry package (chapter 39);

• FPS: Automatic calculation of formal power series (chapter 41);

• FIDE: Finite difference method for partial differential equations (chap-
ter 40);

• GENTRAN: A code generation package (chapter 42);

• GNUPLOT: Display of functions and surfaces (chapter 44);

195

• GROEBNER: A Gröbner basis package (chapter 45);

• IDEALS: Arithmetic for polynomial ideals (chapter 46);

• INEQ: Support for solving inequalities (chapter 47);

• INVBASE: A package for computing involutive bases (chapter 48);

• LAPLACE: Laplace and inverse Laplace transforms (chapter 49);

• LIE: Functions for the classification of real n-dimensional Lie algebras
(chapter 50);

• LIMITS: A package for finding limits (chapter 51);

• LINALG: Linear algebra package (chapter 52);

• MODSR: Modular solve and roots (chapter 54);

• NCPOLY: Non–commutative polynomial ideals (chapter 56);

• NORMFORM: Computation of matrix normal forms (chapter 57);

• NUMERIC: Solving numerical problems (chapter 58);

• ODESOLVE: Ordinary differential equations solver (chapter 59);

• ORTHOVEC: Manipulation of scalars and vectors (chapter 60);

• PHYSOP: Operator calculus in quantum theory (chapter 61);

• PM: A REDUCE pattern matcher (chapter 62);

• RANDPOLY: A random polynomial generator (chapter 64);

• REACTEQN: Support for chemical reaction equation systems (chap-
ter 66);

• RESET: Code to reset REDUCE to its initial state (chapter 68);

• RESIDUE: A residue package (chapter 69);

• RLFI: REDUCE LaTeX formula interface (chapter 70);

• RSOLVE: Rational/integer polynomial solvers (chapter 72);

• ROOTS: A REDUCE root finding package (chapter 71);

196 CHAPTER 15. USER CONTRIBUTED PACKAGES

• SCOPE: REDUCE source code optimization package (chapter 73);

• SETS: A basic set theory package (chapter 74);

• SPDE: A package for finding symmetry groups of PDE’s (chapter 76);

• SPECFN: Package for special functions (chapter 77);

• SPECFN2: Package for special special functions (chapter 78);

• SUM: A package for series summation (chapter 79);

• SYMMETRY: Operations on symmetric matrices (chapter 81);

• TAYLOR: Manipulation of Taylor series (chapter 82);

• TPS: A truncated power series package (chapter 83);

• TRI: TeX REDUCE interface (chapter 84);

• TRIGSIMP: Simplification and factorization of trigonometric and hy-
perbolic functions (chapter 85);

• XCOLOR: Calculation of the color factor in non-abelian gauge field
theories (chapter 87);

• XIDEAL: Gröbner Bases for exterior algebra (chapter 88);

• WU: Wu algorithm for polynomial systems (chapter 86);

• ZEILBERG: A package for indefinite and definite summation (chap-
ter 89);

• ZTRANS: Z-transform package (chapter 90);

Chapter 16

Symbolic Mode

At the system level, REDUCE is based on a version of the programming lan-
guage Lisp known as Standard Lisp which is described in J. Marti, Hearn,
A. C., Griss, M. L. and Griss, C., “Standard LISP Report” SIGPLAN No-
tices, ACM, New York, 14, No 10 (1979) 48-68. We shall assume in this
section that the reader is familiar with the material in that paper. This also
assumes implicitly that the reader has a reasonable knowledge about Lisp in
general, say at the level of the LISP 1.5 Programmer’s Manual (McCarthy,
J., Abrahams, P. W., Edwards, D. J., Hart, T. P. and Levin, M. I., “LISP
1.5 Programmer’s Manual”, M.I.T. Press, 1965) or any of the books men-
tioned at the end of this section. Persons unfamiliar with this material will
have some difficulty understanding this section.

Although REDUCE is designed primarily for algebraic calculations, its
source language is general enough to allow for a full range of Lisp-like symb-
olic calculations. To achieve this generality, however, it is necessary to pro-
vide the user with two modes of evaluation, namely an algebraic mode and
a symbolic mode. To enter symbolic mode, the user types symbolic; (or
lisp;) and to return to algebraic mode one types algebraic;. Evaluations
proceed differently in each mode so the user is advised to check what mode
he is in if a puzzling error arises. He can find his mode by typing

eval_mode;

The current mode will then be printed as ALGEBRAIC or SYMBOLIC.

Expression evaluation may proceed in either mode at any level of a calcu-

197

198 CHAPTER 16. SYMBOLIC MODE

lation, provided the results are passed from mode to mode in a compatible
manner. One simply prefixes the relevant expression by the appropriate
mode. If the mode name prefixes an expression at the top level, it will then
be handled as if the global system mode had been changed for the scope of
that particular calculation.

For example, if the current mode is ALGEBRAIC, then the commands

199

symbolic car ’(a);
x+y;

will cause the first expression to be evaluated and printed in symbolic mode
and the second in algebraic mode. Only the second evaluation will thus
affect the expression workspace. On the other hand, the statement

x + symbolic car ’(12);

will result in the algebraic value X+12.

The use of SYMBOLIC (and equivalently ALGEBRAIC) in this manner is the
same as any operator. That means that parentheses could be omitted in the
above examples since the meaning is obvious. In other cases, parentheses
must be used, as in

symbolic(x := ’a);

Omitting the parentheses, as in

symbolic x := a;

would be wrong, since it would parse as

symbolic(x) := a;

For convenience, it is assumed that any operator whose first argument is
quoted is being evaluated in symbolic mode, regardless of the mode in effect
at that time. Thus, the first example above could be equally well written:

car ’(a);

Except where explicit limitations have been made, most REDUCE algebraic
constructions carry over into symbolic mode. However, there are some differ-
ences. First, expression evaluation now becomes Lisp evaluation. Secondly,
assignment statements are handled differently, as we shall discuss shortly.
Thirdly, local variables and array elements are initialized to NIL rather than
0. (In fact, any variables not explicitly declared INTEGER are also initialized
to NIL in algebraic mode, but the algebraic evaluator recognizes NIL as 0.)
Finally, function definitions follow the conventions of Standard Lisp.

To begin with, we mention a few extensions to our basic syntax which are

200 CHAPTER 16. SYMBOLIC MODE

designed primarily if not exclusively for symbolic mode.

16.1 Symbolic Infix Operators

There are three binary infix operators in REDUCE intended for use in symb-
olic mode, namely . (CONS), EQ and MEMQ. The precedence of these oper-
ators was given in another section.

16.2 Symbolic Expressions

These consist of scalar variables and operators and follow the normal rules
of the Lisp meta language.

Examples:

x
car u . reverse v
simp (u+v^2)

16.3 Quoted Expressions

Because symbolic evaluation requires that each variable or expression has a
value, it is necessary to add to REDUCE the concept of a quoted expression
by analogy with the Lisp QUOTE function. This is provided by the single
quote mark ’. For example,

’a represents the Lisp S-expression (quote a)
’(a b c) represents the Lisp S-expression (quote (a b c))

Note, however, that strings are constants and therefore evaluate to them-
selves in symbolic mode. Thus, to print the string "A String", one would
write

prin2 "A String";

Within a quoted expression, identifier syntax rules are those of REDUCE.
Thus (A !. B) is the list consisting of the three elements A, ., and B,
whereas (A . B) is the dotted pair of A and B.

16.4. LAMBDA EXPRESSIONS 201

16.4 Lambda Expressions

LAMBDA expressions provide the means for constructing Lisp LAMBDA expres-
sions in symbolic mode. They may not be used in algebraic mode.

Syntax:

<LAMBDA expression> ::=
LAMBDA <varlist><terminator><statement>

where

<varlist> ::= (<variable>,...,<variable>)

e.g.,

lambda (x,y); car x . cdr y;

is equivalent to the Lisp LAMBDA expression

(lambda (x y) (cons (car x) (cdr y)))

The parentheses may be omitted in specifying the variable list if desired.

LAMBDA expressions may be used in symbolic mode in place of prefix oper-
ators, or as an argument of the reserved word FUNCTION.

In those cases where a LAMBDA expression is used to introduce local variables
to avoid recomputation, a WHERE statement can also be used. For example,
the expression

(lambda (x,y); list(car x,cdr x,car y,cdr y))
(reverse u,reverse v)

can also be written

{car x,cdr x,car y,cdr y} where x=reverse u,y=reverse v

Where possible, WHERE syntax is preferred to LAMBDA syntax, since it is more
natural.

202 CHAPTER 16. SYMBOLIC MODE

16.5 Symbolic Assignment Statements

In symbolic mode, if the left side of an assignment statement is a variable,
a SETQ of the right-hand side to that variable occurs. If the left-hand side is
an expression, it must be of the form of an array element, otherwise an error
will result. For example, x:=y translates into (SETQ X Y) whereas a(3) :=
3 will be valid if A has been previously declared a single dimensioned array
of at least four elements.

16.6 FOR EACH Statement

The FOR EACH form of the FOR statement, designed for iteration down a list,
is more general in symbolic mode. Its syntax is:

FOR EACH ID:identifier {IN|ON} LST:list
{DO|COLLECT|JOIN|PRODUCT|SUM} EXPRN:S-expr

As in algebraic mode, if the keyword IN is used, iteration is on each element
of the list. With ON, iteration is on the whole list remaining at each point in
the iteration. As a result, we have the following equivalence between each
form of FOR EACH and the various mapping functions in Lisp:

DO COLLECT JOIN
IN MAPC MAPCAR MAPCAN
ON MAP MAPLIST MAPCON

Example: To list each element of the list (a b c):

for each x in ’(a b c) collect list x;

16.7 Symbolic Procedures

All the functions described in the Standard Lisp Report are available to users
in symbolic mode. Additional functions may also be defined as symbolic
procedures. For example, to define the Lisp function ASSOC, the following
could be used:

symbolic procedure assoc(u,v);

16.8. STANDARD LISP EQUIVALENT OF REDUCE INPUT 203

if null v then nil
else if u = caar v then car v
else assoc(u, cdr v);

If the default mode were symbolic, then SYMBOLIC could be omitted in
the above definition. MACROs may be defined by prefixing the keyword
PROCEDURE by the word MACRO. (In fact, ordinary functions may be defined
with the keyword EXPR prefixing PROCEDURE as was used in the Standard
Lisp Report.) For example, we could define a MACRO CONSCONS by

symbolic macro procedure conscons l;
expand(cdr l,’cons);

Another form of macro, the SMACRO is also available. These are described in
the Standard Lisp Report. The Report also defines a function type FEXPR.
However, its use is discouraged since it is hard to implement efficiently, and
most uses can be replaced by macros. At the present time, there are no
FEXPRs in the core REDUCE system.

16.8 Standard Lisp Equivalent of Reduce Input

A user can obtain the Standard Lisp equivalent of his REDUCE input by
turning on the switch DEFN (for definition). The system then prints the
Lisp translation of his input but does not evaluate it. Normal operation is
resumed when DEFN is turned off.

16.9 Communicating with Algebraic Mode

One of the principal motivations for a user of the algebraic facilities of RE-
DUCE to learn about symbolic mode is that it gives one access to a wider
range of techniques than is possible in algebraic mode alone. For example,
if a user wishes to use parts of the system defined in the basic system source
code, or refine their algebraic code definitions to make them more efficient,
then it is necessary to understand the source language in fairly complete
detail. Moreover, it is also necessary to know a little more about the way
REDUCE operates internally. Basically, REDUCE considers expressions
in two forms: prefix form, which follow the normal Lisp rules of function
composition, and so-called canonical form, which uses a completely different

204 CHAPTER 16. SYMBOLIC MODE

syntax.

Once these details are understood, the most critical problem faced by a user
is how to make expressions and procedures communicate between symbolic
and algebraic mode. The purpose of this section is to teach a user the basic
principles for this.

If one wants to evaluate an expression in algebraic mode, and then use that
expression in symbolic mode calculations, or vice versa, the easiest way to do
this is to assign a variable to that expression whose value is easily obtainable
in both modes. To facilitate this, a declaration SHARE is available. SHARE
takes a list of identifiers as argument, and marks these variables as having
recognizable values in both modes. The declaration may be used in either
mode.

E.g.,

share x,y;

says that X and Y will receive values to be used in both modes.

If a SHARE declaration is made for a variable with a previously assigned
algebraic value, that value is also made available in symbolic mode.

16.9.1 Passing Algebraic Mode Values to Symbolic Mode

If one wishes to work with parts of an algebraic mode expression in symbolic
mode, one simply makes an assignment of a shared variable to the relevant
expression in algebraic mode. For example, if one wishes to work with
(a+b)^2, one would say, in algebraic mode:

x := (a+b)^2;

assuming that X was declared shared as above. If we now change to symbolic
mode and say

x;

its value will be printed as a prefix form with the syntax:

(*SQ <standard quotient> T)

This particular format reflects the fact that the algebraic mode processor

16.9. COMMUNICATING WITH ALGEBRAIC MODE 205

currently likes to transfer prefix forms from command to command, but
doesn’t like to reconvert standard forms (which represent polynomials) and
standard quotients back to a true Lisp prefix form for the expression (which
would result in excessive computation). So *SQ is used to tell the algebraic
processor that it is dealing with a prefix form which is really a standard
quotient and the second argument (T or NIL) tells it whether it needs further
processing (essentially, an already simplified flag).

So to get the true standard quotient form in symbolic mode, one needs CADR
of the variable. E.g.,

z := cadr x;

would store in Z the standard quotient form for (a+b)^2.

Once you have this expression, you can now manipulate it as you wish. To
facilitate this, a standard set of selectors and constructors are available for
getting at parts of the form. Those presently defined are as follows:

206 CHAPTER 16. SYMBOLIC MODE

REDUCE Selectors

DENR denominator of standard quotient

LC leading coefficient of polynomial

LDEG leading degree of polynomial

LPOW leading power of polynomial

LT leading term of polynomial

MVAR main variable of polynomial

NUMR numerator (of standard quotient)

PDEG degree of a power

RED reductum of polynomial

TC coefficient of a term

TDEG degree of a term

TPOW power of a term

REDUCE Constructors

.+ add a term to a polynomial

./ divide (two polynomials to get quotient)

.* multiply power by coefficient to produce term

.^ raise a variable to a power

For example, to find the numerator of the standard quotient above, one
could say:

numr z;

or to find the leading term of the numerator:

lt numr z;

Conversion between various data structures is facilitated by the use of a set
of functions defined for this purpose. Those currently implemented include:

16.9. COMMUNICATING WITH ALGEBRAIC MODE 207

!*A2F convert an algebraic expression to a standard form. If result
is rational, an error results;

!*A2K converts an algebraic expression to a kernel. If this is not
possible, an error results;

!*F2A converts a standard form to an algebraic expression;

!*F2Q convert a standard form to a standard quotient;

!*K2F convert a kernel to a standard form;

!*K2Q convert a kernel to a standard quotient;

!*P2F convert a standard power to a standard form;

!*P2Q convert a standard power to a standard quotient;

!*Q2F convert a standard quotient to a standard form. If the quo-
tient denominator is not 1, an error results;

!*Q2K convert a standard quotient to a kernel. If this is not possible,
an error results;

!*T2F convert a standard term to a standard form

!*T2Q convert a standard term to a standard quotient.

16.9.2 Passing Symbolic Mode Values to Algebraic Mode

In order to pass the value of a shared variable from symbolic mode to alge-
braic mode, the only thing to do is make sure that the value in symbolic mode
is a prefix expression. E.g., one uses (expt (plus a b) 2) for (a+b)^2, or
the format (*sq <standard quotient> t) as described above. However, if
you have been working with parts of a standard form they will probably not
be in this form. In that case, you can do the following:

1. If it is a standard quotient, call PREPSQ on it. This takes a stand-
ard quotient as argument, and returns a prefix expression. Alterna-
tively, you can call MK!*SQ on it, which returns a prefix form like
(*SQ <standard quotient> T) and avoids translation of the expres-
sion into a true prefix form.

2. If it is a standard form, call PREPF on it. This takes a standard form as
argument, and returns the equivalent prefix expression. Alternatively,

208 CHAPTER 16. SYMBOLIC MODE

you can convert it to a standard quotient and then call MK!*SQ.

3. If it is a part of a standard form, you must usually first build up
a standard form out of it, and then go to step 2. The conversion
functions described earlier may be used for this purpose. For example,

(a) If Z is an expression which is a term, !*T2F Z is a standard form.

(b) If Z is a standard power, !*P2F Z is a standard form.

(c) If Z is a variable, you can pass it direct to algebraic mode.

For example, to pass the leading term of (a+b)^2 back to algebraic mode,
one could say:

y:= mk!*sq !*t2q lt numr z;

where Y has been declared shared as above. If you now go back to algebraic
mode, you can work with Y in the usual way.

16.9.3 Complete Example

The following is the complete code for doing the above steps. The end result
will be that the square of the leading term of (a+ b)2 is calculated.

share x,y; % declare X and Y as shared
x := (a+b)^2; % store (a+b)^2 in X
symbolic; % transfer to symbolic mode
z := cadr x; % store a true standard quotient in Z
lt numr z; % print the leading term of the

% numerator of Z
y := mk!*sq !*t2q lt numr z; % store the prefix form of this

% leading term in Y
algebraic; % return to algebraic mode
y^2; % evaluate square of the leading term

% of (a+b)^2

16.9.4 Defining Procedures for Intermode Communication

If one wishes to define a procedure in symbolic mode for use as an operator
in algebraic mode, it is necessary to declare this fact to the system by using
the declaration OPERATOR in symbolic mode. Thus

16.10. RLISP ’88 209

symbolic operator leadterm;

would declare the procedure LEADTERM as an algebraic operator. This dec-
laration must be made in symbolic mode as the effect in algebraic mode is
different. The value of such a procedure must be a prefix form.

The algebraic processor will pass arguments to such procedures in prefix
form. Therefore if you want to work with the arguments as standard quo-
tients you must first convert them to that form by using the function SIMP!*.
This function takes a prefix form as argument and returns the evaluated
standard quotient.

For example, if you want to define a procedure LEADTERM which gives the
leading term of an algebraic expression, one could do this as follows:

symbolic operator leadterm; % Declare LEADTERM as a symbolic
% mode procedure to be used in
% algebraic mode.

symbolic procedure leadterm u; % Define LEADTERM.
mk!*sq !*t2q lt numr simp!* u;

Note that this operator has a different effect than the operator LTERM . In
the latter case, the calculation is done with respect to the second argument
of the operator. In the example here, we simply extract the leading term
with respect to the system’s choice of main variable.

Finally, if you wish to use the algebraic evaluator on an argument in a symb-
olic mode definition, the function REVAL can be used. The one argument of
REVAL must be the prefix form of an expression. REVAL returns the evaluated
expression as a true Lisp prefix form.

16.10 Rlisp ’88

Rlisp ’88 is a superset of the Rlisp that has been traditionally used for
the support of REDUCE. It is fully documented in the book Marti, J.B.,
“RLISP ’88: An Evolutionary Approach to Program Design and Reuse”,
World Scientific, Singapore (1993). Rlisp ’88 adds to the traditional Rlisp
the following facilities:

1. more general versions of the looping constructs for, repeat and while;

210 CHAPTER 16. SYMBOLIC MODE

2. support for a backquote construct;

3. support for active comments;

4. support for vectors of the form name[index];

5. support for simple structures;

6. support for records.

In addition, “–” is a letter in Rlisp ’88. In other words, A-B is an identi-
fier, not the difference of the identifiers A and B. If the latter construct is
required, it is necessary to put spaces around the - character. For compati-
bility between the two versions of Rlisp, we recommend this convention be
used in all symbolic mode programs.

To use Rlisp ’88, type on rlisp88;. This switches to symbolic mode with
the Rlisp ’88 syntax and extensions. While in this environment, it is im-
possible to switch to algebraic mode, or prefix expressions by “algebraic”.
However, symbolic mode programs written in Rlisp ’88 may be run in alge-
braic mode provided the rlisp88 package has been loaded. We also expect
that many of the extensions defined in Rlisp ’88 will migrate to the basic
Rlisp over time. To return to traditional Rlisp or to switch to algebraic
mode, say “off rlisp88”.

16.11 References

There are a number of useful books which can give you further information
about LISP. Here is a selection:

Allen, J.R., “The Anatomy of LISP”, McGraw Hill, New York, 1978.

McCarthy J., P.W. Abrahams, J. Edwards, T.P. Hart and M.I. Levin, “LISP
1.5 Programmer’s Manual”, M.I.T. Press, 1965.

Touretzky, D.S, “LISP: A Gentle Introduction to Symbolic Computation”,
Harper & Row, New York, 1984.

Winston, P.H. and Horn, B.K.P., “LISP”, Addison-Wesley, 1981.

Chapter 17

Calculations in High Energy
Physics

A set of REDUCE commands is provided for users interested in symbolic
calculations in high energy physics. Several extensions to our basic syntax
are necessary, however, to allow for the different data structures encountered.

17.1 High Energy Physics Operators

We begin by introducing three new operators required in these calculations.

17.1.1 . (Cons) Operator

Syntax:

(EXPRN1:vector_expression)
. (EXPRN2:vector_expression):algebraic.

The binary . operator, which is normally used to denote the addition of an
element to the front of a list, can also be used in algebraic mode to denote
the scalar product of two Lorentz four-vectors. For this to happen, the
second argument must be recognizable as a vector expression at the time
of evaluation. With this meaning, this operator is often referred to as the
dot operator. In the present system, the index handling routines all assume
that Lorentz four-vectors are used, but these routines could be rewritten to

211

212 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

handle other cases.

Components of vectors can be represented by including representations of
unit vectors in the system. Thus if EO represents the unit vector (1,0,0,0),
(p.eo) represents the zeroth component of the four-vector P. Our metric
and notation follows Bjorken and Drell “Relativistic Quantum Mechanics”
(McGraw-Hill, New York, 1965). Similarly, an arbitrary component P may
be represented by (p.u). If contraction over components of vectors is re-
quired, then the declaration INDEX must be used. Thus

index u;

declares U as an index, and the simplification of

p.u * q.u

would result in

P.Q

The metric tensor gµν may be represented by (u.v). If contraction over U
and V is required, then they should be declared as indices.

Errors occur if indices are not properly matched in expressions.

If a user later wishes to remove the index property from specific vectors,
he can do it with the declaration REMIND. Thus remind v1...vn; removes
the index flags from the variables V1 through Vn. However, these variables
remain vectors in the system.

17.1.2 G Operator for Gamma Matrices

Syntax:

G(ID:identifier[,EXPRN:vector_expression])
:gamma_matrix_expression.

G is an n-ary operator used to denote a product of γ matrices contracted with
Lorentz four-vectors. Gamma matrices are associated with fermion lines in
a Feynman diagram. If more than one such line occurs, then a different set
of γ matrices (operating in independent spin spaces) is required to represent
each line. To facilitate this, the first argument of G is a line identification
identifier (not a number) used to distinguish different lines.

17.1. HIGH ENERGY PHYSICS OPERATORS 213

Thus

g(l1,p) * g(l2,q)

denotes the product of γ.p associated with a fermion line identified as L1,
and γ.q associated with another line identified as L2 and where p and q are
Lorentz four-vectors. A product of γ matrices associated with the same line
may be written in a contracted form.

Thus

g(l1,p1,p2,...,p3) = g(l1,p1)*g(l1,p2)*...*g(l1,p3) .

The vector A is reserved in arguments of G to denote the special γ matrix
γ5. Thus

g(l,a) = γ5 associated with the line L

g(l,p,a) = γ.p ×γ5 associated with the line L.

γµ (associated with the line L) may be written as g(l,u), with U flagged as
an index if contraction over U is required.

The notation of Bjorken and Drell is assumed in all operations involving γ
matrices.

17.1.3 EPS Operator

Syntax:

EPS(EXPRN1:vector_expression,...,EXPRN4:vector_exp)
:vector_exp.

The operator EPS has four arguments, and is used only to denote the com-
pletely antisymmetric tensor of order 4 and its contraction with Lorentz
four-vectors. Thus

εijkl =

+1 if i, j, k, l is an even permutation of 0,1,2,3
−1 if an odd permutation
0 otherwise

A contraction of the form εijµνpµqν may be written as eps(i,j,p,q), with
I and J flagged as indices, and so on.

214 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

17.2 Vector Variables

Apart from the line identification identifier in the G operator, all other ar-
guments of the operators in this section are vectors. Variables used as such
must be declared so by the type declaration VECTOR, for example:

vector p1,p2;

declares P1 and P2 to be vectors. Variables declared as indices or given a
mass are automatically declared vector by these declarations.

17.3 Additional Expression Types

Two additional expression types are necessary for high energy calculations,
namely

17.3.1 Vector Expressions

These follow the normal rules of vector combination. Thus the product of
a scalar or numerical expression and a vector expression is a vector, as are
the sum and difference of vector expressions. If these rules are not followed,
error messages are printed. Furthermore, if the system finds an undeclared
variable where it expects a vector variable, it will ask the user in interactive
mode whether to make that variable a vector or not. In batch mode, the
declaration will be made automatically and the user informed of this by a
message.

Examples:

Assuming P and Q have been declared vectors, the following are vector ex-
pressions

p
2*q/3
2*x*y*p - p.q*q/(3*q.q)

whereas p*q and p/q are not.

17.4. TRACE CALCULATIONS 215

17.3.2 Dirac Expressions

These denote those expressions which involve γ matrices. A γ matrix is
implicitly a 4 × 4 matrix, and so the product, sum and difference of such
expressions, or the product of a scalar and Dirac expression is again a Dirac
expression. There are no Dirac variables in the system, so whenever a scalar
variable appears in a Dirac expression without an associated γ matrix ex-
pression, an implicit unit 4 by 4 matrix is assumed. For example, g(l,p)
+ m denotes g(l,p) + m*<unit 4 by 4 matrix>. Multiplication of Dirac
expressions, as for matrix expressions, is of course non-commutative.

17.4 Trace Calculations

When a Dirac expression is evaluated, the system computes one quarter
of the trace of each γ matrix product in the expansion of the expression.
One quarter of each trace is taken in order to avoid confusion between the
trace of the scalar M, say, and M representing M * <unit 4 by 4 matrix>.
Contraction over indices occurring in such expressions is also performed. If
an unmatched index is found in such an expression, an error occurs.

The algorithms used for trace calculations are the best available at the time
this system was produced. For example, in addition to the algorithm devel-
oped by Chisholm for contracting indices in products of traces, REDUCE
uses the elegant algorithm of Kahane for contracting indices in γ matrix
products. These algorithms are described in Chisholm, J. S. R., Il Nuovo
Cimento X, 30, 426 (1963) and Kahane, J., Journal Math. Phys. 9, 1732
(1968).

It is possible to prevent the trace calculation over any line identifier by the
declaration NOSPUR. For example,

nospur l1,l2;

will mean that no traces are taken of γ matrix terms involving the line
numbers L1 and L2. However, in some calculations involving more than one
line, a catastrophic error

This NOSPUR option not implemented

can occur (for the reason stated!) If you encounter this error, please let us
know!

216 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

A trace of a γ matrix expression involving a line identifier which has been
declared NOSPUR may be later taken by making the declaration SPUR.

See also the CVIT package for an alternative mechanism (chapter 33).

17.5 Mass Declarations

It is often necessary to put a particle “on the mass shell” in a calculation.
This can, of course, be accomplished with a LET command such as

let p.p= m^2;

but an alternative method is provided by two commands MASS and MSHELL.
MASS takes a list of equations of the form:

<vector variable> = <scalar variable>

for example,

mass p1=m, q1=mu;

The only effect of this command is to associate the relevant scalar variable
as a mass with the corresponding vector. If we now say

mshell <vector variable>,...,<vector variable>;

and a mass has been associated with these arguments, a substitution of the
form

<vector variable>.<vector variable> = <mass>^2

is set up. An error results if the variable has no preassigned mass.

17.6 Example

We give here as an example of a simple calculation in high energy physics
the computation of the Compton scattering cross-section as given in Bjorken
and Drell Eqs. (7.72) through (7.74). We wish to compute the trace of

17.6. EXAMPLE 217

α2

2

(
k′

k

)2 (
γ.pf +m

2m

) (
γ.e′γ.eγ.ki

2k.pi
+
γ.eγ.e′γ.kf

2k′.pi

) (
γ.pi +m

2m

)

(
γ.kiγ.eγ.e

′

2k.pi
+
γ.kfγ.e

′γ.e
2k′.pi

)

where ki and kf are the four-momenta of incoming and outgoing photons
(with polarization vectors e and e′ and laboratory energies k and k′ respec-
tively) and pi, pf are incident and final electron four-momenta.

Omitting therefore an overall factor α2

2m2

(
k′
k

)2
we need to find one quarter

of the trace of

(γ.pf +m)
(
γ.e′γ.eγ.ki

2k.pi
+
γ.eγ.e′γ.kf

2k′.pi

)
(γ.pi +m)

(
γ.kiγ.eγ.e

′

2k.pi
+
γ.kfγ.e

′γ.e
2k′.pi

)

A straightforward REDUCE program for this, with appropriate substitu-
tions (using P1 for pi, PF for pf , KI for ki and KF for kf) is

on div; % this gives output in same form as Bjorken and Drell.
mass ki= 0, kf= 0, p1= m, pf= m; vector e,ep;
% if e is used as a vector, it loses its scalar identity as
% the base of natural logarithms.
mshell ki,kf,p1,pf;
let p1.e= 0, p1.ep= 0, p1.pf= m^2+ki.kf, p1.ki= m*k,p1.kf=

m*kp, pf.e= -kf.e, pf.ep= ki.ep, pf.ki= m*kp, pf.kf=
m*k, ki.e= 0, ki.kf= m*(k-kp), kf.ep= 0, e.e= -1,
ep.ep=-1;

for all p let gp(p)= g(l,p)+m;
comment this is just to save us a lot of writing;
gp(pf)*(g(l,ep,e,ki)/(2*ki.p1) + g(l,e,ep,kf)/(2*kf.p1))

* gp(p1)*(g(l,ki,e,ep)/(2*ki.p1) + g(l,kf,ep,e)/
(2*kf.p1))$

write "The Compton cxn is",ws;

(We use P1 instead of PI in the above to avoid confusion with the reserved
variable PI).

This program will print the following result

(-1) (-1) 2
The Compton cxn is 1/2*K*KP + 1/2*K *KP + 2*E.EP - 1

218 CHAPTER 17. CALCULATIONS IN HIGH ENERGY PHYSICS

17.7 Extensions to More Than Four Dimensions

In our discussion so far, we have assumed that we are working in the normal
four dimensions of QED calculations. However, in most cases, the programs
will also work in an arbitrary number of dimensions. The command

vecdim <expression>;

sets the appropriate dimension. The dimension can be symbolic as well as
numerical. Users should note however, that the EPS operator and the γ5

symbol (A) are not properly defined in other than four dimensions and will
lead to an error if used.

Chapter 18

REDUCE and Rlisp Utilities

REDUCE and its associated support language system Rlisp include a num-
ber of utilities which have proved useful for program development over the
years. The following are supported in most of the implementations of RE-
DUCE currently available.

18.1 The Standard Lisp Compiler

Many versions of REDUCE include a Standard Lisp compiler that is auto-
matically loaded on demand. You should check your system specific user
guide to make sure you have such a compiler. To make the compiler active,
the switch COMP should be turned on. Any further definitions input after
this will be compiled automatically. If the compiler used is a derivative
version of the original Griss-Hearn compiler, (M. L. Griss and A. C. Hearn,
“A Portable LISP Compiler”, SOFTWARE — Practice and Experience 11
(1981) 541-605), there are other switches that might also be used in this re-
gard. However, these additional switches are not supported in all compilers.
They are as follows:

219

220 CHAPTER 18. REDUCE AND RLISP UTILITIES

PLAP If ON, causes the printing of the portable macros produced
by the compiler;

PGWD If ON, causes the printing of the actual assembly language
instructions generated from the macros;

PWRDS If ON, causes a statistic message of the form
<function> COMPILED, <words> WORDS, <words> LEFT
to be printed. The first number is the number of words of
binary program space the compiled function took, and the
second number the number of words left unused in binary
program space.

18.2 Fast Loading Code Generation Program

In most versions of REDUCE, it is possible to take any set of Lisp, Rlisp or
REDUCE commands and build a fast loading version of them. In Rlisp or
REDUCE, one does the following:

faslout <filename>;
<commands or IN statements>
faslend;

To load such a file, one uses the command LOAD, e.g. load foo; or load
foo,bah;

This process produces a fast-loading version of the original file. In some
implementations, this means another file is created with the same name but
a different extension. For example, in PSL-based systems, the extension
is b (for binary). In CSL-based systems, however, this process adds the
fast-loading code to a single file in which all such code is stored. Particular
functions are provided by CSL for managing this file, and described in the
CSL user documentation.

In doing this build, as with the production of a Standard Lisp form of such
statements, it is important to remember that some of the commands must
be instantiated during the building process. For example, macros must be
expanded, and some property list operations must happen. The REDUCE
sources should be consulted for further details on this.

18.3. THE STANDARD LISP CROSS REFERENCE PROGRAM 221

To avoid excessive printout, input statements should be followed by a $
instead of the semicolon. With LOAD however, the input doesn’t print out
regardless of which terminator is used with the command.

If you subsequently change the source files used in producing a fast loading
file, don’t forget to repeat the above process in order to update the fast
loading file correspondingly. Remember also that the text which is read in
during the creation of the fast load file, in the compiling process described
above, is not stored in your REDUCE environment, but only translated and
output. If you want to use the file just created, you must then use LOAD to
load the output of the fast-loading file generation program.

When the file to be loaded contains a complete package for a given appli-
cation, LOAD PACKAGE rather than LOAD should be used. The syntax is the
same. However, LOAD PACKAGE does some additional bookkeeping such as
recording that this package has now been loaded, that is required for the
correct operation of the system.

18.3 The Standard Lisp Cross Reference Program

CREF is a Standard Lisp program for processing a set of Standard LISP
function definitions to produce:

1. A “summary” showing:

(a) A list of files processed;

(b) A list of “entry points” (functions which are not called or are
only called by themselves);

(c) A list of undefined functions (functions called but not defined in
this set of functions);

(d) A list of variables that were used non-locally but not declared
GLOBAL or FLUID before their use;

(e) A list of variables that were declared GLOBAL but not used as
FLUIDs, i.e., bound in a function;

(f) A list of FLUID variables that were not bound in a function so
that one might consider declaring them GLOBALs;

(g) A list of all GLOBAL variables present;

(h) A list of all FLUID variables present;

222 CHAPTER 18. REDUCE AND RLISP UTILITIES

(i) A list of all functions present.

2. A “global variable usage” table, showing for each non-local variable:

(a) Functions in which it is used as a declared FLUID or GLOBAL;

(b) Functions in which it is used but not declared;

(c) Functions in which it is bound;

(d) Functions in which it is changed by SETQ.

3. A “function usage” table showing for each function:

(a) Where it is defined;

(b) Functions which call this function;

(c) Functions called by it;

(d) Non-local variables used.

The program will also check that functions are called with the correct num-
ber of arguments, and print a diagnostic message otherwise.

The output is alphabetized on the first seven characters of each function
name.

18.3.1 Restrictions

Algebraic procedures in REDUCE are treated as if they were symbolic, so
that algebraic constructs will actually appear as calls to symbolic functions,
such as AEVAL.

18.3.2 Usage

To invoke the cross reference program, the switch CREF is used. on cref
causes the cref program to load and the cross-referencing process to begin.
After all the required definitions are loaded, off cref will cause the cross-
reference listing to be produced. For example, if you wish to cross-reference
all functions in the file tst.red, and produce the cross-reference listing in
the file tst.crf, the following sequence can be used:

out "tst.crf";
on cref;
in "tst.red"$

18.4. PRETTYPRINTING REDUCE EXPRESSIONS 223

off cref;
shut "tst.crf";

To process more than one file, more IN statements may be added before the
call of off cref, or the IN statement changed to include a list of files.

18.3.3 Options

Functions with the flag NOLIST will not be examined or output. Initially,
all Standard Lisp functions are so flagged. (In fact, they are kept on a list
NOLIST!*, so if you wish to see references to all functions, then CREF should
be first loaded with the command load cref, and this variable then set to
NIL).

It should also be remembered that any macros with the property list flag
EXPAND, or, if the switch FORCE is on, without the property list flag NOEXPAND,
will be expanded before the definition is seen by the cross-reference program,
so this flag can also be used to select those macros you require expanded
and those you do not.

18.4 Prettyprinting Reduce Expressions

REDUCE includes a module for printing REDUCE syntax in a standard
format. This module is activated by the switch PRET, which is normally off.

Since the system converts algebraic input into an equivalent symbolic form,
the printing program tries to interpret this as an algebraic expression before
printing it. In most cases, this can be done successfully. However, there
will be occasional instances where results are printed in symbolic mode form
that bears little resemblance to the original input, even though it is formally
equivalent.

If you want to prettyprint a whole file, say off output,msg; and (hope-
fully) only clean output will result. Unlike DEFN, input is also evaluated with
PRET on.

224 CHAPTER 18. REDUCE AND RLISP UTILITIES

18.5 Prettyprinting Standard Lisp S-Expressions

REDUCE includes a module for printing S-expressions in a standard format.
The Standard Lisp function for this purpose is PRETTYPRINT which takes a
Lisp expression and prints the formatted equivalent.

Users can also have their REDUCE input printed in this form by use of
the switch DEFN. This is in fact a convenient way to convert REDUCE (or
Rlisp) syntax into Lisp. off msg; will prevent warning messages from being
printed.

NOTE: When DEFN is on, input is not evaluated.

Chapter 19

Maintaining REDUCE

REDUCE continues to evolve both in terms of the number of facilities avail-
able, and the power of the individual facilities. Corrections are made as
bugs are discovered, and awkward features simplified. In order to provide
users with easy access to such enhancements, a REDUCE network library
has been established from which material can be extracted by anyone with
electronic mail access to the Internet computer network.

In addition to miscellaneous documents, source and utility files, the libr-
ary includes a bibliography of papers referencing REDUCE which contains
over 800 entries. Instructions on using this library are sent to all registered
REDUCE users who provide a network address. If you would like a more
complete list of the contents of the library, send to reduce-netlib@rand.org
the single line message send index or help. The current REDUCE infor-
mation package can be obtained from the network library by including on
a separate line send info-package and a demonstration file by including
the line send demonstration. If you prefer, hard copies of the informa-
tion package and the bibliography are available from the REDUCE sec-
retary at RAND, 1700 Main Street, P.O. Box 2138, Santa Monica, CA
90407-2138 (reduce@rand.org). Copies of the network library are also main-
tained at other addresses. At the time of writing, reduce-netlib@can.nl
and reduce-netlib@pi.cc.u-tokyo.ac.jp may also be used instead of reduce-
netlib@rand.org.

A World Wide Web REDUCE server with URL

http://www.rrz.uni-koeln.de/REDUCE/

225

226 CHAPTER 19. MAINTAINING REDUCE

is also supported. In addition to general information about REDUCE, this
server has pointers to the network library, the demonstration versions, exam-
ples of REDUCE programming, a set of manuals, and the REDUCE online
help system.

Finally, there is a REDUCE electronic forum accessible from the same net-
works. This enables REDUCE users to raise questions and discuss ideas
concerning the use and development of REDUCE with other users. Addi-
tions and changes to the network library and new releases of REDUCE are
also announced in this forum. Any user with appropriate electronic mail
access is encouraged to register for membership in this forum. To do so,
send a message requesting inclusion to
reduce-forum-request@rand.org.

Part II

Additional REDUCE
Documentation

227

229

The documentation in this section was written using to a large part the
LATEX files provided by the authors, and distributed with REDUCE. There
has been extensive editing and much rewriting, so the responsibility for
this part of the manual rests with the editor, John Fitch. It is hoped that
this version of the documentation contains sufficient information about the
facilities available that a user may be able to progress. It deliberately avoids
discussions of algorithms or advanced use; for these the package author’s own
documentation should be consulted. In general the package documentation
will contain more examples and in some cases additional facilities such as
tracing.

230

Chapter 20

ALGINT: Integration of
square roots

James Davenport
School of Mathematical Sciences

University of Bath
Bath BA2 7AY

England

e–mail: jhd@maths.bath.ac.uk

The package supplies no new functions, but extends the INT operator for
indefinite integration so it can handle a wider range of expressions involving
square roots. When it is loaded the controlling switch ALGINT is turned
on. If it is desired to revert to the standard integrator, then it may be
turned off. The normal integrator can deal with some square roots but in
an unsystematic fashion.

1: load_package algint;

2: int(sqrt(sqrt(a^2+x^2)+x)/x,x);

2 2
sqrt(a)*atan((sqrt(a)*sqrt(sqrt(a + x) + x)

2 2
*sqrt(a + x)

2 2

231

232 CHAPTER 20. ALGINT: INTEGRATION OF SQUARE ROOTS

- sqrt(a)*sqrt(sqrt(a + x) + x)*a

2 2
- sqrt(a)*sqrt(sqrt(a + x) + x)*x)/(2

233

2 2 2
*a)) + 2*sqrt(sqrt(a + x) + x)

2 2
+ sqrt(a)*log(sqrt(sqrt(a + x) + x) - sqrt(a))

2 2
- sqrt(a)*log(sqrt(sqrt(a + x) + x) + sqrt(a))

3: off algint;

4: int(sqrt(sqrt(a^2+x^2)+x)/x,x);

2 2
sqrt(sqrt(a + x) + x)

int(-------------------------,x)
x

There is also a switch TRA, which may be set on to provide detailed tracing
of the algorithm used. This is not recommended for casual use.

234 CHAPTER 20. ALGINT: INTEGRATION OF SQUARE ROOTS

Chapter 21

APPLYSYM: Infinitesimal
symmetries of differential
equations

Thomas Wolf
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
London E1 4NS, England

e–mail: T.Wolf@maths.qmw.ac.uk

The investigation of infinitesimal symmetries of differential equations (DEs)
with computer algebra programs attracted considerable attention over the
last years. The package APPLYSYM concentrates on the implementation of
applying symmetries for calculating similarity variables to perform a point
transformation which lowers the order of an ODE or effectively reduces the
number of explicitly occuring independent variables of a PDE(-system) and
for generalising given special solutions of ODEs/PDEs with new constant
parameters.

A prerequisite for applying symmetries is the solution of first order quasi-
linear PDEs. The corresponding program QUASILINPDE can as well be used
without APPLYSYM for solving first order PDEs which are linear in their
first order derivative and otherwise at most rationally non-linear. The fol-
lowing two PDEs are equations (2.40) and (3.12) taken from E. Kamke,
”Loesungsmethoden und Loesungen von Differential- gleichungen, Partielle
Differentialgleichungen erster Ordnung”, B.G. Teubner, Stuttgart (1979).

235

236 CHAPTER 21. APPLYSYM: INFINITESIMAL SYMMETRIES

------------------------ Equation 2.40 ------------------------

2 3 4
The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x

2 2 2
+ 4*x *y*z - 2*y *z .

The equivalent characteristic system:

3 4 2 2 2
0=2*(df(z,y)*y - x + 2*x *y*z - y *z)

2
0=y *(2*df(x,y)*y - x)

for the functions: x(y) z(y) .
The general solution of the PDE is given through

4 2 2
log(y)*x - log(y)*x *y*z - y *z sqrt(y)*x

0 = ff(----------------------------------,-----------)
4 2 y

x - x *y*z

with arbitrary function ff(..).

------------------------ Equation 3.12 ------------------------

The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y

+ df(w,z)*c*x + df(w,z)*d*y + df(w,z)*f*z.
The equivalent characteristic system:

0=df(w,x)*x

0=df(z,x)*x - c*x - d*y - f*z

0=df(y,x)*x - a*x - b*y

for the functions: z(x) y(x) w(x) .
The general solution of the PDE is given through

a*x + b*y - y

237

0 = ff(---------------,(- a*d*x + b*c*x + b*f*z - b*z - c*f*x
b b

x *b - x

2 f f f 2 f
- d*f*y + d*y - f *z + f*z)/(x *b*f - x *b - x *f + x *f)

,w)

with arbitrary function ff(..).

The program DETRAFO can be used to perform point transformations of
ODEs/PDEs (and -systems).

For detailed explanations the user is referred to the paper Programs for
Applying Symmetries of PDEs by Thomas Wolf, supplied as part of the
Reduce documentation as applysym.tex and published in the Proceedings
of ISSAC’95 - 7/95 Montreal, Canada, ACM Press (1995).

238 CHAPTER 21. APPLYSYM: INFINITESIMAL SYMMETRIES

Chapter 22

ARNUM: An algebraic
number package

Eberhard Schrüfer
Institute SCAI.Alg

German National Research Center for Information Technology (GMD)
Schloss Birlinghoven

D-53754 Sankt Augustin, Germany

e–mail: schruefer@gmd.de

Algebraic numbers are the solutions of an irreducible polynomial over some
ground domain. The algebraic number i (imaginary unit), for example,
would be defined by the polynomial i2 + 1. The arithmetic of algebraic
number s can be viewed as a polynomial arithmetic modulo the defining
polynomial.

The ARNUM package provides a mechanism to define other algebraic numbers,
and compute with them.

22.1 DEFPOLY

DEFPOLY takes as its argument the defining polynomial for an algebraic num-
ber, or a number of defining polynomials for different algebraic numbers,
and arranges that arithmetic with the new symbol(s) is performed relative
to these polynomials.

239

240 CHAPTER 22. ARNUM: AN ALGEBRAIC NUMBER PACKAGE

load_package arnum;

defpoly sqrt2**2-2;

1/(sqrt2+1);

SQRT2 - 1

(x**2+2*sqrt2*x+2)/(x+sqrt2);

X + SQRT2

on gcd;

(x**3+(sqrt2-2)*x**2-(2*sqrt2+3)*x-3*sqrt2)/(x**2-2);

2
X - 2*X - 3

X - SQRT2

off gcd;

sqrt(x**2-2*sqrt2*x*y+2*y**2);

ABS(X - SQRT2*Y)

The following example introduces both
√

2 and 5
1
3 :

defpoly sqrt2**2-2,cbrt5**3-5;

*** defining polynomial for primitive element:

6 4 3 2
A1 - 6*A1 - 10*A1 + 12*A1 - 60*A1 + 17

sqrt2;

5 4 3 2
48/1187*A1 + 45/1187*A1 - 320/1187*A1 - 780/1187*A1 +

735/1187*A1 - 1820/1187

22.2. SPLIT FIELD 241

sqrt2**2;

2

22.2 SPLIT FIELD

The function SPLIT FIELD calculates a primitive element of minimal degree
for which a given polynomial splits into linear factors.

split_field(x**3-3*x+7);

*** Splitting field is generated by:

6 4 2
A5 - 18*A5 + 81*A5 + 1215

4 2
{1/126*A5 - 5/42*A5 - 1/2*A5 + 2/7,

4 2
- (1/63*A5 - 5/21*A5 + 4/7),

4 2
1/126*A5 - 5/42*A5 + 1/2*A5 + 2/7}

for each j in ws product (x-j);

3
X - 3*X + 7

242 CHAPTER 22. ARNUM: AN ALGEBRAIC NUMBER PACKAGE

Chapter 23

ASSIST: Various Useful
Utilities

Hubert Caprasse
Département d’Astronomie et d’Astrophysique

Institut de Physique, B–5, Sart Tilman
B–4000 LIEGE 1, Belgium

e–mail: caprasse@vm1.ulg.ac.be

The ASSIST package provides a number of general purpose functions which
adapt REDUCE to various calculational strategies. All the examples in this
section require the ASSIST package to be loaded.

23.1 Control of Switches

The two functions SWITCHES, SWITCHORG have no argument and are called
as if they were mere identifiers.

SWITCHES displays the current status of the most often used switches when
manipulating rational functions; EXP, DIV, MCD, GCD, ALLFAC, INTSTR, RAT,
RATIONAL, FACTOR. The switch DISTRIBUTE which controls the handling of
distributed polynomials is included as well (see section 23.8).

SWITCHORG resets (almost) all switches in the status they have when en-
tering into REDUCE. (See also RESET, chapter 68). The new switch
DISTRIBUTE facilitates changing polynomials to a distributed form.

243

244 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

23.2 Manipulation of the List Structure

Functions for list manipulation are provided and are generalised to deal with
the new structure BAG.

i. Generation of a list of length n with its elements initialised to 0 and
also to append to a list l sufficient zeros to make it of length n:

MKLIST n; %% n is an INTEGER
MKLIST(l,n); %% l is List-like, n is an INTEGER

ii. Generation of a list of sublists of length n containing p elements equal
to 0 and n− p elements equal to 1.

SEQUENCES 2; ==> {{0,0},{0,1},{1,0},{1,1}}

The function KERNLIST transforms any prefix of a kernel into the list
prefix. The output list is a copy:

KERNLIST (<kernel>); ==> {<kernel arguments>}

There are four functions to delete elements from lists. The DELETE
function deletes the first occurrence of its first argument from the
second, while REMOVE removes a numbered element. DELETE ALL elim-
inates from a list all elements equal to its first argument. DELPAIR
acts on list of pairs and eliminates from it the first pair whose first
element is equal to its first argument:

DELETE(x,{a,b,x,f,x}); ==> {a,b,f,x}
REMOVE({a,b,x,f,x},3); ==> {a,b,f,x}
DELETE_ALL(x,{a,b,x,f,x}); ==> {a,b,f}
DELPAIR(a,{{a,1},{b,2},{c,3}}; ==> {{b,2},{c,3}}

iv. The function ELMULT returns an integer which is the multiplicity of its
first argument in the list which is its second argument. The function
FREQUENCY gives a list of pairs whose second element indicates the
number of times the first element appears inside the original list:

ELMULT(x,{a,b,x,f,x}) ==> 2
FREQUENCY({a,b,c,a}); ==> {{a,2},{b,1},{c,1}}

v. The function INSERT inserts a given object into a list at the wanted
position. The functions INSERT KEEP ORDER and MERGE LIST keep a
given ordering when inserting one element inside a list or when merging
two lists. Both have 3 arguments. The last one is the name of a binary
boolean ordering function:

23.2. MANIPULATION OF THE LIST STRUCTURE 245

ll:={1,2,3}$
INSERT(x,ll,3); ==> {1,2,x,3}
INSERT_KEEP_ORDER(5,ll,lessp); ==> {1,2,3,5}
MERGE_LIST(ll,ll,lessp); ==> {1,1,2,2,3,3}

vi. Algebraic lists can be read from right to left or left to right. They
look symmetrical. It is sometimes convenient to have functions which
reflect this. So, as well as FIRST and REST this package provides the
functions LAST and BELAST. LAST gives the last element of the list while
BELAST gives the list without its last element.
Various additional functions are provided. They are: CONS, (.),
POSITION, DEPTH, PAIR, APPENDN, REPFIRST, REPLAST The token
“dot” needs a special comment. It corresponds to several different
operations.

1. If one applies it on the left of a list, it acts as the CONS function.
Note however that blank spaces are required around the dot:

4 . {a,b}; ==> {4,a,b}

2. If one applies it on the right of a list, it has the same effect as
the PART operator:

{a,b,c}.2; ==> b

3. If one applies it on 4–dimensional vectors, it acts as in the HEP-
HYS package (chapter 17.1

POSITION returns the position of the first occurrence of x in a list or a
message if x is not present in it. DEPTH returns an integer equal to the
number of levels where a list is found if and only if this number is the
same for each element of the list otherwise it returns a message telling
the user that list is of unequal depth. PAIR has two arguments which
must be lists. It returns a list whose elements are lists of two elements.
The nth sublist contains the nth element of the first list and the nth

element of the second list. These types of lists are called association
lists or ALISTS in the following. APPENDN has any number of lists as
arguments, and appends them all. REPFIRST has two arguments. The
first one is any object, the second one is a list. It replaces the first
element of the list by the object. REPREST has also two arguments. It
replaces the rest of the list by its first argument and returns the new
list without destroying the original list.

ll:={{a,b}}$
ll1:=ll.1; ==> {a,b}
ll.0; ==> list

246 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

0 . ll; ==> {0,{a,b}}
DEPTH ll; ==> 2
PAIR(ll1,ll1); ==> {{a,a},{b,b}}
REPFIRST{new,ll); ==> {new}
ll3:=APPENDN(ll1,ll1,ll1); ==> {a,b,a,b,a,b}
POSITION(b,ll3); ==> 2
REPREST(new,ll3); ==> {a,new}

vii. The functions ASFIRST, ASLAST, ASREST, ASFLIST, ASSLIST, and
RESTASLIST act on ALISTS or on list of lists of well defined depths
and have two arguments. The first is the key object which one seeks
to associate in some way to an element of the association list which is
the second argument. ASFIRST returns the pair whose first element is
equal to the first argument. ASLAST returns the pair whose last element
is equal to the first argument. ASREST needs a list as its first argument.
The function seeks the first sublist of a list of lists (which is its second
argument) equal to its first argument and returns it. RESTASLIST has
a list of keys as its first arguments. It returns the collection of pairs
which meet the criterion of ASREST. ASFLIST returns a list containing
all pairs which satisfy to the criteria of the function ASFIRST. So the
output is also an ALIST or a list of lists. ASSLIST returns a list which
contains all pairs which have their second element equal to the first
argument.

lp:={{a,1},{b,2},{c,3}}$
ASFIRST(a,lp); ==> {a,1}
ASLAST(1,lp); ==> {a,1}
ASREST({1},lp); ==> {a,1}
RESTASLIST({a,b},lp); ==> {{1},{2}}
lpp:=APPEND(lp,lp)$
ASFLIST(a,lpp); ==> {{a,1},{a,1}}
ASSLIST(1,lpp); ==> {{a,1},{a,1}}

23.3 The Bag Structure and its Associated Func-
tions

The LIST structure of REDUCE is very convenient for manipulating groups
of objects which are, a priori, unknown. This structure is endowed with
other properties such as “mapping” i.e. the fact that if OP is an operator
one gets, by default,

OP({x,y}); ==> {OP(x),OP(y)}

23.3. THE BAG STRUCTURE AND ITS ASSOCIATED FUNCTIONS247

It is not permitted to submit lists to the operations valid on rings so that
lists cannot be indeterminates of polynomials. Frequently procedure argu-
ments cannot be lists. At the other extreme, so to say, one has the KERNEL
structure associated to the algebraic declaration operator. This structure
behaves as an “unbreakable” one and, for that reason, behaves like an or-
dinary identifier. It may generally be bound to all non-numeric procedure
parameters and it may appear as an ordinary indeterminate inside polynom-
ials.
The BAG structure is intermediate between a list and an operator. From
the operator it borrows the property to be a KERNEL and, therefore, may be
an indeterminate of a polynomial. From the list structure it borrows the
property to be a composite object.

Definition:

A bag is an object endowed with the following properties:

1. It is a KERNEL composed of an atomic prefix (its envelope) and its
content (miscellaneous objects).

2. Its content may be changed in an analogous way as the content of a
list. During these manipulations the name of the bag is conserved.

3. Properties may be given to the envelope. For instance, one may declare
it NONCOM or SYMMETRIC etc. . . .

Available Functions:

i. A default bag envelope BAG is defined. It is a reserved identifier. An
identifier other than LIST or one which is already associated with a
boolean function may be defined as a bag envelope through the com-
mand PUTBAG. In particular, any operator may also be declared to be
a bag. When and only when the identifier is not an already de-
fined function does PUTBAG puts on it the property of an OPERATOR
PREFIX. The command:

PUTBAG id1,id2,....idn;

declares id1,.....,idn as bag envelopes. Analogously, the command

CLEARBAG id1,...idn;

eliminates the bag property on id1,...,idn.

248 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

ii. The boolean function BAGP detects the bag property.

aa:=bag(x,y,z)$
if BAGP aa then "ok"; ==> ok

iii. Most functions defined above for lists do also work for bags. More-
over functions subsequently defined for SETS (see section 23.4) also
work. However, because of the conservation of the envelope, they act
somewhat differently.

PUTBAG op; ==> T
aa:=op(x,y,z)$
FIRST op(x,y,z); ==> op(x)
REST op(x,y,z); ==> op(y,z)
BELAST op(x,y,z); ==> op(x,y)
APPEND(aa,aa); ==> op(x,y,z,x,y,z)
LENGTH aa; ==> 3
DEPTH aa; ==> 1

When “appending” two bags with different envelopes, the resulting
bag gets the name of the one bound to the first parameter of APPEND.
The function LENGTH gives the actual number of variables on which the
operator (or the function) depends. The NAME of the ENVELOPE
is kept by the functions FIRST, SECOND, LAST and BELAST.

iv. The connection between the list and the bag structures is made easy
thanks to KERNLIST which transforms a bag into a list and thanks to
the coercion function LISTBAG. This function has 2 arguments and is
used as follows:

LISTBAG(<list>,<id>); ==> <id>(<arg_list>)

The identifier <id> if allowed is automatically declared as a bag enve-
lope or an error message is generated.

Finally, two boolean functions which work both for bags and lists are
provided. They are BAGLISTP and ABAGLISTP. They return T or NIL
(in a conditional statement) if their argument is a bag or a list for the
first one, if their argument is a list of sublists or a bag containing bags
for the second one.

23.4. SETS AND THEIR MANIPULATION FUNCTIONS 249

23.4 Sets and their Manipulation Functions

The ASSIST package makes the Standard LISP set functions available in
algebraic mode and also generalises them so that they can be applied on
bag–like objects as well.

i. The constructor MKSET transforms a list or bag into a set by eliminating
duplicates.

MKSET({1,a,a1}); ==> {1,a}
MKSET bag(1,a,a1); ==> bag(1,a)

SETP is a boolean function which recognises set–like objects.

ii. The standard functions are UNION, INTERSECT, DIFFSET and SYMDIFF.
They have two arguments which must be sets; otherwise an error mes-
sage is issued.

23.5 General Purpose Utility Functions

i. The functions MKIDNEW, DELLASTDIGIT, DETIDNUM, LIST TO IDS han-
dle identifiers. MKIDNEW is a variant of MKID.
MKIDNEW has either 0 or 1 argument. It generates an identifier which
has not yet been used before.

MKIDNEW(); ==> g0001
MKIDNEW(a); ==> ag0002

DELLASTDIGIT takes an integer as argument, it strips it from its last
digit.

DELLASTDIGIT 45; ==> 4

DETIDNUM, determines the trailing integer from an identifier. It is con-
venient when one wants to make a do loop starting from a set of indices
a1, . . . , an.

DETIDNUM a23; ==> 23

LIST to IDS generalises the function MKID to a list of atoms. It creates
and interns an identifier from the concatenation of the atoms. The first
atom cannot be an integer.

250 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

LIST_TO_IDS {a,1,id,10}; ==> a1id10

The function ODDP detects odd integers.
The function FOLLOWLINE is convenient when using the function PRIN2
for controlling layout.

<<prin2 2; prin2 5>>$
25

<<prin2 2; followline(3); prin2 5>>$
2

5

The function RANDOMLIST generates a list of positive random numbers.
It takes two arguments which are both integers. The first one indicates
the range inside which the random numbers are chosen. The second
one indicates how many numbers are to be generated.

RANDOMLIST(10,5); ==> {2,1,3,9,6}

MKRANDTABL generates a table of random numbers. This table is either
a one or two dimensional array. The base of random numbers may be
either an integer or a floating point number. In this latter case the
switch rounded must be ON. The function has three arguments. The
first is either a one integer or a two integer list. The second is the
base chosen to generate the random numbers. The third is the chosen
name for the generated array. In the example below a two-dimensional
table of integer random numbers is generated as array elements of the
identifier ar.

MKRANDTABL({3,4},10,ar); ==>
*** array ar redefined

{3,4}

The output is the array dimension.

COMBNUM(n,p) gives the number of combinations of n objects taken p
at a time. It has the two integer arguments n and p.
PERMUTATIONS(n) gives the list of permutations on n objects, each
permutation being represented as a list. CYCLICPERMLIST gives the
list of cyclic permutations. For both functions, the argument may also
be a bag.

PERMUTATIONS {1,2} ==> {{1,2},{2,1}}
CYCLICPERMLIST {1,2,3} ==>

{{1,2,3},{2,3,1},{3,1,2}}

23.5. GENERAL PURPOSE UTILITY FUNCTIONS 251

COMBINATIONS gives a list of combinations on n objects taken p at a
time. The first argument is a list (or a bag) and the second is the
integer p.

COMBINATIONS({1,2,3},2) ==> {{2,3},{1,3},{1,2}}

REMSYM is a command that erases the REDUCE commands symmetric
or antisymmetric.
SYMMETRIZE is a powerful function which generate a symmetric expres-
sion. It has 3 arguments. The first is a list (or a list of lists) containing
the expressions which will appear as variables for a kernel. The second
argument is the kernel-name and the third is a permutation function
which either exist in the algebraic or in the symbolic mode. This func-
tion may have been constructed by the user. Within this package the
two functions PERMUTATIONS and CYCLICPERMLIST may be used.

ll:={a,b,c}$
SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(A,B,C) + OP(B,C,A) + OP(C,A,B)
SYMMETRIZE(list ll,op,cyclicpermlist); ==>

OP({A,B,C}) + OP({B,C,A}) + OP({C,A,B})

Notice that taking for the first argument a list of lists gives rise to an
expression where each kernel has a list as argument. Another pecu-
liarity of this function is that, unless a pattern matching is made on
the operator OP, it needs to be reevaluated. Here is an illustration:

op(a,b,c):=a*b*c$
SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(A,B,C) + OP(B,C,A) + OP(C,A,B)
for all x let op(x,a,b)=sin(x*a*b);
SYMMETRIZE(ll,op,cyclicpermlist); ==>

OP(B,C,A) + SIN(A*B*C) + OP(A,B,C)

The functions SORTNUMLIST and SORTLIST are functions which sort
lists. They use bubblesort and quicksort algorithms.

SORTNUMLIST takes as argument a list of numbers. It sorts it in in-
creasing order.
SORTLIST is a generalisation of the above function. It sorts the list
according to any well defined ordering. Its first argument is the list
and its second argument is the ordering function. The content of
the list is not necessary numbers but must be such that the ordering
function has a meaning.

252 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

l:={1,3,4,0}$ SORTNUMLIST l; ==> {0,1,3,4}
ll:={1,a,tt,z}$ SORTLIST(ll,ordp); ==> {a,z,tt,1}

Note: using these functions for kernels or bags may be dangerous since
they are destructive. If it is needed, it is recommended first to apply
KERNLIST on them.
The function EXTREMUM is a generalisation of the functions MIN and
MAX to include general orderings. It is a 2 arguments function. The
first is the list and the second is the ordering function. With the list
ll defined in the last example, one gets

EXTREMUM(ll,ordp); ==> 1

iii. There are four functions to identify dependencies. FUNCVAR takes any
expression as argument and returns the set of variables on which it
depends. Constants are eliminated.

FUNCVAR(e+pi+sin(log(y)); ==> {y}

DEPATOM has an atom as argument. It returns its argument if it is a
number or if no dependency has previously been declared. Otherwise,
it returns the list of variables on which in depends as declared in
various DEPEND declarations.

DEPEND a,x,y;
DEPATOM a; ==> {x,y}

The functions EXPLICIT and IMPLICIT make explicit or implicit the
dependencies.

depend a,x; depend x,y,z;
EXPLICIT a; ==> a(x(y,z))
IMPLICIT ws; ==> a

These are useful when one does not know the names of the variables
and (or) the nature of the dependencies.
KORDERLIST is a zero argument function which display the actual or-
dering.

KORDER x,y,z;
KORDERLIST; ==> (x,y,z)

23.6. PROPERTIES AND FLAGS 253

iv. A function SIMPLIFY which takes an arbitrary expression is available
which forces down-to-the-bottom simplification of an expression. It
is useful with SYMMETRIZE. It has also proved useful to simplify some
output expressions of the package EXCALC (chapter 39).

l:=op(x,y,z)$
op(x,y,z):=x*y*z$
SYMMETRIZE(l,op,cyclicpermlist); ==>

op(x,y,z)+op(y,z,x)+op(z,x,y)
SIMPLIFY ws; ==> op(y,z,x)+op(z,x,y)+x*y*z

v. Filtering functions for lists.

CHECKPROLIST is a boolean function which checks if the elements of a
list have a definite property. Its first argument is the list, and its second
argument is a boolean function (FIXP NUMBERP . . .) or an ordering
function (as ORDP).
EXTRACTLIST extracts from the list given as its first argument the ele-
ments which satisfy the boolean function given as its second argument.

l:={1,a,b,"st")$
EXTRACTLIST(l,fixp); ==> {1}
EXTRACTLIST(l,stringp); ==> {st}

23.6 Properties and Flags

It may be useful to provide analogous functions in algebraic mode to the
properties and flags of LISP. Just using the symbolic mode functions to
alter property lists of objects may easily destroy the integrity of the system.
The functions which are here described do ignore the property list and
flags already defined by the system itself. They generate and track the
additional properties and flags that the user issues using them. They offer
the possibility of working on property lists in an algebraic context.

i. Flags To a given identifier, one may associates another one linked to it
“in the background”. The three functions PUTFLAG, DISPLAYFLAG and
CLEARFLAG handle them.
PUTFLAG has 3 arguments. The first is the identifier or a list of iden-
tifiers, the second is the name of the flag, the third is T (true) or 0
(zero). When the third argument is T, it creates the flag, when it is 0
it destroys it.

254 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

PUTFLAG(z1,flag_name,t); ==> flag_name
PUTFLAG({z1,z2},flag1_name,t); ==> t
PUTFLAG(z2,flag1_name,0); ==>

DISPLAYFLAG allows to extract flags. Continuing the example:

DISPLAYFLAG z1; ==> {flag_name,flag1_name}
DISPLAYFLAG z2; ==> {}

CLEARFLAG is a command which clears all flags associated to the iden-
tifiers id1, . . . , idn.

ii. Properties PUTPROP has four arguments. The second argument is the
indicator of the property. The third argument may be any valid ex-
pression. The fourth one is also T or 0.

PUTPROP(z1,property,x^2,t); ==> z1

In general, one enter

PUTPROP(LIST(idp1,idp2,..),<propname>,<value>,T);

If the last argument is 0 then the property is removed. To display a
specific property, one uses DISPLAYPROP which takes two arguments.
The first is the name of the identifier, the second is the indicator of
the property.

2
DISPLAYPROP(z1,property); ==> {property,x }

Finally, CLEARPROP is a nary commmand which clears all properties of
the identifiers which appear as arguments.

23.7 Control Functions

The ASSIST package also provides additional functions which improve the
user control of the environment.

i. The first set of functions is composed of unary and binary boolean
functions. They are:

23.7. CONTROL FUNCTIONS 255

ALATOMP x; x is anything.
ALKERNP x; x is anything.
DEPVARP(x,v); x is anything.

(v is an atom or a kernel)

ALATOMP has the value T iff x is an integer or an identifier after it has
been evaluated down to the bottom.

ALKERNP has the value T iff x is a kernel after it has been evaluated
down to the bottom.

DEPVARP returns T iff the expression x depends on v at any level.

The above functions together with PRECP have been declared operator
functions to ease the verification of their value.

NORDP is essentially equivalent to notORDP when inside a conditional
statement. Otherwise, it can be used while notORDP cannot.

ii. The next functions allow one to analyse and to clean the environment
of REDUCE which is created by the user while working interactively.
Two functions are provided:
SHOW allows to get the various identifiers already assigned and to see
their type. SUPPRESS selectively clears the used identifiers or clears
them all. It is to be stressed that identifiers assigned from the input
of files are ignored. Both functions have one argument and the same
options for this argument:

SHOW (SUPPRESS) all
SHOW (SUPPRESS) scalars
SHOW (SUPPRESS) lists
SHOW (SUPPRESS) saveids (for saved expressions)
SHOW (SUPPRESS) matrices
SHOW (SUPPRESS) arrays
SHOW (SUPPRESS) vectors

(contains vector, index and tvector)
SHOW (SUPPRESS) forms

The option all is the most convenient for SHOW but it may takes time
to get the answer after one has worked several hours. When entering
REDUCE the option all for SHOW gives:

SHOW all; ==> scalars are: NIL
arrays are: NIL
lists are: NIL
matrices are: NIL
vectors are: NIL
forms are: NIL

256 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

It is a convenient way to remember the various options. Starting from
a fresh environment

a:=b:=1$
SHOW scalars; ==> scalars are: (A B)
SUPPRESS scalars; ==> t
SHOW scalars; ==> scalars are: NIL

iii. The CLEAR function of the system does not do a complete cleaning
of OPERATORS and FUNCTIONS. The following two functions do a more
complete cleaning and, also automatically takes into account the user
flag and properties that the functions PUTFLAG and PUTPROP may have
introduced.
Their names are CLEAROP and CLEARFUNCTIONS. CLEAROP takes one
operator as its argument. CLEARFUNCTIONS is a nary command. If one
issues

CLEARFUNCTIONS a1,a2, ... , an $

The functions with names a1,a2, ... ,an are cleared. One should
be careful when using this facility since the only functions which cannot
be erased are those which are protected with the lose flag.

23.8 Handling of Polynomials

The module contains some utility functions to handle standard quotients
and several new facilities to manipulate polynomials.

i. Two functions ALG TO SYMB and SYMB TO ALG allow the changing of
an expression which is in the algebraic standard quotient form into
a prefix lisp form and vice-versa. This is made in such a way that
the symbol list which appears in the algebraic mode disappear in
the symbolic form (there it becomes a parenthesis “()”) and it is
reintroduced in the translation from a symbolic prefix lisp expression
to an algebraic one. The following example shows how the well-known
lisp function FLATTENS can be trivially transportd into algebraic mode:

algebraic procedure ecrase x;
lisp symb_to_alg flattens1 alg_to_symb algebraic x;

symbolic procedure flattens1 x;

23.8. HANDLING OF POLYNOMIALS 257

% ll; ==> ((A B) ((C D) E))
% flattens1 ll; (A B C D E)

if atom x then list x else
if cdr x then

append(flattens1 car x, flattens1 cdr x)
else flattens1 car x;

gives, for instance,

ll:={a,{b,{c},d,e},{{{z}}}}$
ECRASE ll; ==> {A, B, C, D, E, Z}

ii. LEADTERM and REDEXPR are the algebraic equivalent of the symbolic
functions LT and RED. They give the leading term and the reductum
of a polynomial. They also work for rational functions. Their interest
lies in the fact that they do not require to extract the main variable.
They work according to the current ordering of the system:

pol:=x+y+z$
LEADTERM pol; ==> x
korder y,x,z;
LEADTERM pol; ==> y
REDEXPR pol; ==> x + z

By default, the representation of multivariate polynomials is recur-
sive. With such a representation, the function LEADTERM does not
necessarily extract a true monom. It extracts a monom in the leading
indeterminate multiplied by a polynomial in the other indeterminates.
However, very often one needs to handle true monoms separately. In
that case, one needs a polynomial in distributive form. Such a form
is provided by the package GROEBNER (chapter 45). The facility
there may be too involved and the need to load an additional package
can be a problem. So, a new switch is created to handle distributed
polynomials. It is called DISTRIBUTE and a new function DISTRIBUTE
puts a polynomial in distributive form. With the switch on, LEADTERM
gives true monoms.

MONOM transforms a polynomial into a list of monoms. It works what-
ever the setting of the switch DISTRIBUTE.

SPLITTERMS is analoguous to MONOM except that it gives a list of two
lists. The first sublist contains the positive terms while the second
sublist contains the negative terms.

258 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

SPLITPLUSMINUS gives a list whose first element is an expression of the
positive part of the polynomial and its second element is its negative
part.

iii. Two complementary functions LOWESTDEG and DIVPOL are provided.
The first takes a polynomial as its first argument and the name of an
indeterminate as its second argument. It returns the lowest degree in
that indeterminate. The second function takes two polynomials and
returns both the quotient and its remainder.

23.9 Handling of Transcendental Functions

The functions TRIGREDUCE and TRIGEXPAND and the equivalent ones for hy-
perbolic functions HYPREDUCE and HYPEXPAND make the transformations to
multiple arguments and from multiple arguments to elementary arguments.

aa:=sin(x+y)$
TRIGEXPAND aa; ==> SIN(X)*COS(Y) + SIN(Y)*COS(X)
TRIGREDUCE ws; ==> SIN(Y + X)

When a trigonometric or hyperbolic expression is symmetric with respect
to the interchange of SIN (SINH) and COS (COSH), the application of
TRIG(HYP)REDUCE may often lead to great simplifications. However, if it is
highly asymmetric, the repeated application of TRIG(HYP)REDUCE followed
by the use of TRIG(HYP)EXPAND will lead to more complicated but more
symmetric expressions:

aa:=(sin(x)^2+cos(x)^2)^3$
TRIGREDUCE aa; ==> 1
bb:=1+sin(x)^3$
TRIGREDUCE bb; ==>

- SIN(3*X) + 3*SIN(X) + 4

4

TRIGEXPAND ws; ==>
3 2

SIN(X) - 3*SIN(X)*COS(X) + 3*SIN(X) + 4

4

See also the TRIGSIMP package (chapter 85).

23.10. COERCION FROM LISTS TO ARRAYS AND CONVERSE 259

23.10 Coercion from lists to arrays and converse

Sometimes when a list is very long and especially if frequent access to its
elements are needed it is advantageous (temporarily) to transform it into
an array. LIST TO ARRAY has three arguments. The first is the list. The
second is an integer which indicates the array dimension required. The
third is the name of an identifier which will play the role of the array name
generated by it. If the chosen dimension is not compatible with the list
depth and structure an error message is issued. ARRAY TO LIST does the
opposite coercion. It takes the array name as its sole argument.

23.11 Handling of n–dimensional Vectors

Explicit vectors in EUCLIDEAN space may be represented by list-like or bag-
like objects of depth 1. The components may be bags but may not be
lists. Functions are provided to do the sum, the difference and the scalar
product. When space-dimension is three there are also functions for the
cross and mixed products. SUMVECT, MINVECT, SCALVECT, CROSSVECT have
two arguments. MPVECT has three arguments.

l:={1,2,3}$
ll:=list(a,b,c)$
SUMVECT(l,ll); ==> {A + 1,B + 2,C + 3}
MINVECT(l,ll); ==> { - A + 1, - B + 2, - C + 3}
SCALVECT(l,ll); ==> A + 2*B + 3*C
CROSSVECT(l,ll); ==> { - 3*B + 2*C,3*A - C, - 2*A + B}
MPVECT(l,ll,l); ==> 0

23.12 Handling of Grassmann Operators

Grassman variables are often used in physics. For them the multiplication
operation is associative, distributive but anticommutative. The basic RE-
DUCE does not provide this. However implementing it in full generality
would almost certainly decrease the overall efficiency of the system. This
small module together with the declaration of antisymmetry for operators is
enough to deal with most calculations. The reason is, that a product of sim-
ilar anticommuting kernels can easily be transformed into an antisymmetric
operator with as many indices as the number of these kernels. Moreover,

260 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

one may also issue pattern matching rules to implement the anticommuta-
tivity of the product. The functions in this module represent the minimum
functionality required to identify them and to handle their specific features.

PUTGRASS is a (nary) command which give identifiers the property to be the
names of Grassmann kernels. REMGRASS removes this property.

GRASSP is a boolean function which detects Grassmann kernels.

GRASSPARITY takes a monom as argument and gives its parity. If the
monom is a simple Grassmann kernel it returns 1.

GHOSTFACTOR has two arguments. Each one is a monom. It is equal to

(-1)**(GRASSPARITY u * GRASSPARITY v)

Here is an illustration to show how the above functions work:

PUTGRASS eta;
if GRASSP eta(1) then "Grassmann kernel"; ==>

Grassmann kernel
aa:=eta(1)*eta(2)-eta(2)*eta(1); ==>

AA := - ETA(2)*ETA(1) + ETA(1)*ETA(2)
GRASSPARITY eta(1); ==> 1
GRASSPARITY (eta(1)*eta(2)); ==> 0
GHOSTFACTOR(eta(1),eta(2)); ==> -1
grasskernel:=

{eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y),
(~x)*(~x) => 0 when grassp x}$

exp:=eta(1)^2$
exp where grasskernel; ==> 0
aa where grasskernel; ==> - 2*ETA(2)*ETA(1)

23.13 Handling of Matrices

There are additional facilities for matrices.

i. Often one needs to construct some UNIT matrix of a given dimension.
This construction is performed by the function UNITMAT. It is a nary
function. The command is

UNITMAT M1(n1), M2(n2),Mi(ni) ;

where M1,...Mi are names of matrices and n1, n2, ..., ni are

23.13. HANDLING OF MATRICES 261

integers.
MKIDM is a generalisation of MKID. It allows the indexing of matrix
names. If u and u1 are two matrices, one can go from one to the
other:

matrix u(2,2);$ unitmat u1(2)$
u1; ==>

[1 0]
[]
[0 1]

mkidm(u,1); ==>
[1 0]
[]
[0 1]

Note: MKIDM(V,1) will fail even if the matrix V1 exists, unless V is
also a matrix.
This function allows to make loops on matrices like the following. If
U, U1, U2,.., U5 are matrices:

FOR I:=1:5 DO U:=U-MKIDM(U,I);

ii. The next functions map matrices onto bag-like or list-like objects and
conversely they generate matrices from bags or lists.
COERCEMAT transforms the matrix first argument into a list of lists.

COERCEMAT(U,id)

When id is list the matrix is transformed into a list of lists. Oth-
erwise it transforms it into a bag of bags whose envelope is equal to
id.
BAGLMAT does the inverse. The first argument is the bag-like or list-like
object while the second argument is the matrix identifier.

BAGLMAT(bgl,U)

bgl becomes the matrix U. The transformation is not done if U is
already the name of a previously defined matrix, to avoid accidental
redefinition of that matrix.

262 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

ii. The functions SUBMAT, MATEXTR, MATEXTC take parts of a given matrix.
SUBMAT has three arguments.

SUBMAT(U,nr,nc)

The first is the matrix name, and the other two are the row and column
numbers. It gives the submatrix obtained from U deleting the row nr
and the column nc. When one of them is equal to zero only column
nc or row nr is deleted.
MATEXTR and MATEXTC extract a row or a column and place it into a
list-like or bag-like object.

MATEXTR(U,VN,nr)
MATEXTC(U,VN,nc)

where U is the matrix, VN is the “vector name”, nr and nc are integers.
If VN is equal to list the vector is given as a list otherwise it is given
as a bag.

iii. Functions which manipulate matrices: MATSUBR, MATSUBC, HCONCMAT,
VCONCMAT, TPMAT, HERMAT.
MATSUBR and MATSUBC substitute rows and columns. They have three
arguments.

MATSUBR(U,bgl,nr)
MATSUBC(U,bgl,nc)

The meaning of the variables U, nr, nc is the same as above while
bgl is a list-like or bag-like vector. Its length should be compatible
with the dimensions of the matrix.
HCONCMAT and VCONCMAT concatenate two matrices.

HCONCMAT(U,V)
VCONCMAT(U,V)

The first function concatenates horizontally, the second one concate-
nates vertically. The dimensions must match.
TPMAT makes the tensor product of two matrices. It is also an infix
function.

TPMAT(U,V) or U TPMAT V

23.13. HANDLING OF MATRICES 263

HERMAT takes the hermitian conjugate of a matrix

HERMAT(U,HU)

where HU is the identifier for the hermitian matrix of U. It should
unassigned for this function to work successfully. This is done on
purpose to prevent accidental redefinition of an already used identifier.

iv. SETELMAT and GETELMAT are functions of two integers. The first one
reset the element (i,j) while the second one extract an element iden-
tified by (i,j). They may be useful when dealing with matrices inside
procedures.

264 CHAPTER 23. ASSIST: VARIOUS USEFUL UTILITIES

Chapter 24

ATENSOR: Package for
Tensor Simplification

V. A. Ilyin and A. P. Kryukov

Tensors are classical examples for Objects often used in mathematics and
physics. Indexed objects can have very complicated and intricated proper-
ties. For example the Riemann tensor has symmetry properties with respect
to permutation of indices. Moreover it satisfies the cyclic identity. There
are a number of linear identities with many terms in the case of Riemann-
Cartan geometry with torsion. From the user’s point of view, there are three
groups of tensor properties:

• S - symmetry with respect to index permutation;

• I - linear identities;

• D - invariance with respect to renamings of dummy indices;

The problem under investigation can be formulated as whether two tensor
expressions are equal or not by taking into account S-I-D properties.

24.1 Basic tensors and tensor expressions

Under basic tensors we understand the object with finite number of indices
which can have such properties as symmetry and multiterm linear identities

265

266 CHAPTER 24. ATENSOR: TENSOR SIMPLIFICATION

(including the symmetry relations).
Under tensor expression we understand any expression which can be ob-
tained from basic tensors by summation with integer coefficients and multi-
plication (commutative) of basic tensors.
It is assumed that all terms in the tensor expression have the same number
of indices. Some pairs of them are marked as dummy ones. The set of non-
dummy names have to be the same for each term in the tensor expression.
The names of dummies can be arbitrary.

24.2 Operators for tensors

Use TENSOR to declare tensors and TCLEAR to remove them. The command
TSYM defines symmetry relations of basic tensors and KBASIS determines the
K-Basis, which is the general name for a “triangle” set of linear independent
vectors for a basic tensor considered as a separate tensor expression. It is
possible to build the sum, the difference and the multiplication for tensors.
It is assumed that indices with identical names means the summation over
their values.

Example:

1: load atensor;

2: tensor s2,a3;

3: tsym s2(i,j) - s2(j,i), % Symmetric
3: a3(i,j,k) + a3(j,i,k), % Antisymm.
3: a3(i,j,k) - a3(j,k,i);

4: kbasis s2,a3;

s2(j,i) + (-1)*s2(i,j)
1
a3(k,i,j) + a3(j,i,k)
a3(k,j,i) + (-1)*a3(j,i,k)
a3(i,k,j) + (-1)*a3(j,i,k)
a3(i,j,k) + a3(j,i,k)
a3(j,k,i) + a3(j,i,k)
5

24.3. SWITCHES 267

24.3 Switches

There are two switches defined. The switch DUMMYPRI prints dummy indices
with internal names and numbers. It’s default value is OFF. The other switch
called SHORTEST prints tensor expressions in shortest form that was produced
during evaluation. The default value is OFF.

For further information refer to the documentation which comes with this
package.

268 CHAPTER 24. ATENSOR: TENSOR SIMPLIFICATION

Chapter 25

AVECTOR: A vector algebra
and calculus package

David Harper
Astronomy Unit, Queen Mary and Westfield College

University of London
Mile End Road

London E1 4NS, England

e–mail: adh@star.qmw.ac.uk

This package provides REDUCE with the ability to perform vector algebra
using the same notation as scalar algebra. The basic algebraic operations
are supported, as are differentiation and integration of vectors with respect
to scalar variables, cross product and dot product, component manipulation
and application of scalar functions (e.g. cosine) to a vector to yield a vector
result.

25.1 Vector declaration and initialisation

To declare a list of names to be vectors use the VEC command:

VEC A,B,C;

declares the variables A, B and C to be vectors. If they have already been
assigned (scalar) values, these will be lost.

269

270 CHAPTER 25. AVECTOR: VECTOR ALGEBRA

When a vector is declared using the VEC command, it does not have an
initial value.

If a vector value is assigned to a scalar variable, then that variable will
automatically be declared as a vector and the user will be notified that this
has happened.

A vector may be initialised using the AVEC function which takes three scalar
arguments and returns a vector made up from those scalars. For example

A := AVEC(A1, A2, A3);

sets the components of the vector A to A1, A2 and A3.

25.2 Vector algebra

(In the examples which follow, V, V1, V2 etc are assumed to be vectors while
S, S1, S2 etc are scalars.)

The scalar algebra operators +,-,* and / may be used with vector operands
according to the rules of vector algebra. Thus multiplication and division of
a vector by a scalar are both allowed, but it is an error to multiply or divide
one vector by another.

V := V1 + V2 - V3; Addition and subtraction
V := S1*3*V1; Scalar multiplication
V := V1/S; Scalar division
V := -V1; Negation

Vector multiplication is carried out using the infix operators DOT and CROSS.
These are defined to have higher precedence than scalar multiplication and
division.
V := V1 CROSS V2; Cross product
S := V1 DOT V2; Dot product
V := V1 CROSS V2 + V3;
V := (V1 CROSS V2) + V3;

The last two expressions are equivalent due to the precedence of the CROSS
operator.

The modulus of a vector may be calculated using the VMOD operator.

S := VMOD V;

25.3. VECTOR CALCULUS 271

A unit vector may be generated from any vector using the VMOD operator.

V1 := V/(VMOD V);

Components may be extracted from any vector using index notation in the
same way as an array.

V := AVEC(AX, AY, AZ);
V(0); yields AX
V(1); yields AY
V(2); yields AZ

It is also possible to set values of individual components. Following from
above:

V(1) := B;

The vector V now has components AX, B, AZ.

Vectors may be used as arguments in the differentiation and integration
routines in place of the dependent expression.

V := AVEC(X**2, SIN(X), Y);
DF(V,X); yields (2*X, COS(X), 0)
INT(V,X); yields (X**3/3, -COS(X), Y*X)

Vectors may be given as arguments to monomial functions such as SIN, LOG
and TAN. The result is a vector obtained by applying the function component-
wise to the argument vector.

V := AVEC(A1, A2, A3);
SIN(V); yields (SIN(A1), SIN(A2), SIN(A3))

25.3 Vector calculus

The vector calculus operators div, grad and curl are recognised. The Lapla-
cian operator is also available and may be applied to scalar and vector
arguments.

272 CHAPTER 25. AVECTOR: VECTOR ALGEBRA

V := GRAD S; Gradient of a scalar field
S := DIV V; Divergence of a vector field
V := CURL V1; Curl of a vector field
S := DELSQ S1; Laplacian of a scalar field
V := DELSQ V1; Laplacian of a vector field

These operators may be used in any orthogonal curvilinear coordinate sys-
tem. The user may alter the names of the coordinates and the values of the
scale factors. Initially the coordinates are X, Y and Z and the scale factors
are all unity.

There are two special vectors : COORDS contains the names of the coordinates
in the current system and HFACTORS contains the values of the scale factors.

The coordinate names may be changed using the COORDINATES operator.

COORDINATES R,THETA,PHI;

This command changes the coordinate names to R, THETA and PHI.

The scale factors may be altered using the SCALEFACTORS operator.

SCALEFACTORS(1,R,R*SIN(THETA));

This command changes the scale factors to 1, R and R SIN(THETA).

Note that the arguments of SCALEFACTORS must be enclosed in parentheses.
This is not necessary with COORDINATES.

When vector differential operators are applied to an expression, the current
set of coordinates are used as the independent variables and the scale factors
are employed in the calculation.

Several coordinate systems are pre-defined and may be invoked by name.
To see a list of valid names enter

SYMBOLIC !*CSYSTEMS;

and REDUCE will respond with something like

(CARTESIAN SPHERICAL CYLINDRICAL)

To choose a coordinate system by name, use the command GETCSYSTEM.

25.3. VECTOR CALCULUS 273

To choose the Cartesian coordinate system :

GETCSYSTEM ’CARTESIAN;

Note the quote which prefixes the name of the coordinate system. This is re-
quired because GETCSYSTEM (and its complement PUTCSYSTEM) is a SYMBOLIC
procedure which requires a literal argument.

REDUCE responds by typing a list of the coordinate names in that coordi-
nate system. The example above would produce the response

(X Y Z)

whilst

GETCSYSTEM ’SPHERICAL;

would produce

(R THETA PHI)

Note that any attempt to invoke a coordinate system is subject to the same
restrictions as the implied calls to COORDINATES and SCALEFACTORS. In par-
ticular, GETCSYSTEM fails if any of the coordinate names has been assigned
a value and the previous coordinate system remains in effect.

A user-defined coordinate system can be assigned a name using the command
PUTCSYSTEM. It may then be re-invoked at a later stage using GETCSYSTEM.

Example 1

We define a general coordinate system with coordinate names X,Y,Z and scale
factors H1,H2,H3 :

COORDINATES X,Y,Z;
SCALEFACTORS(H1,H2,H3);
PUTCSYSTEM ’GENERAL;

This system may later be invoked by entering

GETCSYSTEM ’GENERAL;

274 CHAPTER 25. AVECTOR: VECTOR ALGEBRA

25.4 Volume and Line Integration

Several functions are provided to perform volume and line integrals. These
operate in any orthogonal curvilinear coordinate system and make use of
the scale factors described in the previous section.

Definite integrals of scalar and vector expressions may be calculated using
the DEFINT function1.

Example 2

To calculate the definite integral of sin(x)2 between 0 and 2π we enter

DEFINT(SIN(X)**2,X,0,2*PI);

This function is a simple extension of the INT function taking two extra
arguments, the lower and upper bounds of integration respectively.

Definite volume integrals may be calculated using the VOLINTEGRAL function
whose syntax is as follows :

VOLINTEGRAL(integrand, vector lower-bound, vector upper-bound);

Example 3

In spherical polar coordinates we may calculate the volume of a sphere by
integrating unity over the range r=0 to RR, θ=0 to PI, φ=0 to 2*π as follows
:
VLB := AVEC(0,0,0); Lower bound
VUB := AVEC(RR,PI,2*PI); Upper bound in r, θ, φ respectively
VOLINTORDER := (0,1,2); The order of integration
VOLINTEGRAL(1,VLB,VUB);

Note the use of the special vector VOLINTORDER which controls the order
in which the integrations are carried out. This vector should be set to
contain the number 0, 1 and 2 in the required order. The first component of
VOLINTORDER contains the index of the first integration variable, the second
component is the index of the second integration variable and the third
component is the index of the third integration variable.

Example 4

Suppose we wish to calculate the volume of a right circular cone. This is
1Not to be confused with the DEFINT package described in chapter 34

25.4. VOLUME AND LINE INTEGRATION 275

equivalent to integrating unity over a conical region with the bounds:

z = 0 to H (H = the height of the cone)
r = 0 to pZ (p = ratio of base diameter to height)
phi = 0 to 2*PI

We evaluate the volume by integrating a series of infinitesimally thin circular
disks of constant z-value. The integration is thus performed in the order :
d(φ) from 0 to 2π, dr from 0 to p*Z, dz from 0 to H. The order of the indices
is thus 2, 0, 1.

VOLINTORDER := AVEC(2,0,1);
VLB := AVEC(0,0,0);
VUB := AVEC(P*Z,H,2*PI);
VOLINTEGRAL(1,VLB,VUB);

Line integrals may be calculated using the LINEINT and DEFLINEINT funct-
ions. Their general syntax is

LINEINT(vector-fnct, vector-curve, variable);

DEFLINENINT(vector-fnct, vector-curve, variable,
lower-bnd, upper-bnd);

where

vector-fnct is any vector-valued expression;

vector-curve is a vector expression which describes the path of integration
in terms of the independent variable;

variable is the independent variable;

lower-bnd

upper-bnd are the bounds of integration in terms of the independent vari-
able.

Example 5

In spherical polar coordinates, we may integrate round a line of constant
theta (‘latitude’) to find the length of such a line. The vector function is
thus the tangent to the ‘line of latitude’, (0,0,1) and the path is (0,LAT,PHI)
where PHI is the independent variable. We show how to obtain the definite
integral i.e. from φ = 0 to 2π :

276 CHAPTER 25. AVECTOR: VECTOR ALGEBRA

DEFLINEINT(AVEC(0,0,1),AVEC(0,LAT,PHI),PHI,0,2*PI);

Chapter 26

BOOLEAN: A package for
boolean algebra

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

The package Boolean supports the computation with boolean expressions
in the propositional calculus. The data objects are composed from algebraic
expressions (“atomic parts”, “leafs”) connected by the infix boolean oper-
ators and, or, implies, equiv, and the unary prefix operator not. Boolean
allows simplification of expressions built from these operators, and to test
properties like equivalence, subset property etc. Also the reduction of a
boolean expression by a partial evaluation and combination of its atomic
parts is supported.

26.1 Entering boolean expressions

In order to distinguish boolean data expressions from boolean expressions
in the REDUCE programming language (e.g. in an if statement), each
expression must be tagged explicitly by an operator boolean. Otherwise
the boolean operators are not accepted in the REDUCE algebraic mode
input. The first argument of boolean can be any boolean expression, which
may contain references to other boolean values.

277

278CHAPTER 26. BOOLEAN: A PACKAGE FOR BOOLEAN ALGEBRA

load_package boolean;
boolean (a and b or c);
q := boolean(a and b implies c);
boolean(q or not c);

Brackets are used to override the operator precedence as usual. The leafs
or atoms of a boolean expression are those parts which do not contain a
leading boolean operator. These are considered as constants during the
boolean evaluation. There are two pre-defined values:

• true, t or 1

• false, nil or 0

These represent the boolean constants. In a result form they are used only
as 1 and 0.

By default, a boolean expression is converted to a disjunctive normal form.

On output, the operators and and or are represented as /\ and \/, respec-
tively.

boolean(true and false); -> 0
boolean(a or not(b and c)); -> boolean(not(b) \/ not(c) \/ a)
boolean(a equiv not c); -> boolean(not(a)/\c \/ a/\not(c))

26.2 Normal forms

The disjunctive normal form is used by default. Alternatively a conjunc-
tive normal form can be selected as simplification target, which is a form
with leading operator and. To produce that form add the keyword and as
an additional argument to a call of boolean.

boolean (a or b implies c);
->

boolean(not(a)/\not(b) \/ c)

boolean (a or b implies c, and);
->

boolean((not(a) \/ c)/\(not(b) \/ c))

Usually the result is a fully reduced disjunctive or conjuntive normal form,
where all redundant elements have been eliminated following the rules

26.2. NORMAL FORMS 279

a ∧ b ∨ ¬a ∧ b←→ b

a ∨ b ∧ ¬a ∨ b←→ b

Internally the full normal forms are computed as intermediate result; in
these forms each term contains all leaf expressions, each one exactly once.
This unreduced form is returned when the additional keyword full is set:

280CHAPTER 26. BOOLEAN: A PACKAGE FOR BOOLEAN ALGEBRA

boolean (a or b implies c, full);
->

boolean(a/\b/\c \/ a/\not(b)/\c \/ not(a)/\b/\c \/ not(a)/\not(b)/\c

\/ not(a)/\not(b)/\not(c))

The keywords full and and may be combined.

26.3 Evaluation of a boolean expression

If the leafs of the boolean expression are algebraic expressions which may
evaluate to logical values because the environment has changed (e.g. vari-
ables have been bound), one can re–investigate the expression using the
operator TESTBOOL with the boolean expression as argument. This operator
tries to evaluate all leaf expressions in REDUCE boolean style. As many
terms as possible are replaced by their boolean values; the others remain
unchanged. The resulting expression is contracted to a minimal form. The
result 1 (= true) or 0 (=false) signals that the complete expression could
be evaluated.

In the following example the leafs are built as numeric greater test. For
using > in the expressions the greater sign must be declared operator first.
The error messages are meaningless.

operator >;
fm:=boolean(x>v or not (u>v));

->
fm := boolean(not(u>v) \/ x>v)

v:=10$ testbool fm;

***** u - 10 invalid as number
***** x - 10 invalid as number

->
boolean(not(u>10) \/ x>10)

x:=3$ testbool fm;

***** u - 10 invalid as number

->

26.3. EVALUATION OF A BOOLEAN EXPRESSION 281

boolean(not(u>10))

x:=17$ testbool fm;

***** u - 10 invalid as number

->
1

282CHAPTER 26. BOOLEAN: A PACKAGE FOR BOOLEAN ALGEBRA

Chapter 27

CALI: Computational
Commutative Algebra

Hans-Gert Gräbe
Institut für Informatik, Universität Leipzig

Augustusplatz 10 – 11
04109 Leipzig, Germany

e–mail: graebe@informatik.uni-leipzig.de

This package contains algorithms for computations in commutative algebra
closely related to the Gröbner algorithm for ideals and modules. Its heart
is a new implementation of the Gröbner algorithm that also allows for the
computation of syzygies. This implementation is also applicable to submod-
ules of free modules with generators represented as rows of a matrix. As
main topics CALI contains facilities for

• defining rings, ideals and modules,

• computing Gröbner bases and local standard bases,

• computing syzygies, resolutions and (graded) Betti numbers,

• computing (now also weighted) Hilbert series, multiplicities, indepen-
dent sets, and dimensions,

• computing normal forms and representations,

• computing sums, products, intersections, quotients, stable quotients,
elimination ideals etc.,

283

284 CHAPTER 27. CALI: COMMUTATIVE ALGEBRA

• primality tests, computation of radicals, unmixed radicals, equidimen-
sional parts, primary decompositions etc. of ideals and modules,

• advanced applications of Gröbner bases (blowup, associated graded
ring, analytic spread, symmetric algebra, monomial curves etc.),

• applications of linear algebra techniques to zero dimensional ideals,
as e.g. the FGLM change of term orders, border bases and affine and
projective ideals of sets of points,

• splitting polynomial systems of equations mixing factorisation and the
Gröbner algorithm, triangular systems, and different versions of the
extended Gröbner factoriser.

There is more extended documentation on this package elsewhere, which
includes facilities for tracing and switches to control its behaviour.

Chapter 28

CAMAL: Calculations in
Celestial Mechanics

J. P. Fitch
School of Mathematical Sciences, University of Bath

BATH BA2 7AY, England

e–mail: jpff@cs.bath.ac.uk

The CAMAL package provides facilities for calculations in Fourier series
similar to those in the specialist Celestial Mechanics system of the 1970s,
and the Cambridge Algebra system in particular.

28.1 Operators for Fourier Series

HARMONIC

The celestial mechanics system distinguish between polynomial variables and
angular variables. All angles must be declared before use with the HARMONIC
function.

harmonic theta, phi;

285

286 CHAPTER 28. CAMAL: CELESTIAL MECHANICS

FOURIER

The FOURIER function coerces its argument into the domain of a Fourier
Series. The expression may contain sine and cosine terms of linear sums of
harmonic variables.

fourier sin(theta)

Fourier series expressions may be added, subtracted multiplies and differen-
tiated in the usual REDUCE fashion. Multiplications involve the automatic
linearisation of products of angular functions.

There are three other functions which correspond to the usual restrictive
harmonic differentiation and integration, and harmonic substitution.

HDIFF and HINT

Differentiate or integrate a Fourier expression with respect to an angular
variable. Any secular terms in the integration are disregarded without com-
ment.

load_package camal;
harmonic u;
bige := fourier (sin(u) + cos(2*u));
aa := fourier 1+hdiff(bige,u);
ff := hint(aa*aa*fourier cc,u);

HSUB

The operation of substituting an angle plus a Fourier expression for an
angles and expanding to some degree is called harmonic substitution. The
function takes 5 arguments; the basic expression, the angle being replaced,
the angular part of the replacement, the fourier part of the replacement and
a degree to which to expand.

harmonic u,v,w,x,y,z;
xx:=hsub(fourier((1-d*d)*cos(u)),u,u-v+w-x-y+z,yy,n);

28.2. A SHORT EXAMPLE 287

28.2 A Short Example

The following program solves Kepler’s Equation as a Fourier series to the
degree n.

bige := fourier 0;
for k:=1:n do <<

wtlevel k;
bige:=fourier e * hsub(fourier(sin u), u, u, bige, k);

>>;
write "Kepler Eqn solution:", bige$

288 CHAPTER 28. CAMAL: CELESTIAL MECHANICS

Chapter 29

CGB: Comprehensive
Gröbner Bases

Andreas Dolzmann & Thomas Sturm
Department of Mathematics and Computer Science

University of Passau
D-94030 Passau, Germany

e-mail: dolzmann@uni-passau.de, sturm@uni-passau.de

29.1 Introduction

Consider the ideal basis F = {ax, x + y}. Treating a as a parameter, the
calling sequence

torder({x,y},lex)$
groebner{a*x,x+y};

{x,y}

yields {x, y} as reduced Gröbner basis. This is, however, not correct under
the specialization a = 0. The reduced Gröbner basis would then be {x+ y}.
Taking these results together, we obtain C = {x+y, ax, ay}, which is correct
wrt. all specializations for a including zero specializations. We call this set
C a comprehensive Gröbner basis (cgb).

The notion of a cgb and a corresponding algorithm has been introduced

289

290 CHAPTER 29. CGB: COMPREHENSIVE GRÖBNER BASES

bei Weispfenning [20]. This algorithm works by performing case distinc-
tions wrt. parametric coefficient polynomials in order to find out what the
head monomials are under all possible specializations. It does thus not only
determine a cgb, but even classifies the contained polynomials wrt. the spe-
cializations they are relevant for. If we keep the Gröbner bases for all cases
separate and associate information on the respective specializations with
them, we obtain a Gröbner system. For our example, the Gröbner system
is the following; [

a 6= 0 {x+ y, ax, ay}
a = 0 {x+ y}

]
.

A cgb is obtained as the union of the single Gröbner bases in a Gröbner
system. It has also been shown that, on the other hand, a Gröbner system
can easily be reconstructed from a given cgb [20].

The CGB package provides functions for computing both cgb’s and Gröbner
systems, and for turning Gröbner systems into cgb’s.

29.2 Using the REDLOG Package

For managing the conditions occurring with the cgb computations, the CGB
package uses the package REDLOG implementing first-order formulas, [6, 8],
which is also part of the reduce distribution.

29.3 Term Ordering Mode

The CGB package uses the settings made with the function TORDER of
the GROEBNER package. This includes in particular the choice of the
main variables. All variables not mentioned in the variable list argument of
TORDER are parameters. The only term ordering modes recognized by cgb
are LEX and REVGRADLEX.

29.4 CGB: Comprehensive Gröbner Basis

The function CGB expects a list F of expressions. It returns a cgb of F
wrt. the current TORDER setting.

29.5. GSYS: GRÖBNER SYSTEM 291

Example:

torder({x,y},lex)$
cgb{a*x+y,x+b*y};

{x + b*y,a*x + y,(a*b - 1)*y}

ws;

{b*y + x,

a*x + y,

y*(a*b - 1)}

Note that the basis returned by the CGB call has not undergone the standard
evaluation process: The returned polynomials are ordered wrt. the chosen
term order. Reevaluation changes this as can be seen with the output of WS.

29.5 GSYS: Gröbner System

The function GSYS follows the same calling conventions as CGB. It returns
the complete Gröbner system represented as a nested list

{{c1, {g11, . . . , g1n1}}, . . . , {cm, {gm1, . . . , g1nm}}}.

The ci are conditions in the parameters represented as quantifier-free RED-
LOG formulas. Each choice of parameters will obey at least one of the
ci. Whenever a choice of parameters obeys some ci, the corresponding
{gi1, . . . , gini} is a Gröbner basis for this choice.

Example:

torder({x,y},lex)$
gsys {a*x+y,x+b*y};

{{a*b - 1 <> 0 and a <> 0,

{a*x + y,x + b*y,(a*b - 1)*y}},

292 CHAPTER 29. CGB: COMPREHENSIVE GRÖBNER BASES

{a <> 0 and a*b - 1 = 0,

{a*x + y,x + b*y}},

{a = 0,{a*x + y,x + b*y}}}

As with the function CGB, the contained polynomials remain unevaluated.

Computing a Gröbner system is not harder than computing a cgb. In fact,
CGB also computes a Gröbner system and then turns it into a cgb.

29.5.1 Switch CGBGEN: Only the Generic Case

If the switch CGBGEN is turned on, both GSYS and CGB will assume all para-
metric coefficients to be non-zero ignoring the other cases. For CGB this
means that the result equals—up to auto-reduction—that of GROEBNER. A
call to GSYS will return this result as a single case including the assumptions
made during the computation:

Example:

torder({x,y},lex)$
on cgbgen;
gsys{a*x+y,x+b*y};

{{a*b - 1 <> 0 and a <> 0,

{a*x + y,x + b*y,(a*b - 1)*y}}}

off cgbgen;

29.6 GSYS2CGB: Gröbner System to CGB

The call GSYS2CGB turns a given Gröbner system into a cgb by constructing
the union of the Gröbner bases of the single cases.

Example:

torder({x,y},lex)$

29.7. SWITCH CGBREAL: COMPUTING OVER THE REAL NUMBERS293

gsys{a*x+y,x+b*y}$
gsys2cgb ws;

{x + b*y,a*x + y,(a*b - 1)*y}

29.7 Switch CGBREAL: Computing over the Real
Numbers

All computations considered so far have taken place over the complex num-
bers, more precisely, over algebraically closed fields. Over the real numbers,
certain branches of the cgb computation can become inconsitent though
they are not inconsistent over the complex numbers. Consider, e.g., a con-
dition a2 + 1 = 0.

When turning on the switch CGBREAL, all simplifications of conditions are
performed over the real numbers. The methods used for this are described
in [7].

Example:

torder({x,y},lex)$
off cgbreal;
gsys {a*x+y,x-a*y};

2
{{a + 1 <> 0 and a <> 0,

2
{a*x + y,x - a*y,(a + 1)*y}},

2
{a <> 0 and a + 1 = 0,{a*x + y,x - a*y}},

{a = 0,{a*x + y,x - a*y}}}

on cgbreal;
gsys({a*x+y,x-a*y});

{{a <> 0,

2

294 CHAPTER 29. CGB: COMPREHENSIVE GRÖBNER BASES

{a*x + y,x - a*y,(a + 1)*y}},

{a = 0,{a*x + y,x - a*y}}}

29.8 Switches

CGBREAL Compute over the real numbers. See Section 29.7 for details.

CGBGS Gröbner simplification of the condition. The switch CGBGS can be
turned on for applying advanced algebraic simplification techniques to
the conditions. This will, in general, slow down the computation, but
lead to a simpler Gröbner system.

CGBSTAT Statistics of the CGB run. The switch CGBSTAT toggles the creation
and output of statistical information on the CGB run. The statistical
information is printed at the end of the run.

CGBFULLRED Full reduction. By default, the CGB functions perform full
reductions in contrast to pure top reductions. By turning off the switch
CGBFULLRED, reduction can be restricted to top reductions.

Chapter 30

CHANGEVR: Change of
Independent Variables in
DEs

G. Üçoluk
Department of Physics, Middle East Technical University

Ankara, Turkey

e–mail: ucoluk@trmetu.bitnet

The function CHANGEVAR has (at least) four different arguments.

• FIRST ARGUMENT
is a list of the dependent variables of the differential equation. If there
is only one dependent variable it can be given directly, not as a list.

• SECOND ARGUMENT
is a list of the new independent variables, or in the case of only one,
the variable.

• THIRD ARGUMENT, FOURTH etc.
are equations is of the form

old variable = a function in new variables

The left hand side cannot be a non-kernel structure. These give the
old variables in terms of the new ones.

295

296 CHAPTER 30. CHANGEVR: CHANGE OF VARIABLES IN DES

• LAST ARGUMENT
is a list of algebraic expressions which evaluates to differential equat-
ions in the usual list notation. Again it is possible to omit the list
form if there is only one differential equation.

If the last argument is a list then the result of CHANGEVAR is a list too.

It is possible to display the entries of the inverse Jacobian. To do so, turn
ON the flag DISPJACOBIAN.

30.1 An example: the 2-D Laplace Equation

The 2-dimensional Laplace equation in Cartesian coordinates is:

∂2u

∂x2
+
∂2u

∂y2
= 0

Now assume we want to obtain the polar coordinate form of Laplace equat-
ion. The change of variables is:

x = r cos θ, y = r sin θ

The solution using CHANGEVAR is

CHANGEVAR({u},{r,theta},{x=r*cos theta,y=r*sin theta},
{df(u(x,y),x,2)+df(u(x,y),y,2)});

Here we could omit the curly braces in the first and last arguments (because
those lists have only one member) and the curly braces in the third argument
(because they are optional), but not in the second. So one could equivalently
write

CHANGEVAR(u,{r,theta},x=r*cos theta,y=r*sin theta,
df(u(x,y),x,2)+df(u(x,y),y,2));

The u(x,y) operator will be changed to u(r,theta) in the result as one
would do with pencil and paper. u(r,theta) represents the the transformed
dependent variable.

Chapter 31

COMPACT: Package for
compacting expressions

Anthony C. Hearn
RAND

Santa Monica
CA 90407-2138, U.S.A.

e–mail: hearn@rand.org

COMPACT is a package of functions for the reduction of a polynomial in
the presence of side relations. The package defines one operator COMPACT
whose syntax is:

COMPACT(<expression>, <list>):<expression>

<expression> can be any well-formed algebraic expression, and <list> an
expression whose value is a list of either expressions or equations. For ex-
ample

compact(x**2+y**3*x-5y,{x+y-z,x-y-z1});
compact(sin(x)**10*cos(x)**3+sin(x)**8*cos(x)**5,

{cos(x)**2+sin(x)**2=1});
let y = {cos(x)**2+sin(x)**2-1};
compact(sin(x)**10*cos(x)**3+sin(x)**8*cos(x)**5,y);

COMPACT applies the relations to the expression so that an equivalent

297

298 CHAPTER 31. COMPACT: COMPACTING EXPRESSIONS

expression results with as few terms as possible. The method used is briefly
as follows:

1. Side relations are applied separately to numerator and denominator,
so that the problem is reduced to the reduction of a polynomial with
respect to a set of polynomial side relations.

2. Reduction is performed sequentially, so that the problem is reduced
further to the reduction of a polynomial with respect to a single poly-
nomial relation.

3. The polynomial being reduced is reordered so that the variables (ker-
nels) occurring in the side relation have least precedence.

4. Each coefficient of the remaining kernels (which now only contain the
kernels in the side relation) is reduced with respect to that side rela-
tion.

5. A polynomial quotient/remainder calculation is performed on the co-
efficient. The remainder is used instead of the original if it has fewer
terms.

6. The remaining expression is reduced with respect to the side relation
using a “nearest neighbour” approach.

Chapter 32

CRACK: Solving
overdetermined systems of
PDEs or ODEs

Thomas Wolf
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
London E1 4NS, England

e–mail: T.Wolf@maths.qmw.ac.uk

Andreas Brand
Institut für Informatik

Friedrich Schiller Universität Jena
07740 Jena, Germany

e–mail: maa@hpux.rz.uni-jena.de

The package CRACK aims at solving or at least partially integrat-
ing single ordinary differential equations or partial differential equations
(ODEs/PDEs), and systems of them, exactly and in full generality. Calcu-
lations done with input DEs include the

• integration of exact DEs and generalised exact DEs

• determination of monomial integrating factors

• direct and indirect separation of DEs

• systematic application of integrability conditions

299

300 CHAPTER 32. CRACK: OVERDETERMINED SYSTEMS OF DES

• solution of single elementary ODEs by using the REDUCE package
ODESOLVE (chapter 59).

Input DEs may be polynomially non-linear in the unknown functions and
their derivatives and may depend arbitrarily on the independent variables.

Suitable applications of CRACK are the solution of

• overdetermined ODE/PDE-systems (overdetermined here just means
that the number of unknown functions of all independent variables is
less than the number of given equations for these functions).

• simple non-overdetermined DE-systems (such as characteristic ODE-
systems of first order quasilinear PDEs).

The strategy is to have one universal program (CRACK) which is as effective
as possible for solving overdetermined PDE-systems and many application
programs (such as LIEPDE) which merely generate an overdetermined PDE-
system depending on what is to be investigated (for example, symmetries
or conservation laws).

Examples are:

• the investigation of infinitesimal symmetries of DEs (LIEPDE),

• the determination of an equivalent Lagrangian for second order ODEs
(LAGRAN)

• the investigation of first integrals of ODEs which are polynomial in
their highest derivative (FIRINT)

• the splitting of an nth order ODE into a first order ODE and an (n−
1)th order problem (DECOMP)

Other applications where non-overdetermined problems are treated are

• the application of infinitesimal symmetries (e.g. calculated by LIEPDE)
in the package APPLYSYM (chapter 21),

• the program QUASILINPDE (also in the package APPLYSYM) for
solving single first order quasilinear PDEs.

301

The kernel package for solving overdetermined or simple non-overdetermined
DE-systems is accessible through a call to the program CRACK in the pack-
age CRACK. All the application programs (LIEPDE, LAGRAN, FIRINT,
DECOMP except APPLYSYM) are contained in the package CRACKAPP.
The programs APPLYSYM and QUASILINPDE are contained in the pack-
age APPLYSYM (described in chapter 21).

Details of the CRACK applications can be found in the example file.

CRACK is called by

CRACK({equ1, equ2, . . . , equm},
{ineq1, ineq2, . . . , ineqn},
{fun1, fun2, . . . , funp},
{var1, var2, . . . , varq});

m,n, p, q are arbitrary.

• The equi are identically vanishing partial differential expressions, i.e.
they represent equations 0 = equi, which are to be solved for the funct-
ions funj as far as possible, thereby drawing only necessary conclusions
and not restricting the general solution.

• The ineqi are expressions which must not vanish identically for any
solution to be determined, i.e. only such solutions are computed for
which none of the ineqi vanishes identically in all independent vari-
ables.

• The dependence of the (scalar) functions funj on possibly a number
of variables is assumed to have been defined with DEPEND rather
than declaring these functions as operators. Their arguments may
themselves only be independent variables and not expressions.

• The functions funj and their derivatives may only occur polynomially.
Other unknown functions in equi may be represented as operators.

• The vark are further independent variables, which are not already
arguments of any of the funj . If there are none then the third argument
is the empty list {}.
• The dependence of the equi on the independent variables and on con-

stants and functions other than funj is arbitrary.

302 CHAPTER 32. CRACK: OVERDETERMINED SYSTEMS OF DES

The result is a list of solutions

{sol1, . . .}

where each solution is a list of 3 lists:

{{con1, con2, . . . , conq},
{funa = exa, funb = ex b, . . . , funp = ex p},
{func, fund, . . . , funr} }

with integer a, b, c, d, p, q, r. If CRACK finds a contradiction as 0 = 1 then
there exists no solution and it returns the empty list {}. The empty list
is also returned if no solution exists which does not violate the inequalities
ineqi 6= 0. For example, in the case of a linear system as input, there is at
most one solution sol1.

The expressions coni (if there are any), are the remaining necessary and
sufficient conditions for the functions func, . . . , funr in the third list. Those
functions can be original functions from the equations to be solved (of the
second argument of the call of CRACK) or new functions or constants which
arose from integrations. The dependence of new functions on variables is
declared with DEPEND and to visualise this dependence the algebraic mode
function FARGS(funi) can be used. If there are no coni then all equations
are solved and the functions in the third list are unconstrained.

The second list contains equations funi = ex i where each funi is an original
function and ex i is the computed expression for funi.

The exact behaviour of CRACK can be modified by internal variables, and
there is a help system particularly associated with CRACK. Users are referred
to the detailed documentation for more information.

Chapter 33

CVIT: Fast calculation of
Dirac gamma matrix traces

V. Ilyin, A. Kryukov, A. Rodionov and A. Taranov
Institute for Nuclear Physics

Moscow State University
Moscow, 119899 Russia

The package consists of 5 sections, and provides an alternative to the RE-
DUCE high-energy physics system. Instead of being based on Γ-matrices
as a basis for a Clifford algebra, it is based on treating Γ-matrices as 3-j
symbols, as described by Cvitanovic.

The functions it provides are the same as those of the standard package. It
does have four switches which control its behaviour.

CVIT

If it is on then use Kennedy-Cvitanovic algorithm else use standard facilities.

CVITOP

Switches on Fierz optimisation. Default is off;

CVITBTR

Switches on the bubbles and triangles factorisation. The default is on.

CVITRACE

Controls internal tracing of the CVIT package. Default is off.

303

304 CHAPTER 33. CVIT:DIRAC GAMMA MATRIX TRACES

index j1,j2,j3,;

vecdim n$

g(l,j1,j2,j2,j1);

2
n

g(l,j1,j2)*g(l1,j3,j1,j2,j3);

2
n

g(l,j1,j2)*g(l1,j3,j1,j3,j2);

n*(- n + 2)

Chapter 34

DEFINT: Definite
Integration for REDUCE

Kerry Gaskell and Winfried Neun
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: neun@zib.de

Stanley L. Kameny
Los Angeles, U.S.A.

REDUCE’s definite integration package is able to calculate the definite inte-
grals of many functions, including several special functions. There are a
number of parts of this package, including contour integration. The innova-
tive integration process is to represent each function as a Meijer G-function,
and then calculating the integral by using the following Meijer G integration
formula.

∫ ∞

0
xα−1Gst

uv

(
σx

∣∣∣∣∣
(cu)
(dv)

)
Gmn

pq

(
ωxl/k

∣∣∣∣∣
(ap)
(bq)

)
dx = kGij

kl

(
ξ

∣∣∣∣∣
(gk)
(hl)

)
(1)

The resulting Meijer G-function is then retransformed, either directly or via
a hypergeometric function simplification, to give the answer.

The user interface is via a four argument version of the INT operator, with
the lower and upper limits added.

305

306CHAPTER 34. DEFINT: DEFINITE INTEGRATION FOR REDUCE

load_package defint;

int(sin x,x,0,pi/2);

1

307

int(log(x),x,1,5);

5*log(5) - 4

int(x*e^(-1/2x),x,0,infinity);

4

int(x^2*cos(x)*e^(-2*x),x,0,infinity);

4

125

int(x^(-1)*besselj(2,sqrt(x)),x,0,infinity);

1

int(si(x),x,0,y);

cos(y) + si(y)*y - 1

int(besselj(2,x^(1/4)),x,0,y);

1/4
4*besselj(3,y)*y

1/4
y

The DEFINT package also defines a number of additional transforms, such
as the Laplace transform1, the Hankel transform, the Y-transform, the
K-transform, the StruveH transform, the Fourier sine transform, and the
Fourier cosine transform.

laplace_transform(cosh(a*x),x);

- s

2 2
a - s

1See Chapter 49 for an alternative Laplace transform with inverse Laplace transform

308CHAPTER 34. DEFINT: DEFINITE INTEGRATION FOR REDUCE

laplace_transform(Heaviside(x-1),x);

1

s
e *s

hankel_transform(x,x);

n + 4
gamma(-------)

2

n - 2 2
gamma(-------)*s

2

fourier_sin(e^(-x),x);

s

2
s + 1

fourier_cos(x,e^(-1/2*x^2),x);

2
i*s s /2

sqrt(- pi)*erf(---------)*s + e *sqrt(2)
sqrt(2)

--
2

s /2
e *sqrt(2)

It is possible to the user to extend the pattern-matching process by which
the relevant Meijer G representation for any function is found. Details can
be found in the complete documentation.

Acknowledgement: This package depends greatly on the pioneering work
of Victor Adamchik, to whom thanks are due.

Chapter 35

DESIR: Differential linear
homogeneous equation
solutions in the
neighbourhood of irregular
and regular singular points

C. Dicrescenzo, F. Richard–Jung, E. Tournier
Groupe de Calcul Formel de Grenoble

laboratoire TIM3
France

e–mail: dicresc@afp.imag.fr

This software enables the basis of formal solutions to be computed for an
ordinary homogeneous differential equation with polynomial coefficients over
Q of any order, in the neighbourhood of zero (regular or irregular singular
point, or ordinary point).

This software can be used in two ways, directly via the DELIRE procedure, or
interactively with the DESIR procedure. The basic procedure is the fDELIRE
procedure which enables the solutions of a linear homogeneous differential
equation to be computed in the neighbourhood of zero.

The DESIR procedure is a procedure without argument whereby DELIRE can
be called without preliminary treatment to the data, that is to say, in an

309

310 CHAPTER 35. DESIR: LINEAR HOMOGENEOUS DES

interactive autonomous way. This procedure also proposes some transfor-
mations on the initial equation. This allows one to start comfortably with
an equation which has a non zero singular point, a polynomial right-hand
side and parameters.

delire(x,k,grille,lcoeff,param)

This procedure computes formal solutions of a linear homogeneous differen-
tial equation with polynomial coefficients over Q and of any order, in the
neighbourhood of zero, regular or irregular singular point. x is the variable,
k is the number of desired terms (that is for each formal series in xt appear-
ing in polysol, a0 + a1xt + a2x

2
t + . . . + anx

n
t + . . . we compute the k + 1

first coefficients a0, a1 to ak. The coefficients of the differential operator as
polynomial in xgrille. In general grille is 1. The argument lcoeff is a list of
coefficients of the differential operator (in increasing order of differentiation)
and param is a list of parameters. The procedure returns the list of general
solutions.

lcoeff:={1,x,x,x**6};

6
lcoeff := {1,x,x,x }

param:={};

param := {}

sol:=delire(x,4,1,lcoeff,param);

4 3 2
xt - 4*xt + 12*xt - 24*xt + 24

sol := {{{{0,1,-----------------------------------,1},{
12

}}},

4 3
{{{0,1,(6*log(xt)*xt - 18*log(xt)*xt

2
+ 36*log(xt)*xt - 36*log(xt)*xt

4 3
- 5*xt + 9*xt - 36*xt + 36)/36,0},{}

311

}},

1
{{{-------,1,

4
4*xt

4 3 2
361*xt + 4*xt + 12*xt + 24*xt + 24

---------------------------------------,10},
24

{}}}}

312 CHAPTER 35. DESIR: LINEAR HOMOGENEOUS DES

Chapter 36

DFPART: Derivatives of
generic functions

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

The package DFPART supports computations with total and partial deriva-
tives of formal function objects. Such computations can be useful in the
context of differential equations or power series expansions.

36.1 Generic Functions

A generic function is a symbol which represents a mathematical function.
The minimal information about a generic function function is the number
of its arguments. In order to facilitate the programming and for a better
readable output this package assumes that the arguments of a generic func-
tion have default names such as f(x, y), q(rho, phi). A generic function is
declared by prototype form in a statement

GENERIC FUNCTION fname(arg1, arg2 · · · argn);

where fname is the (new) name of a function and argi are symbols for its for-

313

314CHAPTER 36. DFPART: DERIVATIVES OF GENERIC FUNCTIONS

mal arguments. In the following fname is referred to as “generic function”,
arg1, arg2 · · · argn as “generic arguments” and fname(arg1, arg2 · · · argn) as
“generic form”.

Examples:

generic_function f(x,y);
generic_function g(z);

After this declaration REDUCE knows that

• there are formal partial derivatives ∂f
∂x , ∂f

∂y
∂g
∂z and higher ones, while

partial derivatives of f and g with respect to other variables are as-
sumed as zero,

• expressions of the type f(), g() are abbreviations for f(x, y), g(z),

• expressions of the type f(u, v) are abbreviations for
sub(x = u, y = v, f(x, y))

• a total derivative df(u,v)
dw has to be computed as ∂f

∂x
du
dw + ∂f

∂y
dv
dw

36.2 Partial Derivatives

The operator DFP represents a partial derivative:

DFP(expr, dfarg1, dfarg2 · · · dfargn);

where expr is a function expression and dfargi are the differentiation vari-
ables. Examples:

dfp(f(),{x,y});

means ∂2f
∂x∂y and

dfp(f(u,v),{x,y});

stands for ∂2f
∂x∂y (u, v). For compatibility with the DF operator the differen-

tiation variables need not be entered in list form; instead the syntax of DF
can be used, where the function expression is followed by the differentiation

36.2. PARTIAL DERIVATIVES 315

variables, eventually with repetition numbers. Such forms are internally
converted to the above form with a list as second parameter.

The expression expr can be a generic function with or without arguments,
or an arithmetic expression built from generic functions and other algebraic
parts. In the second case the standard differentiation rules are applied in
order to reduce each derivative expressions to a minimal form.

When the switch NAT is on partial derivatives of generic functions are printed
in standard index notation, that is fxy for ∂2f

∂x∂y and fxy(u, v) for ∂2f
∂x∂y (u, v).

Therefore single characters should be used for the arguments whenever pos-
sible. Examples:

generic_function f(x,y);
generic_function g(y);
dfp(f(),x,2);

F
XX

dfp(f()*g(),x,2);

F *G()
XX

dfp(f()*g(),x,y);

F *G() + F *G
XY X Y

The difference between partial and total derivatives is illustrated by the
following example:

generic_function h(x);
dfp(f(x,h(x))*g(h(x)),x);

F (X,H(X))*G(H(X))
X

df(f(x,h(x))*g(h(x)),x);

316CHAPTER 36. DFPART: DERIVATIVES OF GENERIC FUNCTIONS

F (X,H(X))*G(H(X)) + F (X,H(X))*H (X)*G(H(X))
X Y X

+ G (H(X))*H (X)*F(X,H(X))
Y X

Normally partial differentials are assumed as non-commutative

dfp(f(),x,y)-dfp(f(),y,x);

F - F
XY YX

However, a generic function can be declared to have globally interchange-
able partial derivatives using the declaration DFP COMMUTE which takes the
name of a generic function or a generic function form as argument. For
such a function differentiation variables are rearranged corresponding to the
sequence of the generic variables.

generic_function q(x,y);
dfp_commute q(x,y);
dfp(q(),{x,y,y}) + dfp(q(),{y,x,y}) + dfp(q(),{y,y,x});

3*Q
XYY

If only a part of the derivatives commute, this has to be declared using the
standard REDUCE rule mechanism. Please note that then the derivative
variables must be written as list.

36.3 Substitutions

When a generic form or a DFP expression takes part in a substitution the
following steps are performed:

1. The substitutions are performed for the arguments. If the argument
list is empty the substitution is applied to the generic arguments of
the function; if these change, the resulting forms are used as new
actual arguments. If the generic function itself is not affected by the
substitution, the process stops here.

36.3. SUBSTITUTIONS 317

2. If the function name or the generic function form occurs as a left hand
side in the substitution list, it is replaced by the corresponding right
hand side.

3. The new form is partially differentiated according to the list of partial
derivative variables.

4. The (eventually modified) actual parameters are substituted into the
form for their corresponding generic variables. This substitution is
done by name.

Examples:

generic_function f(x,y);
sub(y=10,f());

F(X,10)

sub(y=10,dfp(f(),x,2));

F (X,10)
XX

sub(y=10,dfp(f(y,y),x,2));

F (10,10)
XX

sub(f=x**3*y**3,dfp(f(),x,2));

3
6*X*Y

generic_function ff(y,z);
sub(f=ff,f(a,b));

FF(B,Z)

318CHAPTER 36. DFPART: DERIVATIVES OF GENERIC FUNCTIONS

Chapter 37

DUMMY: Canonical form of
expressions with dummy
variables

Alain Dresse
Université Libre de Bruxelles

Boulevard du Triomphe, CP 210/01
B–1050 BRUXELLES, Belgium

e–mail: adresse@ulb.ac.be

An expression of the type
n∑

a=1

f(a)

for any n is simply written as
f(a)

and a is a dummy index. If the previous expression is written as

n∑

b=1

f(b)

b is also a dummy index and, obviously we should be able to get the equality

f(a)− f(b); → 0

To declare dummy variables, two declarations are available:

319

320 CHAPTER 37. DUMMY: EXPRESSIONS WITH DUMMY VARS

i. dummy_base <idp>;

where idp is the name of any unassigned identifier.

ii. dummy_names <d>,<dp>,<dpp>;

The first declares idp1,· · ·, idpn as dummy variables i.e. all variables of
the form “idxxx” where xxx is a number will be dummy variables, such
as id1, id2, ... , id23. The second gives special names for dummy
variables. All other arguments are assumed to be free.
An example:

dummy_base dv; ==> dv

% dummy indices are dv1, dv2, dv3, ...

dummy_names i,j,k; ==> t

% dummy names are i,j,k.

When this is done, an expression like

op(dv1)*sin(dv2)*abs(x)*op(i)^3*op(dv2)$

is allowed. Notice that, dummy indices may not be repeated (it is not
limited to tensor calculus) or that they be repeated many times inside the
expression.

By default all operators with dummy arguments are assumed to be commu-
tative and without symmetry properties. This can be varied by declarations
NONCOM, SYMMETRIC and ANTISYMMETRIC may be used on the operators. They
can also be declared anticommutative.

anticom ao1, ao2;

More complex symmetries can be handled with SYMTREE. The corresponding
declaration for the Riemann tensor is

symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});

The symbols !*, !+ and !- at the beginning of each list mean that the operator
has no symmetry, is symmetric and is antisymmetric with respect to the
indices inside the list. Notice that the indices are not designated by their
names but merely by their natural order of appearance. 1 means the first

321

written argument of r, 2 its second argument etc. In the example above r
is symmetric with respect to interchange of the pairs of indices 1,2 and 3,4
respectively.

322 CHAPTER 37. DUMMY: EXPRESSIONS WITH DUMMY VARS

Chapter 38

EDS: Exterior differential
systems

David Hartley
Physics and Mathematical Physics

University of Adelaide SA 5005, Australia
e-mail: DHartley@physics.adelaide.edu.au

38.1 Introduction

Exterior differential systems give a geometrical framework for partial differ-
ential equations and more general differential geometric problems. The geo-
metrical formulation has several advantages stemming from its coordinate-
independence, including superior treatment of nonlinear and global prob-
lems. EDS provides a number of tools for setting up and manipulating ex-
terior differential systems and implements many features of the theory. Its
main strengths are the ability to use anholonomic or moving frames and the
care taken with nonlinear problems.

The package is loaded by typing load eds;

Reading the full documentation, which comes with this package, is strongly
recommended. The test file eds.tst, which is also in the package, provides
three inspiring examples on the subject.
EDS uses E. Schrüfer’s EXCALC package for the underlying exterior calcu-
lus operations.

323

324 CHAPTER 38. EDS: EXTERIOR DIFFERENTIAL SYSTEMS

38.2 Data Structures and Concepts

38.2.1 EDS

A simple 〈EDS 〉, or exterior differential system, is a triple (S,Ω,M), where
M is a coframing, S is a system on M, and Ω is an independence condi-
tion. Exterior differential equations without independence condition are not
treated by EDS. Ω should be either a decomposable 〈p-form〉 or a 〈system〉
of 1-forms on M.
More generally an 〈EDS 〉 is a list of simple 〈EDS 〉 objects where the various
coframings are all disjoint.
The solutions of (S,Ω,M) are integral manifolds, or immersions on which
S vanishes and the rank of Ω is preserved. Solutions at a single point are
described by integral elements.

38.2.2 Coframing

Within the context of EDS, a coframing means a real finite-dimensional dif-
ferentiable manifold with a given global cobasis. The information about a
coframing required by EDS is kept in a 〈coframing〉 object. The cobasis is the
identifying element of an EDS. In addition to the cobasis, there can be given
coordinates, structure equations and restrictions. In addition to the cobasis,
coordinates, structure equations and restrictions can be given. The coordi-
nates may be an incomplete or overcomplete set. The structure equations
express the exterior derivative of the coordinates and cobasis elements as
needed. All coordinate differentials must be expressed in terms of the given
cobasis, but not all cobasis derivatives need be known. The restrictions are
a set of inequalities describing point sets not in the manifold.
Please note that the 〈coframing〉 object is by no means a full description
of a differentiable manifold. However, the 〈coframing〉 object carries suffi-
cient information about the underlying manifold to allow a range of exterior
systems calculations to be carried out.

38.2.3 Systems and background coframing

The label 〈system〉 refers to a list {<p-form expr>, . . .} of differential forms.
If an EDS operator also accepts a 〈system〉 as argument, then any extra
information which is required is taken from the background coframing.

38.2. DATA STRUCTURES AND CONCEPTS 325

It is possible to activate the rules and orderings of a COFRAMING operator
globally, by making it the background coframing. All subsequent EXCALC
operations will be governed by those rules. Operations on 〈EDS 〉 objects
are unaffected, since their coframings are still activated locally.

38.2.4 Integral elements

An 〈integral element〉 of an exterior system (S,Ω,M) is a subspace P ⊂ TpM
of the tangent space at some point p ∈ M . This integral element can be
represented by its annihilator P⊥ ⊂ T ∗pM , comprising those 1-forms at
p which annihilate every vector in P . This can also be understood as a
maximal set of 1-forms at p such that S ' 0 (mod P⊥) and the rank of Ω
is preserved modulo P⊥.
An 〈integral element〉 in EDS is a distribution of 1-forms on M , specified as
a 〈system〉 of 1-forms.

38.2.5 Properties and normal form

For large problems, it can require a great deal of computation to establish
whether, for example, a system is closed or not. In order to save recomputing
such properties, an 〈EDS 〉 object carries a list of 〈properties〉 of the form

{〈keyword〉 = 〈value〉,· · ·}
where 〈keyword〉 is one of closed, quasilinear, pfaffian or involutive,
and 〈value〉 is either 0 (false) or 1 (true). These properties are suppressed
when an 〈EDS 〉 is printed, unless the nat switch is off. They can be
examined using the PROPERTIES operator.
Parts of the theory of exterior differential systems apply only at points on
the underlying manifold where the system is in some sense non-singular.
To ensure the theory applies, EDS automatically works all exterior systems
(S,Ω,M) into a normal form. This means that the Pfaffian component of S
and the independence condition Ω are in solved forms, distinguished terms
from the 1-forms in S have been eliminated from the rest of S and from Ω
and any 1-forms in S which vanish modulo the independence condition are
removed from the system and their coefficients are appended as 0-forms.

326 CHAPTER 38. EDS: EXTERIOR DIFFERENTIAL SYSTEMS

38.3 The EDS Package

In the descriptions of the various operators we define the following abbrevi-
ations for function parameters:

E, E′ 〈EDS 〉
S 〈system〉
M , N 〈coframing〉, or a 〈system〉 specifying a 〈coframing〉
r 〈integer〉
Ω 〈p-form〉
f 〈map〉
rsx 〈list of inequalities〉
cob 〈list of 1-form variables〉
crd, dep, ind 〈list of 0-form variables〉
drv 〈list of rules for exterior derivatives〉
pde 〈list of expressions or equations〉
X 〈transform〉
T 〈tableau〉
P 〈integral element〉

38.3.1 Constructing EDS objects

An EDS 〈coframing〉 is constructed using the COFRAMING operator. In one
form it examines the argument for 0-form and 1-form variables. The more
basic syntax takes the 〈cobasis〉 as a list of 1-forms, 〈coordinates〉 as a list of
0-forms, 〈restrictions〉 as a list of inequalities and 〈structure equations〉 as a
list giving the exterior derivatives of the coordinates and cobasis elements.
All arguments except the cobasis are optional.
A simple 〈EDS 〉 is constructed using the EDS operator where the 〈indep. condition〉
can be either a decomposable 〈p-form〉 or a 〈system〉 of 1-forms. The
〈coframing〉 and the 〈properties〉 arguments can be omitted. The EDS is
put into normal form before being returned. With SET COFRAMING the back-
ground coframing is set.
The operator PDS2EDS encodes a PDE system into an 〈EDS 〉 object.

COFRAMING(cob,crd,rsx,drv) COFRAMING(S) EDS(S,Ω,M)
CONTACT(r,M,N) PDE2EDS(pde,dep,ind) SET COFRAMING(M)
SET COFRAMING(E) SET COFRAMING()

38.3. THE EDS PACKAGE 327

Example:

1: load eds;

2: pform {x,y,z,p,q}=0,{e(i),w(i,j)}=1;

3: indexrange {i,j,k}={1,2},{a,b,c}={3};

4: eds({d z - p*d x - q*d y, d p^d q},{d x,d y});

EDS({d z - p*d x - q*d y,d p^d q},d x^d y)

5: OMrules:=index_expand {d e(i)=>-w(i,-j)^e(j),w(i,-j)+w(j,-i)=>0}$

6: eds({e(a)},{e(i)}) where OMrules;

3 1 2
EDS({e },{e ,e })

7: coframing ws;
3 2 1 2 1 2 2

coframing({e ,w ,e ,e },{},{d e => - e ^w ,
1 1

2 1 2
d e => e ^w },{})

1

38.3.2 Inspecting EDS objects

Using these operators you can get parts of your 〈EDS 〉 object. The
PROPERTIES(E) operator for example returns a list of properties which are
normally not printed out, unless the NAT switch is off.

COFRAMING(E) COFRAMING() COBASIS(M)
COBASIS(E) COORDINATES(M) COORDINATES(E)
STRUCTURE EQUATIONS(M) STRUCTURE EQUATIONS(E) RESTRICTIONS(M)
RESTRICTIONS(E) SYSTEM(E) INDEPENDENCE(E)
PROPERTIES(E) ONE FORMS(E) ONE FORMS(S)
ZERO FORMS(E) ZERO FORMS(S)

Example:

328 CHAPTER 38. EDS: EXTERIOR DIFFERENTIAL SYSTEMS

8: depend u,x,y; depend v,x,y;

9: pde2eds({df(u,y,y)=df(v,x),df(v,y)=y*df(v,x)});

EDS({d u - u *d x - u *d y, d u - u *d x - u *d y,
x y x x x y x

d u - u *d x - v *d y, d v - v *d x - v *y*d y},d x^d y)
y y x x x x

10: dependencies;

{{u,y,x},{v,y,x}}

11: coordinates contact(3,{x},{u});

{x,u,u ,u ,u }
x x x x x x

12: fdomain u=u(x);

13: coordinates {d u+d y};

{x,y}

38.3.3 Manipulating EDS objects

These operators allow you to manipulate your 〈EDS 〉 objects. The
AUGMENT(E,S) operator, see example below, appends the extra forms in the
second argument to the system part of the first. The original 〈EDS 〉 re-
mains unchanged. As another example by using the TRANSFORM operator a
change of the cobasis is made, where the argument 〈transform〉 is a list of
substitutions.

AUGMENT(E,S) M CROSS N E CROSS N PULLBACK(E,f)
PULLBACK(S,f) PULLBACK(Ω,f) PULLBACK(M,f) RESTRICT(E,f)
RESTRICT(S,f) RESTRICT(Ω,f) RESTRICT(M,f) TRANSFORM(M,X)
TRANSFORM(E,X) TRANSFORM(S,X) TRANSFORM(Ω,X) LIFT(E)

Example:

38.3. THE EDS PACKAGE 329

% Non-Pfaffian system for a Monge-Ampere equation

14: PFORM {x,y,z}=0$

15: S := CONTACT(1,{x,y},{z});

s := EDS({d z - z *d x - z *d y},d x^d y)
x y

16: S:= AUGMENT(S,{d z(-x)^d z(-y)});

s := EDS({d z - z *d x - z *d y,
x y

d z ^d z },d x^d y)
x y

38.3.4 Analysing and Testing exterior systems

Analysing exterior systems

This section introduces higher level operators for extracting information
about exterior systems. Many of them require a 〈EDS 〉 in normal form gen-
erated in positive degree as input, but some can also analyse a 〈system〉 or
a single 〈p-form〉.

CARTAN SYSTEM(E) CARTAN SYSTEM(S) CARTAN SYSTEM(Ω)
CAUCHY SYSTEM(E) CAUCHY SYSTEM(S) CAUCHY SYSTEM(Ω)
CHARACTERS(E) CHARACTERS(T) CHARACTERS(E,P)
CLOSURE(E) DERIVED SYSTEM(E) DERIVED SYSTEM(S)
DIM GRASSMANN VARIETY(E) DIM GRASSMANN VARIETY(E,P) DIM(M)
DIM(E) INVOLUTION(E) LINEARISE(E,P)
INTEGRAL ELEMENT(E) PROLONG(E) TABLEAU(E)
TORSION(E) GRASSMANN VARIETY(E)

Testing exterior systems

The following operators allow various properties of an 〈EDS 〉 to be checked.
The result is either a 1 or a 0, so these operators can be used in boolean
expressions. Since checking these properties is very time-consuming, the
result of the first test is stored on the 〈properties〉 record of an 〈EDS 〉 to
avoid re-checking. This memory can be cleared using the CLEANUP opearator.

330 CHAPTER 38. EDS: EXTERIOR DIFFERENTIAL SYSTEMS

CLOSED(E) CLOSED(S) CLOSED(Ω) INVOLUTIVE(E)
PFAFFIAN(E) QUASILINEAR(E) SEMILINEAR(E) E EQUIV E′

38.3.5 Switches

EDS provides several switches to govern the display of information and en-
hance the speed or reliability of the calculations. For example the switch
EDSVERBOSE if ON will display additional information as the calculation pro-
gresses, which might generate too much output for larger problems.
All switches are OFF by default.

EDSVERBOSE EDSDEBUG EDSSLOPPY EDSDISJOINT RANPOS GENPOS

38.3.6 Auxilliary functions

The operators of this section are designed to ease working with exterior
forms and exterior systems in REDUCE .

COORDINATES(S) INVERT(X) STRUCTURE EQUATIONS(X)
STRUCTURE EQUATIONS(X,X−1) LINEAR DIVISORS(Ω) EXFACTORS(Ω)
INDEX EXPAND(ANY) PDE2JET(pde,dep,ind) MKDEPEND(list)
DISJOIN(f,g,...) CLEANUP(E) CLEANUP(M)
REORDER(E) REORDER(M)

38.3.7 Experimental Functions

The following operators are experimental facilities since, they are either al-
gorithmically not well-founded, or their implementation is very unstable, or
they have known bugs.

POINCARE(Ω) INVARIANTS(E,crd) INVARIANTS(S,crd)
SYMBOL RELATIONS(E,π) SYMBOL MATRIX(E,ξ) CHARACTERISTIC VARIETY(E,ξ)

Example:

38.3. THE EDS PACKAGE 331

17: % Riemann invariants for Euler-Poisson-Darboux equation.
17: % Set up the EDS for the equation, and examine tableau.
17: depend u,x,y; EPD :=PDE2EDS{DF(u,x,y)=-(df(u,x)+df(u,y))/(x+y)}$

19: tableau EPD;

[d u 0]
[x x]
[]
[0 d u]
[y y]

20: % 1-form dx is characteristic: construct characteristic EDS.
20: xvars {}; C := cartan_system select(~f^d x=0,system closure epd)$

22: S := augment(eds(system EPD,d y),C)$

23: % Compute derived flag
23: while not equiv(S,S1 := derived_system S) do S := S1;

24: % Stabilised. Find the Riemann invariants.
24: invariants(S,reverse coordinates S);

{x,

u *x + u *y + u,
x x

- u *x - u *y - 2*u }
x x x x x

332 CHAPTER 38. EDS: EXTERIOR DIFFERENTIAL SYSTEMS

Chapter 39

EXCALC: A differential
geometry package

Eberhard Schrüfer
GMD, Institut I1

Postfach 1316
53757 St. Augustin, GERMANY

e–mail: schruefer@gmd.de

EXCALC is designed for easy use by all who are familiar with the calculus
of Modern Differential Geometry. Its syntax is kept as close as possible
to standard textbook notations. Therefore, no great experience in writing
computer algebra programs is required. It is almost possible to input to
the computer the same as what would have been written down for a hand-
calculation. For example, the statement

f*x^y + u _| (y^z^x)

would be recognized by the program as a formula involving exterior products
and an inner product. The program is currently able to handle scalar-valued
exterior forms, vectors and operations between them, as well as non-scalar
valued forms (indexed forms). With this, it should be an ideal tool for
studying differential equations, doing calculations in general relativity and
field theories, or doing such simple things as calculating the Laplacian of a
tensor field for an arbitrary given frame. With the increasing popularity of
this calculus, this program should have an application in almost any field of

333

334 CHAPTER 39. EXCALC: DIFFERENTIAL GEOMETRY

physics and mathematics.

39.1 Declarations

Geometrical objects like exterior forms or vectors are introduced to the
system by declaration commands. The declarations can appear anywhere
in a program, but must, of course, be made prior to the use of the object.
Everything that has no declaration is treated as a constant; therefore zero-
forms must also be declared.

An exterior form is introduced by

PFORM <declaration1>, <declaration2>, . . . ;

where

<declaration> ::= <name> | <list of names>=<number> | <identifier> |
<expression>
<name> ::= <identifier> | <identifier>(<arguments>)

For example

pform u=k,v=4,f=0,w=dim-1;

declares U to be an exterior form of degree K, V to be a form of degree 4, F
to be a form of degree 0 (a function), and W to be a form of degree DIM-1.

The declaration of vectors is similar. The command TVECTOR takes a list of
names.

TVECTOR <name1>, <name2>, . . . ;

For example, to declare X as a vector and COMM as a vector with two indices,
one would say

tvector x,comm(a,b);

The exterior degree of a symbol or a general expression can be obtained
with the function

EXDEGREE <expression>;

Example:

39.2. EXTERIOR MULTIPLICATION 335

exdegree(u + 3*chris(k,-k));

1

39.2 Exterior Multiplication

Exterior multiplication between exterior forms is carried out with the nary
infix operator ˆ (wedge). Factors are ordered according to the usual ordering
in REDUCE using the commutation rule for exterior products.

pform u=1,v=1,w=k;

u^v;

U^V

v^u;

- U^V

u^u;

0

w^u^v;

K
(- 1) *U^V^W

(3*u-a*w)^(w+5*v)^u;

A*(5*U^V^W - U^W^W)

It is possible to declare the dimension of the underlying space by

SPACEDIM <number> | <identifier>;

If an exterior product has a degree higher than the dimension of the space,
it is replaced by 0:

336 CHAPTER 39. EXCALC: DIFFERENTIAL GEOMETRY

39.3 Partial Differentiation

Partial differentiation is denoted by the operator @. Its capability is the
same as the REDUCE DF operator.

Example 6

@(sin x,x);

COS(X)

@(f,x);

0

An identifier can be declared to be a function of certain variables. This
is done with the command FDOMAIN. The following would tell the partial
differentiation operator that F is a function of the variables X and Y and
that H is a function of X.

fdomain f=f(x,y),h=h(x);

Applying @ to F and H would result in

@(x*f,x);

F + X*@ F
X

@(h,y);

0

The partial derivative symbol can also be an operator with a single argu-
ment. It then represents a natural base element of a tangent vector.

39.4 Exterior Differentiation

Exterior differentiation of exterior forms is carried out by the operator d.
Products are normally differentiated out,

39.5. INNER PRODUCT 337

pform x=0,y=k,z=m;

d(x * y);

X*d Y + d X^Y

This expansion can be suppressed by the command NOXPND D. Expansion is
performed again when the command XPND D is executed.

If an argument of an implicitly defined function has further dependencies
the chain rule will be applied e.g.

fdomain y=y(z);

d f;

@ F*d X + @ F*@ Y*d Z
X Y Z

Expansion into partial derivatives can be inhibited by NOXPND @ and enabled
again by XPND @.

39.5 Inner Product

The inner product between a vector and an exterior form is represented
by the diphthong | (underscore or-bar), which is the notation of many
textbooks. If the exterior form is an exterior product, the inner product is
carried through any factor.

Example 7

pform x=0,y=k,z=m;

tvector u,v;

u _| (x*y^z);

K
X*((- 1) *Y^U _| Z + U _| Y^Z)

338 CHAPTER 39. EXCALC: DIFFERENTIAL GEOMETRY

39.6 Lie Derivative

The Lie derivative can be taken between a vector and an exterior form or
between two vectors. It is represented by the infix operator | . In the
case of Lie differentiating, an exterior form by a vector, the Lie derivative is
expressed through inner products and exterior differentiations, i.e.

pform z=k;

tvector u;

u |_ z;

U _| d Z + d(U _| Z)

39.7 Hodge-* Duality Operator

The Hodge-* duality operator maps an exterior form of degree K to an
exterior form of degree N-K, where N is the dimension of the space. The
double application of the operator must lead back to the original exterior
form up to a factor. The following example shows how the factor is chosen
here

spacedim n;
pform x=k;

x;

2
(K + K*N)

(- 1) *X*SGN

The indeterminate SGN in the above example denotes the sign of the de-
terminant of the metric. It can be assigned a value or will be automatically
set if more of the metric structure is specified (via COFRAME), i.e. it is
then set to g/|g|, where g is the determinant of the metric. If the Hodge-*
operator appears in an exterior product of maximal degree as the leftmost
factor, the Hodge-* is shifted to the right according to

pform {x,y}=k;

39.8. VARIATIONAL DERIVATIVE 339

x ^ y;

2
(K + K*N)

(- 1) *X^# Y

39.8 Variational Derivative

The function VARDF returns as its value the variation of a given Lagrangian
n-form with respect to a specified exterior form (a field of the Lagrangian).
In the shared variable BNDEQ!*, the expression is stored that has to yield
zero if integrated over the boundary.

Syntax:

VARDF(<Lagrangian n-form>,<exterior form>)

Example 8

spacedim 4;

pform l=4,a=1,j=3;

l:=-1/2*d a ^ # d a - a^# j$ %Lagrangian of the e.m. field

vardf(l,a);

- (# J + d # d A) %Maxwell’s equations

bndeq!*;

- ’A^# d A %Equation at the boundary

For the calculation of the conserved currents induced by symmetry operators
(vector fields), the function NOETHER is provided. It has the syntax:

NOETHER(<Lagrangian n-form>,<field>,<symmetry generator>)

Example 9

pform l=4,a=1,f=2;

340 CHAPTER 39. EXCALC: DIFFERENTIAL GEOMETRY

spacedim 4;

l:= -1/2*d a^#d a; %Free Maxwell field;

tvector x(k); %An unspecified generator;

noether(l,a,x(-k));

(- 2*d(X _|A)^# d A - (X _|d A)^# d A + d A^(X _|# d A))/2
K K K

39.9 Handling of Indices

Exterior forms and vectors may have indices. On input, the indices are given
as arguments of the object. A positive argument denotes a superscript and a
negative argument a subscript. On output, the indexed quantity is displayed
two dimensionally if NAT is on. Indices may be identifiers or numbers.

Example 10

pform om(k,l)=m,e(k)=1;
e(k)^e(-l);

K
E ^E

L

om(4,-2);

4
OM

2

In certain cases, one would like to inhibit the summation over specified index
names, or at all. For this the command

NOSUM <indexname1>, . . . ;

and the switch NOSUM are available. The command NOSUM has the effect
that summation is not performed over those indices which had been listed.
The command RENOSUM enables summation again. The switch NOSUM, if on,
inhibits any summation.

39.10. METRIC STRUCTURES 341

It is possible to declare symmetry properties for an indexed quantity by the
command INDEX SYMMETRIES. A prototypical example is as follows

index_symmetries u(k,l,m,n): symmetric in {k,l},{m,n}
antisymmetric in {{k,l},{m,n}},

g(k,l),h(k,l): symmetric;

It declares the object u symmetric in the first two and last two indices and
antisymmetric with respect to commutation of the given index pairs. If an
object is completely symmetric or antisymmetric, the indices need not to be
given after the corresponding keyword as shown above for g and h.

39.10 Metric Structures

A metric structure is defined in EXCALC by specifying a set of basis one-
forms (the coframe) together with the metric.

Syntax:

COFRAME <identifier><(index1)>=<expression1>,
<identifier><(index2)>=<expression2>,
.
.
.
<identifier><(indexn)>=<expressionn>

WITH METRIC <name>=<expression>;

This statement automatically sets the dimension of the space and the index
range. The clause WITH METRIC can be omitted if the metric is Euclidean
and the shorthand WITH SIGNATURE <diagonal elements> can be used in
the case of a pseudo-Euclidean metric. The splitting of a metric structure
in its metric tensor coefficients and basis one-forms is completely arbitrary
including the extremes of an orthonormal frame and a coordinate frame.

342 CHAPTER 39. EXCALC: DIFFERENTIAL GEOMETRY

Example 11

coframe e r=d r, e(ph)=r*d ph
with metric g=e(r)*e(r)+e(ph)*e(ph); %Polar coframe

The frame dual to the frame defined by the COFRAME command can be in-
troduced by FRAME command.

FRAME <identifier>;

This command causes the dual property to be recognised, and the tangent
vectors of the coordinate functions are replaced by the frame basis vectors.

Example 12

coframe b r=d r,b ph=r*d ph,e z=d z; %Cylindrical coframe;

frame x; on nero;

x(-k) _| b(l);

R
NS := 1
R

PH
NS := 1
PH

Z
NS := 1
Z

x(-k) |_ x(-l); %The commutator of the dual frame;

NS := X /R
PH R PH

NS := (- X)/R %i.e. it is not a coordinate base;
R PH PH

39.11. RIEMANNIAN CONNECTIONS 343

As a convenience, the frames can be displayed at any point in a program by
the command DISPLAYFRAME;.

The Hodge-* duality operator returns the explicitly constructed dual ele-
ment if applied to coframe base elements. The metric is properly taken into
account.

The total antisymmetric Levi-Cevita tensor EPS is also available. The value
of EPS with an even permutation of the indices in a covariant position is
taken to be +1.

39.11 Riemannian Connections

The command RIEMANNCONX is provided for calculating the connection 1
forms. The values are stored on the name given to RIEMANNCONX. This
command is far more efficient than calculating the connection from the dif-
ferential of the basis one-forms and using inner products.

39.12 Ordering and Structuring

The ordering of an exterior form or vector can be changed by the command
FORDER. In an expression, the first identifier or kernel in the arguments of
FORDER is ordered ahead of the second, and so on, and ordered ahead of
all not appearing as arguments. This ordering is done on the internal level
and not only on output. The execution of this statement can therefore
have tremendous effects on computation time and memory requirements.
REMFORDER brings back standard ordering for those elements that are listed
as arguments.

An expression can be put in a more structured form by renaming a subex-
pression. This is done with the command KEEP which has the syntax

KEEP <name1>=<expression1>,<name2>=<expression2>, . . .

The capabilities of KEEP are currently very limited. Only exterior products
should occur as righthand sides in KEEP.

Note: This is just an introduction to the full power of EXCALC. The reader
if referred to the full documentation.

344 CHAPTER 39. EXCALC: DIFFERENTIAL GEOMETRY

Chapter 40

FIDE: Finite difference
method for partial
differential equations

Richard Liska
Faculty of Nuclear Science and Physical Engineering

Technical University of Prague
Brehova 7, 115 19 Prague 1, Czech Republic

e–mail: tjerl@aci.cvut.cz

The FIDE package performs automation of the process of numerical solving
partial differential equations systems (PDES) by generating finite difference
methods. In the process one can find several stages in which computer al-
gebra can be used for performing routine analytical calculations, namely:
transforming differential equations into different coordinate systems, dis-
cretisation of differential equations, analysis of difference schemes and gen-
eration of numerical programs. The FIDE package consists of the following
modules:

EXPRES for transforming PDES into any orthogonal coordinate system.

IIMET for discretisation of PDES by integro-interpolation method.

APPROX for determining the order of approximation of difference scheme.

CHARPOL for calculation of amplification matrix and characteristic poly-

345

346 CHAPTER 40. FIDE: FINITE DIFFERENCES FOR PDES

nomial of difference scheme, which are needed in Fourier stability anal-
ysis.

HURWP for polynomial roots locating necessary in verifying the von Neu-
mann stability condition.

LINBAND for generating the block of FORTRAN code, which solves a
system of linear algebraic equations with band matrix appearing quite
often in difference schemes.

For more details on this package are given in the FIDE documentation, and
in the examples. A flavour of its capabilities can be seen from the following
simple example.

off exp;

factor diff;

on rat,eqfu;

% Declare which indexes will be given to coordinates
coordinates x,t into j,m;

% Declares uniform grid in x coordinate
grid uniform,x;

% Declares dependencies of functions on coordinates
dependence eta(t,x),v(t,x),eps(t,x),p(t,x);

% Declares p as known function
given p;

same eta,v,p;

iim a, eta,diff(eta,t)-eta*diff(v,x)=0,
v,diff(v,t)+eta/ro*diff(p,x)=0,
eps,diff(eps,t)+eta*p/ro*diff(v,x)=0;

***** Program ***** IIMET Ver 1.1.2

Partial Differential Equations

347

==============================

diff(eta,t) - diff(v,x)*eta = 0

diff(p,x)*eta
--------------- + diff(v,t) = 0

ro

diff(v,x)*eta*p
diff(eps,t) + ----------------- = 0

ro

Backtracking needed in grid optimalization
0 interpolations are needed in x coordinate

Equation for eta variable is integrated in half grid point
Equation for v variable is integrated in half grid point
Equation for eps variable is integrated in half grid point

0 interpolations are needed in t coordinate
Equation for eta variable is integrated in half grid point
Equation for v variable is integrated in half grid point
Equation for eps variable is integrated in half grid point

Equations after Discretization Using IIM :
==

(4*(eta(j,m + 1) - eta(j,m) - eta(j + 1,m)

+ eta(j + 1,m + 1))*hx - (

(eta(j + 1,m + 1) + eta(j,m + 1))

*(v(j + 1,m + 1) - v(j,m + 1))

+ (eta(j + 1,m) + eta(j,m))*(v(j + 1,m) - v(j,m)))

(ht(m + 1) + ht(m)))/(4(ht(m + 1) + ht(m))*hx) = 0

(4*(v(j,m + 1) - v(j,m) - v(j + 1,m) + v(j + 1,m + 1))*hx*ro

+ ((eta(j + 1,m + 1) + eta(j,m + 1))

*(p(j + 1,m + 1) - p(j,m + 1))

348 CHAPTER 40. FIDE: FINITE DIFFERENCES FOR PDES

+ (eta(j + 1,m) + eta(j,m))*(p(j + 1,m) - p(j,m)))

(ht(m + 1) + ht(m)))/(4(ht(m + 1) + ht(m))*hx*ro) = 0

(4*(eps(j,m + 1) - eps(j,m) - eps(j + 1,m)

+ eps(j + 1,m + 1))*hx*ro + ((

eta(j + 1,m + 1)*p(j + 1,m + 1)

+ eta(j,m + 1)*p(j,m + 1))

*(v(j + 1,m + 1) - v(j,m + 1)) +

(eta(j + 1,m)*p(j + 1,m) + eta(j,m)*p(j,m))

(v(j + 1,m) - v(j,m)))(ht(m + 1) + ht(m)))/(4

*(ht(m + 1) + ht(m))*hx*ro) = 0

clear a;

clearsame;

cleargiven;

Chapter 41

FPS: Automatic calculation
of formal power series

Wolfram Koepf and Winfried Neun
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: Koepf@zib.de and Neun@zib.de

This package can expand functions of certain type into their corresponding
Laurent-Puiseux series as a sum of terms of the form

∞∑

k=0

ak(x− x0)k/n+s

where s is the ‘shift number’, n is the ‘Puiseux number’, and x0 is the ‘point
of development’. The following types are supported:

• functions of ‘rational type’, which are either rational or have a
rational derivative of some order;

• functions of ‘hypergeometric type’ where ak+m/ak is a rational
function for some integer m, the ‘symmetry number’;

• functions of ‘exp-like type’ which satisfy a linear homogeneous
differential equation with constant coefficients.

FPS(f,x,x0) tries to find a formal power series expansion for f with respect
to the variable x at the point of development x0. It also works for formal

349

350 CHAPTER 41. FPS: FORMAL POWER SERIES

Laurent (negative exponents) and Puiseux series (fractional exponents). If
the third argument is omitted, then x0:=0 is assumed.

Example: FPS(asin(x)^2,x) results in

2*k 2*k 2 2
x *2 *factorial(k) *x

infsum(----------------------------,k,0,infinity)
factorial(2*k + 1)*(k + 1)

If possible, the output is given using factorials. In some cases, the use of the
Pochhammer symbol pochhammer(a,k):= a(a+1) · · · (a+k−1) is necessary.

SimpleDE(f,x) tries to find a homogeneous linear differential equation with
polynomial coefficients for f with respect to x. Make sure that y is not a
used variable. The setting factor df; is recommended to receive a nicer
output form.

Examples: SimpleDE(asin(x)^2,x) then results in

2
df(y,x,3)*(x - 1) + 3*df(y,x,2)*x + df(y,x)

The depth for the search of a differential equation for f is controlled by the
variable fps_search_depth; higher values for fps_search_depth will in-
crease the chance to find the solution, but increases the complexity as well.
The default value for fps_search_depth is 5. For FPS(sin(x^(1/3)),x),
or SimpleDE(sin(x^(1/3)),x) e.g., a setting fps_search_depth:=6 is nec-
essary.

The output of the FPS package can be influenced by the switch tracefps.
Setting on tracefps causes various prints of intermediate results.

Chapter 42

GENTRAN: A code
generation package

Barbara L. Gates
RAND

Santa Monica CA 90407-2138
U.S.A.

Michael C. Dewar
School of Mathematical Sciences, The University of Bath

Bath BA2 7AY, England

e–mail: mcd@maths.bath.ac.uk

GENTRAN is an automatic code GENerator and TRANslator which runs
under REDUCE. It constructs complete numerical programs based on sets
of algorithmic specifications and symbolic expressions. Formatted FOR-
TRAN, RATFOR, PASCAL or C code can be generated through a series of
interactive commands or under the control of a template processing routine.
Large expressions can be automatically segmented into subexpressions of
manageable size, and a special file-handling mechanism maintains stacks of
open I/O channels to allow output to be sent to any number of files simul-
taneously and to facilitate recursive invocation of the whole code generation
process. GENTRAN provides the flexibility necessary to handle most code
generation applications. It is designed to work with the SCOPE code opti-
miser.

GENTRAN is a large system with a great many options. This section will
only describe the FORTRAN generation facilities, and in broad outline only.

351

352 CHAPTER 42. GENTRAN: A CODE GENERATION PACKAGE

The full manual is available as part of the REDUCE documentation.

42.1 Simple Use

A substantial subset of all expressions and statements in the REDUCE pro-
gramming language can be translated directly into numerical code. The
GENTRAN command takes a REDUCE expression, statement, or proce-
dure definition, and translates it into code in the target language.

Syntax:

GENTRAN stmt [OUT f1,f2,. . . ,fn];

stmt is any REDUCE expression, statement (simple, compound, or group),
or procedure definition that can be translated by GENTRAN into the target
language. stmt may contain any number of calls to the special functions
EVAL, DECLARE, and LITERAL. f1,f2,. . . ,fn is an optional argument
list containing one or more f’s, where each f is one of:

an atom = an output file
T = the terminal
NIL = the current output file(s)
ALL!* = all files currently open for output

by GENTRAN (see section 42.6)

If the optional part of the command is not given, generated code is simply
written to the current output file. However, if it is given, then the current
output file is temporarily overridden. Generated code is written to each file
represented by f1,f2,. . . ,fn for this command only. Files which were open
prior to the call to GENTRAN will remain open after the call, and files
which did not exist prior to the call will be created, opened, written to, and
closed. The output stack will be exactly the same both before and after the
call.

GENTRAN returns the name(s) of the file(s) to which code was written.

1: GENTRANLANG!* := ’FORTRAN$

2: GENTRAN
2: FOR I:=1:N DO
2: V(I) := 0$

42.2. PRECISION 353

DO 25001 I=1,N
V(I)=0.0

25001 CONTINUE

42.2 Precision

By default GENTRAN generates constants and type declarations in single
precision form. If the user requires double precision output then the switch
DOUBLE must be set ON.

To ensure the correct number of floating point digits are generated it may
be necessary to use either the PRECISION or PRINT!-PRECISION
commands. The former alters the number of digits REDUCE calculates,
the latter only the number of digits REDUCE prints. Each takes an integer
argument. It is not possible to set the printed precision higher than the
actual precision. Calling PRINT!-PRECISION with a negative argument
causes the printed precision to revert to the actual precision.

42.2.1 The EVAL Function

Syntax:

EVAL exp

Argument:

exp is any REDUCE expression or statement which, after evalua-
tion by REDUCE, results in an expression that can be translated
by GENTRAN into the target language.

When EVAL is called on an expression which is to be translated, it tells
GENTRAN to give the expression to REDUCE for evaluation first, and
then to translate the result of that evaluation.

f;

2
2*X - 5*X + 6

354 CHAPTER 42. GENTRAN: A CODE GENERATION PACKAGE

We wish to generate an assignment statement for the quotient of F and its
derivative.

1: GENTRAN
1: Q := EVAL(F)/EVAL(DF(F,X))$

Q=(2.0*X**2-(5.0*X)+6.0)/(4.0*X-5.0)

42.2.2 The :=: Operator

In many applications, assignments must be generated in which the left-hand
side is some known variable name, but the right-hand side is an expression
that must be evaluated. For this reason, a special operator is provided
to indicate that the expression on the right-hand side is to be evaluated
prior to translation. This special operator is :=: (i.e. the usual REDUCE
assignment operator with an extra “:” on the right).

Example 13

1: GENTRAN
1: DERIV :=: DF(X^4-X^3+2*x^2+1,X)$

DERIV=4.0*X**3-(3.0*X**2)+4.0*X

42.2.3 The ::= Operator

When assignments to matrix or array elements must be generated, many
times the indices of the element must be evaluated first. The special operator
::= can be used within a call to GENTRAN to indicate that the indices
of the matrix or array element on the left-hand side of the assignment are to
be evaluated prior to translation. (This is the usual REDUCE assignment
operator with an extra “:” on the left.)

Example 14

We wish to generate assignments which assign zeros to all ele-
ments on the main diagonal of M, an n x n matrix.

10: FOR j := 1 : 8 DO
10: GENTRAN
10: M(j,j) ::= 0$

42.2. PRECISION 355

M(1,1)=0.0
M(2,2)=0.0
:
:
M(8,8)=0.0

LSETQ may be used interchangeably with ::= on input.

42.2.4 The ::=: Operator

In applications in which evaluated expressions are to be assigned to array
elements with evaluated subscripts, the ::=: operator can be used. It is a
combination of the ::= and :=: operators described in sections 42.2.2 and
42.2.3.

Example 15

The following matrix, M, has been derived symbolically:

356 CHAPTER 42. GENTRAN: A CODE GENERATION PACKAGE

(A 0 -1 1)
()
(0 B 0 0)
()
(-1 0 C -1)
()
(1 0 -1 D)

We wish to generate assignment statements for those elements
on the main diagonal of the matrix.

10: FOR j := 1 : 4 DO
10: GENTRAN
10: M(j,j) ::=: M(j,j)$

M(1,1)=A
M(2,2)=B
M(3,3)=C
M(4,4)=D

The alternative alphanumeric identifier associated with ::=: is LRSETQ.

42.3 Explicit Type Declarations

Type declarations are automatically generated each time a subprogram
heading is generated. Type declarations are constructed from information
stored in the GENTRAN symbol table. The user can place entries into
the symbol table explicitly through calls to the special GENTRAN function
DECLARE.

Syntax:

DECLARE v1,v2,. . . ,vn : type;

or
DECLARE
<<

v11,v12,. . . ,v1n : type1;
v21,v22,. . . ,v2n : type2;
:
:
vn1,vnn,. . . ,vnn : typen;

>>;

42.4. EXPRESSION SEGMENTATION 357

Arguments:

Each v1,v2,. . . ,vn is a list of one or more variables (optionally
subscripted to indicate array dimensions), or variable ranges (two
letters separated by a “-”). v’s are not evaluated unless given as
arguments to EVAL.

Each type is a variable type in the target language. Each must be
an atom, optionally preceded by the atom IMPLICIT. type’s
are not evaluated unless given as arguments to EVAL.

The DECLARE statement can also be used to declare subprogram types
(i.e. SUBROUTINE or FUNCTION) for FORTRAN and RATFOR
code, and function types for all four languages.

42.4 Expression Segmentation

Symbolic derivations can easily produce formulas that can be anywhere from
a few lines to several pages in length. Such formulas can be translated into
numerical assignment statements, but unless they are broken into smaller
pieces they may be too long for a compiler to handle. (The maximum
number of continuation lines for one statement allowed by most FORTRAN
compilers is only 19.) Therefore GENTRAN contains a segmentation facility
which automatically segments, or breaks down unreasonably large expres-
sions.

The segmentation facility generates a sequence of assignment statements,
each of which assigns a subexpression to an automatically generated tem-
porary variable. This sequence is generated in such a way that temporary
variables are re-used as soon as possible, thereby keeping the number of au-
tomatically generated variables to a minimum. The facility can be turned
on or off by setting the mode switch GENTRANSEG accordingly (i.e.
by calling the REDUCE function ON or OFF on it). The user can con-
trol the maximum allowable expression size by setting the variable MAX-
EXPPRINTLEN!* to the maximum number of characters allowed in an
expression printed in the target language (excluding spaces automatically
printed by the formatter). The GENTRANSEG switch is on initially,
and MAXEXPPRINTLEN!* is initialised to 800.

358 CHAPTER 42. GENTRAN: A CODE GENERATION PACKAGE

42.5 Template Processing

In some code generation applications pieces of the target numerical pro-
gram are known in advance. A template file containing a program outline
is supplied by the user, and formulas are derived in REDUCE, converted
to numerical code, and inserted in the corresponding places in the program
outline to form a complete numerical program. A template processor is
provided by GENTRAN for use in these applications.

Syntax:

GENTRANIN f1,f2,. . . ,fm [OUT f1,f2,. . . ,fn];

Arguments:

f1,f2,. . . ,fm is an argument list containing one or more f ’s,
where each f is one of:

an atom = a template (input) file
T = the terminal

f1,f2,. . . ,fn is an optional argument list containing one or more
f ’s, where each f is one of:

an atom = an output file
T = the terminal
NIL = the current output file(s)
ALL!* = all files currently open for output

by GENTRAN (see section 42.6)

GENTRANIN processes each template file f1,f2,. . . ,fm sequentially.

A template file may contain any number of parts, each of which is either an
active or an inactive part. All active parts start with the character sequence
;BEGIN; and end with ;END;. The end of the template file is indicated
by an extra ;END; character sequence.

Inactive parts of template files are assumed to contain code in the target
language. All inactive parts are copied to the output.

Active parts may contain any number of REDUCE expressions, statements,
and commands. They are not copied directly to the output. Instead, they

42.5. TEMPLATE PROCESSING 359

are given to REDUCE for evaluation in algebraic mode. All output gener-
ated by each evaluation is sent to the output file(s). Returned values are
only printed on the terminal.

Active parts will most likely contain calls to GENTRAN to generate code.
This means that the result of processing a template file will be the original
template file with all active parts replaced by generated code.

If OUT f1,f2,. . . ,fn is not given, generated code is simply written to the
current-output file.

However, if OUT f1,f2,. . . ,fn is given, then the current-output file is tem-
porarily overridden. Generated code is written to each file represented by
f1,f2,. . . ,fn for this command only. Files which were open prior to the call
to GENTRANIN will remain open after the call, and files which did not
exist prior to the call will be created, opened, written to, and closed. The
output-stack will be exactly the same both before and after the call.

GENTRANIN returns the names of all files written to by this command.

360 CHAPTER 42. GENTRAN: A CODE GENERATION PACKAGE

Example 16

Suppose we wish to generate a FORTRAN subprogram to com-
pute the determinant of a 3 x 3 matrix. We can construct a
template file with an outline of the FORTRAN subprogram and
REDUCE and GENTRAN commands to fill it in:

Contents of file det.tem:

REAL FUNCTION DET(M)
REAL M(3,3)

;BEGIN;
OPERATOR M$
MATRIX MM(3,3)$
MM := MAT((M(1,1),M(1,2),M(1,3)),

(M(2,1),M(2,2),M(2,3)),
(M(3,1),M(3,2),M(3,3)))$

GENTRAN DET :=: DET(MM)$
;END;

RETURN
END

;END;

Now we can generate a FORTRAN subprogram with the follow-
ing REDUCE session:

1: GENTRANLANG!* := ’FORTRAN$

2: GENTRANIN
2: "det.tem"
2: OUT "det.f"$

Contents of file det.f:

REAL FUNCTION DET(M)
REAL M(3,3)
DET=M(3,3)*M(2,2)*M(1,1)-(M(3,3)*M(2,1)*M(1,2))-(M(3,2)

. *M(2,3)*M(1,1))+M(3,2)*M(2,1)*M(1,3)+M(3,1)*M(2,3)*M(1

. ,2)-(M(3,1)*M(2,2)*M(1,3))
RETURN
END

42.6. OUTPUT REDIRECTION 361

42.6 Output Redirection

The GENTRANOUT and GENTRANSHUT commands are identical
to the REDUCE OUT and SHUT commands with the following exceptions:

• GENTRANOUT and GENTRANSHUT redirect only code which
is printed as a side effect of GENTRAN commands.

• GENTRANOUT allows more than one file name to be given to
indicate that generated code is to be sent to two or more files. (It is
particularly convenient to be able to have generated code sent to the
terminal screen and one or more file simultaneously.)

• GENTRANOUT does not automatically erase existing files; it
prints a warning message on the terminal and asks the user whether
the existing file should be erased or the whole command be aborted.

362 CHAPTER 42. GENTRAN: A CODE GENERATION PACKAGE

Chapter 43

GEOMETRY: Mechanized
(Plane) Geometry
Manipulations

Hans-Gert Gräbe
Universität Leipzig, Germany

e-mail: graebe@informatik.uni-leipzig.de

43.1 Introduction

This package provides tools for formulation and mechanized proofs of geom-
etry statements in the spirit of the “Chinese Prover” of W.-T. Wu [23] and
the fundamental book [4] of S.-C. Chou who proved 512 geometry theorems
with this mechanized method, see also [3], [5], [21], [22].

The general idea behind this approach is an algebraic reformulation of ge-
ometric conditions using generic coordinates. A (mathematically strong)
proof of the geometry statement then may be obtained from appropriate
manipulations of these algebraic expressions. A CAS as, e.g., Reduce is well
suited to mechanize these manipulations.

For a more detailed introduction to the topic see the accompanying file
geometry.tex in $REDUCEPATH/packages/geometry/.

363

364 CHAPTER 43. GEOMETRY: PLANE GEOMETRY

43.2 Basic Data Types and Constructors

The basic data types in this package are Scalar, Point, Line, Circle1
and Circle.
The function POINT(a, b) creates a Point in the plane with the (x, y)-
coordinates (a, b). A Line is created with the function LINE(a, b, c) and
fulfills the equation ax+ by + c = 0. For circles there are two constructors.
You can use CIRCLE(c1, c2, c3, c4) to create a Circle where the scalar vari-
ables solve the equation c1(x2 + y2) + c2x + c3y + c4 = 0. Note that lines
are a subset of the circles with c1 = 0. The other way to create a Circle is
the function CIRCLE1(M, s). The variable M here denotes a Point and s
the squared radius. Please note that this package mostly uses the squared
distances and radiuses.

There are various functions whose return type is Scalar. Booleans are
represented as extended booleans, i.e. the procedure returns a Scalar
that is zero iff the condition is fulfilled. For example, the function call
POINT ON CIRCLE(P,c) returns zero if the Point P is on the circle, oth-
erwise P is not on the circle. In some cases also a non zero result has a
geometric meaning. For example, COLLINEAR(A,B,C) returns the signed
area of the corresponding parallelogram.

43.3 Procedures

This section contains a short description of all procedures available in Ge-
ometry. Per convention distances and radiuses of circles are squared.

ANGLE SUM(a,b:Scalar):Scalar
Returns tan(α+ β), if a = tan(α), b = tan(β).

ALTITUDE(A,B,C:Point):Line
The altitude from A onto g(BC).

C1 CIRCLE(M:Point,sqr:Scalar):Circle
The circle with given center and sqradius.

CC TANGENT(c1,c2:Circle):Scalar
Zero iff c1 and c2 are tangent.

CHOOSE PC(M:Point,r,u):Point

43.3. PROCEDURES 365

Chooses a point on the circle around M with radius r
using its rational parametrization with parameter u.

CHOOSE PL(a:Line,u):Point
Chooses a point on a using parameter u.

CIRCLE(c1,c2,c3,c4:Scalar):Circle
The Circle constructor.

CIRCLE1(M:Point,sqr:Scalar):Circle1
The Circle1 constructor.

CIRCLE CENTER(c:Circle):Point
The center of c.

CIRCLE SQRADIUS(c:Circle):Scalar
The sqradius of c.

CL TANGENT(c:Circle,l:Line):Scalar
Zero iff l is tangent to c.

COLLINEAR(A,B,C:Point):Scalar
Zero iff A,B,C are on a common line. In general the
signed area of the parallelogram spanned by ~AB and
~AC.

CONCURRENT(a,b,c:Line):Scalar
Zero iff a, b, c have a common point.

INTERSECTION POINT(a,b:Line):Point
The intersection point of the lines a, b.

L2 ANGLE(a,b:Line):Scalar
Tangens of the angle between a and b.

LINE(a,b,c:Scalar):Line
The Line constructor.

LOT(P:Point,a:Line):Line
The perpendicular from P onto a.

MEDIAN(A,B,C:Point):Line
The median line from A to BC.

MIDPOINT(A,B:Point):Point
The midpoint of AB.

MP(B,C:Point):Line

366 CHAPTER 43. GEOMETRY: PLANE GEOMETRY

The midpoint perpendicular of BC.

ORTHOGONAL(a,b:Line):Scalar
zero iff the lines a, b are orthogonal.

OTHER CC POINT(P:Point,c1,c2:Circle):Point
c1 and c2 intersect at P . The procedure returns the
second intersection point.

OTHER CL POINT(P:Point,c:Circle,l:Line):Point
c and l intersect at P . The procedure returns the
second intersection point.

P3 ANGLE(A,B,C:Point):Scalar
Tangens of the angle between ~BA and ~BC.

P3 CIRCLE(A,B,C:Point):Circle or
P3 CIRCLE1(A,B,C:Point):Circle1

The circle through 3 given points.

P4 CIRCLE(A,B,C,D:Point):Scalar
Zero iff four given points are on a common circle.

PAR(P:Point,a:Line):Line
The line through P parallel to a.

PARALLEL(a,b:Line):Scalar
Zero iff the lines a, b are parallel.

PEDALPOINT(P:Point,a:Line):Point
The pedal point of the perpendicular from P onto a.

POINT(a,b:Scalar):Point
The Point constructor.

POINT ON BISECTOR(P,A,B,C:Point):Scalar
Zero iff P is a point on the (inner or outer) bisector of
the angle 6 ABC.

POINT ON CIRCLE(P:Point,c:Circle):Scalar or
POINT ON CIRCLE1(P:Point,c:Circle1):Scalar

Zero iff P is on the circle c.

POINT ON LINE(P:Point,a:Line):Scalar
Zero iff P is on the line a.

PP LINE(A,B:Point):Line
The line through A and B.

43.3. PROCEDURES 367

SQRDIST(A,B:Point):Scalar
Square of the distance between A and B.

SYMPOINT(P:Point,l:Line):Point
The point symmetric to P wrt. the line l.

SYMLINE(a:Line,l:Line):Line
The line symmetric to a wrt. the line l.

VARPOINT(A,B:Point,u):Point
The point D = u ·A+ (1− u) ·B.

Geometry supplies as additional tools the functions

EXTRACTMAT(polys,vars)
Returns the coefficient matrix of the list of equations
polys that are linear in the variables vars.

RED HOM COORDS(u:{Line,Circle})
Returns the reduced homogeneous coordinates of u,
i.e., divides out the content.

368 CHAPTER 43. GEOMETRY: PLANE GEOMETRY

43.4 Examples

Example 17

Create three points as the vertices of a generic triangle.
A:=Point(a1,a2); B:=Point(b1,b2); C:=Point(c1,c2);

The midpoint perpendiculars of ∆ABC pass through a common point since

concurrent(mp(A,B),mp(B,C),mp(C,A));

simplifies to zero.

Example 18

The intersection point of the midpoint perpendiculars

M:=intersection point(mp(A,B),mp(B,C));

is the center of the circumscribed circle since

sqrdist(M,A) - sqrdist(M,B);

simplifies to zero.

Example 19

Euler’s line:

The center M of the circumscribed circle, the orthocenter H and
the barycenter S are collinear and S divides MH with ratio 1:2.

Compute the coordinates of the corresponding points

M:=intersection point(mp(a,b,c),mp(b,c,a));
H:=intersection point(altitude(a,b,c),altitude(b,c,a));
S:=intersection point(median(a,b,c),median(b,c,a));

and then prove that

collinear(M,H,S);
sqrdist(S,varpoint(M,H,2/3));

43.4. EXAMPLES 369

both simplify to zero.

370 CHAPTER 43. GEOMETRY: PLANE GEOMETRY

Chapter 44

GNUPLOT: Display of
functions and surfaces

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

The gnuplot system provides easy to use graphics output for curves or
surfaces which are defined by formulas and/or data sets. The REDUCE
GNUPLOT package lets one use the GNUPLOT graphical output directly
from inside REDUCE, either for the interactive display of curves/surfaces
or for the production of pictures on paper.

For a full understanding of use of the REDUCE GNUPLOT package it is
best to be familiar with gnuplot.

The main command is PLOT. It accepts an arbitrary list of arguments which
are either an expression to be plotted, a range expressions or an option.

load_package gnuplot;
plot(w=sin(a),a=(0 .. 10),xlabel="angle",ylabel="sine");

The expression can be in one or two unknowns, or a list of two functions
for the x and y values. It can also be an implicit equation in 2-dimensional
space.

371

372 CHAPTER 44. GNUPLOT: PLOTTING FUNCTIONS

plot(x**3+x*y**3-9x=0);

The dependent and independent variables can be limited to a range with
the syntax shown in the first example. If omitted the independent variables
range from -10 to 10 and the dependent variable is limited only by the
precision of the IEEE floating point arithmetic.

There are a great deal of options, either as keywords or as variable=string.
Options include:

title: assign a heading (default: empty)

xlabel: set label for the x axis

ylabel: set label for the y axis

zlabel: set label for the z axis

terminal: select an output device

size: rescale the picture

view: set a viewpoint

(no)contour: 3d: add contour lines

(no)surface: 3d: draw surface (default: yes)

(no)hidden3d: 3d: remove hidden lines (default: no)

The command PLOTRESET closes the current GNUPLOT windows. The next
call to PLOT will create a new one.

GNUPLOT is controlled by a number of switches.

Normally all intermediate data sets are deleted after terminating a plot
session. If the switch PLOTKEEP is set on, the data sets are kept for eventual
post processing independent of REDUCE.

In general PLOT tries to generate smooth pictures by evaluating the functions
at interior points until the distances are fine enough. This can require a
lot of computing time if the single function evaluation is expensive. The
refinement is controlled by the switch PLOTREFINE which is on by default.
When you turn it off the functions will be evaluated only at the basic points.

The integer value of the global variable PLOT XMESH defines the number of
initial function evaluations in x direction for PLOT. For 2d graphs additional
points will be used as long as plotrefine is on. For 3d graphs this number

373

defines also the number of mesh lines orthogonal to the x axis. PLOT YMESH
defines for 3d plots the number of function evaluations in the y direction
and the number of mesh lines orthogonal to the y axis.

The grid for localising an implicitly defined curve in PLOT consists of tri-
angles. These are computed initially equally distributed over the x-y plane
controlled by PLOT XMESH. The grid is refined adaptively in several levels.
The final grid can be visualised by setting on the switch SHOW GRID.

374 CHAPTER 44. GNUPLOT: PLOTTING FUNCTIONS

Chapter 45

GROEBNER: A Gröbner
basis package

Herbert Melenk & Winfried Neun
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

and

H.M. Möller
Fernuniversität Hagen FB Math und Informatik

Postfach 940
D–58084 Hagen, Germany

e–mail: Michael.Moeller@fernuni-hagen.de

Gröbner bases are a valuable tool for solving problems in connection with
multivariate polynomials, such as solving systems of algebraic equations and
analysing polynomial ideals.

The GROEBNER package calculates Gröbner bases using the Buchberger
algorithm. It can be used over a variety of different coefficient domains, and
for different variable and term orderings.

375

376 CHAPTER 45. GROEBNER: A GRÖBNER BASIS PACKAGE

45.1

45.1.1 Term Ordering

In the theory of Gröbner bases, the terms of polynomials are considered as
ordered. Several order modes are available in the current package, including
the basic modes:

LEX, GRADLEX, REVGRADLEX

All orderings are based on an ordering among the variables. For each pair
of variables (a, b) an order relation must be defined, e.g. “a À b”. The
greater signÀ does not represent a numerical relation among the variables;
it can be interpreted only in terms of formula representation: “a” will be
placed in front of “b” or “a” is more complicated than “b”.

The sequence of variables constitutes this order base. So the notion of

{x1, x2, x3}

as a list of variables at the same time means

x1À x2À x3

with respect to the term order.

If terms (products of powers of variables) are compared with LEX, that
term is chosen which has a greater variable or a higher degree if the greatest
variable is the first in both. With GRADLEX the sum of all exponents (the
total degree) is compared first, and if that does not lead to a decision, the
LEX method is taken for the final decision. The REVGRADLEX method
also compares the total degree first, but afterward it uses the LEX method
in the reverse direction; this is the method originally used by Buchberger.
Note that the LEX ordering is identical to the standard REDUCE kernel
ordering, when KORDER is set explicitly to the sequence of variables.

LEX is the default term order mode in the GROEBNER package.

45.2. THE BASIC OPERATORS 377

45.2 The Basic Operators

45.2.1 Term Ordering Mode

TORDER (vl,m,[p1, p2, . . .]);

where vl is a variable list (or the empty list if no variables are declared
explicitly), m is the name of a term ordering mode LEX, GRADLEX,
REVGRADLEX (or another implemented mode) and [p1, p2, . . .] are
additional parameters for the term ordering mode (not needed for the
basic modes).

TORDER sets variable set and the term ordering mode. The de-
fault mode is LEX. The previous description is returned as a list with
corresponding elements. Such a list can alternatively passed as sole
argument to TORDER.

If the variable list is empty or if the TORDER declaration is omitted,
the automatic variable extraction is activated.

GVARS ({exp1, exp2, . . ., expn});
where {exp1, exp2, . . . , expn} is a list of expressions or equations.

GVARS extracts from the expressions {exp1, exp2, . . . , expn} the ker-
nels, which can play the role of variables for a Gröbner calculation.
This can be used e.g. in a TORDER declaration.

45.2.2 GROEBNER: Calculation of a Gröbner Basis

GROEBNER {exp1, exp2, . . . , expm};
where {exp1, exp2, . . . , expm} is a list of expressions or equations.

GROEBNER calculates the Gröbner basis of the given set of expres-
sions with respect to the current TORDER setting.

The Gröbner basis {1} means that the ideal generated by the input
polynomials is the whole polynomial ring, or equivalently, that the
input polynomials have no zeros in common.

As a side effect, the sequence of variables is stored as a REDUCE list
in the shared variable gvarslast.

Example 20

378 CHAPTER 45. GROEBNER: A GRÖBNER BASIS PACKAGE

torder({},lex)$
groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,
2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

2
{8*X - 2*Y + 5*Y + 3,

3 2
2*Y - 3*Y - 16*Y + 21}

The operation of GROEBNER can be controlled by the following switches:

GROEBOPT – If set ON, the sequence of variables is optimized with re-
spect to execution speed; note that the final list of variables is available
in GVARSLAST.

An explicitly declared dependency supersedes the variable optimiza-
tion. By default GROEBOPT is off, conserving the original variable
sequence.

GROEBFULLREDUCTION – If set off, the reduction steps during the
GROEBNER operation are limited to the pure head term reduc-
tion; subsequent terms are reduced otherwise. By default GROEB-
FULLREDUCTION is on.

GLTBASIS – If set on, the leading terms of the result basis are extracted.
They are collected in a basis of monomials, which is available as value
of the global variable with the name GLTB.

45.2.3 GZERODIM?: Test of dim = 0

GZERODIM!? bas
where bas is a Gröbner basis in the current setting. The result is NIL, if
bas is the basis of an ideal of polynomials with more than finitely many
common zeros. If the ideal is zero dimensional, i.e. the polynomials
of the ideal have only finitely many zeros in common, the result is an
integer k which is the number of these common zeros (counted with
multiplicities).

45.2. THE BASIC OPERATORS 379

45.2.4 GDIMENSION, GINDEPENDENT SETS

The following operators can be used to compute the dimension and the
independent variable sets of an ideal which has the Gröbner basis bas with
arbitrary term order:

Gdimension bas

Gindependent sets bas Gindependent sets computes the maximal left in-
dependent variable sets of the ideal, that are the variable sets which
play the role of free parameters in the current ideal basis. Each set is
a list which is a subset of the variable list. The result is a list of these
sets. For an ideal with dimension zero the list is empty. GDimension
computes the dimension of the ideal, which is the maximum length of
the independent sets.

45.2.5 GLEXCONVERT: Conversion to a Lexical Base

GLEXCONVERT ({exp, . . . , expm} [, {var1 . . . , varn}]
[,MAXDEG = mx] [, NEWV ARS = {nv1, . . . , nvk}])
where {exp1, . . . , expm} is a Gröbner basis with {var1, . . . , varn} as
variables in the current term order mode, mx is an integer, and
{nv1, . . . , nvk} is a subset of the basis variables. For this operator
the source and target variable sets must be specified explicitly.

GLEXCONVERT converts a basis of a zero-dimensional ideal (finite number
of isolated solutions) from arbitrary ordering into a basis under lex ordering.
During the call of GLEXCONVERT the original ordering of the input basis
must be still active.

NEWVARS defines the new variable sequence. If omitted, the original vari-
able sequence is used. If only a subset of variables is specified here, the
partial ideal basis is evaluated. For the calculation of a univariate polyno-
mial, NEWVARS should be a list with one element.

MAXDEG is an upper limit for the degrees. The algorithm stops with an
error message, if this limit is reached.

A warning occurs if the ideal is not zero dimensional.

GLEXCONVERT is an implementation of the FLGM algorithm. Often, the
calculation of a Gröbner basis with a graded ordering and subsequent conver-

380 CHAPTER 45. GROEBNER: A GRÖBNER BASIS PACKAGE

sion to lex is faster than a direct lex calculation. Additionally, GLEXCON-
VERT can be used to transform a lex basis into one with different variable
sequence, and it supports the calculation of a univariate polynomial. If the
latter exists, the algorithm is even applicable in the non zero-dimensional
case, if such a polynomial exists.

torder({{w,p,z,t,s,b},gradlex)

g := groebner { f1 := 45*p + 35*s -165*b -36,
35*p + 40*z + 25*t - 27*s, 15*w + 25*p*s +30*z -18*t

-165*b**2, -9*w + 15*p*t + 20*z*s,
w*p + 2*z*t - 11*b**3, 99*w - 11*s*b +3*b**2,
b**2 + 33/50*b + 2673/10000};

G := {60000*W + 9500*B + 3969,

1800*P - 3100*B - 1377,

18000*Z + 24500*B + 10287,

750*T - 1850*B + 81,

200*S - 500*B - 9,
2

10000*B + 6600*B + 2673}

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={w});

2
100000000*W + 2780000*W + 416421

glexconvert(g,{w,p,z,t,s,b},maxdeg=5,newvars={p});

2
6000*P - 2360*P + 3051

45.2.6 GROEBNERF: Factorizing Gröbner Bases

If Gröbner bases are computed in order to solve systems of equations or to
find the common roots of systems of polynomials, the factorizing version
of the Buchberger algorithm can be used. The theoretical background is

45.2. THE BASIC OPERATORS 381

simple: if a polynomial p can be represented as a product of two (or more)
polynomials, e.g. h = f ∗ g, then h vanishes if and only if one of the factors
vanishes. So if during the calculation of a Gröbner basis h of the above
form is detected, the whole problem can be split into two (or more) disjoint
branches. Each of the branches is simpler than the complete problem; this
saves computing time and space. The result of this type of computation is
a list of (partial) Gröbner bases; the solution set of the original problem is
the union of the solutions of the partial problems, ignoring the multiplicity
of an individual solution. If a branch results in a basis {1}, then there
is no common zero, i.e. no additional solution for the original problem,
contributed by this branch.

GROEBNERF Call

The syntax of GROEBNERF is the same as for GROEBNER.

GROEBNERF({exp1, exp2, . . . , expm}[, {}, {nz1, . . . nzk});

where {exp1, exp2, . . . , expm} is a given list of expressions or equations, and
{nz1, . . . nzk} is an optional list of polynomials known to be non-zero.

GROEBNERF tries to separate polynomials into individual factors and to
branch the computation in a recursive manner (factorisation tree). The
result is a list of partial Gröbner bases. If no factorisation can be found or
if all branches but one lead to the trivial basis {1}, the result has only one
basis; nevertheless it is a list of lists of polynomials. If no solution is found,
the result will be {{1}}. Multiplicities (one factor with a higher power, the
same partial basis twice) are deleted as early as possible in order to speed
up the calculation. The factorising is controlled by some switches.

As a side effect, the sequence of variables is stored as a REDUCE list in the
shared variable

gvarslast .

If GLTBASIS is on, a corresponding list of leading term bases is also pro-
duced and is available in the variable GLTB.

The third parameter of GROEBNERF allows one to declare some polynom-
ials nonzero. If any of these is found in a branch of the calculation the branch
is cancelled. This can be used to save a substantial amount of computing

382 CHAPTER 45. GROEBNER: A GRÖBNER BASIS PACKAGE

time. The second parameter must be included as an empty list if the third
parameter is to be used.

torder({x,y},lex)$
groebnerf { 3*x**2*y + 2*x*y + y + 9*x**2 + 5*x = 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x = -3,
x**3*y + x**2*y + 3*x**3 + 2*x**2 };

{{Y - 3,X},

2
{2*Y + 2*X - 1,2*X - 5*X - 5}}

It is obvious here that the solutions of the equations can be read off imme-
diately.

All switches from GROEBNER are valid for GROEBNERF as well:

GROEBOPT
GLTBASIS
GROEBFULLREDUCTION
GROEBSTAT
TRGROEB
TRGROEBS
TRGROEB1

Restriction of the Solution Space

In some applications only a subset of the complete solution set of a given
set of equations is relevant, e.g. only nonnegative values or positive definite
values for the variables. A significant amount of computing time can be
saved if nonrelevant computation branches can be terminated early.

Positivity: If a polynomial has no (strictly) positive zero, then every system
containing it has no nonnegative or strictly positive solution. Therefore,
the Buchberger algorithm tests the coefficients of the polynomials for equal
sign if requested. For example, in 13 ∗ x + 15 ∗ y ∗ z can be zero with real
nonnegative values for x, y and z only if x = 0 and y = 0 or z = 0; this is a
sort of “factorization by restriction”. A polynomial 13 ∗ x+ 15 ∗ y ∗ z + 20
never can vanish with nonnegative real variable values.

45.2. THE BASIC OPERATORS 383

Zero point: If any polynomial in an ideal has an absolute term, the ideal
cannot have the origin point as a common solution.

By setting the shared variable

GROEBRESTRICTION

GROEBNERF is informed of the type of restriction the user wants to impose
on the solutions:

GROEBRESTRICTION:=NONEGATIVE;
only nonnegative real solutions are of interest

GROEBRESTRICTION:=POSITIVE;
only nonnegative and nonzero solutions are of interest

GROEBRESTRICTION:=ZEROPOINT;
only solution sets which contain the point {0, 0, . . . , 0} are or interest.

If GROEBNERF detects a polynomial which formally conflicts with the
restriction, it either splits the calculation into separate branches, or, if a
violation of the restriction is determined, it cancels the actual calculation
branch.

45.2.7 GREDUCE, PREDUCE: Reduction of Polynomials

Background

Reduction of a polynomial “p” modulo a given sets of polynomials “B” is
done by the reduction algorithm incorporated in the Buchberger algorithm.

Reduction via Gröbner Basis Calculation

GREDUCE(exp, {exp1, exp2, . . . , expm}]);
where exp is an expression, and {exp1, exp2, . . . , expm} is a list of any num-
ber of expressions or equations.

GREDUCE first converts the list of expressions {exp1, . . . , expn} to a
Gröbner basis, and then reduces the given expression modulo that basis.

384 CHAPTER 45. GROEBNER: A GRÖBNER BASIS PACKAGE

An error results if the list of expressions is inconsistent. The returned value
is an expression representing the reduced polynomial. As a side effect, GRE-
DUCE sets the variable gvarslast in the same manner as GROEBNER does.

Reduction with Respect to Arbitrary Polynomials

PREDUCE(exp, {exp1, exp2, . . . , expm});
where exp is an expression, and {exp1, exp2, . . . , expm} is a list of any num-
ber of expressions or equations.

PREDUCE reduces the given expression modulo the set {exp1, . . . , expm}.
If this set is a Gröbner basis, the obtained reduced expression is uniquely
determined. If not, then it depends on the subsequence of the sin-
gle reduction steps (see 45.2.7). PREDUCE does not check whether
{exp1, exp2, . . . , expm} is a Gröbner basis in the actual order. Therefore,
if the expressions are a Gröbner basis calculated earlier with a variable
sequence given explicitly or modified by optimisation, the proper variable
sequence and term order must be activated first.

Example 21(PREDUCE called with a Gröbner basis):

torder({x,y},lex);
gb:=groebner{3*x**2*y + 2*x*y + y + 9*x**2 + 5*x - 3,

2*x**3*y - x*y - y + 6*x**3 - 2*x**2 - 3*x + 3,
x**3*y + x**2*y + 3*x**3 + 2*x**2}$

preduce (5*y**2 + 2*x**2*y + 5/2*x*y + 3/2*y
+ 8*x**2 + 3/2*x - 9/2, gb);

2
Y

45.3 Ideal Decomposition & Equation System Solv-
ing

Based on the elementary Gröbner operations, the GROEBNER package
offers additional operators, which allow the decomposition of an ideal or
of a system of equations down to the individual solutions. Details of the
operators GROESOLVE, GROEBNERF and IDEALQUOTIENT can be
found in the full documentation, with associated functions.

Chapter 46

IDEALS: Arithmetic for
polynomial ideals

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

This package implements the basic arithmetic for polynomial ideals by ex-
ploiting the Gröbner bases package of REDUCE. In order to save computing
time all intermediate Gröbner bases are stored internally such that time con-
suming repetitions are inhibited. A uniform setting facilitates the access.

46.1 Initialization

Prior to any computation the set of variables has to be declared by calling
the operator I setting . For example in order to initiate computations in
the polynomial ring Q[x, y, z] call

I_setting(x,y,z);

A subsequent call to I setting allows one to select another set of variables;
at the same time the internal data structures are cleared in order to free
memory resources.

385

386CHAPTER 46. IDEALS: ARITHMETIC FOR POLYNOMIAL IDEALS

46.2 Bases

An ideal is represented by a basis (set of polynomials) tagged with the
symbol I, e.g.

u := I(x*z-y**2, x**3-y*z);

Alternatively a list of polynomials can be used as input basis; however,
all arithmetic results will be presented in the above form. The operator
ideal2list allows one to convert an ideal basis into a conventional REDUCE
list.

46.2.1 Operators

Because of syntactical restrictions in REDUCE, special operators have to
be used for ideal arithmetic:

.+ ideal sum (infix)

.* ideal product (infix)

.: ideal quotient (infix)

./ ideal quotient (infix)

.= ideal equality test (infix)
subset ideal inclusion test (infix)
intersection ideal intersection (prefix,binary)
member test for membership in an ideal

(infix: polynomial and ideal)
gb Groebner basis of an ideal (prefix, unary)
ideal2list convert ideal basis to polynomial list

(prefix,unary)

Example:

I(x+y,x^2) .* I(x-z);

2 2 2
I(X + X*Y - X*Z - Y*Z,X*Y - Y *Z)

Note that ideal equality cannot be tested with the REDUCE equal sign:

I(x,y) = I(y,x) is false
I(x,y) .= I(y,x) is true

Chapter 47

INEQ: Support for solving
inequalities

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

This package supports the operator ineq solve that tries to solves single
inequalities and sets of coupled inequalities. The following types of systems
are supported 1:

• only numeric coefficients (no parametric system),

• a linear system of mixed equations and <= – >= inequalities, applying
the method of Fourier and Motzkin,

• a univariate inequality with <=, >=, > or < operator and polyno-
mial or rational left–hand and right–hand sides, or a system of such
inequalities with only one variable.

Syntax:

INEQ SOLVE(<expr> [,<vl>])

1For linear optimization problems please use the operator simplex of the linalg pack-
age (section 52.5

387

388 CHAPTER 47. INEQ: SUPPORT FOR SOLVING INEQUALITIES

where <expr> is an inequality or a list of coupled inequalities and equat-
ions, and the optional argument <vl> is a single variable (kernel) or a list
of variables (kernels). If not specified, they are extracted automatically
from <expr>. For multivariate input an explicit variable list specifies the
elimination sequence: the last member is the most specific one.

An error message occurs if the input cannot be processed by the current
algorithms.

The result is a list. It is empty if the system has no feasible solution.
Otherwise the result presents the admissible ranges as set of equations where
each variable is equated to one expression or to an interval. The most
specific variable is the first one in the result list and each form contains only
preceding variables (resolved form). The interval limits can be formal max
or min expressions. Algebraic numbers are encoded as rounded number
approximations.

Examples:

ineq_solve({(2*x^2+x-1)/(x-1) >= (x+1/2)^2, x>0});

{x=(0 .. 0.326583),x=(1 .. 2.56777)}

reg:=
{a + b - c>=0, a - b + c>=0, - a + b + c>=0, 0>=0, 2>=0,
2*c - 2>=0, a - b + c>=0, a + b - c>=0, - a + b + c - 2>=0,
2>=0, 0>=0, 2*b - 2>=0, k + 1>=0, - a - b - c + k>=0,
- a - b - c + k + 2>=0, - 2*b + k>=0,
- 2*c + k>=0, a + b + c - k>=0,

2*b + 2*c - k - 2>=0, a + b + c - k>=0}$

ineq_solve (reg,{k,a,b,c});

{c=(1 .. infinity),

b=(1 .. infinity),

a=(max(- b + c,b - c) .. b + c - 2),

k=a + b + c}

Chapter 48

INVBASE: A package for
computing involutive bases

A.Yu.Zharkov, Yu.A.Blinkov
Saratov University
Astrakhanskaya 83

410071 Saratov, Russia

e–mail: postmaster@scnit.saratov.su

Involutive bases are a new tool for solving problems in connection with
multivariate polynomials, such as solving systems of polynomial equations
and analysing polynomial ideals. An involutive basis of polynomial ideal is
a special form of a redundant Gröbner basis. The construction of involutive
bases reduces the problem of solving polynomial systems to simple linear
algebra.

The INVBASE package can be seen as an alternative to Buchberger’s algo-
rithm.

48.1 The Basic Operators

48.1.1 Term Ordering

The term order modes available are REVGRADLEX, GRADLEX and LEX. These
modes have the same meaning as for the GROEBNER package.

389

390 CHAPTER 48. INVBASE: INVOLUTIVE BASES

All orderings are based on an ordering among the variables. For each
pair of variables an order relation À must be defined. The term order-
ing mode as well as the order of variables are set by the operator INVTORDER
mode,{x1, ..., xn} where mode is one of the term order modes listed above.
The notion of {x1, ..., xn} as a list of variables at the same time means
x1 À . . .À xn.

48.1.2 Computing Involutive Bases

To compute the involutive basis of ideal generated by the set of polynomials
{p1, ..., pm} one should type the command

INVBASE {p1, ..., pm}
where pi are polynomials in variables listed in the INVTORDER operator. If
some kernels in pi were not listed previously in the INVTORDER operator they
are considered as parameters, i.e. they are considered part of the coefficients
of polynomials. If INVTORDER was omitted, all the kernels in pi are considered
as variables with the default REDUCE kernel order.

The coefficients of polynomials pi may be integers as well as rational num-
bers (or, accordingly, polynomials and rational functions in the parametric
case). The computations modulo prime numbers are also available. For this
purpose one should type the REDUCE commands

ON MODULAR; SETMOD p;

where p is a prime number. The value of the INVBASE function is a list of
integer polynomials {g1, ..., gn} representing an involutive basis of a given
ideal.

INVTORDER REVGRADLEX, {x,y,z};

g:= INVBASE {4*x**2 + x*y**2 - z + 1/4,
2*x + y**2*z + 1/2,
x**2*z - 1/2*x - y**2};

3 2 3 2
g := {8*x*y*z - 2*x*y*z + 4*y - 4*y*z + 16*x*y + 17*y*z - 4*y,

4 2 2 2
8*y - 8*x*z - 256*y + 2*x*z + 64*z - 96*x + 20*z - 9,

48.1. THE BASIC OPERATORS 391

3
2*y *z + 4*x*y + y,

3 2 2 2
8*x*z - 2*x*z + 4*y - 4*z + 16*x + 17*z - 4,

3 3 2
- 4*y*z - 8*y + 6*x*y*z + y*z - 36*x*y - 8*y,

2 2 2
4*x*y + 32*y - 8*z + 12*x - 2*z + 1,

2
2*y *z + 4*x + 1,

3 2 2
- 4*z - 8*y + 6*x*z + z - 36*x - 8,

2 2 2
8*x - 16*y + 4*z - 6*x - z}

To convert it into a lexicographical Gröbner basis one should type

h := INVLEX g;

6 5 4 3
h := {3976*x + 37104*z - 600*z + 2111*z + 122062*z

2
+ 232833*z - 680336*z + 288814,

2 6 5 4 3
1988*y - 76752*z + 1272*z - 4197*z - 251555*z

2
- 481837*z + 1407741*z - 595666,

7 6 5 4 3 2
16*z - 8*z + z + 52*z + 75*z - 342*z + 266*z

- 60}

392 CHAPTER 48. INVBASE: INVOLUTIVE BASES

Chapter 49

LAPLACE: Laplace and
inverse Laplace transforms

C. Kazasov, M. Spiridonova, V. Tomov
Sofia, Bulgaria

The LAPLACE package provides both Laplace Transforms and Inverse
Laplace Transforms, with the two operators

LAPLACE(exp, s var, t var)
INVLAP(exp, s var, t var)

The action is to transform the expression from the s var or source variable
into the t var or target variable. If t var is omitted, the package uses an
internal variable lp!& or il!& respectively.

Three switches control the transformations. If lmon is on then sine, cosine,
hyperbolic sine and hyperbolic cosines are converted by LAPLACE into
exponentials. If lhyp is on then exponential functions are converted into
hyperbolic form. The last switch ltrig has the same effect except it uses
trigonometric functions.

The system can be extended by adding Laplace transformation rules for
single functions by rules or rule sets. In such a rule the source variable
must be free, the target variable must be il!& for LAPLACE and lp!&
for INVLAP, with the third parameter omitted. Also rules for transforming
derivatives are entered in such a form. For example

let {laplace(log(~x),x) => -log(gam * il!&)/il!&,

393

394 CHAPTER 49. LAPLACE: LAPLACE TRANSFORMS ETC.

invlap(log(gam * ~x)/x,x) => -log(lp!&)};
operator f;
let {

laplace(df(f(~x),x),x) => il!&*laplace(f(x),x) - sub(x=0,f(x)),

laplace(df(f(~x),x,~n),x) => il!&**n*laplace(f(x),x) -
for i:=n-1 step -1 until 0 sum

sub(x=0, df(f(x),x,n-1-i)) * il!&**i
when fixp n,

laplace(f(~x),x) = f(il!&)
};

The LAPLACE system knows about the functions DELTA and GAMMA, and
used the operator ONE for the unit step function and INTL stands for the
parameterised integral function, for instance intl(2*y**2,y,0,x) stands
for

∫ x
0 2y2dx.

load_package laplace;

laplace(sin(17*x),x,p);

17

2
p + 289

on lmon;

laplace(-1/4*e**(a*x)*(x-k)**(-1/2), x, p);

1 a*k
- ---*sqrt(pi)*e

4

k*p
e *sqrt(- a + p)

invlap(c/((p-a)*(p-b)), p, t);

a*t b*t
c*(e - e)

a - b

395

invlap(p**(-7/3), p, t);

1/3
t *t

7

gamma(---)
3

396 CHAPTER 49. LAPLACE: LAPLACE TRANSFORMS ETC.

Chapter 50

LIE: Functions for the
classification of real
n-dimensional Lie algebras

Carsten and Franziska Schöbel
The Leipzig University, Computer Science Department

Augustusplatz 10/11,
O-7010 Leipzig, Germany

e–mail: cschoeb@aix550.informatik.uni-leipzig.de

LIE is a package of functions for the classification of real n-dimensional Lie
algebras. It consists of two modules: liendmc1 and lie1234.

50.1 liendmc1

With the help of the functions in this module real n-dimensional Lie algebras
L with a derived algebra L(1) of dimension 1 can be classified. L has to
be defined by its structure constants ckij in the basis {X1, . . . , Xn} with
[Xi, Xj] = ckijXk. The user must define an ARRAY LIENSTRUCIN(n, n, n)
with n being the dimension of the Lie algebra L. The structure constants
LIENSTRUCIN(i, j, k):=ckij for i < j should be given. Then the procedure
LIENDIMCOM1 can be called. Its syntax is:

LIENDIMCOM1(<number>).

397

398 CHAPTER 50. LIE: CLASSIFICATION OF LIE ALGEBRAS

<number> corresponds to the dimension n. The procedure simplifies the
structure of L performing real linear transformations. The returned value
is a list of the form

(i) {LIE_ALGEBRA(2),COMMUTATIVE(n-2)} or
(ii) {HEISENBERG(k),COMMUTATIVE(n-k)}

with 3 ≤ k ≤ n, k odd.

The returned list is also stored asLIE LIST. The matrix LIENTRANS gives
the transformation from the given basis {X1, . . . , Xn} into the standard basis
{Y1, . . . , Yn}: Yj = (LIENTRANS)kjXk.

50.2 lie1234

This part of the package classifies real low-dimensional Lie algebras L of
the dimension n := dimL = 1, 2, 3, 4. L is also given by its structure
constants ckij in the basis {X1, . . . , Xn} with [Xi, Xj] = ckijXk. An ARRAY
LIESTRIN(n, n, n) has to be defined and LIESTRIN(i, j, k):=ckij for i < j
should be given. Then the procedure LIECLASS can be performed whose
syntax is:

LIECLASS(<number>).

<number> should be the dimension of the Lie algebra L. The procedure
stepwise simplifies the commutator relations of L using properties of invari-
ance like the dimension of the centre, of the derived algebra, unimodularity
etc. The returned value has the form:

{LIEALG(n),COMTAB(m)},

where the value m corresponds to the number of the standard form (basis:
{Y1, . . . , Yn}) in an enumeration scheme.

This returned value is also stored as LIE CLASS. The linear transformation
from the basis {X1, . . . , Xn} into the basis of the standard form {Y1, . . . , Yn}
is given by the matrix LIEMAT: Yj = (LIEMAT)kjXk.

Chapter 51

LIMITS: A package for
finding limits

Stanley L. Kameny
Los Angeles, U.S.A.

LIMITS is a fast limit package for REDUCE for functions which are con-
tinuous except for computable poles and singularities, based on some earlier
work by Ian Cohen and John P. Fitch. The Truncated Power Series pack-
age is used for non-critical points, at which the value of the function is the
constant term in the expansion around that point. l’Hôpital’s rule is used in
critical cases, with preprocessing of∞−∞ forms and reformatting of prod-
uct forms in order to apply l’Hôpital’s rule. A limited amount of bounded
arithmetic is also employed where applicable.

51.1 Normal entry points

LIMIT(EXPRN:algebraic, VAR:kernel, LIMPOINT:algebraic):algebraic

This is the standard way of calling limit, applying all of the methods. The
result is the limit of EXPRN as VAR approaches LIMPOINT.

399

400 CHAPTER 51. LIMITS: A PACKAGE FOR FINDING LIMITS

51.2 Direction-dependent limits

LIMIT!+(EXPRN:algebraic, VAR:kernel, LIMPOINT:algebraic):algebraic
LIMIT!-(EXPRN:algebraic, VAR:kernel, LIMPOINT:algebraic):algebraic

If the limit depends upon the direction of approach to the LIMPOINT, the
functions LIMIT!+ and LIMIT!- may be used. They are defined by:

LIMIT!+ (EXP,VAR,LIMPOINT) → LIMIT(EXP*,ε,0)
where EXP* = sub(VAR=VAR+ε2,EXP)

and

LIMIT!- (EXP,VAR,LIMPOINT) → LIMIT(EXP*,ε,0)
where EXP* = sub(VAR=VAR-ε2,EXP)

Examples:

load_package misc;

limit(sin(x)/x,x,0);

1

limit((a^x-b^x)/x,x,0);

log(a) - log(b)

limit(x/(e**x-1), x, 0);

1

limit!-(sin x/cos x,x,pi/2);

infinity

limit!+(sin x/cos x,x,pi/2);

- infinity

limit(x^log(1/x),x,infinity);

0

51.2. DIRECTION-DEPENDENT LIMITS 401

limit((x^(1/5) + 3*x^(1/4))^2/(7*(sqrt(x + 9) - 3 - x/6))^(1/5),x,0);

3/5
- 6

1/5

7

402 CHAPTER 51. LIMITS: A PACKAGE FOR FINDING LIMITS

Chapter 52

LINALG: Linear algebra
package

Matt Rebbeck
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

52.1 Introduction

This package provides a selection of functions that are useful in the world
of linear algebra. They can be classified into four sections:

52.1.1 Basic matrix handling

add columns add rows add to columns add to rows
augment columns char poly column dim copy into
diagonal extend find companion get columns
get rows hermitian tp matrix augment matrix stack
minor mult columns mult rows pivot
remove columns remove rows row dim rows pivot
stack rows sub matrix swap columns swap entries
swap rows

403

404 CHAPTER 52. LINALG: LINEAR ALGEBRA PACKAGE

52.1.2 Constructors

Functions that create matrices.

band matrix block matrix char matrix coeff matrix
companion hessian hilbert jacobian
jordan block make identity random matrix toeplitz
vandermonde Kronecker Product

52.1.3 High level algorithms

char poly cholesky gram schmidt lu decom
pseudo inverse simplex svd triang adjoint

There is a separate NORMFORM package (chapter 57) for computing the
matrix normal forms smithex, smithex int, frobenius, ratjordan, jordansym-
bolic and jordan in REDUCE.

52.1.4 Predicates

matrixp squarep symmetricp

52.2 Explanations

In the examples the matrix A will be

A =

1 2 3
4 5 6
7 8 9

Throughout I is used to indicate the identity matrix and AT to indicate the
transpose of the matrix A.

Many of the functions have a fairly obvious meaning. Others need a little
explanation.

52.3. BASIC MATRIX HANDLING 405

52.3 Basic matrix handling

The functions ADD COLUMNS and ADD ROWS provide basic operations between
rows and columns. The form is

add columns(A,c1,c2,expr);
and it replaces column c2 of the matix by expr ∗ column(A,c1) +
column(A,c2).

ADD TO COLUMNS and ADD TO ROWS do a similar task, adding an expression
to each of a number of columns (or rows) specified by a list.

add to columns(A, {1, 2}, 10) =

11 12 3
14 15 6
17 18 9

The functions MULT COLUMNS and MULT ROW are equivalent to multiply
columns and rows.

COLUMN DIM and ROW DIM find the column dimension and row dimension of
their argument.

Parts of a matrix can be replaced from another by using COPY INTO; the
last two arguments are row and column counters for to where to copy the
matrix.

G =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

copy into(A,G, 1, 2) =

0 1 2 3
0 4 5 6
0 7 8 9
0 0 0 0

A diagonal matrix can be created with DIAGONAL. The argument is a list of
expressions of matrices which form the diagonal.

An existing matrix can be extended; the call EXTEND(A,r,c,exp) returns the
matrix A extended by r rows and c columns, with the new entries all exp.

The function GET COLUMNS extracts from a matrix a list of the specified

406 CHAPTER 52. LINALG: LINEAR ALGEBRA PACKAGE

columns as matrices. GET ROWS does the equivalent for rows.

get columns(A, {1, 3}) =

1
4
7

 ,

3
6
9

The Hermitian transpose, that is a matrix in which the (i, j) entry is the
conjugate of the (j, i) entry of the input is returned by HERMITIAN TP.

MATRIX AUGMENT({mat1,mat2, . . . ,matn}) produces a new matrix from the
list joined as new columns. MATRIX STACK joins a list of matrices by stacking
them.

matrix stack({A,A}) =

1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9

MINOR(A,r,c) calculates the (r,c) minor of A.

PIVOT pivots a matrix about its (r,c) entry. To do this, multiples of the rth

row are added to every other row in the matrix. This means that the cth

column will be 0 except for the (r,c) entry.

A variant on this operation is provided by ROWS PIVOT. It applies the pivot
only to the rows specified as the last argument.

A sub matrix can be extracted, giving a list or the rows and columns to
keep.

sub matrix(A, {1, 3}, {2, 3}) =

(
2 3
8 9

)

The basic operation of swapping rows or columns is provided by SWAP ROWS
and SWAP COLUMNS. Individual entries can be swapped with SWAP ENTRIES.

swap columns(A, 2, 3) =

1 3 2
4 6 5
7 9 8

52.4. CONSTRUCTORS 407

swap entries(A, {1, 1}, {3, 3}) =

9 2 3
4 5 6
7 8 1

52.4 Constructors

AUGMENT COLUMNS allows just specified columns to be selected; STACK ROWS
does a similar job for rows.

stack rows(A, {1, 3}) =

(
1 2 3
7 8 9

)

Rows or columns can be removed with REMOVE COLUMNS and REMOVE ROWS.

remove columns(A, 2) =

1 3
4 6
7 9

BAND MATRIX creates a square matrix of dimension its second argument. The
diagonal consists of the middle expressions of the first argument, which is an
expression list. The expressions to the left of this fill the required number
of sub diagonals and the expressions to the right the super diagonals.

band matrix({x, y, z}, 6) =

y z 0 0 0 0
x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z
0 0 0 0 x y

Related to the band matrix is a block matrix, which can be created by

BLOCK MATRIX(r,c,matrix list).

The resulting matrix consists of r by c matrices filled from the matrix list
row wise.

B =

(
1 0
0 1

)
, C =

(
5
5

)
, D =

(
22 33
44 55

)

408 CHAPTER 52. LINALG: LINEAR ALGEBRA PACKAGE

block matrix(2, 3, {B, C,D,D, C,B}) =

1 0 5 22 33
0 1 5 44 55
22 33 5 1 0
44 55 5 0 1

Characteristic polynomials and characteristic matrices are created by the
functions CHAR POLY and CHAR MATRIX.

A set of linear equations can be turned into the associated coefficient matrix
and vector of unknowns and the righthandside. COEFF MATRIX returns a list
{C,X ,B} such that CX = B.

coeff matrix({x+ y + 4 ∗ z = 10, y + x− z = 20, x+ y + 4}) =

4 1 1
−1 1 1
0 1 1

 ,

z
y
x

 ,

10
20
−4

COMPANION(poly,x) creates the companion matrix C of a polynomial. That
is the square matrix of dimension n, where n is the degree of polynomial
with respect to x, and the entries of C are: C(i,n) = -coeffn(poly,x,i-1) for i
= 1 . . . n, C(i,i-1) = 1 for i = 2 . . . n and the rest are 0.

companion(x4 + 17 ∗ x3 − 9 ∗ x2 + 11, x) =

0 0 0 −11
1 0 0 0
0 1 0 9
0 0 1 −17

The polynomial associated with a companion matrix can be recovered by
calling FIND COMPANION.

HESSIAN(expr, var list) calculates the Hessian matrix of the expressions with
respect to the variables in the list, or the single variable. That is the matrix
with the (i, j) element the jth derivative of the expressions with respect to
the ith variable.

hessian(x ∗ y ∗ z + x2, {w, x, y, z}) =

0 0 0 0
0 2 z y
0 z 0 x
0 y x 0

52.4. CONSTRUCTORS 409

Hilbert’s matrix, that is where the (i, j) element is 1/(i+j−x) is constructed
by HILBERT(n,x).

The Jacobian of an expression list with respect to a variable list is calculated
by JACOBIAN(expr list,variable list). This is a matrix whose (i, j) entry is
df(expr list(i),variable list(j)).

The square Jordan block matrix of dimension n is calculated by the function
JORDAN BLOCK(exp,n). The entries of the Jordan block matrix are J (i,i) =
expr for i=1 . . . n, J (i,i+1) = 1 for i=1 . . . n-1, and all other entries are 0.

jordan block(x, 5) =

x 1 0 0 0
0 x 1 0 0
0 0 x 1 0
0 0 0 x 1
0 0 0 0 x

MAKE IDENTITY(n) generates the n× n identity matrix.

RANDOM MATRIX(r,c,limit) generates and r × c matrix with random values
limited by limit. The type of entries is controlled by a number of switches.

IMAGINARY If on then matrix entries are x+i∗y where−limit < x, y < limit.

NOT NEGATIVE If on then 0 < entry < limit. In the imaginary case we have
0 < x, y < limit.

ONLY INTEGER If on then each entry is an integer. In the imaginary case x
and y are integers. If off the values are rounded.

SYMMETRIC If on then the matrix is symmetric.

UPPER MATRIX If on then the matrix is upper triangular.

LOWER MATRIX If on then the matrix is lower triangular.

random matrix(3, 3, 10) =

−4.729721 6.987047 7.521383
−5.224177 5.797709 −4.321952
−9.418455 −9.94318 −0.730980

on only integer, not negative, upper matrix, imaginary;

410 CHAPTER 52. LINALG: LINEAR ALGEBRA PACKAGE

random matrix(4, 4, 10) =

2 ∗ i+ 5 3 ∗ i+ 7 7 ∗ i+ 3 6
0 2 ∗ i+ 5 5 ∗ i+ 1 2 ∗ i+ 1
0 0 8 i
0 0 0 5 ∗ i+ 9

TOEPLITZ creates the Toeplitz matrix from the given expression list. This
is a square symmetric matrix in which the first expression is placed on the
diagonal and the ith expression is placed on the (i − 1)th sub- and super-
diagonals. It has dimension equal to the number of expressions.

toeplitz({w, x, y, z}) =

w x y z
x w x y
y x w x
z y x w

VANDERMONDE creates the Vandermonde matrix from the expression list; the
square matrix in which the (i, j) entry is expr list(i) (j−1).

vandermonde({x, 2 ∗ y, 3 ∗ z}) =

1 x x2

1 2 ∗ y 4 ∗ y2

1 3 ∗ z 9 ∗ z2

The direct product (or tensor product) is created by the KRONECKER PRODUCT
function.

a1 := mat((1,2),(3,4),(5,6))$
a2 := mat((1,1,1),(2,z,2),(3,3,3))$
kronecker_product(a1,a2);

1 1 1 2 2 2
2 z 2 4 2 ∗ z 4
3 3 3 6 6 6
3 3 3 4 4 4
6 3 ∗ z 6 8 4 ∗ z 8
9 9 9 12 12 12
5 5 5 6 6 6
10 5 ∗ z 10 12 6 ∗ z 12
15 15 15 18 18 18

52.5. HIGHER ALGORITHMS 411

52.5 Higher Algorithms

The Cholesky decomposition of a matrix can be calculated with the function
CHOLESKY. It returns {L,U} where L is a lower matrix, U is an upper matrix,
and A = LU , and U = LT .

Gram–Schmidt orthonormalisation can be calculated by GRAM SCHMIDT. It
accepts a list of linearly independent vectors, written as lists, and returns a
list of orthogonal normalised vectors.

gram_schmidt({{1,0,0},{1,1,0},{1,1,1}});

{{1,0,0},{0,1,0},{0,0,1}}

gram_schmidt({{1,2},{3,4}});

1 2 2*sqrt(5) - sqrt(5)
{{---------,---------},{-----------,------------}}

sqrt(5) sqrt(5) 5 5

The LU decomposition of a real or imaginary matrix with numeric entries is
performed by LU DECOM(A). It returns {L,U} where L is a lower diagonal
matrix, U an upper diagonal matrix and A = LU .

Note: the algorithm used can swap the rows of A during the calculation.
This means that LU does not equal A but a row equivalent of it. Due to
this, lu decom returns {L,U ,vec}. The call CONVERT(A,vec) will return
the matrix that has been decomposed, i.e. LU = convert(A,vec).

K =

1 3 5
−4 3 7
8 6 4

lu decom(K) =

8 0 0
−4 6 0
1 2.25 1.1251

 ,

1 0.75 0.5
0 1 1.5
0 0 1

 , [3 2 3]

PSEUDO INVERSE, also known as the Moore–Penrose inverse, computes the
pseudo inverse of A. Given the singular value decomposition of A, i.e.
A = U∑VT , then the pseudo inverse A−1 is defined by A−1 = VT ∑−1 U .

412 CHAPTER 52. LINALG: LINEAR ALGEBRA PACKAGE

Thus A ∗ pseudo inverse(A) = I.

pseudo inverse(A) =

−0.2 0.1
−0.05 0.05
0.1 0
0.25 −0.05

The simplex linear programming algorithm for maximising or minimising a
function subject to lineal inequalities can be used with the function SIMPLEX.
It requires three arguments, the first indicates where the action is to max-
imising or minimising, the second is the test expressions, and the last is a list
of linear inequalities. It returns {optimal value,{ values of variables at this
optimal}}. The algorithm implies that all the variables are non-negative.

simplex(max, x+ y, {x >= 10, y >= 20, x+ y <= 25});
***** Error in simplex: Problem has no feasible solution.

simplex(max, 10x+ 5y+ 5.5z, {5x+ 3z <= 200, x+ 0.1y+ 0.5z <= 12,
0.1x+ 0.2y + 0.3z <= 9, 30x+ 10y + 50z <= 1500});

{525.0, {x = 40.0, y = 25.0, z = 0}}
SVD computes the singular value decomposition of A with numeric entries.
It returns {U ,∑,V} where A = U∑VT and

∑
= diag(σ1, . . . , σn). σi for

i = (1 . . . n) are the singular values of A. The singular values of A are the
non-negative square roots of the eigenvalues of ATA.

U and V are such that UUT = VVT = VTV = In.

Q =

(
1 3
−4 3

)

svd(Q) =

{(
0.289784 0.957092
−0.957092 0.289784

)
,

(
5.149162 0

0 2.913094

)
,

(
−0.687215 0.726453
−0.726453 −0.687215

)}

TRIANG ADJOINT computes the trianglarizing adjoint of the given matrix.
The triangularizing adjoint is a lower triangular matrix. The multiplication

52.6. FAST LINEAR ALGEBRA 413

of the triangularizing adjoint with the given matrix results in an upper trian-
gular matrix. The i-th entry in the diagonal of this matrix is the determinant
of the principal i-th minor of the given matrix.

triang adjoint(A) =

1 0 0
−4 1 0
−3 6 −3

The multiplication of this matrix with A results in an upper triangular
matrix.

1 0 0
−4 1 0
−3 6 −3

1 2 3
4 5 6
7 8 9

 =

1 2 3
0 −3 −6
0 0 0

52.6 Fast Linear Algebra

By turning the FAST LA switch on, the speed of the following functions will
be increased:
add columns add rows augment columns column dim
copy into make identity matrix augment matrix stack
minor mult column mult row pivot
remove columns remove rows rows pivot squarep
stack rows sub matrix swap columns swap entries
swap rows symmetricp

The increase in speed will be insignificant unless you are making a thousands
of calls. When using this switch, error checking is minimised, and thus illegal
input may give strange error messages.

414 CHAPTER 52. LINALG: LINEAR ALGEBRA PACKAGE

Chapter 53

MATHML : MathML
Interface for REDUCE

Luis Alvarez-Sobreviela
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustras̈e 7
D-14195 Berlin-Dahlem, Germany

MathML is intended to facilitate the use and re-use of mathematical and
scientific content on the Web, and for other applications such as computer
algebra systems.
This package contains the MathML-REDUCE interface. This interface pro-
vides an easy to use series of commands, allowing to evaluate and output
MathML.

The principal features of this package can be resumed as:

• Evaluation of MathML code. Allows REDUCE to parse MathML
expressions and evaluate them.

• Generation of MathML compliant code. Provides the printing of RE-
DUCE expressions in MathML source code, to be used directly in web
page production.

We assume that the reader is familiar with MathML. If not, the specifica-
tion1 is available at: http://www.w3.org/TR/WD-math/

1This specification is subject to change, since it is not yet a final draft. During the

415

416CHAPTER 53. MATHML : MATHML INTERFACE FOR REDUCE

The MathML-REDUCE interface package is loaded by supplying load
mathml;.

Switches

There are two switches which can be used alternatively and incrementally.
These are MATHML and BOTH. Their use can be described as follows:

mathml: All output will be printed in MathML.

both: All output will be printed in both MathML and normal REDUCE.

web: All output will be printed within an HTML <embed> tag. This is for
direct use in an HTML web page. Only works when mathml is on.

MathML has often been said to be too verbose. If BOTH is on, an easy
interpretation of the results is possible, improving MathML readability.

Operators of Package MathML

mml(filename): This function opens and reads the file filename containing
the MathML.

parseml(): To introduce a series of valid mathml tokens you can use this
function. It takes no arguments and will prompt you to enter mathml
tags stating with <mathml> and ending with </mathml>. It returns
an expression resulting from evaluating the input.

Example

1: load mathml;

3: on both;

3: int(2*x+1,x);;

x*(x + 1)

two month period in which this package was developed, the specification changed, forcing
a review of the code. This package is based on the Nov 98 version.

417

<mathml>
<apply><plus/>

<apply><power/>
<ci>x</ci>
<cn type="integer">2</cn>

</apply>
<ci>x</ci>

</apply>
</mathml>

4:

418CHAPTER 53. MATHML : MATHML INTERFACE FOR REDUCE

Chapter 54

MODSR: Modular solve and
roots

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

This package supports solve (M SOLVE) and roots (M ROOTS) operators for
modular polynomials and modular polynomial systems. The moduli need
not be primes. M SOLVE requires a modulus to be set. M ROOTS takes the
modulus as a second argument. For example:

on modular; setmod 8;
m_solve(2x=4); -> {{X=2},{X=6}}
m_solve({x^2-y^3=3});

-> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}
m_solve({x=2,x^2-y^3=3}); -> {{X=2,Y=1}}
off modular;
m_roots(x^2-1,8); -> {1,3,5,7}
m_roots(x^3-x,7); -> {0,1,6}

419

420 CHAPTER 54. MODSR: MODULAR SOLVE AND ROOTS

Chapter 55

MRVLIMIT: Package for
Computing Limits of
”Exp-Log” Functions

Neil Langmead
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Takustras̈e 7
D - 14195 Berlin-Dahlem, Germany

Using the LIMITS package to compute the limits of functions containing
exponential and logarithmic expressions may raise a problem. For the com-
putation of indefinite forms (such as 0/0,or ∞∞) L’Hospital’s rule may only be
applied a finite number of times in a CAS. In REDUCE it is applied 3 times.
This algorithm of Dominik Gruntz of the ETH Zürich solves this particular
problem, and enables the computation of many more limit calculations in
REDUCE.

1: load limits;

2: limit(x^7/e^x,x,infinity);

7
x

limit(----,x,infinity)
x

e

421

422 CHAPTER 55. MRVLIMIT: LIMITS OF “EXP-LOG” FUNCTIONS

3: load mrvlimit;

4: mrv_limit(x^7/e^x,x,infinity);

0

For this example, the MRVLIMIT package is able to compute the correct
limit.
MRV LIMIT(EXPRN:algebraic, VAR:kernel, LIMPOINT:algebraic):algebraic

The result is the limit of EXPRN as VAR approaches LIMPOINT.

A switch TRACELIMIT is available to inform the user about the computed
Taylor expansion, all recursive calls and the return value of the internally
called function MRV.

Examples:

5: b:=e^x*(e^(1/x-e^-x)-e^(1/x));

-1 - x
x + x - e

b:= e *(e - 1)

6: mrv_limit(b,x,infinity);

-1

-1
7: ex:= - log(log(log(log(x))) + log(x)) *log(x)

*(log(log(x)) - log(log(log(x)) + log(x)));

- log(x)*(log(log(x)) - log(log(log(x)) + log(x)))
ex:= ---

log(log(log(log(x))) + log(x))

8: off mcd;

423

9: mrv_limit(ex,x,infinity);

1

424 CHAPTER 55. MRVLIMIT: LIMITS OF “EXP-LOG” FUNCTIONS

Chapter 56

NCPOLY: Non–commutative
polynomial ideals

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

Joachim Apel
Institut für Informatik, Universität Leipzig

Augustusplatz 10–11
D–04109 Leipzig, Germany

e–mail: apel@informatik.uni–leipzig.de

REDUCE supports a very general mechanism for computing with objects
under a non–commutative multiplication, where commutator relations must
be introduced explicitly by rule sets when needed. The package NCPOLY
allows the user to set up automatically a consistent environment for com-
puting in an algebra where the non–commutativity is defined by Lie-bracket
commutators. The package uses the REDUCE noncom mechanism for el-
ementary polynomial arithmetic; the commutator rules are automatically
computed from the Lie brackets. Polynomial arithmetic may be performed
directly, including division and factorisation. Additionally NCPOLY
supports computations in a one sided ideal (left or right), especially one
sided Gröbner bases and polynomial reduction.

425

426 CHAPTER 56. NCPOLY: IDEALS IN NON–COMM CASE

56.1 Setup, Cleanup

Before the computations can start the environment for a non–commutative
computation must be defined by a call to nc setup:

nc_setup(<vars>[,<comms>][,<dir>]);

where

< vars > is a list of variables; these must include the non–commutative
quantities.

< comms > is a list of equations <u>*<v> - <v>*<u>=<rh> where < u >
and < v > are members of < vars >, and < rh > is a polynomial.

< dir > is either left or right selecting a left or a right one sided ideal. The
initial direction is left.

nc setup generates from < comms > the necessary rules to support an al-
gebra where all monomials are ordered corresponding to the given variable
sequence. All pairs of variables which are not explicitly covered in the com-
mutator set are considered as commutative and the corresponding rules are
also activated.

The second parameter in nc setup may be omitted if the operator is called
for the second time, e.g. with a reordered variable sequence. In such a case
the last commutator set is used again.

Remarks:

• The variables need not be declared noncom - nc setup performs all
necessary declarations.

• The variables need not be formal operator expressions; nc setup en-
capsulates a variable x internally as nc!*(!_x) expressions anyway
where the operator nc!∗ keeps the noncom property.

• The commands order and korder should be avoided because nc setup
sets these such that the computation results are printed in the correct
term order.

Example:

nc_setup({KK,NN,k,n},

56.2. LEFT AND RIGHT IDEALS 427

{NN*n-n*NN= NN, KK*k-k*KK= KK});

NN*N; -> NN*N
N*NN; -> NN*N - NN
nc_setup({k,n,KK,NN});
NN*N - NN -> N*NN;

Here KK,NN, k, n are non–commutative variables where the commutators
are described as [NN,n] = NN , [KK, k] = KK.

The current term order must be compatible with the commutators: the
product < u > ∗ < v > must precede all terms on the right hand side
< rh > under the current term order. Consequently

• the maximal degree of < u > or < v > in < rh > is 1,

• in a total degree ordering the total degree of < rh > may be not higher
than 1,

• in an elimination degree order (e.g. lex) all variables in < rh > must
be below the minimum of < u > and < v >.

• If < rh > does not contain any variables or has at most < u > or
< v >, any term order can be selected.

To use the non–commutative variables or results from non–commutative
computations later in commutative operations it might be necessary to
switch off the non–commutative evaluation mode because not all operators
in REDUCE are prepared for that environment. In such a case use the
command

nc_cleanup;

without parameters. It removes all internal rules and definitions which
nc setup had introduced. To reactive non–commutative call nc setup
again.

56.2 Left and right ideals

A (polynomial) left ideal L is defined by the axioms

428 CHAPTER 56. NCPOLY: IDEALS IN NON–COMM CASE

u ∈ L, v ∈ L =⇒ u+ v ∈ L
u ∈ L =⇒ k ∗ u ∈ L for an arbitrary polynomial k

where “*” is the non–commutative multiplication. Correspondingly, a right
ideal R is defined by

u ∈ R, v ∈ R =⇒ u+ v ∈ R
u ∈ R =⇒ u ∗ k ∈ R for an arbitrary polynomial k

56.3 Gröbner bases

When a non–commutative environment has been set up by nc setup, a basis
for a left or right polynomial ideal can be transformed into a Gröbner basis
by the operator nc groebner

nc_groebner(<plist>);

Note that the variable set and variable sequence must be defined before in
the nc setup call. The term order for the Gröbner calculation can be set
by using the torder declaration.

For details about torder see the REDUCE GROEBNER manual, or
chapter 45.

2: nc_setup({k,n,NN,KK},{NN*n-n*NN=NN,KK*k-k*KK=KK},left);

3: p1 := (n-k+1)*NN - (n+1);

p1 := - k*nn + n*nn - n + nn - 1

4: p2 := (k+1)*KK -(n-k);

p2 := k*kk + k - n + kk

5: nc_groebner ({p1,p2});

{k*nn - n*nn + n - nn + 1,

k*kk + k - n + kk,

n*nn*kk - n*kk - n + nn*kk - kk - 1}

56.4. LEFT OR RIGHT POLYNOMIAL DIVISION 429

Important: Do not use the operators of the GROEBNER package directly
as they would not consider the non–commutative multiplication.

56.4 Left or right polynomial division

The operator nc divide computes the one sided quotient and remainder of
two polynomials:

nc_divide(<p1>,<p2>);

The result is a list with quotient and remainder. The division is performed
as a pseudo–division, multiplying < p1 > by coefficients if necessary. The
result {< q >,< r >} is defined by the relation

< c > ∗ < p1 >=< q > ∗ < p2 > + < r > for direction left and

< c > ∗ < p1 >=< p2 > ∗ < q > + < r > for direction right,

where < c > is an expression that does not contain any of the ideal variables,
and the leading term of < r > is lower than the leading term of < p2 >
according to the actual term order.

56.5 Left or right polynomial reduction

For the computation of the one sided remainder of a polynomial modulo a
given set of other polynomials the operator nc preduce may be used:

nc_preduce(<polynomial>,<plist>);

The result of the reduction is unique (canonical) if and only if < plist > is
a one sided Gröbner basis. Then the computation is at the same time an
ideal membership test: if the result is zero, the polynomial is member of the
ideal, otherwise not.

56.6 Factorisation

Polynomials in a non–commutative ring cannot be factored using the ordi-
nary factorize command of REDUCE. Instead one of the operators of this
section must be used:

430 CHAPTER 56. NCPOLY: IDEALS IN NON–COMM CASE

nc_factorize(<polynomial>);

The result is a list of factors of < polynomial >. A list with the input
expression is returned if it is irreducible.

As non–commutative factorisation is not unique, there is an additional op-
erator which computes all possible factorisations

nc_factorize_all(<polynomial>);

The result is a list of factor decompositions of < polynomial >. If there are
no factors at all the result list has only one member which is a list containing
the input polynomial.

56.7 Output of expressions

It is often desirable to have the commutative parts (coefficients) in a non–
commutative operation condensed by factorisation. The operator

nc_compact(<polynomial>)

collects the coefficients to the powers of the lowest possible non-commutative
variable.

load_package ncpoly;

nc_setup({n,NN},{NN*n-n*NN=NN})$
p1 := n**4 + n**2*nn + 4*n**2 + 4*n*nn + 4*nn + 4;

4 2 2
p1 := n + n *nn + 4*n + 4*n*nn + 4*nn + 4

nc_compact p1;

2 2 2
(n + 2) + (n + 2) *nn

Chapter 57

NORMFORM: Computation
of matrix normal forms

Matt Rebbeck
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

This package contains routines for computing the following normal forms of
matrices:

• smithex int

• smithex

• frobenius

• ratjordan

• jordansymbolic

• jordan.

By default all calculations are carried out in Q (the rational numbers). For
smithex, frobenius, ratjordan, jordansymbolic, and jordan, this field
can be extended to an algebraic number field using ARNUM (chapter 22).
The frobenius, ratjordan, and jordansymbolic normal forms can also be
computed in a modular base.

431

432 CHAPTER 57. NORMFORM: MATRIX NORMAL FORMS

57.1 Smithex

Smithex(A, x) computes the Smith normal form S of the matrix A.

It returns {S,P,P−1} where S,P, and P−1 are such that PSP−1 = A.

A is a rectangular matrix of univariate polynomials in x where x is the
variable name.

load package normform;

A =

(
x x+ 1
0 3 ∗ x2

)

smithex(A, x) =

{(
1 0
0 x3

)
,

(
1 0

3 ∗ x2 1

)
,

(
x x+ 1
−3 −3

)}

57.2 Smithex int

Given an n by m rectangular matrix A that contains only integer entries,
smithex int(A) computes the Smith normal form S of A.

It returns {S,P,P−1} where S,P, and P−1 are such that PSP−1 = A.

load package normform;

A =

9 −36 30
−36 192 −180
30 −180 180

smithex int(A) =

3 0 0
0 12 0
0 0 60

 ,

−17 −5 −4
64 19 15
−50 −15 −12

 ,

1 −24 30
−1 25 −30
0 −1 1

57.3 Frobenius

Frobenius(A) computes the Frobenius normal form F of the matrix A.

57.4. RATJORDAN 433

It returns {F ,P,P−1} where F ,P, and P−1 are such that PFP−1 = A.

A is a square matrix.

load package normform;

A =

−x2+y2+y
y

−x2+x+y2−y
y

−x2−x+y2+y
y

−x2+x+y2−y
y

frobenius(A) =

 0 x∗(x2−x−y2+y)

y

1 −2∗x2+x+2∗y2

y

 ,

 1 −x2+y2+y

y

0 −x2−x+y2+y
y

 ,

(
1 −x2+y2+y

x2+x−y2−y

0 −y
x2+x−y2−y

)

57.4 Ratjordan

Ratjordan(A) computes the rational Jordan normal form R of the matrix
A.

It returns {R,P,P−1} where R,P, and P−1 are such that PRP−1 = A.

A is a square matrix.

load package normform;

A =

(
x+ y 5
y x2

)

ratjordan(A) =

{(
0 −x3 − x2 ∗ y + 5 ∗ y
1 x2 + x+ y

)
,

(
1 x+ y
0 y

)
,

(
1 −(x+y)

y

0 1
y

)}

57.5 Jordansymbolic

Jordansymbolic(A) computes the Jordan normal form J of the matrix A.

434 CHAPTER 57. NORMFORM: MATRIX NORMAL FORMS

It returns {J ,L,P,P−1}, where J ,P, and P−1 are such that PJP−1 = A.
L = { ll, ξ }, where ξ is a name and ll is a list of irreducible factors of p(ξ).

A is a square matrix.

load package normform;

A =

(
1 y
y2 3

)

jordansymbolic(A) =
{(

ξ11 0
0 ξ12

)
,
{{
−y3 + ξ2 − 4 ∗ ξ + 3

}
, ξ

}
,

(
ξ11 − 3 ξ12 − 3
y2 y2

)
,

ξ11−2
2∗(y3−1)

ξ11+y3−1
2∗y2∗(y3+1)

ξ12−2
2∗(y3−1)

ξ12+y3−1
2∗y2∗(y3+1)

solve(−y3 + xi2 − 4 ∗ xi + 3, xi);

{ξ =
√
y3 + 1 + 2, ξ = −√

y3 + 1 + 2}

J = sub({xi(1, 1) = sqrt(y3 + 1) + 2, xi(1, 2) = −sqrt(y3 + 1) + 2},
first jordansymbolic (A));

J =

(√
y3 + 1 + 2 0

0 −√
y3 + 1 + 2

)

57.6 Jordan

Jordan(A) computes the Jordan normal form J of the matrix A.

It returns {J ,P,P−1}, where J ,P, and P−1 are such that PJP−1 = A.

A is a square matrix.

57.6. JORDAN 435

load package normform;

A =

−9 −21 −15 4 2 0
−10 21 −14 4 2 0
−8 16 −11 4 2 0
−6 12 −9 3 3 0
−4 8 −6 0 5 0
−2 4 −3 0 1 3

J = first jordan(A);

J =

3 0 0 0 0 0
0 3 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 i+ 2 0
0 0 0 0 0 −i+ 2

436 CHAPTER 57. NORMFORM: MATRIX NORMAL FORMS

Chapter 58

NUMERIC: Solving
numerical problems

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

The NUMERIC package implements some numerical (approximative) algo-
rithms for REDUCE based on the REDUCE rounded mode arithmetic.
These algorithms are implemented for standard cases. They should not
be called for ill-conditioned problems; please use standard mathematical
libraries for these.

58.1 Syntax

58.1.1 Intervals, Starting Points

Intervals are generally coded as lower bound and upper bound connected by
the operator ‘..’, usually associated to a variable in an equation.

x= (2.5 .. 3.5)

means that the variable x is taken in the range from 2.5 up to 3.5. Note,

437

438 CHAPTER 58. NUMERIC: SOLVING NUMERICAL PROBLEMS

that the bounds can be algebraic expressions, which, however, must evaluate
to numeric results. In cases where an interval is returned as the result, the
lower and upper bounds can be extracted by the PART operator as the first
and second part respectively. A starting point is specified by an equation
with a numeric righthand side,

x=3.0

If for multivariate applications several coordinates must be specified by in-
tervals or as a starting point, these specifications can be collected in one
parameter (which is then a list) or they can be given as separate parameters
alternatively. The list form is more appropriate when the parameters are
built from other REDUCE calculations in an automatic style, while the flat
form is more convenient for direct interactive input.

58.1.2 Accuracy Control

The keyword parameters accuracy = a and iterations = i, where a and
i must be positive integer numbers, control the iterative algorithms: the
iteration is continued until the local error is below 10−a; if that is impossible
within i steps, the iteration is terminated with an error message. The values
reached so far are then returned as the result.

58.2 Minima

The function to be minimised must have continuous partial derivatives with
respect to all variables. The starting point of the search can be specified; if
not, random values are taken instead. The steepest descent algorithms in
general find only local minima.

Syntax:

NUM MIN (exp, var1[= val1][, var2[= val2] . . .]

[, accuracy = a][, iterations = i])

or

NUM MIN (exp, {var1[= val1][, var2[= val2] . . .]}
[, accuracy = a][, iterations = i])

58.3. ROOTS OF FUNCTIONS/ SOLUTIONS OF EQUATIONS 439

where exp is a function expression,

var1, var2, . . . are the variables in exp and val1, val2, . . . are the (op-
tional) start values.

NUM MIN tries to find the next local minimum along the descending
path starting at the given point. The result is a list with the minimum
function value as first element followed by a list of equations, where
the variables are equated to the coordinates of the result point.

Examples:

num_min(sin(x)+x/5, x);

{4.9489585606,{X=29.643767785}}

num_min(sin(x)+x/5, x=0);

{ - 1.3342267466,{X= - 1.7721582671}}

% Rosenbrock function (well known as hard to minimize).
fktn := 100*(x1**2-x2)**2 + (1-x1)**2;
num_min(fktn, x1=-1.2, x2=1, iterations=200);

{0.00000021870228295,{X1=0.99953284494,X2=0.99906807238}}

58.3 Roots of Functions/ Solutions of Equations

An adaptively damped Newton iteration is used to find an approximative
zero of a function, a function vector or the solution of an equation or an
equation system. The expressions must have continuous derivatives for all
variables. A starting point for the iteration can be given. If not given,
random values are taken instead. If the number of forms is not equal to
the number of variables, the Newton method cannot be applied. Then the
minimum of the sum of absolute squares is located instead.

With ON COMPLEX solutions with imaginary parts can be found, if either the
expression(s) or the starting point contain a nonzero imaginary part.

Syntax:

NUM SOLVE (exp1, var1[= val1][, accuracy = a][, iterations = i])

440 CHAPTER 58. NUMERIC: SOLVING NUMERICAL PROBLEMS

or

NUM SOLVE ({exp1, . . . , expn}, var1[= val1], . . . , var1[= valn]

[, accuracy = a][, iterations = i])

or

NUM SOLVE ({exp1, . . . , expn}, {var1[= val1], . . . , var1[= valn]}
[, accuracy = a][, iterations = i])

where exp1, . . . , expn are function expressions,

var1, . . . , varn are the variables,

val1, . . . , valn are optional start values.

NUM SOLVE tries to find a zero/solution of the expression(s). Result
is a list of equations, where the variables are equated to the coordinates
of the result point.

The Jacobian matrix is stored as a side effect in the shared variable
JACOBIAN.

Example:

num_solve({sin x=cos y, x + y = 1},{x=1,y=2});

{X= - 1.8561957251,Y=2.856195584}

jacobian;

[COS(X) SIN(Y)]
[]
[1 1]

58.4 Integrals

Numerical integration uses a polyalgorithm, explained in the full documen-
tation.

NUM INT (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .]

58.5. ORDINARY DIFFERENTIAL EQUATIONS 441

[, accuracy = a][, iterations = i])

where exp is the function to be integrated,

var1, var2, . . . are the integration variables,

l1, l2, . . . are the lower bounds,

u1, u2, . . . are the upper bounds.

Result is the value of the integral.

Example:

num_int(sin x,x=(0 .. pi));

2.0000010334

58.5 Ordinary Differential Equations

A Runge-Kutta method of order 3 finds an approximate graph for the solu-
tion of a ordinary differential equation real initial value problem.

Syntax:

NUM ODESOLVE (exp,depvar = dv,indepvar=(from..to)

[, accuracy = a][, iterations = i])

where

exp is the differential expression/equation,

depvar is an identifier representing the dependent variable (function
to be found),

indepvar is an identifier representing the independent variable,

exp is an equation (or an expression implicitly set to zero) which con-
tains the first derivative of depvar wrt indepvar,

from is the starting point of integration,

to is the endpoint of integration (allowed to be below from),

dv is the initial value of depvar in the point indepvar = from.

The ODE exp is converted into an explicit form, which then is used for
a Runge-Kutta iteration over the given range. The number of steps is

442 CHAPTER 58. NUMERIC: SOLVING NUMERICAL PROBLEMS

controlled by the value of i (default: 20). If the steps are too coarse to
reach the desired accuracy in the neighbourhood of the starting point,
the number is increased automatically.

Result is a list of pairs, each representing a point of the approximate
solution of the ODE problem.

Example:

num_odesolve(df(y,x)=y,y=1,x=(0 .. 1), iterations=5);

{{0.0,1.0},{0.2,1.2214},{0.4,1.49181796},{0.6,1.8221064563},

{0.8,2.2255208258},{1.0,2.7182511366}}

58.6 Bounds of a Function

Upper and lower bounds of a real valued function over an interval or a rect-
angular multivariate domain are computed by the operator BOUNDS. Some
knowledge about the behaviour of special functions like ABS, SIN, COS,
EXP, LOG, fractional exponentials etc. is integrated and can be evaluated
if the operator BOUNDS is called with rounded mode on (otherwise only
algebraic evaluation rules are available).

If BOUNDS finds a singularity within an interval, the evaluation is stopped
with an error message indicating the problem part of the expression.

58.7. CHEBYSHEV CURVE FITTING 443

Syntax:

BOUNDS (exp, var1 = (l1..u1)[, var2 = (l2..u2) . . .])

BOUNDS (exp, {var1 = (l1..u1)[, var2 = (l2..u2) . . .]})
where exp is the function to be investigated,

var1, var2, . . . are the variables of exp,

l1, l2, . . . and u1, u2, . . . specify the area (intervals).

BOUNDS computes upper and lower bounds for the expression in the
given area. An interval is returned.

Example:

bounds(sin x,x=(1 .. 2));

{-1,1}

on rounded;
bounds(sin x,x=(1 .. 2));

0.84147098481 .. 1

bounds(x**2+x,x=(-0.5 .. 0.5));

- 0.25 .. 0.75

58.7 Chebyshev Curve Fitting

The operator family Chebyshev . . . implements approximation and evalua-
tion of functions by the Chebyshev method.

The operator Chebyshev fit computes this approximation and returns a
list, which has as first element the sum expressed as a polynomial and as
second element the sequence of Chebyshev coefficients ci. Chebyshev df and
Chebyshev int transform a Chebyshev coefficient list into the coefficients
of the corresponding derivative or integral respectively. For evaluating a
Chebyshev approximation at a given point in the basic interval the operator

444 CHAPTER 58. NUMERIC: SOLVING NUMERICAL PROBLEMS

Chebyshev eval can be used. Note that Chebyshev eval is based on a
recurrence relation which is in general more stable than a direct evaluation
of the complete polynomial.

CHEBYSHEV FIT (fcn, var = (lo..hi), n)

CHEBYSHEV EVAL (coeffs, var = (lo..hi), var = pt)

CHEBYSHEV DF (coeffs, var = (lo..hi))

CHEBYSHEV INT (coeffs, var = (lo..hi))

where fcn is an algebraic expression (the function to be fitted), var
is the variable of fcn, lo and hi are numerical real values which de-
scribe an interval (lo < hi), n is the approximation order,an inte-
ger > 0, set to 20 if missing, pt is a numerical value in the interval
and coeffs is a series of Chebyshev coefficients, computed by one of
CHEBY SHEV COEFF , DF or INT .

Example:

on rounded;

w:=chebyshev_fit(sin x/x,x=(1 .. 3),5);

3 2
w := {0.03824*x - 0.2398*x + 0.06514*x + 0.9778,

{0.8991,-0.4066,-0.005198,0.009464,-0.00009511}}

chebyshev_eval(second w, x=(1 .. 3), x=2.1);

0.4111

58.8 General Curve Fitting

The operator NUM FIT finds for a set of points the linear combination of a
given set of functions (function basis) which approximates the points best
under the objective of the least squares criterion (minimum of the sum of

58.8. GENERAL CURVE FITTING 445

the squares of the deviation). The solution is found as zero of the gradient
vector of the sum of squared errors.

Syntax:

NUM FIT (vals, basis, var = pts)

where vals is a list of numeric values,

var is a variable used for the approximation,

pts is a list of coordinate values which correspond to var,

basis is a set of functions varying in var which is used for the approx-
imation.

The result is a list containing as first element the function which approx-
imates the given values, and as second element a list of coefficients which
were used to build this function from the basis.

Example:

% approximate a set of factorials by a polynomial
pts:=for i:=1 step 1 until 5 collect i$
vals:=for i:=1 step 1 until 5 collect

for j:=1:i product j$

num_fit(vals,{1,x,x**2},x=pts);

2
{14.571428571*X - 61.428571429*X + 54.6,{54.6,

- 61.428571429,14.571428571}}

num_fit(vals,{1,x,x**2,x**3,x**4},x=pts);

4 3
{2.2083333234*X - 20.249999879*X

2
+ 67.791666154*X - 93.749999133*X

+ 44.999999525,

{44.999999525, - 93.749999133,67.791666154,

446 CHAPTER 58. NUMERIC: SOLVING NUMERICAL PROBLEMS

- 20.249999879,2.2083333234}}

58.9 Function Bases

The following procedures compute sets of functions for example to be used
for approximation. All procedures have two parameters, the expression to
be used as variable (an identifier in most cases) and the order of the desired
system. The functions are not scaled to a specific interval, but the variable
can be accompanied by a scale factor and/or a translation in order to map
the generic interval of orthogonality to another (e.g. (x − 1/2) ∗ 2pi). The
result is a function list with ascending order, such that the first element is
the function of order zero and (for the polynomial systems) the function of
order n is the n+ 1-th element.

monomial_base(x,n) {1,x,...,x**n}
trigonometric_base(x,n) {1,sin x,cos x,sin(2x),cos(2x)...}
Bernstein_base(x,n) Bernstein polynomials
Legendre_base(x,n) Legendre polynomials
Laguerre_base(x,n) Laguerre polynomials
Hermite_base(x,n) Hermite polynomials
Chebyshev_base_T(x,n) Chebyshev polynomials first kind
Chebyshev_base_U(x,n) Chebyshev polynomials second kind

Example:

Bernstein_base(x,5);

5 4 3 2
{ - X + 5*X - 10*X + 10*X - 5*X + 1,

4 3 2
5*X*(X - 4*X + 6*X - 4*X + 1),

2 3 2
10*X *(- X + 3*X - 3*X + 1),

58.9. FUNCTION BASES 447

3 2
10*X *(X - 2*X + 1),

4
5*X *(- X + 1),

5
X }

448 CHAPTER 58. NUMERIC: SOLVING NUMERICAL PROBLEMS

Chapter 59

ODESOLVE:
Ordinary differential
equations solver

Malcolm A.H. MacCallum
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
Mile End Road

London E1 4NS, England

e–mail: mm@maths.qmw.ac.uk

The ODESOLVE package is a solver for ordinary differential equations. At
the present time it has very limited capabilities,

1. it can handle only a single scalar equation presented as an algebraic
expression or equation, and

2. it can solve only first-order equations of simple types, linear equations
with constant coefficients and Euler equations.

These solvable types are exactly those for which Lie symmetry techniques
give no useful information.

449

450 CHAPTER 59. ODESOLVE: ORDINARY DIFFERENTIAL EQNS

59.1 Use

The only top-level function the user should normally invoke is:

ODESOLVE(EXPRN:expression, equation,
VAR1:variable,
VAR2:variable):list-algebraic

ODESOLVE returns a list containing an equation (like solve):

EXPRN is a single scalar expression such that EXPRN = 0 is the ordinary
differential equation (ODE for short) to be solved, or is an equivalent
equation.

VAR1 is the name of the dependent variable.

VAR2 is the name of the independent variable

(For simplicity these will be called y and x in the sequel) The returned value
is a list containing the equation giving the general solution of the ODE (for
simultaneous equations this will be a list of equations eventually). It will
contain occurrences of the operator ARBCONST for the arbitrary constants
in the general solution. The arguments of ARBCONST should be new, as
with ARBINT etc. in SOLVE. A counter !!ARBCONST is used to arrange this
(similar to the way ARBINT is implemented).

Some other top-level functions may be of use elsewhere, especially:

SORTOUTODE(EXPRN:algebraic, Y:var, X:var): expression

which finds the order and degree of the EXPRN as a differential equation for
Y with respect to Y and sets the linearity and highest derivative occurring
in reserved variables ODEORDER, ODEDEGREE,ODELINEARITY and
HIGHESTDERIV. An expression equivalent to the ODE is returned, or zero
if EXPRN (equated to 0) is not an ODE in the given variables.

59.2. COMMENTARY 451

59.2 Commentary

The methods used by this package are described in detail in the full docu-
mentation, which should be inspected together with the examples file.

452 CHAPTER 59. ODESOLVE: ORDINARY DIFFERENTIAL EQNS

Chapter 60

ORTHOVEC:
Three-dimensional vector
analysis

James W. Eastwood
AEA Technology, Culham Laboratory

Abingdon
Oxon OX14 3DB, England

e–mail: jim eastwood@aeat.co.uk

The ORTHOVEC package is a collection of REDUCE procedures and op-
erations which provide a simple to use environment for the manipulation
of scalars and vectors. Operations include addition, subtraction, dot and
cross products, division, modulus, div, grad, curl, laplacian, differentiation,
integration, a · ∇ and Taylor expansion.

60.1 Initialisation

The procedure START initialises ORTHOVEC. VSTART provides a menu of
standard coordinate systems:-

1. cartesian (x, y, z) = (x, y, z)

2. cylindrical (r, θ, z) = (r, th, z)

453

454 CHAPTER 60. ORTHOVEC: SCALARS AND VECTORS

3. spherical (r, θ, φ) = (r, th, ph)

4. general (u1, u2, u3) = (u1, u2, u3)

5. others

which the user selects by number. Selecting options (1)-(4) automatically
sets up the coordinates and scale factors. Selection option (5) shows the user
how to select another coordinate system. If VSTART is not called, then the
default cartesian coordinates are used. ORTHOVEC may be re-initialised
to a new coordinate system at any time during a given REDUCE session by
typing

VSTART $.

60.2 Input-Output

ORTHOVEC assumes all quantities are either scalars or 3 component vec-
tors. To define a vector a with components (c1, c2, c3) use the procedure
SVEC:

a := svec(c1, c2, c3);

The procedure VOUT (which returns the value of its argument) can be used
to give labelled output of components in algebraic form:

b := svec (sin(x)**2, y**2, z)$
vout(b)$

The operator can be used to select a particular component (1, 2 or 3) for
output e.g.

b_1 ;

60.3 Algebraic Operations

Six infix operators, sum, difference, quotient, times, exponentiation and
cross product, and four prefix operators, plus, minus, reciprocal and modulus
are defined in ORTHOVEC. These operators can take suitable combinations
of scalar and vector arguments, and in the case of scalar arguments reduce
to the usual definitions of +,−, ∗, /, etc.

60.3. ALGEBRAIC OPERATIONS 455

The operators are represented by symbols

+, -, /, *, ^, ><

The composite >< is an attempt to represent the cross product symbol ×
in ASCII characters. If we let v be a vector and s be a scalar, then valid
combinations of arguments of the procedures and operators and the type of
the result are as summarised below. The notation used is
result :=procedure(left argument, right argument) or
result :=(left operand) operator (right operand) .

Vector Addition
v := VECTORPLUS(v) or v := + v
s := VECTORPLUS(s) or s := + s
v := VECTORADD(v,v) or v := v + v
s := VECTORADD(s,s) or s := s + s

Vector Subtraction
v := VECTORMINUS(v) or v := - v
s := VECTORMINUS(s) or s := - s
v := VECTORDIFFERENCE(v,v) or v := v - v
s := VECTORDIFFERENCE(s,s) or s := s - s

Vector Division
v := VECTORRECIP(v) or v := / v
s := VECTORRECIP(s) or s := / s
v := VECTORQUOTIENT(v,v) or v := v / v
v := VECTORQUOTIENT(v, s) or v := v / s
v := VECTORQUOTIENT(s ,v) or v := s / v
s := VECTORQUOTIENT(s,s) or s := s / s

Vector Multiplication
v := VECTORTIMES(s ,v) or v := s * v
v := VECTORTIMES(v, s) or v := v * s
s := VECTORTIMES(v,v) or s := v * v
s := VECTORTIMES(s , s) or s := s * s

Vector Cross Product
v := VECTORCROSS(v,v) or v := v × v

456 CHAPTER 60. ORTHOVEC: SCALARS AND VECTORS

Vector Exponentiation
s := VECTOREXPT (v, s) or s := v ˆ s
s := VECTOREXPT (s , s) or s := s ˆ s

Vector Modulus
s := VMOD (s)
s := VMOD (v)

All other combinations of operands for these operators lead to error messages
being issued. The first two instances of vector multiplication are scalar
multiplication of vectors, the third is the product of two scalars and the
last is the inner (dot) product. The prefix operators +, -, / can take
either scalar or vector arguments and return results of the same type as
their arguments. VMOD returns a scalar.

In compound expressions, parentheses may be used to specify the order of
combination. If parentheses are omitted the ordering of the operators, in
increasing order of precedence is

+ | - | dotgrad | * | >< | ^ | _

and these are placed in the precedence list defined in REDUCE after <.

Vector divisions are defined as follows: If a and b are vectors and c is a
scalar, then

a/b =
a · b
| b |2

c/a =
ca
| a |2

Both scalar multiplication and dot products are given by the same symbol,
braces are advisable to ensure the correct precedences in expressions such
as (a · b)(c · d).

Vector exponentiation is defined as the power of the modulus:
an ≡ VMOD(a)n =| a |n

60.4 Differential Operations

Differential operators provided are div, grad, curl, delsq, and dotgrad.
All but the last of these are prefix operators having a single vector or scalar

60.4. DIFFERENTIAL OPERATIONS 457

s := div (v)
v := grad(s)
v := curl(v)
v := delsq(v)
s := delsq(s)
v := v dotgrad v
s := v dotgrad s

Table 60.1: ORTHOVEC valid combinations of operator and argument

argument as appropriate. Valid combinations of operator and argument,
and the type of the result are shown in table 60.1.

All other combinations of operator and argument type cause error messages
to be issued. The differential operators have their usual meanings. The
coordinate system used by these operators is set by invoking VSTART (cf.
Sec. 60.1). The names h1, h2 and h3 are reserved for the scale factors, and
u1, u2 and u3 are used for the coordinates.

A vector extension, VDF, of the REDUCE procedure DF allows the dif-
ferentiation of a vector (scalar) with respect to a scalar to be performed.
Allowed forms are VDF(v, s) → v and VDF(s, s) → s , where, for example

vdf(B, x) ≡ ∂B
∂x

The standard REDUCE procedures DEPEND and NODEPEND have been
redefined to allow dependences of vectors to be compactly defined. For
example

a := svec(a1,a2,a3)$;
depend a,x,y;

causes all three components a1,a2 and a3 of a to be treated as functions of
x and y. Individual component dependences can still be defined if desired.

depend a3,z;

The procedure VTAYLOR gives truncated Taylor series expansions of scalar
or vector functions:-

vtaylor(vex,vx,vpt,vorder);

458 CHAPTER 60. ORTHOVEC: SCALARS AND VECTORS

VEX VX VPT VORDER

v v v v
v v v s
v s s s
s v v v
s v v s
s s s s

Table 60.2: ORTHOVEC valid combination of argument types.

returns the series expansion of the expression VEX with respect to variable
VX about point VPT to order VORDER. Valid combinations of argument
types are shown in table 60.2.

Any other combinations cause error messages to be issued. Elements of
VORDER must be non-negative integers, otherwise error messages are is-
sued. If scalar VORDER is given for a vector expansion, expansions in each
component are truncated at the same order, VORDER.

The new version of Taylor expansion applies l’Hôpital’s rule in evaluating
coefficients, so handle cases such as sin(x)/(x) , etc. which the original
version of ORTHOVEC could not. The procedure used for this is LIMIT,
which can be used directly to find the limit of a scalar function ex of variable
x at point pt:-

ans := limit(ex,x,pt);

60.5 Integral Operations

Definite and indefinite vector, volume and scalar line integration procedures
are included in ORTHOVEC. They are defined as follows:

VINT(v, x) =
∫

v(x)dx

DVINT(v, x, a, b) =
∫ b

a
v(x)dx

VOLINT(v) =
∫

vh1h2h3du1du2du3

60.5. INTEGRAL OPERATIONS 459

DVOLINT(v, l,u, n) =
∫ u

l
vh1h2h3du1du2du3

LINEINT(v, ω, t) =
∫

v · dr ≡
∫
vihi

∂ωi

∂t
dt

DLINEINT(v, ωt, a, b) =
∫ b

a
vihi

∂ωi

∂t
dt

In the vector and volume integrals, v are vector or scalar, a, b, x and n are
scalar. Vectors l and u contain expressions for lower and upper bounds to the
integrals. The integer index n defines the order in which the integrals over
u1, u2 and u3 are performed in order to allow for functional dependencies in
the integral bounds:

n order
1 u1 u2 u3

2 u3 u1 u2

3 u2 u3 u1

4 u1 u3 u2

5 u2 u1 u3

otherwise u3 u2 u1

The vector ω in the line integral’s arguments contain explicit parameterisa-
tion of the coordinates u1, u2, u3 of the line u(t) along which the integral is
taken.

460 CHAPTER 60. ORTHOVEC: SCALARS AND VECTORS

Chapter 61

PHYSOP: Operator calculus
in quantum theory

Mathias Warns
Physikalisches Institut der Universität Bonn

Endenicher Allee 11–13
D–5300 BONN 1, Germany

e–mail: UNP008@DBNRHRZ1.bitnet

The package PHYSOP has been designed to meet the requirements of the-
oretical physicists looking for a computer algebra tool to perform compli-
cated calculations in quantum theory with expressions containing operators.
These operations consist mainly in the calculation of commutators between
operator expressions and in the evaluations of operator matrix elements in
some abstract space.

61.1 The NONCOM2 Package

The package NONCOM2 redefines some standard REDUCE routines in or-
der to modify the way noncommutative operators are handled by the system.
It redefines the NONCOM statement in a way more suitable for calculations in
physics. Operators have now to be declared noncommutative pairwise, i.e.
coding:

461

462 CHAPTER 61. PHYSOP: OPERATOR CALCULUS

NONCOM A,B;

declares the operators A and B to be noncommutative but allows them to
commute with any other (noncommutative or not) operator present in the
expression. In a similar way if one wants e.g. A(X) and A(Y) not to commute,
one has now to code:

NONCOM A,A;

A final example should make the use of the redefined NONCOM statement
clear:

NONCOM A,B,C;

declares A to be noncommutative with B and C, B to be noncommutative
with A and C and C to be noncommutative with A and B. Note that after
these declaration e.g. A(X) and A(Y) are still commuting kernels.

Finally to keep the compatibility with standard REDUCE declaring a single
identifier using the NONCOM statement has the same effect as in standard
REDUCE.

From the user’s point of view there are no other new commands implemented
by the package.

61.2 The PHYSOP package

The package PHYSOP implements a new REDUCE data type to perform
calculations with physical operators. The noncommutativity of operators
is implemented using the NONCOM2 package so this file should be loaded
prior to the use of PHYSOP.

61.2.1 Type declaration commands

The new REDUCE data type PHYSOP implemented by the package allows
the definition of a new kind of operators (i.e. kernels carrying an arbitrary
number of arguments). Throughout this manual, the name “operator” will
refer, unless explicitly stated otherwise, to this new data type. This data

61.2. THE PHYSOP PACKAGE 463

type is in turn divided into 5 subtypes. For each of this subtype, a declara-
tion command has been defined:

SCALOP A; declares A to be a scalar operator. This operator may carry
an arbitrary number of arguments; after the declaration: SCALOP
A; all kernels of the form A(J), A(1,N), A(N,L,M) are recognised
by the system as being scalar operators.

VECOP V; declares V to be a vector operator. As for scalar operators, the
vector operators may carry an arbitrary number of arguments. For
example V(3) can be used to represent the vector operator ~V3. Note
that the dimension of space in which this operator lives is arbitrary.
One can however address a specific component of the vector operator
by using a special index declared as PHYSINDEX (see below). This index
must then be the first in the argument list of the vector operator.

TENSOP C(3); declares C to be a tensor operator of rank 3. Tensor oper-
ators of any fixed integer rank larger than 1 can be declared. Again this
operator may carry an arbitrary number of arguments and the space
dimension is not fixed. The tensor components can be addressed by
using special PHYSINDEX indices (see below) which have to be placed
in front of all other arguments in the argument list.

STATE U; declares U to be a state, i.e. an object on which operators have
a certain action. The state U can also carry an arbitrary number of
arguments.

PHYSINDEX X; declares X to be a special index which will be used to address
components of vector and tensor operators.

A command CLEARPHYSOP removes the PHYSOP type from an identifier in
order to use it for subsequent calculations. However it should be remembered
that no substitution rule is cleared by this function. It is therefore left to
the user’s responsibility to clear previously all substitution rules involving
the identifier from which the PHYSOP type is removed.

61.2.2 Ordering of operators in an expression

The ordering of kernels in an expression is performed according to the fol-
lowing rules:

464 CHAPTER 61. PHYSOP: OPERATOR CALCULUS

1. Scalars are always ordered ahead of PHYSOP operators in an expres-
sion. The REDUCE statement KORDER can be used to control the ordering
of scalars but has no effect on the ordering of operators.

2. The default ordering of operators follows the order in which they have
been declared (not the alphabetical one). This ordering scheme can be
changed using the command OPORDER. Its syntax is similar to the KORDER
statement, i.e. coding: OPORDER A,V,F; means that all occurrences of the
operator A are ordered ahead of those of V etc. It is also possible to include
operators carrying indices (both normal and special ones) in the argument
list of OPORDER. However including objects not defined as operators (i.e.
scalars or indices) in the argument list of the OPORDER command leads to an
error.

3. Adjoint operators are placed by the declaration commands just after the
original operators on the OPORDER list. Changing the place of an operator
on this list means not that the adjoint operator is moved accordingly. This
adjoint operator can be moved freely by including it in the argument list of
the OPORDER command.

61.2.3 Arithmetic operations on operators

The following arithmetic operations are possible with operator expressions:

1. Multiplication or division of an operator by a scalar.

2. Addition and subtraction of operators of the same type.

3. Multiplication of operators is only defined between two scalar operators.

4. The scalar product of two VECTOR operators is implemented with a
new function DOT. The system expands the product of two vector operators
into an ordinary product of the components of these operators by inserting
a special index generated by the program. To give an example, if one codes:

VECOP V,W;
V DOT W;

the system will transform the product into:

V(IDX1) * W(IDX1)

where IDX1 is a PHYSINDEX generated by the system (called a DUMMY

61.2. THE PHYSOP PACKAGE 465

INDEX in the following) to express the summation over the components.
The identifiers IDXn (n is a nonzero integer) are reserved variables for this
purpose and should not be used for other applications. The arithmetic
operator DOT can be used both in infix and prefix form with two arguments.

5. Operators (but not states) can only be raised to an integer power. The
system expands this power expression into a product of the corresponding
number of terms inserting dummy indices if necessary. The following ex-
amples explain the transformations occurring on power expressions (system
output is indicated with an -->):

SCALOP A; A**2;
--> A*A

VECOP V; V**4;
--> V(IDX1)*V(IDX1)*V(IDX2)*V(IDX2)

TENSOP C(2); C**2;
--> C(IDX3,IDX4)*C(IDX3,IDX4)

Note in particular the way how the system interprets powers of tensor oper-
ators which is different from the notation used in matrix algebra.

6. Quotients of operators are only defined between scalar operator expres-
sions. The system transforms the quotient of 2 scalar operators into the
product of the first operator times the inverse of the second one.

SCALOP A,B; A / B;
-1

A *(B)

7. Combining the last 2 rules explains the way how the system handles
negative powers of operators:

SCALOP B;
B**(-3);

-1 -1 -1
--> (B)*(B)*(B)

The method of inserting dummy indices and expanding powers of operators
has been chosen to facilitate the handling of complicated operator expres-
sions and particularly their application on states. However it may be useful
to get rid of these dummy indices in order to enhance the readability of
the system’s final output. For this purpose the switch CONTRACT has to be
turned on (CONTRACT is normally set to OFF). The system in this case con-

466 CHAPTER 61. PHYSOP: OPERATOR CALCULUS

tracts over dummy indices reinserting the DOT operator and reassembling
the expanded powers. However due to the predefined operator ordering the
system may not remove all the dummy indices introduced previously.

61.2.4 Special functions

Commutation relations

If two PHYSOPs have been declared noncommutative using the (redefined)
NONCOM statement, it is possible to introduce in the environment elementary
(anti-) commutation relations between them. For this purpose, two scalar
operators COMM and ANTICOMM are available. These operators are used in
conjunction with LET statements. Example:

SCALOP A,B,C,D;
LET COMM(A,B)=C;
FOR ALL N,M LET ANTICOMM(A(N),B(M))=D;
VECOP U,V,W; PHYSINDEX X,Y,Z;
FOR ALL X,Y LET COMM(V(X),W(Y))=U(Z);

Note that if special indices are used as dummy variables in FOR ALL ...
LET constructs then these indices should have been declared previously using
the PHYSINDEX command.

Every time the system encounters a product term involving two noncommu-
tative operators which have to be reordered on account of the given operator
ordering, the list of available (anti-) commutators is checked in the follow-
ing way: First the system looks for a commutation relation which matches
the product term. If it fails then the defined anticommutation relations are
checked. If there is no successful match the product term A*B is replaced by:

A*B;
--> COMM(A,B) + B*A

so that the user may introduce the commutation relation later on.

The user may want to force the system to look for anticommutators only;
for this purpose a switch ANTICOM is defined which has to be turned on (
ANTICOM is normally set to OFF). In this case, the above example is replaced
by:

61.2. THE PHYSOP PACKAGE 467

ON ANTICOM;
A*B;
--> ANTICOMM(A,B) - B*A

For the calculation of (anti-) commutators between complex operator ex-
pressions, the functions COMMUTE and ANTICOMMUTE have been defined.

VECOP P,A,K;
PHYSINDEX X,Y;
FOR ALL X,Y LET COMM(P(X),A(Y))=K(X)*A(Y);
COMMUTE(P**2,P DOT A);

Adjoint expressions

As has been already mentioned, for each operator and state defined using
the declaration commands, the system generates automatically the corre-
sponding adjoint operator. For the calculation of the adjoint representation
of a complicated operator expression, a function ADJ has been defined.

SCALOP A,B;
ADJ(A*B);

+ +
--> (A)*(B)

Application of operators on states

A function OPAPPLY has been defined for the application of operators to
states. It has two arguments and is used in the following combinations:

(i) LET OPAPPLY(operator, state) = state; This is to define a elementary ac-
tion of an operator on a state in analogy to the way elementary commutation
relations are introduced to the system.

SCALOP A; STATE U;
FOR ALL N,P LET OPAPPLY((A(N),U(P))= EXP(I*N*P)*U(P);

(ii) LET OPAPPLY(state, state) = scalar exp.; This form is to define scalar
products between states and normalisation conditions.

STATE U;

468 CHAPTER 61. PHYSOP: OPERATOR CALCULUS

FOR ALL N,M LET OPAPPLY(U(N),U(M)) = IF N=M THEN 1 ELSE 0;

(iii) state := OPAPPLY(operator expression, state); In this way, the action
of an operator expression on a given state is calculated using elementary re-
lations defined as explained in (i). The result may be assigned to a different
state vector.

(iv) OPAPPLY(state, OPAPPLY(operator expression, state)); This is the way
how to calculate matrix elements of operator expressions. The system pro-
ceeds in the following way: first the rightmost operator is applied on the
right state, which means that the system tries to find an elementary rela-
tion which match the application of the operator on the state. If it fails the
system tries to apply the leftmost operator of the expression on the left state
using the adjoint representations. If this fails also, the system prints out a
warning message and stops the evaluation. Otherwise the next operator oc-
curing in the expression is taken and so on until the complete expression is
applied. Then the system looks for a relation expressing the scalar product
of the two resulting states and prints out the final result. An example of
such a calculation is given in the test file.

The infix version of the OPAPPLY function is the vertical bar |. It is right
associative and placed in the precedence list just above the minus (−) op-
erator.

Chapter 62

PM: A REDUCE pattern
matcher

Kevin McIsaac
The University of Western Australia

Australia

e–mail: kevin@wri.com

PM is a general pattern matcher similar in style to those found in systems
such as SMP and Mathematica.

A template is any expression composed of literal elements (e.g. 5, a or a+1)
and specially denoted pattern variables (e.g. ?a or ??b). Atoms beginning
with ‘?’ are called generic variables and match any expression. Atoms begin-
ning with ‘??’ are called multi-generic variables and match any expression
or any sequence of expressions including the null or empty sequence. A se-
quence is an expression of the form ‘[a1, a2,...]’. When placed in a function
argument list the brackets are removed, i.e. f([a,1]) → f(a,1) and f(a,[1,2],b)
→ f(a,1,2,b).

A template is said to match an expression if the template is literally equal to
the expression or if by replacing any of the generic or multi-generic symbols
occurring in the template, the template can be made to be literally equal to
the expression. These replacements are called the bindings for the generic
variables. A replacement is an expression of the form exp1 -> exp2, which
means exp1 is replaced by exp2, or exp1 --> exp2, which is the same ex-
cept exp2 is not simplified until after the substitution for exp1 is made. If

469

470 CHAPTER 62. PM: A REDUCE PATTERN MATCHER

the expression has any of the properties; associativity, commutativity, or
an identity element, they are used to determine if the expressions match.
If an attempt to match the template to the expression fails the matcher
backtracks, unbinding generic variables, until it reached a place were it can
make a different choice.

The matcher also supports semantic matching. Briefly, if a subtemplate
does not match the corresponding subexpression because they have different
structures then the two are equated and the matcher continues matching
the rest of the expression until all the generic variables in the subexpression
are bound. The equality is then checked. This is controlled by the switch
semantic. By default it is on.

62.1 The Match Function

M(exp,template)

The template is matched against the expression. If the template is literally
equal to the expression T is returned. If the template is literally equal to
the expression after replacing the generic variables by their bindings then
the set of bindings is returned as a set of replacements. Otherwise NIL is
returned.

OPERATOR F;

M(F(A),F(A));

T

M(F(A,B),F(A,?A));

{?A->B}

M(F(A,B),F(??A));

{??A->[A,B]}

m(a+b+c,c+?a+?b);

{?a->a,?b->b}

m(a+b+c,b+?a);

62.2. QUALIFIED MATCHING 471

{?a->a + c}

This example shows the effects of semantic matching, using the associativity
and commutativity of +.

62.2 Qualified Matching

A template may be qualified by the use of the conditional operator =’,
standing for such that. When a such-that condition is encountered in a
template it is held until all generic variables appearing in logical-exp are
bound. On the binding of the last generic variable logical-exp is simpli-
fied and if the result is not T the condition fails and the pattern matcher
backtracks. When the template has been fully parsed any remaining held
such-that conditions are evaluated and compared to T.

load_package pm;

operator f;

if (m(f(a,b),f(?a,?b_=(?a=?b)))) then write "yes" else write"no";

no

m(f(a,a),f(?a,?b_=(?a=?b)));

{?B->A,?A->A}

62.3 Substituting for replacements

The operator S substitutes the replacements in an expression.

S(exp,temp1->sub1,temp2->sub2,...,rept, depth);

will do the substitutions for a maximum of rept and to a depth of depth,
using a breadth-first search and replace. rept and depth may be omitted
when they default to 1 and infinity.

SI(exp,temp1->sub1,temp2->sub2,..., depth)

will substitute infinitely many times until expression stops changing.

472 CHAPTER 62. PM: A REDUCE PATTERN MATCHER

SD(exp,temp1->sub1,temp2->sub2,...,rept, depth)

is a depth-first version of S.

s(f(a,b),f(a,?b)->?b^2);

2
b

s(a+b,a+b->a*b);

a*b

operator nfac;

s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)});

3*nfac(2)

s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)},2);

6*nfac(1)

si(nfac(4),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)});

24

s(a+b+f(a+b),a+b->a*b,inf,0);

f(a + b) + a*b

62.4 Programming with Patterns

There are also facilities to use this pattern-matcher as a programming lan-
guage. The operator :- can be used to declare that while simplifying all
matches of a template should be replaced by some expression. The operator
::- is the same except that the left hand side is not simplified.

operator fac, gamma;

62.4. PROGRAMMING WITH PATTERNS 473

fac(?x_=Natp(?x)) ::- ?x*fac(?x-1);

HOLD(FAC(?X-1)*?X)

fac(0) :- 1;

1

fac(?x) :- Gamma(?x+1);

GAMMA(?X + 1)

fac(3);

6

fac(3/2);

GAMMA(5/2)

474 CHAPTER 62. PM: A REDUCE PATTERN MATCHER

Chapter 63

QSUM : Package for
q-hypergeometric sums

Harald Böing
Wolfram Koepf

Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustras̈e 7

D-14195 Berlin-Dahlem
e-mail: koepf@zib.de

This package is an implementation of the q-analogues of Gosper’s and Zeil-
berger’s 1 algorithm for indefinite and definite summation of q-hypergeometric
terms, respectively.

An expression ak is called a q-hypergeometric term, if ak/ak−1 is a rational
function with respect to qk. Most q-terms are based on the q-shifted fac-
torial or qpochhammer. Other typical q-hypergeometric terms are ratios of
products of powers, q-factorials, q-binomial coefficients, and q-shifted facto-
rials that are integer-linear in their arguments.
The package is loaded with load package qsum.

63.1 Elementary q-Functions

The package supports the input of the following elementary q-functions:
1The ZEILBERG package (Chap. 89 p. 599, see also [13]) contains the hypergeometric

versions.

475

476 CHAPTER 63. QSUM: Q-HYPERGEOMETRIC SUMS

• qpochhammer(a,q,infinity)

(a; q)∞ :=
∞∏

j=0

(
1− a qj

)

• qpochhammer(a,q,k)

(a; q)k :=

∏k−1
j=0

(
1− a qj

)
if k > 0

1 if k = 0∏k
j=1

(
1− a q−j

)−1 if k < 0

• qbrackets(k,q)

[q, k] :=
qk − 1
q − 1

• qfactorial(k,q)

[k]q! :=
(q; q)k

(1− q)k

• qbinomial(n,k,q)

(
n

k

)

q

:=
(q; q)n

(q; q)k · (q; q)n−k

• qphihyperterm({a1,a2,...,ar},{b1,b2,...,bs},q,z,k)

∞∑

k=0

(a1, a2, . . . , ar; q)k

(b1, b2, . . . , bs; q)k

zk

(q; q)k

[
(−1)k q(

k
2)

]1+s−r

• qpsihyperterm({a1,a2,...,ar},{b1,b2,...,bs},q,z,k)

∞∑

k=−∞

(a1, a2, . . . , ar; q)k

(b1, b2, . . . , bs; q)k

zk
[
(−1)k q(

k
2)

]s−r

where (a1, a2, . . . , ar; q)k stands for the product
∏r

j=1 (aj ; q)k.

63.2. THE QGOSPER OPERATOR 477

63.2 The QGOSPER operator

The qgosper operator is an implementation of the q-Gosper algorithm [14].

• qgosper(a,q,k) determines a q-hypergeometric antidifference. (By
default it returns a downward antidifference, which may be changed
by the switch qgosper_down.) If it does not return a q-hypergeometric
antidifference, then such an antidifference does not exist.

• qgosper(a,q,k,m,n) determines a closed formula for the definite sum
n∑

k=m

ak

using the q-analogue of Gosper’s algorithm. This is only successful if
q-Gosper’s algorithm applies.

Example:

1: qgosper(qpochhammer(a,q,k)*q^k/qpochhammer(q,q,k),q,k);

k
(q *a - 1)*qpochhammer(a,q,k)

(a - 1)*qpochhammer(q,q,k)

63.3 The QSUMRECURSION operator

The QSUMRECURSION operator is an implementation of the q-Zeilberger al-
gorithm [14]. It tries to determine a homogeneous recurrence equation for
summ(n) wrt. n with polynomial coefficients (in n), where

summ(n) :=
∞∑

k=−∞
f(n, k).

There are three different ways to pass a summand f(n, k) to qsumrecursion:

• qsumrecursion(f,q,k,n), where f is a q-hypergeometric term wrt. k
and n, k is the summation variable and n the recursion variable, q is
a symbol.

478 CHAPTER 63. QSUM: Q-HYPERGEOMETRIC SUMS

• qsumrecursion(upper,lower,q,z,n) is a shortcut for
qsumrecursion(qphihyperterm(upper,lower,q,z,k),q,k,n)

• qsumrecursion(f,upper,lower,q,z,n) is a similar shortcut for
qsumrecursion(f*qphihyperterm(upper,lower,q,z,k),q,k,n),

i. e. upper and lower are lists of upper and lower parameters of the gener-
alized q-hypergeometric function. The third form is handy if you have any
additional factors.

For all three instances it is possible to pass the order, if known in advance,
as additional argument at the end of the parameter sequence. You can also
specifiy a range by a list of two positive integers, the first one specifying the
lowest and the second one the highest order. By default QSUMRECURSION will
search for recurrences of order from 1 to 5. Usually it uses summ as name
for the summ-function. If you want to change this behaviour then use the
following syntax: QSUMRECURSION(f,q,k,s(n)).

2: qsumrecursion(qpochhammer(q^(-n),q,k)*z^k /
qpochhammer(q,q,k),q,k,n);

n n
- ((q - z)*summ(n - 1) - q *summ(n))

63.4 Global Variables and Switches

There are several switches defined in the QSUM package. Please take
a look in the accompanying documentation file qsum.tex in $REDU-
CEPATH/packages/.

The most important switches are:

• qgosper_down, default setting is on. It determines whether qgosper
returns a downward or an upward antidifference gk for the input term
ak, . e. ak = gk − gk−1 or ak = gk+1 − gk respectively.

• qsumrecursion_certificate, default off. As Zeilberger’s algorithm
delivers a recurrence equation for a q-hypergeometric term f(n, k) this
switch is used to get all necessary informations for proving this recur-
rence equation.

63.4. GLOBAL VARIABLES AND SWITCHES 479

If it is set on, instead of simply returning the resulting recurrence
equation (for the sum)—if one exists—qsumrecursion returns a list
{rec,cert,f,k,dir} with five items: The first entry contains the
recurrence equation, while the other items enable you to prove the
recurrence a posteriori by rational arithmetic.

If we denote by r the recurrence rec where we substituted the summ-
function by the input term f (with the corresponding shifts in n) then
the following equation is valid:

r = cert*f - sub(k=k-1,cert*f)

or
r = sub(k=k+1,cert*f) - cert*f

if dir=downward_antidifference or dir=upward_antidifference
respectively.

There is one global variable:

• qsumrecursion_recrange!* controls for which recursion orders the
procedure qsumrecursion looks. It has to be a list with two entries,
the first one representing the lowest and the second one the highest
order of a recursion to search for. By default it is set to {1,5}.

480 CHAPTER 63. QSUM: Q-HYPERGEOMETRIC SUMS

Chapter 64

RANDPOLY: A random
polynomial generator

Francis J. Wright
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
Mile End Road

London E1 4NS, England

e–mail: F.J.Wright@QMW.ac.uk

The operator RANDPOLY requires at least one argument corresponding to the
polynomial variable or variables, which must be either a single expression
or a list of expressions. In effect, RANDPOLY replaces each input expression
by an internal variable and then substitutes the input expression for the
internal variable in the generated polynomial (and by default expands the
result as usual). The rest of this document uses the term “variable” to
refer to a general input expression or the internal variable used to represent
it, and all references to the polynomial structure, such as its degree, are
with respect to these internal variables. The actual degree of a generated
polynomial might be different from its degree in the internal variables.

By default, the polynomial generated has degree 5 and contains 6 terms.
Therefore, if it is univariate it is dense whereas if it is multivariate it is
sparse.

481

482 CHAPTER 64. RANDPOLY: RANDOM POLYNOMIALS

64.1 Optional arguments

Other arguments can optionally be specified, in any order, after the first
compulsory variable argument. All arguments receive full algebraic evalua-
tion, subject to the current switch settings etc. The arguments are processed
in the order given, so that if more than one argument relates to the same
property then the last one specified takes effect. Optional arguments are
either keywords or equations with keywords on the left.

In general, the polynomial is sparse by default, unless the keyword dense is
specified as an optional argument. (The keyword sparse is also accepted,
but is the default.) The default degree can be changed by specifying an
optional argument of the form

degree = natural number.

In the multivariate case this is the total degree, i.e. the sum of the degrees
with respect to the individual variables. More complicated monomial de-
gree bounds can be constructed by using the coefficient function described
below to return a monomial or polynomial coefficient expression. More-
over, randpoly respects internally the REDUCE “asymptotic” commands
let, weight etc. described in section 10.4, which can be used to exercise
additional control over the polynomial generated.

In the sparse case (only), the default maximum number of terms generated
can be changed by specifying an optional argument of the form

terms = natural number.

The actual number of terms generated will be the minimum of the value
of terms and the number of terms in a dense polynomial of the specified
degree, number of variables, etc.

64.2 Advanced use of RANDPOLY

The default order (or minimum or trailing degree) can be changed by spec-
ifying an optional argument of the form

ord = natural number.

64.2. ADVANCED USE OF RANDPOLY 483

The order normally defaults to 0.

The input expressions to randpoly can also be equations, in which case
the order defaults to 1 rather than 0. Input equations are converted to
the difference of their two sides before being substituted into the generated
polynomial. This makes it easy to generate polynomials with a specified
zero – for example

randpoly(x = a);

generates a polynomial that is guaranteed to vanish at x = a, but is other-
wise random.

The operator randpoly accepts two further optional arguments in the form
of equations with the keywords coeffs and expons on the left. The right
sides of each of these equations must evaluate to objects that can be applied
as functions of no variables. These functions should be normal algebraic
procedures; the coeffs procedure may return any algebraic expression, but
the expons procedure must return an integer. The values returned by the
functions should normally be random, because it is the randomness of the
coefficients and, in the sparse case, of the exponents that makes the con-
structed polynomial random.

A convenient special case is to use the function rand on the right of one or
both of these equations; when called with a single argument rand returns an
anonymous function of no variables that generates a random integer. The
single argument of rand should normally be an integer range in the form
a .. b, where a, b are integers such that a < b. For example, the expons
argument might take the form

expons = rand(0 .. n)

where n will be the maximum degree with respect to each variable inde-
pendently. In the case of coeffs the lower limit will often be the negative
of the upper limit to give a balanced coefficient range, so that the coeffs
argument might take the form

coeffs = rand(-n .. n)

which will generate random integer coefficients in the range [−n, n].

484 CHAPTER 64. RANDPOLY: RANDOM POLYNOMIALS

Further information on the the auxiliary functions of RANDPOLY can be
found in the extended documentation and examples.

64.3 Examples

randpoly(x);

5 4 3 2
- 54*x - 92*x - 30*x + 73*x - 69*x - 67

randpoly({x, y}, terms = 20);

5 4 4 3 2 3 3
31*x - 17*x *y - 48*x - 15*x *y + 80*x *y + 92*x

2 3 2 2 4 3 2
+ 86*x *y + 2*x *y - 44*x + 83*x*y + 85*x*y + 55*x*y

5 4 3 2
- 27*x*y + 33*x - 98*y + 51*y - 2*y + 70*y - 60*y - 10

64.3. EXAMPLES 485

randpoly({x, sin(x), cos(x)});

4 3 3
sin(x)*(- 4*cos(x) - 85*cos(x) *x + 50*sin(x)

2
- 20*sin(x) *x + 76*sin(x)*x + 96*sin(x))

486 CHAPTER 64. RANDPOLY: RANDOM POLYNOMIALS

Chapter 65

RATAPRX : Rational
Approximations Package

Lisa Temme
Wolfram Koepf

Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustras̈e 7

D-14195 Berlin-Dahlem, Germany
e-mail: koepf@zib.de

This package provides functions to

• convert rational numbers in their periodic representation and vice
versa,

• to compute continued fractions and

• to compute the Padé approximant of a function.

The package can be loaded using load package rataprx; it supersedes the
contfr package.

487

488 CHAPTER 65. RATAPRX: RATIONAL APPROXIMATIONS

65.1

65.1.1 Periodic Representation

The function rational2periodic(n) converts a rational number n in its
periodic representation. For example 59/70 is converted to 0.8428571.
Depending on the print function of your REDUCE system, calling the
function rational2periodic might result in an expression of the form
periodic({a,b},{c1,...,cn}). a and b is the non-periodic part of the
rational number n and c1,...,cn are the digits of the periodic part. In this
case 59/70 would result in periodic({8,10},{4,2,8,5,7,1}).
The function periodic2rational(periodic({a,b},{c1,...,cn})) is the
inverse function and computes the rational expression for a periodic one.
Note that b is 1,-1 or a integer multiple of 10. If a is zero, then the in-
put number b indicates how many places after the decimal point the period
occurs.

rational2periodic(6/17);

periodic({0,1},{3,5,2,9,4,1,1,7,6,4,7,0,5,8,8,2})

periodic2rational(ws);

6

17

65.1.2 Continued Fractions

A continued fraction (see [1] §4.2) has the general form

b0 +
a1

b1 + a2

b2+
a3

b3+...

.

A more compact way of writing this is as

b0 +
a1|
|b1 +

a2|
|b2 +

a3|
|b3 +

65.1. 489

This is represented in REDUCE as

contfrac(Rational approximant, {b0, {a1, b1}, {a2, b2},}).

There are four different functions to determine the continued fractions for
real numbers and functions f in the variable var:

cfrac(number); cfrac(number,length);
cfrac(f, var); cfrac(f, var, length);

The length argument is optional and specifies the number of ordered pairs
{ai, bi} to be returned. It’s default value is five.

cfrac pi;

1146408
contfrac(---------),

364913

{3,{1,7},{1,15},{1,1},{1,292},{1,1},{1,1},{1,1},
{1,2},{1,1}})

490 CHAPTER 65. RATAPRX: RATIONAL APPROXIMATIONS

cfrac((x+2/3)^2/(6*x-5),x);

2
9*x + 12*x + 4 6*x + 13 24*x - 20

contfrac(-----------------,{----------,{1,-----------}})
54*x - 45 36 9

cfrac(e^x,x);

3 2
x + 9*x + 36*x + 60

contfrac(-----------------------,
2

3*x - 24*x + 60

{1,{x,1},{ - x,2},{x,3},{ - x,2},{x,5}})

65.1.3 Padé Approximation

The Padé approximant represents a function by the ratio of two polynomials.
The coefficients of the powers occuring in the polynomials are determined
by the coefficients in the Taylor series expansion of the function (see [1]).
Given a power series

f(x) = c0 + c1(x− h) + c2(x− h)2 . . .

and the degree of numerator, n, and of the denominator, d, the pade function
finds the unique coefficients ai, bi in the Padé approximant

a0 + a1x+ · · ·+ anx
n

b0 + b1x+ · · ·+ bdxd
.

The function pade(f, x, h ,n ,d) takes as input the function f in the
variable x to be approximated , where h is the point at which the approxi-
mation is evaluated. n and d are the (specified) degrees of the numerator and
the denominator. It returns the Padé Approximant, ie. a rational function.

Error Messages may occur in the following different cases:

• The Taylor series expansion for the function f has not yet been imple-
mented in the REDUCE Taylor Package.

• A Padé Approximant of this function does not exist.

65.1. 491

• A Padé Approximant of this order (ie. the specified numerator and
denominator orders) does not exist. Please note, there might exist an
approximant of a different order.

492 CHAPTER 65. RATAPRX: RATIONAL APPROXIMATIONS

pade(sin(x),x,0,3,3);

2
x*(- 7*x + 60)

2

3*(x + 20)

pade(tanh(x),x,0,5,5);

4 2
x*(x + 105*x + 945)

4 2

15*(x + 28*x + 63)

pade(exp(1/x),x,0,5,5);

***** no Pade Approximation exists

pade(factorial(x),x,1,3,3);

***** not yet implemented

30: pade(sin(x)/x^2,x,0,10,0);

***** Pade Approximation of this order does not exist

31: pade(sin(x)/x^2,x,0,10,2);

10 8 6 4 2
- x + 110*x - 7920*x + 332640*x - 6652800*x + 39916800

--
39916800*x

Chapter 66

REACTEQN: Support for
chemical reaction equations

Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: melenk@zib.de

The REDUCE package REACTEQN allows one to transform chemical re-
action systems into ordinary differential equation systems corresponding to
the laws of pure mass action.

It provides the single function

reac2ode { <reaction> [,<rate> [,<rate>]]
[,<reaction> [,<rate> [,<rate>]]]

....
};

A rate is any REDUCE expression, and two rates are applicable only for
forward and backward reactions. A reaction is coded as a linear sum of the
series variables, with the operator − > for forward reactions and <> for
two-way reactions.

The result is a system of explicit ordinary differential equations with poly-
nomial righthand sides. As side effect the following variables are set:

493

494CHAPTER 66. REACTEQN: CHEMICAL REACTION EQUATIONS

rates A list of the rates in the system.

species A list of the species in the system.

inputmat A matrix of the input coefficients.

outputmat A matrix of the output coefficients.

In the matrices the row number corresponds to the input reaction number,
while the column number corresponds to the species index.

If the rates are numerical values, it will be in most cases appropriate to
select a REDUCE evaluation mode for floating point numbers.

Inputmat and outputmat can be used for linear algebra type investigations
of the reaction system. The classical reaction matrix is the difference of
these matrices; however, the two matrices contain more information than
their differences because the appearance of a species on both sides is not
reflected by the reaction matrix.

Chapter 67

REDLOG: Logic System

Andreas Dolzmann
Thomas Sturm

University of Passau, Germany
e-mail: dolzmann@uni-passau.de, sturm@uni-passau.de

67.1 Introduction

This package extends REDUCE to a computer logic system implementing
symbolic algorithms on first-order formulas wrt. temporarily fixed first-order
languages and theories.

67.1.1 Contexts

REDLOG is designed for working with several languages and theories in the
sense of first-order logic. Both a language and a theory make up a context.
There are the following contexts available:

OFSF OF stands for ordered fields, which is a little imprecise. The quanti-
fier elimination actually requires the more restricted class of real closed
fields, while most of the tool-like algorithms are generally correct for
ordered fields. One usually has in mind real numbers with ordering
when using OFSF.

DVFSF Discretely valued fields. This is for computing with formulas over

495

496 CHAPTER 67. REDLOG: LOGIC SYSTEM

classes of p-adic valued extension fields of the rationals, usually the
fields of p-adic numbers for some prime p.

ACFSF Algebraically closed fields such as the complex numbers.

67.1.2 Overview

REDLOG origins from the implementation of quantifier elimination proce-
dures. Successfully applying such methods to both academic and real-world
problems, the authors have developed over the time a large set of formula-
manipulating tools, many of which are meanwhile interesting in their own
right:

• Numerous tools for comfortably inputing, decomposing, and analyzing
formulas.

• Several techniques for the simplification of formulas.

• Various normal form computations. The CNF/DNF computation
includes both Boolean and algebraic simplification strategies. The
prenex normal form computation minimizes the number of quantifier
changes.

• Quantifier elimination computes quantifier-free equivalents for given
first-order formulas. For OFSF and DVFSF the formulas have to
obey certain degree restrictions.

• The context OFSF allows a variant of quantifier elimination called
generic quantifier elimination: There are certain non-degeneracy as-
sumptions made on the parameters, which considerably speeds up the
elimination.

• The contexts OFSF and DVFSF provide variants of (generic) quan-
tifier elimination that additionally compute answers such as satisfying
sample points for existentially quantified formulas.

• OFSF includes linear optimization techniques based on quantifier
elimination.

To avoid ambiguities with other packages, all REDLOG functions and
switches are prefixed by “RL”.

67.2. CONTEXT SELECTION 497

The package is loaded by typing: load package redlog;

It is recommended to read the documentation which comes with this pack-
age. This manual chapter gives an overview on the features of REDLOG,
which is by no means complete.

67.2 Context Selection

The context to be used has to be selected explicitly. One way to do this
is using the command RLSET. As argument it takes one of the valid choices
ACFSF (algebraically closed fields standard form), OFSF (ordered fields stand-
ard form), and DVFSF (discretely valued fields standard form). By default,
DVFSF computes uniformly over the class of all p-adic valued fields. For
the sake of efficiency, this can be restricted by means of an extra RLSET
argument. RLSET returns the old setting as a list.

67.3 Format and Handling of Formulas

67.3.1 First-order Operators

REDLOG knows the following operators for constructing Boolean combina-
tions and quantifications of atomic formulas:

NOT: Unary AND: N-ary Infix OR: N-ary Infix IMPL: Binary Infix
REPL: Binary Infix EQUIV: Binary Infix EX: Binary
ALL: Binary TRUE: Variable FALSE: Variable

The EX and the ALL operators are the quantifiers. Their first argument is
the quantified variable, the second one a matrix formula.

There are operators MKAND and MKOR for the construction of large systematic
conjunctions/disjunctions via for loops available. They are used in the style
of SUM and COLLECT.

Example:

498 CHAPTER 67. REDLOG: LOGIC SYSTEM

1: load_package redlog;

2: rlset ofsf;

{}

3: g := for i:=1:3 mkand

for j:=1:3 mkor

if j<>i then mkid(x,i) + mkid(x,j)=0;

true and (false or false or x1 + x2 = 0 or x1 + x3 = 0)

and (false or x1 + x2 = 0 or false or x2 + x3 = 0)

and (false or x1 + x3 = 0 or x2 + x3 = 0 or false)

67.3.2 OFSF Operators

The OFSF context implements ordered fields over the language of ordered
rings. There are the following binary operators available:

EQUAL NEQ LEQ GEQ LESSP GREATERP

They can also be written as =, <>, <=, >=, <, and >. For OFSF there is
specified that all right hand sides must be zero. Non-zero right hand sides
are immediately subtracted.

67.3.3 DVFSF Operators

Discretely valued fields are implemented as a one-sorted language using in
addition to = and <> the binary operators |, ||, ~, and /~, which encode ≤,
<, =, and 6= in the value group, respectively.

EQUAL NEQ DIV SDIV ASSOC NASSOC

67.4. SIMPLIFICATION 499

67.3.4 ACFSF Operators

For algebraically closed fields there are only equations and inequalities al-
lowed:

EQUAL NEQ

As in OFSF, they can be conveniently written as = and <>, respectively.
All right hand sides are zero.

67.3.5 Extended Built-in Commands

The operators SUB, PART, and LENGTH work on formulas in a reasonable way.

67.3.6 Global Switches

The switch RLSIMPL causes the function RLSIMPL to be automatically applied
at the expression evaluation stage.

The switch RLREALTIME protocols the wall clock time needed for REDLOG
commands in seconds.

The switch RLVERBOSE toggles verbosity output with some REDLOG pro-
cedures.

67.4 Simplification

REDLOG knows three types of simplifiers to reduce the size of a given
first-order formula: the standard simplifier, tableau simplifiers, and Gröbner
simplifiers.

67.4.1 Standard Simplifier

The standard simplifier RLSIMPL returns a simplified equivalent of its argu-
ment formula. It is much faster though less powerful than the other simpli-
fiers.

500 CHAPTER 67. REDLOG: LOGIC SYSTEM

As an optional argument there can be a theory passed. This is a list of
atomic formulas assumed to hold. Simplification is then performed on the
basis of these assumptions.

Example:

4: rlsimpl g;

(x1 + x2 = 0 or x1 + x3 = 0) and (x1 + x2 = 0 or x2 + x3 = 0)

and (x1 + x3 = 0 or x2 + x3 = 0)

67.4.2 Tableau Simplifier

The standard simplifier preserves the basic Boolean structure of a formula.
The tableau methods, in contrast, provide a technique for changing the
Boolean structure of a formula by constructing case distinctions.

The function RLATAB automatically finds a suitable case distinction. Based
on RLATAB, the function RLITAB iterates this process until no further sim-
plification can be detected. There is a more fundamental entry point RLTAB
for manually entering case distinctions.

67.4.3 Gröbner Simplifier

The Gröbner simplifier considers algebraic simplification rules between the
atomic formulas of the input formula. The usual procedure called for
Gröbner simplification is RLGSN. Similar to the standard simplifier, there
is an optional theory argument.

Example:

5: rlgsn(x*y+1<>0 or y*z+1<>0 or x-z=0);

true

67.5. NORMAL FORMS 501

67.5 Normal Forms

67.5.1 Boolean Normal Forms

RLCNF and RLDNF compute conjunctive resp. disjunctive normal forms of
their formula arguments. Subsumption and cut strategies are applied to
decrease the number of clauses.

67.5.2 Miscellaneous Normal Forms

RLNNF computes a negation normal form. This is an and-or-combination of
atomic formulas.

RLPNF computes a prenex normal form of its argument. That is, all quanti-
fiers are moved outside such that they form a block in front of a quantifier-
free matrix formula.

67.6 Quantifier Elimination and Variants

Quantifier elimination computes quantifier-free equivalents for given first-
order formulas. For OFSF and DVFSF, REDLOG uses a technique based
on elimination set ideas. The OFSF implementation is restricted to at
most quadratic occurrences of the quantified variables, but includes nu-
merous heuristic strategies for coping with higher degrees. The DVFSF
implementation is restricted to formulas that are linear in the quantified
variables. The ACFSF quantifier elimination is based on comprehensive
Gröbner basis computation; there are no degree restrictions for this context

67.6.1 Quantifier Elimination

RLQE performs quantifier elimination on its argument formula. There is an
optional theory argument in the style of RLSIMPL supported.

502 CHAPTER 67. REDLOG: LOGIC SYSTEM

Example:

6: rlqe(ex(x,a*x**2+b*x+c>0),{a<0});

2
4*a*c - b < 0

For OFSF and DVFSF there is a variant RLQEA available. It returns instead
of a quantifier-free equivalent, a list of condition-solution pairs containing,
e.g., satisfying sample points for outermost existential quantifier blocks.

Example:

7: rlqea(ex(x,a*x**2+b*x+c>0),{a<0});

2
{{4*a*c - b < 0,

2
- sqrt(- 4*a*c + b) - 2*a*epsilon1 - b

{x = ---}}}
2*a

67.6.2 Generic Quantifier Elimination

OFSF allows generic quantifier elimination RLGQE, which enlarges the theory
by disequations, i.e. <>-atomic formulas, wherever this supports the quan-
tifier elimination. There is also generic quantifier elimination with answer
available: RLGQEA.

Example:

8: rlgqe ex(x,a*x**2+b*x+c>0);

{{a <> 0},

2
4*a*c - b < 0 or a >= 0}

67.6. QUANTIFIER ELIMINATION AND VARIANTS 503

67.6.3 Linear Optimization

RLOPT uses quantifier elimination for linear optimization. It takes as argu-
ments a list of constraints and the target function. The target function is
minimized subject to the constraints.

504 CHAPTER 67. REDLOG: LOGIC SYSTEM

Chapter 68

RESET: Reset REDUCE to
its initial state

J. P. Fitch
School of Mathematical Sciences, University of Bath

BATH BA2 7AY, England

e–mail: jpff@cs.bath.ac.uk

This package defines a command RESETREDUCE that works through the his-
tory of previous commands, and clears any values which have been assigned,
plus any rules, arrays and the like. It also sets the various switches to their
initial values. It is not complete, but does work for most things that cause
a gradual loss of space.

505

506 CHAPTER 68. RESET: RESET REDUCE TO ITS INITIAL STATE

Chapter 69

RESIDUE: A residue
package

Wolfram Koepf
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: Koepf@zib.de

This package supports the calculation of residues. The residue Res
z=a

f(z) of
a function f(z) at the point a ∈ C is defined as

Res
z=a

f(z) =
1

2πi

∮
f(z) dz ,

with integration along a closed curve around z = a with winding number 1.

It contains two REDUCE operators:

• residue(f,z,a) determines the residue of f at the point z = a if
f is meromorphic at z = a. The calculation of residues at essential
singularities of f is not supported.

• poleorder(f,z,a) determines the pole order of f at the point z = a
if f is meromorphic at z = a.

Note that both functions use the TAYLOR package (chapter 82).

507

508 CHAPTER 69. RESIDUE: A RESIDUE PACKAGE

load_package residue;

residue(x/(x^2-2),x,sqrt(2));

1

2

poleorder(x/(x^2-2),x,sqrt(2));

1

residue(sin(x)/(x^2-2),x,sqrt(2));

sqrt(2)*sin(sqrt(2))

4

poleorder(sin(x)/(x^2-2),x,sqrt(2));

1

residue((x^n-y^n)/(x-y)^2,x,y);

n
y *n

y

poleorder((x^n-y^n)/(x-y)^2,x,y);

1

Chapter 70

RLFI: REDUCE LaTeX
formula interface

Richard Liska, Ladislav Drska
Computational Physics Group

Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague, Brehova 7, 115 19 Prague 1

Czech Republic

e–mail: liska@siduri.fjfi.cvut.cz

The RLFI package provides the printing of REDUCE expressions in LATEX
format, so it can be used directly for document production. Various math-
ematical constructions are supported by the interface including subscripts,
superscripts, font changing, Greek letters, divide-bars, integral and sum
signs, derivatives etc.

The interface is connected to REDUCE by three new switches and several
statements. To activate the LATEX output mode the switch latex must be
set on. This switch causes all outputs to be written in the LATEX syntax of
formulas. The switch VERBATIM is used for input printing control. If it is on
input to REDUCE system is typeset in LATEX verbatim environment after
the line containing the string REDUCE Input:.

The switch lasimp controls the algebraic evaluation of input formulas. If
it is on every formula is evaluated, simplified and written in the form given
by ordinary REDUCE statements and switches such as factor, order, rat
etc. In the case when the lasimp switch is off evaluation, simplification or
reordering of formulas is not performed and REDUCE acts only as a formula

509

510 CHAPTER 70. RLFI: REDUCE LATEX FORMULA INTERFACE

parser and the form of the formula output is exactly the same as that of
the input, the only difference remains in the syntax. The mode off lasimp
is designed especially for typesetting of formulas for which the user needs
preservation of their structure. This switch has no meaning if the switch
Latex is off and thus is working only for LATEX output.

For every identifier used in the typeset REDUCE formula the following
properties can be defined by the statement defid:

• its printing symbol (Greek letters can be used).

• the font in which the symbol will be typeset.

• accent which will be typeset above the symbol.

Symbols with indexes are treated in REDUCE as operators. Each index
corresponds to an argument of the operator. The meaning of operator ar-
guments (where one wants to typeset them) is declared by the statement
defindex. This statement causes the arguments to be typeset as subscripts
or superscripts (on left or right-hand side of the operator) or as arguments
of the operator.

The statement mathstyle defines the style of formula typesetting. The
variable laline!* defines the length of output lines.

The fractions with horizontal divide bars are typeset by using the new RE-
DUCE infix operator \. This operator is not algebraically simplified. During
typesetting of powers the checking on the form of the power base and expo-
nent is performed to determine the form of the typeset expression (e.g. sqrt
symbol, using parentheses).

Some special forms can be typeset by using REDUCE prefix operators.
These are as follows:

• int - integral of an expression.

• dint - definite integral of an expression.

• df - derivative of an expression.

• pdf - partial derivative of an expression.

• sum - sum of expressions.

• product - product of expressions.

511

• sqrt - square root of expression.

There are still some problems unsolved in the present version of the interface
as follows:

• breaking the formulas which do not fit on one line.

• automatic decision where to use divide bars in fractions.

• distinction of two- or more-character identifiers from the product of
one-character symbols.

• typesetting of matrices.

512 CHAPTER 70. RLFI: REDUCE LATEX FORMULA INTERFACE

Chapter 71

ROOTS: A REDUCE root
finding package

Stanley L. Kameny
Los Angeles, U.S.A.

The root finding package is designed so that it can be used as an independent
package, or it can be integrated with and called by SOLVE.

71.1 Top Level Functions

The top level functions can be called either as symbolic operators from
algebraic mode, or they can be called directly from symbolic mode with
symbolic mode arguments. Outputs are expressed in forms that print out
correctly in algebraic mode.

71.1.1 Functions that refer to real roots only

The three functions REALROOTS, ISOLATER and RLROOTNO can receive 1, 2 or
3 arguments.

The first argument is the polynomial p, that can be complex and can have
multiple or zero roots. If arg2 and arg3 are not present, all real roots are
found. If the additional arguments are present, they restrict the region of
consideration.

513

514 CHAPTER 71. ROOTS: A REDUCE ROOT FINDING PACKAGE

• If there are two arguments the second is either POSITIVE or NEGA-
TIVE. The function will only find positive or negative roots

• If arguments are (p,arg2,arg3) then Arg2 and Arg3 must be r (a
real number) or EXCLUDE r, or a member of the list POSITIVE,
NEGATIVE, INFINITY, -INFINITY. EXCLUDE r causes the value r
to be excluded from the region. The order of the sequence arg2, arg3
is unimportant. Assuming that arg2 ≤ arg3 when both are numeric,
then
{-INFINITY,INFINITY} (or {}) all roots;
{arg2,NEGATIVE} represents −∞ < r < arg2;
{arg2,POSITIVE} represents arg2 < r <∞;

In each of the following, replacing an arg with EXCLUDE arg converts
the corresponding inclusive ≤ to the exclusive <

{arg2,-INFINITY} represents −∞ < r ≤ arg2;
{arg2,INFINITY} represents arg2 ≤ r <∞;
{arg2,arg3} represents arg2 ≤ r ≤ arg3;

• If zero is in the interval the zero root is included.

REALROOTS finds the real roots of the polynomial p. Precision of com-
putation is guaranteed to be sufficient to separate all real roots in the
specified region. (cf. MULTIROOT for treatment of multiple roots.)

ISOLATER produces a list of rational intervals, each containing a single
real root of the polynomial p, within the specified region, but does not
find the roots.

RLROOTNO computes the number of real roots of p in the specified
region, but does not find the roots.

71.1.2 Functions that return both real and complex roots

ROOTS p; This is the main top level function of the roots package. It
will find all roots, real and complex, of the polynomial p to an accu-
racy that is sufficient to separate them and which is a minimum of
6 decimal places. The value returned by ROOTS is a list of equat-
ions for all roots. In addition, ROOTS stores separate lists of real

71.1. TOP LEVEL FUNCTIONS 515

roots and complex roots in the global variables ROOTSREAL and
ROOTSCOMPLEX.

The output of ROOTS is normally sorted into a standard order: a root
with smaller real part precedes a root with larger real part; roots with
identical real parts are sorted so that larger imaginary part precedes
smaller imaginary part.

However, when a polynomial has been factored algebraically then the
root sorting is applied to each factor separately. This makes the final
resulting order less obvious.

ROOTS AT PREC p; Same as ROOTS except that roots values are re-
turned to a minimum of the number of decimal places equal to the
current system precision.

ROOT VAL p; Same as ROOTS AT PREC, except that instead of re-
turning a list of equations for the roots, a list of the root value is
returned. This is the function that SOLVE calls.

NEARESTROOT(p,s); This top level function finds the root to which
the method converges given the initial starting origin s, which can be
complex. If there are several roots in the vicinity of s and s is not
significantly closer to one root than it is to all others, the convergence
could arrive at a root that is not truly the nearest root. This function
should therefore be used only when the user is certain that there is
only one root in the immediate vicinity of the starting point s.

FIRSTROOT p; ROOTS is called, but only a single root is computed.

71.1.3 Other top level functions

GETROOT(n,rr); If rr has the form of the output of ROOTS, REAL-
ROOTS, or NEARESTROOTS; GETROOT returns the rational, real,
or complex value of the root equation. An error occurs if n < 1 or n >
the number of roots in rr.

MKPOLY rr; This function can be used to reconstruct a polynomial
whose root equation list is rr and whose denominator is 1. Thus one
can verify that if rr := ROOTS p, and rr1 := ROOTS MKPOLY rr,
then rr1 = rr. (This will be true if MULTIROOT and RATROOT are ON,
and ROUNDED is off.) However, MKPOLY rr − NUM p = 0 will be
true if and only if all roots of p have been computed exactly.

516 CHAPTER 71. ROOTS: A REDUCE ROOT FINDING PACKAGE

71.2 Switches Used in Input

The input of polynomials in algebraic mode is sensitive to the switches
COMPLEX, ROUNDED, and ADJPREC. The correct choice of input method is
important since incorrect choices will result in undesirable truncation or
rounding of the input coefficients.

Truncation or rounding may occur if ROUNDED is on and one of the following
is true:

1. a coefficient is entered in floating point form or rational form.

2. COMPLEX is on and a coefficient is imaginary or complex.

Therefore, to avoid undesirable truncation or rounding, then:

1. ROUNDED should be off and input should be in integer or rational form;
or

2. ROUNDED can be on if it is acceptable to truncate or round input to the
current value of system precision; or both ROUNDED and ADJPREC can
be on, in which case system precision will be adjusted to accommodate
the largest coefficient which is input; or

3. if the input contains complex coefficients with very different magnitude
for the real and imaginary parts, then all three switches ROUNDED,
ADJPREC and COMPLEX must be on.

integer and complex modes (off ROUNDED) any real polynomial can be
input using integer coefficients of any size; integer or rational coeffi-
cients can be used to input any real or complex polynomial, indepen-
dent of the setting of the switch COMPLEX. These are the most versatile
input modes, since any real or complex polynomial can be input ex-
actly.

modes rounded and complex-rounded (on ROUNDED) polynomials can
be input using integer coefficients of any size. Floating point coef-
ficients will be truncated or rounded, to a size dependent upon the
system. If complex is on, real coefficients can be input to any preci-
sion using integer form, but coefficients of imaginary parts of complex
coefficients will be rounded or truncated.

71.3. ROOT PACKAGE SWITCHES 517

71.3 Root Package Switches

RATROOT (Default OFF) If RATROOT is on all root equations are output
in rational form. Assuming that the mode is COMPLEX (i.e. ROUNDED
is off,) the root equations are guaranteed to be able to be input into
REDUCE without truncation or rounding errors. (Cf. the function
MKPOLY described above.)

MULTIROOT (Default ON) Whenever the polynomial has complex coef-
ficients or has real coefficients and has multiple roots, as determined
by the Sturm function, the function SQFRF is called automatically to
factor the polynomial into square-free factors. If MULTIROOT is on, the
multiplicity of the roots will be indicated in the output of ROOTS or
REALROOTS by printing the root output repeatedly, according to its
multiplicity. If MULTIROOT is off, each root will be printed once, and
all roots should be normally be distinct. (Two identical roots should
not appear. If the initial precision of the computation or the accuracy
of the output was insufficient to separate two closely-spaced roots, the
program attempts to increase accuracy and/or precision if it detects
equal roots. If, however, the initial accuracy specified was too low,
and it was not possible to separate the roots, the program will abort.)

518 CHAPTER 71. ROOTS: A REDUCE ROOT FINDING PACKAGE

Chapter 72

RSOLVE:
Rational/integer polynomial
solvers

Francis J. Wright
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
Mile End Road

London E1 4NS, England

e–mail: F.J.Wright@QMW.ac.uk

The exact rational zeros of a single univariate polynomial using fast modular
methods can be calculated. The operator r_solve computes all rational
zeros and the operator i_solve computes only integer zeros in a way that
is slightly more efficient than extracting them from the rational zeros.

The first argument is either a univariate polynomial expression or equation
with integer, rational or rounded coefficients. Symbolic coefficients are not
allowed. The argument is simplified to a quotient of integer polynomials
and the denominator is silently ignored.

Subsequent arguments are optional. If the polynomial variable is to be
specified then it must be the first optional argument. However, since the
variable in a non-constant univariate polynomial can be deduced from the
polynomial it is unnecessary to specify it separately, except in the degenerate
case that the first argument simplifies to either 0 or 0 = 0. In this case
the result is returned by i_solve in terms of the operator arbint and by

519

520 CHAPTER 72. RSOLVE: RATIONAL POLYNOMIAL SOLVER

r_solve in terms of the (new) analogous operator arbrat. The operator
i_solve will generally run slightly faster than r_solve.

The (rational or integer) zeros of the first argument are returned as a list
and the default output format is the same as that used by solve. Each
distinct zero is returned in the form of an equation with the variable on
the left and the multiplicities of the zeros are assigned to the variable
root_multiplicities as a list. However, if the switch multiplicities
is turned on then each zero is explicitly included in the solution list the
appropriate number of times (and root_multiplicities has no value).

Optional keyword arguments acting as local switches allow other output
formats. They have the following meanings:

separate: assign the multiplicity list to the global variable
root_multiplicities (the default);

expand or multiplicities: expand the solution list to include multiple
zeros multiple times (the default if the multiplicities switch is on);

together: return each solution as a list whose second element is the multi-
plicity;

nomul: do not compute multiplicities (thereby saving some time);

noeqs: do not return univariate zeros as equations but just as values.

72.1 Examples

r_solve((9x^2 - 16)*(x^2 - 9), x);

{
x =

−4
3
, x = 3, x = −3, x =

4
3

}

i_solve((9x^2 - 16)*(x^2 - 9), x);

{x = 3, x = −3}

Chapter 73

SCOPE: REDUCE source
code optimisation package

J.A. van Hulzen
University of Twente, Department of Computer Science

P.O. Box 217, 7500 AE Enschede
The Netherlands

e–mail: infhvh@cs.utwente.nl

SCOPE is a package to produce optimised versions of algebraic expressions.
It can be used in two distinct fashions, as an adjunct to numerical code
generation (using GENTRAN, described in chapter 42) or as a stand alone
way of investigating structure in an expression.

When used with GENTRAN it is sufficient to set the switch GENTRANOPT
on, and GENTRAN will then use SCOPE internally. This is described in its
internal detail in the GENTRAN manual and the SCOPE documentation.

As a stand-alone package SCOPE provides the operator OPTIMIZE.

A SCOPE application is easily performed and based on the use of the fol-
lowing syntax:

521

522CHAPTER 73. SCOPE: SOURCE CODE OPTIMISATION PACKAGE

<SCOPE application> ⇒ OPTIMIZE <object seq> [INAME <cse prefix>]
<object seq> ⇒ <object>[,<object seq>]
<object> ⇒ <stat> | <alglist> | <alglist production>
<stat> ⇒ <name> <assignment operator> <expression>
<assignment operator> ⇒ := | ::= | ::=: | :=:
<alglist> ⇒ {<eq seq>}
<eq seq> ⇒ <name> = <expression>[,<eq seq>]
<alglist production> ⇒ <name> | <function application>
<name> ⇒ <id> | <id> (<a subscript seq>)
<a subscript seq> ⇒ <a subscript>[,<a subscript seq>]
<a subscript> ⇒ <integer> | <integer infix expression>
<cse prefix> ⇒ <id>

A SCOPE action can be applied on one assignment statement, or to a se-
quence of such statements, separated by commas, or a list of expressions.

The optional use of the INAME extension in an OPTIMIZE command is in-
troduced to allow the user to influence the generation of cse-names. The
cse prefix is an identifier, used to generate cse-names, by extending it with
an integer part. If the cse prefix consists of letters only, the initially selected
integer part is 0. If the user-supplied cse prefix ends with an integer its value
functions as initial integer part.

z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2;

2 2 2 6 2 2 4 2 6 2 2
z := a *b + 10*a *m + a *m + 2*a*b*m + 2*b *m + b *m

OPTIMIZE z:=:z ;

G0 := b*a
G4 := m*m
G1 := G4*b*b
G2 := G4*a*a
G3 := G4*G4
z := G1 + G2 + G0*(2*G3 + G0) + G3*(2*G1 + 10*G2)

it can be desirable to rerun an optimisation request with a restriction on the
minimal size of the righthandsides. The command

SETLENGTH <integer>$

523

can be used to produce rhs’s with a minimal arithmetic complexity, dictated
by the value of its integer argument. Statements, used to rename function
applications, are not affected by the SETLENGTH command. The default
setting is restored with the command

RESETLENGTH$

Example:

SETLENGTH 2$

OPTIMIZE z:=:z INAME s$

2 2
s1 := b *m

2 2
s2 := a *m

4 4
z := (a*b + 2*m)*a*b + 2*(s1 + 5*s2)*m + s1 + s2

Details of the algorithm used is given in the Scope User’s Manual.

524CHAPTER 73. SCOPE: SOURCE CODE OPTIMISATION PACKAGE

Chapter 74

SETS: A basic set theory
package

Francis J. Wright
School of Mathematical Sciences, Queen Mary and Westfield College

University of London
Mile End Road

London E1 4NS, England

e–mail: F.J.Wright@QMW.ac.uk

The SETS package provides set theoretic operations on lists and represents
the results as normal algebraic-mode lists, so that all other REDUCE facili-
ties that apply to lists can still be applied to lists that have been constructed
by explicit set operations.

74.1 Infix operator precedence

The set operators are currently inserted into the standard REDUCE prece-
dence list (see section 2.7) as follows:

or and not member memq = set_eq neq eq >= > <= < subset_eq
subset freeof + - setdiff union intersection * / ^ .

525

526 CHAPTER 74. SETS: A BASIC SET THEORY PACKAGE

74.2 Explicit set representation and MKSET

Explicit sets are represented by lists, and there is a need to convert standard
REDUCE lists into a set by removing duplicates. The package also orders
the members of the set so the standard = predicate will provide set equality.

mkset {1,2,y,x*y,x+y};

{x + y,x*y,y,1,2}

The empty set is represented by the empty list {}.

74.3 Union and intersection

The intersection operator has the name intersect, and set union is denotes
byunion. These operators will probably most commonly be used as binary
infix operators applied to explicit sets,

{1,2,3} union {2,3,4};

{1,2,3,4}

{1,2,3} intersect {2,3,4};

{2,3}

74.4 Symbolic set expressions

If one or more of the arguments evaluates to an unbound identifier then
it is regarded as representing a symbolic implicit set, and the union or in-
tersection will evaluate to an expression that still contains the union or
intersection operator. These two operators are symmetric, and so if they
remain symbolic their arguments will be sorted as for any symmetric opera-
tor. Such symbolic set expressions are simplified, but the simplification may
not be complete in non-trivial cases. For example:

a union b union {} union b union {7,3};

{3,7} union a union b

74.5. SET DIFFERENCE 527

a intersect {};

{}

Intersection distributes over union, which is not applied by default but is
implemented as a rule list assigned to the variable set distribution rule,
e.g.

a intersect (b union c);

(b union c) intersection a

a intersect (b union c) where set_distribution_rule;

a intersection b union a intersection c

74.5 Set difference

The set difference operator is represented by the symbol \ and is always
output using this symbol, although it can also be input using setdiff. It
is a binary operator.

{1,2,3} \ {2,4};

{1,3}

a \ {1,2};

a\{1,2}

a \ a;

{}

74.6 Predicates on sets

Set membership, inclusion or equality are all binary infix operators. They
can only be used within conditional statements or within the argument of the
evalb operator provided by this package, and they cannot remain symbolic

528 CHAPTER 74. SETS: A BASIC SET THEORY PACKAGE

– a predicate that cannot be evaluated to a Boolean value causes a normal
REDUCE error.

The evalb operator provides a convenient shorthand for an if statement
designed purely to display the value of any Boolean expression (not only
predicates defined in this package).

if a = a then true else false;

true

evalb(a = a);

true

if a = b then true else false;

false

74.6.1 Set membership

Set membership is tested by the predicate member. Its left operand is re-
garded as a potential set element and its right operand must evaluate to an
explicit set. There is currently no sense in which the right operand could be
an implicit set.

evalb(1 member {1,2,3});

true

evalb(2 member {1,2} intersect {2,3});

true

evalb(a member b);

***** b invalid as list

74.6.2 Set inclusion

Set inclusion is tested by the predicate subset eq where a subset eq b is
true if the set a is either a subset of or equal to the set b; strict inclusion
is tested by the predicate subset where a subset b is true if the set a is

74.6. PREDICATES ON SETS 529

strictly a subset of the set b and is false is a is equal to b. These predicates
provide some support for symbolic set expressions, but is incomplete.

evalb({1,2} subset_eq {1,2,3});

true

evalb({1,2} subset_eq {1,2});

true

evalb({1,2} subset {1,2});

false

evalb(a subset a union b);

true

530 CHAPTER 74. SETS: A BASIC SET THEORY PACKAGE

evalb(a\b subset a);

true

An undecidable predicate causes a normal REDUCE error, e.g.

evalb(a subset_eq {b});

***** Cannot evaluate a subset_eq {b} as Boolean-valued set
expression

74.6.3 Set equality

As explained above, equality of two sets in canonical form can be reliably
tested by the standard REDUCE equality predicate (=).

Chapter 75

SPARSE: Sparse Matrices

Stephen Scowcroft
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustras̈e 7
D-14195 Berlin-Dahlem, Germany

75.1 Introduction

This package extends the available matrix feature to enable calculations with
sparse matrices. It also provides a selection of functions that are useful in
the world of linear algebra with respect to sparse matrices.
The package is loaded by: load package sparse;

75.2 Sparse Matrix Calculations

To extend the syntax of this class of calculations an expression type sparse
is added. An identifier may be declared a sparse variable by the declaration
sparse. The size of the sparse matrix must be declared explicitly in the
matrix declaration. This declaration SPARSE is similar to the declaration
MATRIX. Once a matrix has been declared a sparse matrix all elements of
the matrix are treated as if they were initialized to 0. When printing out
a sparse matrix only the non-zero elements are printed due to the fact that
only the non-zero elements of the matrix are stored. To assign values to
the elements of the declared sparse matrix we use the same syntax as for

531

532 CHAPTER 75. SPARSE: SPARSE MATRICES

matrices.

sparse aa(10,1),bb(200,200);
aa(1,1):=10;
bb(100,150):=a;

75.3 Linear Algebra Package for Sparse Matrices

Most of the functions of this package are related to the functions of the
linear algebra package LINALG. For further explanation and examples of the
various functions please refer to the LINALG package.

75.3.1 Basic matrix handling

spadd columns spadd rows spadd to columns spadd to rows
spaugment columns spchar poly spcol dim spcopy into
spdiagonal spextend spfind companion spget columns
spget rows sphermitian tp spmatrix augment spmatrix stack
spminor spmult columns spmult rows sppivot
spremove columns spremove rows sprow dim sprows pivot
spstack rows spsub matrix spswap columns spswap entries
spswap rows

75.3.2 Constructors

Functions that create sparse matrices.

spband matrix spblock matrix spchar matrix spcoeff matrix
spcompanion sphessian spjacobian spjordan block
spmake identity

75.3.3 High level algorithms

spchar poly spcholesky spgram schmidt splu decom
sppseudo inverse svd

75.3. LINEAR ALGEBRA PACKAGE FOR SPARSE MATRICES 533

75.3.4 Predicates

matrixp sparsematp squarep symmetricp

534 CHAPTER 75. SPARSE: SPARSE MATRICES

Chapter 76

SPDE: A package for finding
symmetry groups of PDE’s

Fritz Schwarz
GMD, Institut F1

Postfach 1240
5205 St. Augustin, Germany

e–mail: fritz.schwarz@gmd.de

The package SPDE provides a set of functions which may be applied to de-
termine the symmetry group of Lie- or point-symmetries of a given system
of partial differential equations. Preferably it is used interactively on a com-
puter terminal. In many cases the determining system is solved completely
automatically. In some other cases the user has to provide some additional
input information for the solution algorithm to terminate.

76.1 System Functions and Variables

The symmetry analysis of partial differential equations logically falls into
three parts. Accordingly the most important functions provided by the
package are:

Some other useful functions for obtaining various kinds of output are:

SPDE expects a system of differential equations to be defined as the values
of the operator deq and other operators. A simple example follows.

535

536 CHAPTER 76. SPDE: SYMMETRY GROUPS OF PDE’S

Function name Operation
CRESYS(<arguments>) Constructs determining system

SIMPSYS() Solves determining system
RESULT() Prints infinitesimal generators

and commutator table

Table 76.1: SPDE Functions

Function name Operation
PRSYS() Prints determining system
PRGEN() Prints infinitesimal generators

COMM(U,V) Prints commutator of generators U and V

Table 76.2: SPDE Useful Output Functions

load_package spde;

deq 1:=u(1,1)+u(1,2,2);

deq(1) := u(1,2,2) + u(1,1)

CRESYS deq 1;

PRSYS();

GL(1):=2*df(eta(1),u(1),x(2)) - df(xi(2),x(2),2) - df(xi(2),x(1))

GL(2):=df(eta(1),u(1),2) - 2*df(xi(2),u(1),x(2))

GL(3):=df(eta(1),x(2),2) + df(eta(1),x(1))

GL(4):=df(xi(2),u(1),2)

GL(5):=df(xi(2),u(1)) - df(xi(1),u(1),x(2))

GL(6):=2*df(xi(2),x(2)) - df(xi(1),x(2),2) - df(xi(1),x(1))

GL(7):=df(xi(1),u(1),2)

GL(8):=df(xi(1),u(1))

76.1. SYSTEM FUNCTIONS AND VARIABLES 537

GL(9):=df(xi(1),x(2))

The remaining dependencies

xi(2) depends on u(1),x(2),x(1)

xi(1) depends on u(1),x(2),x(1)

eta(1) depends on u(1),x(2),x(1)

A detailed description can be found in the SPDE documentation and exam-
ples.

538 CHAPTER 76. SPDE: SYMMETRY GROUPS OF PDE’S

Chapter 77

SPECFN: Package for special
functions

Chris Cannam & Winfried Neun
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: neun@zib.de

This package is designed to provide algebraic and numeric manipulations of
several common special functions, namely:

• Bernoulli Numbers and Polynomials;

• Euler numbers and Polynomials;

• Fibonacci numbers and Polynomials;

• Stirling Numbers;

• Binomial Coefficients;

• Pochhammer notation;

• The Gamma function;

• The Psi function and its derivatives;

• The Riemann Zeta function;

539

540 CHAPTER 77. SPECFN: PACKAGE FOR SPECIAL FUNCTIONS

• The Bessel functions J and Y of the first and second kinds;

• The modified Bessel functions I and K;

• The Hankel functions H1 and H2;

• The Kummer hypergeometric functions M and U;

• The Beta function, and Struve, Lommel and Whittaker functions;

• The Airy functions;

• The Exponential Integral, the Sine and Cosine Integrals;

• The Hyperbolic Sine and Cosine Integrals;

• The Fresnel Integrals and the Error function;

• The Dilog function;

• The Polylogarithm and Lerch Phi function;

• Hermite Polynomials;

• Jacobi Polynomials;

• Legendre Polynomials;

• Associated Legendre Functions (Spherical and Solid Harmonics);

• Laguerre Polynomials;

• Chebyshev Polynomials;

• Gegenbauer Polynomials;

• Lambert’s ω function;

• Jacobi Elliptic Functions and Integrals;

• 3j symbols, 6j symbols and Clebsch Gordan coefficients;

• and some well-known constants.

77.1. SIMPLIFICATION AND APPROXIMATION 541

77.1 Simplification and Approximation

All of the operators supported by this package have certain algebraic sim-
plification rules to handle special cases, poles, derivatives and so on. Such
rules are applied whenever they are appropriate. However, if the ROUNDED
switch is on, numeric evaluation is also carried out. Unless otherwise stated
below, the result of an application of a special function operator to real or
complex numeric arguments in rounded mode will be approximated numeri-
cally whenever it is possible to do so. All approximations are to the current
precision.

77.2 Constants

Some well-known constants are defined in the special function package. Im-
portant properties of these constants which can be used to define them are
also known. Numerical values are computed at arbitrary precision if the
switch ROUNDED is on.

• Euler Gamma : Euler’s constants, also available as -ψ(1);

• Catalan : Catalan’s constant;

• Khinchin : Khinchin’s constant;

• Golden Ratio : 1+
√

5
2

77.3 Functions

The functions provided by this package are given in the following tables.

542 CHAPTER 77. SPECFN: PACKAGE FOR SPECIAL FUNCTIONS

Function Operator

(n
m

)
Binomial(n,m)

Motzkin(n) Motzkin(n)
Bernoulli(n) or Bn Bernoulli(n)

Euler(n) or En Euler(n)
Fibonacci(n) or Fn Fibonacci(n)

S
(m)
n Stirling1(n,m)

S(m)
n Stirling2(n,m)

B(z, w) Beta(z,w)
Γ(z) Gamma(z)

incomplete Beta Bx(a, b) iBeta(a,b,x)
incomplete Gamma Γ(a, z) iGamma(a,z)

(a)k Pochhammer(a,k)
ψ(z) Psi(z)

ψ(n)(z) Polygamma(n,z)
Riemann’s ζ(z) Zeta(z)

Jν(z) BesselJ(nu,z)
Yν(z) BesselY(nu,z)
Iν(z) BesselI(nu,z)
Kν(z) BesselK(nu,z)

H
(1)
ν (z) Hankel1(nu,z)

H
(2)
ν (z) Hankel2(nu,z)

B(z, w) Beta(z,w)

77.3. FUNCTIONS 543

Function Operator

Hν(z) StruveH(nu,z)
Lν(z) StruveL(nu,z)
sa,b(z) Lommel1(a,b,z)
Sa,b(z) Lommel2(a,b,z)
Ai(z) Airy Ai(z)
Bi(z) Airy Bi(z)
Ai′(z) Airy Aiprime(z)
Bi′(z) Airy Biprime(z)

M(a, b, z) or 1F1(a, b; z) or Φ(a, b; z) KummerM(a,b,z)
U(a, b, z) or z−a

2F0(a, b; z) or Ψ(a, b; z) KummerU(a,b,z)
Mκ,µ(z) WhittakerM(kappa,mu,z)
Wκ,µ(z) WhittakerW(kappa,mu,z)
Bn(x) BernoulliP(n,x)
En(x) EulerP(n,x)

Fibonacci Polynomials Fn(x) FibonacciP(n,x)

C
(α)
n (x) GegenbauerP(n,alpha,x)
Hn(x) HermiteP(n,x)
Ln(x) LaguerreP(n,x)

L
(m)
n (x) LaguerreP(n,m,x)
Pn(x) LegendreP(n,x)

P
(m)
n (x) LegendreP(n,m,x)

P
(α,β)
n (x) JacobiP(n,alpha,beta,x)
Un(x) ChebyshevU(n,x)
Tn(x) ChebyshevT(n,x)

Function Operator

Y m
n (x, y, z, r2) SolidHarmonicY(n,m,x,y,z,r2)

Y m
n (θ, φ) SphericalHarmonicY(n,m,theta,phi)(

j1
m1

j2
m2

j3
m3

)
ThreeJSymbol({j1,m1},{j2,m2},{j3,m3})

(j1m1j2m2|j1j2j3 −m3) Clebsch Gordan({j1,m1},{j2,m2},{j3,m3}){
j1
l1

j2
l2

j3
l3

}
SixJSymbol({j1,j2,j3},{l1,l2,l3})

544 CHAPTER 77. SPECFN: PACKAGE FOR SPECIAL FUNCTIONS

Function Operator

Si(z) Si(z)
si(z) s i(z)
Ci(z) Ci(z)
Shi(z) Shi(z)
Chi(z) Chi(z)
erf(z) erf(z)
erfc(z) erfc(z)
Ei(z) Ei(z)
li(z) li(z)
C(x) Fresnel C(x)
S(x) Fresnel S(x)

dilog(z) dilog(z)
Lin(z) Polylog(n,z)

Lerch Φ(z, s, a) Lerch Phi(z,s,a)

sn(u|m) Jacobisn(u,m)
dn(u|m) Jacobidn(u,m)
cn(u|m) Jacobicn(u,m)
cd(u|m) Jacobicd(u,m)
sd(u|m) Jacobisd(u,m)
nd(u|m) Jacobind(u,m)
dc(u|m) Jacobidc(u,m)
nc(u|m) Jacobinc(u,m)
sc(u|m) Jacobisc(u,m)
ns(u|m) Jacobins(u,m)
ds(u|m) Jacobids(u,m)
cs(u|m) Jacobics(u,m)
F (φ|m) EllipticF(phi,m)
K(m) EllipticK(m)

E(φ|m)orE(m) EllipticE(phi,m) or
EllipticE(m)

H(u|m),H1(u|m),Θ1(u|m),Θ(u|m) EllipticTheta(a,u,m)
θ1(u|m), θ2(u|m), θ3(u|m), θ4(u|m) EllipticTheta(a,u,m)

Z(u|m) Zeta function(u,m)

Lambert ω(z) Lambert W(z)

Chapter 78

SPECFN2: Special special
functions

Victor S. Adamchik
Byelorussian University

Minsk, Belorus

and

Winfried Neun
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: neun@zib.de

The (generalised) hypergeometric functions

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣z
)

are defined in textbooks on special functions.

78.1 REDUCE operator HYPERGEOMETRIC

The operator hypergeometric expects 3 arguments, namely the list of upper
parameters (which may be empty), the list of lower parameters (which may
be empty too), and the argument, e.g:

545

546 CHAPTER 78. SPECFN2: SPECIAL SPECIAL FUNCTIONS

hypergeometric ({},{},z);

Z
E

hypergeometric ({1/2,1},{3/2},-x^2);

ATAN(X)

X

78.2 Enlarging the HYPERGEOMETRIC opera-
tor

Since hundreds of particular cases for the generalised hypergeometric func-
tions can be found in the literature, one cannot expect that all cases are
known to the hypergeometric operator. Nevertheless the set of special
cases can be augmented by adding rules to the REDUCE system, e.g.

let {hypergeometric({1/2,1/2},{3/2},-(~x)^2) => asinh(x)/x};

Chapter 79

SUM: A package for series
summation

Fujio Kako
Department of Mathematics, Faculty of Science

Hiroshima University
Hiroshima 730, JAPAN

e–mail: kako@ics.nara-wu.ac.jp

This package implements the Gosper algorithm for the summation of series.
It defines operators SUM and PROD. The operator SUM returns the indef-
inite or definite summation of a given expression, and the operator PROD
returns the product of the given expression. These are used with the syntax:

SUM(EXPR:expression, K:kernel, [LOLIM:expression [, UPLIM:expression]])
PROD(EXPR:expression, K:kernel, [LOLIM:expression [, UPLIM:expression]])

If there is no closed form solution, these operators return the input un-
changed. UPLIM and LOLIM are optional parameters specifying the lower
limit and upper limit of the summation (or product), respectively. If UP-
LIM is not supplied, the upper limit is taken as K (the summation variable
itself).

For example:

sum(n**3,n);

sum(a+k*r,k,0,n-1);

547

548 CHAPTER 79. SUM: A PACKAGE FOR SERIES SUMMATION

sum(1/((p+(k-1)*q)*(p+k*q)),k,1,n+1);

prod(k/(k-2),k);

Gosper’s algorithm succeeds whenever the ratio

∑n
k=n0

f(k)
∑n−1

k=n0
f(k)

is a rational function of n. The function SUM!-SQ handles basic functions
such as polynomials, rational functions and exponentials.

The trigonometric functions sin, cos, etc. are converted to exponentials and
then Gosper’s algorithm is applied. The result is converted back into sin,
cos, sinh and cosh.

Summations of logarithms or products of exponentials are treated by the
formula:

n∑

k=n0

log f(k) = log
n∏

k=n0

f(k)

n∏

k=n0

exp f(k) = exp
n∑

k=n0

f(k)

Other functions can be summed by providing LET rules which must relate
the functions evaluated at k and k − 1 (k being the summation variable).

operator f,gg; % gg used to avoid possible conflict with high energy
% physics operator.

for all n,m such that fixp m let
f(n+m)=if m > 0 then f(n+m-1)*(b*(n+m)**2+c*(n+m)+d)

else f(n+m+1)/(b*(n+m+1)**2+c*(n+m+1)+d);

for all n,m such that fixp m let
gg(n+m)=if m > 0 then gg(n+m-1)*(b*(n+m)**2+c*(n+m)+e)

else gg(n+m+1)/(b*(n+m+1)**2+c*(n+m+1)+e);

549

sum(f(n-1)/gg(n),n);

f(n)

gg(n)*(d - e)

550 CHAPTER 79. SUM: A PACKAGE FOR SERIES SUMMATION

Chapter 80

SUSY2: Super Symmetry

Ziemowit Popowicz
Institute of Theoretical Physics, University of Wroclaw

pl. M. Borna 9 50-205 Wroclaw, Poland
e-mail: ziemek@ift.uni.wroc.pl

This package deals with supersymmetric functions and with algebra of su-
persymmetric operators in the extended N=2 as well as in the nonextended
N=1 supersymmetry. It allows us to make the realization of SuSy algebra
of differential operators, compute the gradients of given SuSy Hamiltonians
and to obtain SuSy version of soliton equations using the SuSy Lax ap-
proach. There are also many additional procedures encountered in the SuSy
soliton approach, as for example: conjugation of a given SuSy operator,
computation of general form of SuSy Hamiltonians (up to SuSy-divergence
equivalence), checking of the validity of the Jacobi identity for some SuSy
Hamiltonian operators.

To load the package, type load susy2;

For full explanation and further examples, please refer to the detailed doc-
umentation and the susy2.tst which comes with this package.

551

552 CHAPTER 80. SUSY2: SUPER SYMMETRY

80.1 Operators

80.1.1 Operators for constructing Objects

The superfunctions are represented in this package by BOS(f,n,m) for super-
bosons and FER(f,n,m) for superfermions. The first index denotes the name
of the given superobject, the second denotes the value of SuSy derivatives,
and the last gives the value of usual derivative.
In addition to the definitions of the superfunctions, also the inverse and the
exponential of superbosons can be defined (where the inverse is defined as
BOS(f,n,m,-1) with the property bos(f,n,m,-1)*bos(f,n,m,1)=1). The expo-
nential of the superboson function is AXP(BOS(f,0,0)).
The operator FUN and GRAS denote the classical and the Grassmann func-
tion.
Three different realizations of supersymmetric derivatives are implemented.
To select traditional realization declare LET TRAD. In order to select chiral
or chiral1 algebra declare LET CHIRAL or LET CHIRAL1. For usual differen-
tiation the operator D(1) stands for right and D(2) for left differentiation.
SuSy derivatives are denoted as der and del. DER and DEL are one compo-
nent argument operations and represent the left and right operators. The
action of these operators on the superfunctions depends on the choice of the
supersymmetry algebra.

BOS(f,n,m) BOS(f,n,m,k) FER(f,n,m) AXP(f) FUN(f,n) FUN(f,n,m)
GRAS(f,n) AXX(f) D(1) D(2) D(3) D(-1)
D(-2) D(-3) D(-4) DR(-n) DER(1) DER(2)
DEL(1) DEL(2)

Example:

1: load susy2;

2: bos(f,0,2,-2)*axp(fer(k,1,2))*del(1); %first susy derivative

2*fer(f,1,2)*bos(f,0,2,-3)*axp(fer(k,1,2))

- bos(k,0,3)*bos(f,0,2,-2)*axp(fer(k,1,2))

+ del(1)*bos(f,0,2,-2)*axp(fer(k,1,2))

80.1. OPERATORS 553

3: sub(del=der,ws);

bos(f,0,2,-2)*axp(fer(k,1,2))*der(1)

80.1.2 Commands

There are plenty of operators on superfunction objects. Some of them are
introduced here briefly.

• By using the operators FPART, BPART, BFPART and BF PART it is
possible to compute the coordinates of the arbitrary SuSy
expressions.

• With W COMB, FCOMB and PSE ELE there are three operators to be able
to construct different possible combinations of superfunctions and
super-pseudo-differential elements with the given conformal
dimensions .

• The three operators S PART, D PART and SD PART are implemented to
obtain the components of the (pseudo)-SuSy element.

• RZUT is used to obtain the projection onto the invariant subspace
(with respect to commutator) of algebra of pseudo-SuSy-differential
algebra.

• To obtain the list of the same combinations of some superfunctions
and (SuSy) derivatives from some given operator-valued expression,
the operators LYST, LYST1 and LYST2 are constructed.

554 CHAPTER 80. SUSY2: SUPER SYMMETRY

FPART(expression) BPART(expression)
BF PART(expression,n) B PART(expression,n)
PR(n,expression) PG(n,expression)
W COMB({{f,n,x},...},m,z,y) FCOMB({{f,n,x},...},m,z,y)
PSE ELE(n,{{f,n},...},z)
S PART(expression,n) D PART(expression,n)
SD PART(expression,n,m) CP(expression)
RZUT(expression,n) LYST(expression)
LYST1(expression) LYST2(expression)
CHAN(expression) ODWA(expression)
GRA(expression,f) DYW(expression,f)
WAR(expression,f) DOT HAM(equations,expression)
N GAT(operator,list) FJACOB(operator,list)
JACOB(operator,list,{α, β, γ}) MACIERZ(expression,x,y)
S INT(number,expression,list)

Example:

4: xxx:=fer(f,2,3);

xxx := fer(f,2,3)

5: fpart(xxx); % all components

- fun(f0,4) + 2*fun(f1,3) gras(ff2,4)
{gras(ff2,3), ----------------------------,0, -------------}

2 2
6: bpart(xxx); % bosonic sector

- fun(f0,4) + 2*fun(f1,3)
{0,----------------------------,0,0}

2

9: b_part(xxx,1); %the given component in the bosonic sector

- fun(f0,4) + 2*fun(f1,3)

2

80.2. OPTIONS 555

80.2 Options

The are several options defined in this package. Please note that they are
activated by typing let <option>. See also above.
The TRAD, CHIRAL and CHIRAL1 select the different realizations of the
supersymmetric derivatives. By default traditional algebra is selected.
If the command LET INVERSE is used, then three indices bos objects are
transformed onto four indices objects.

TRAD CHIRAL CHIRAL1 INVERSE DRR NODRR

Example:

10: let inverse;

11: bos(f,0,3)**3*bos(k,3,1)**40*bos(f,0,3,-2);

bos(k,3,1,40)*bos(f,0,3,1);

12: clearrules inverse;

13: xxx:=fer(f,1,2)*bos(k,0,2,-2);

xxx := fer(f,1,2)*bos(k,0,2,-2)

14: pr(1,xxx); % first susy derivative

- 2*fer(k,1,2)*fer(f,1,2)*bos(k,0,2,-3) + bos(k,0,2,-2)*bos(f,0,3)

15: pr(2,xxx); %second susy derivative

- 2*fer(k,2,2)*fer(f,1,2)*bos(k,0,2,-3) - bos(k,0,2,-2)*bos(f,3,2)

16: clearrules trad;

17: let chiral; % changing to chiral algebra

18: pr(1,xxx);

- 2*fer(k,1,2)*fer(f,1,2)*bos(k,0,2,-3)

556 CHAPTER 80. SUSY2: SUPER SYMMETRY

Chapter 81

SYMMETRY: Symmetric
matrices

Karin Gatermann
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: gatermann@zib.de

The SYMMETRY package provides procedures that compute
symmetry-adapted bases and block diagonal forms of matrices which have
the symmetry of a group.

81.1 Operators for linear representations

The data structure for a linear representation, a representation, is a list
consisting of the group identifier and equations which assign matrices to
the generators of the group.

Example:

rr:=mat((0,1,0,0),
(0,0,1,0),
(0,0,0,1),
(1,0,0,0));

sp:=mat((0,1,0,0),

557

558 CHAPTER 81. SYMMETRY: SYMMETRIC MATRICES

(1,0,0,0),
(0,0,0,1),
(0,0,1,0));

representation:={D4,rD4=rr,sD4=sp};

For orthogonal (unitarian) representations the following operators are
available.

canonicaldecomposition(representation);

returns an equation giving the canonical decomposition of the linear
representation.

character(representation);

computes the character of the linear representation. The result is a list of
the group identifier and of lists consisting of a list of group elements in one
equivalence class and a real or complex number.

symmetrybasis(representation,nr);

computes the basis of the isotypic component corresponding to the
irreducible representation of type nr. If the nr-th irreducible representation
is multidimensional, the basis is symmetry adapted. The output is a
matrix.

symmetrybasispart(representation,nr);

is similar as symmetrybasis, but for multidimensional irreducible
representations only the first part of the symmetry adapted basis is
computed.

allsymmetrybases(representation);

is similar as symmetrybasis and symmetrybasispart, but the bases of all
isotypic components are computed and thus a complete coordinate
transformation is returned.

diagonalize(matrix,representation);

returns the block diagonal form of matrix which has the symmetry of the
given linear representation. Otherwise an error message occurs.

81.2. DISPLAY OPERATORS 559

81.2 Display Operators

Access is provided to the information for a group, and for adding
knowledge for other groups. This is explained in detail in the Symmetry
on-line documentation.

560 CHAPTER 81. SYMMETRY: SYMMETRIC MATRICES

Chapter 82

TAYLOR: Manipulation of
Taylor series

Rainer Schöpf
Zentrum für Datenverarbeitung der Universität Mainz

Anselm-Franz-von-Bentzel-Weg 12
D-55055 Mainz, Germany

e–mail: Schoepf@Uni-Mainz.DE

The TAYLOR package of REDUCE allow Taylor expansion in one or
several variables, and efficient manipulation of the resulting Taylor series.
Capabilities include basic operations (addition, subtraction, multiplication
and division), and also application of certain algebraic and transcendental
functions. To a certain extent, Laurent and Puiseux expansions can be
performed as well. In many cases, separable singularities are detected and
factored out.

TAYLOR(EXP:exprn[,VAR:kernel, VAR0:exprn,ORDER:integer]. . .):exprn

where EXP is the expression to be expanded. It can be any REDUCE
object, even an expression containing other Taylor kernels. VAR is the
kernel with respect to which EXP is to be expanded. VAR0 denotes the
point about which and ORDER the order up to which expansion is to take
place. If more than one (VAR, VAR0, ORDER) triple is specified TAYLOR
will expand its first argument independently with respect to each variable
in turn. For example,

taylor(e^(x^2+y^2),x,0,2,y,0,2);

561

562 CHAPTER 82. TAYLOR: MANIPULATION OF TAYLOR SERIES

will calculate the Taylor expansion up to order X2 ∗ Y 2. Note that once
the expansion has been done it is not possible to calculate higher orders.
Instead of a kernel, VAR may also be a list of kernels. In this case
expansion will take place in a way so that the sum of the degrees of the
kernels does not exceed ORDER. If VAR0 evaluates to the special
identifier INFINITY TAYLOR tries to expand EXP in a series in 1/VAR.

The expansion is performed variable per variable, i.e. in the example above
by first expanding exp(x2 + y2) with respect to x and then expanding
every coefficient with respect to y.

There are two extra operators to compute the Taylor expansions of
implicit and inverse functions:

IMPLICIT TAYLOR(F:exprn,VAR1,VAR2:kernel,

VAR10,VAR20:exprn, ORDER:integer):exprn

takes a function F depending on two variables VAR1 and VAR2 and
computes the Taylor series of the implicit function VAR2(VAR1) given by
the equation F(VAR1,VAR2) = 0. For example,

implicit_taylor(x^2 + y^2 - 1,x,y,0,1,5);

INVERSE TAYLOR(F:exprn,VAR1,VAR2:kernel,

VAR10:exprn, ORDER:integer):exprn

takes a function F depending on VAR1 and computes the Taylor series of
the inverse of F with respect to VAR2. For example,

inverse_taylor(exp(x)-1,x,y,0,8);

When a Taylor kernel is printed, only a certain number of (non-zero)
coefficients are shown. If there are more, an expression of the form
(n terms) is printed to indicate how many non-zero terms have been
suppressed. The number of terms printed is given by the value of the
shared algebraic variable TAYLORPRINTTERMS. Allowed values are integers
and the special identifier ALL. The latter setting specifies that all terms are
to be printed. The default setting is 5.

If the switch TAYLORKEEPORIGINAL is set to ON the original expression EXP
is kept for later reference. It can be recovered by means of the operator

563

TAYLORORIGINAL(EXP:exprn):exprn

An error is signalled if EXP is not a Taylor kernel or if the original
expression was not kept, i.e. if TAYLORKEEPORIGINAL was OFF during
expansion. The template of a Taylor kernel, i.e. the list of all variables
with respect to which expansion took place together with expansion point
and order can be extracted using

TAYLORTEMPLATE(EXP:exprn):list

This returns a list of lists with the three elements (VAR,VAR0,ORDER).
As with TAYLORORIGINAL, an error is signalled if EXP is not a Taylor
kernel.

TAYLORTOSTANDARD(EXP:exprn):exprn

converts all Taylor kernels in EXP into standard form and resimplifies the
result.

TAYLORSERIESP(EXP:exprn):boolean

may be used to determine if EXP is a Taylor kernel. Note that this
operator is subject to the same restrictions as, e.g., ORDP or NUMBERP,
i.e. it may only be used in boolean expressions in IF or LET statements.
Finally there is

TAYLORCOMBINE(EXP:exprn):exprn

which tries to combine all Taylor kernels found in EXP into one.
Operations currently possible are:

• Addition, subtraction, multiplication, and division.

• Roots, exponentials, and logarithms.

• Trigonometric and hyperbolic functions and their inverses.

Application of unary operators like LOG and ATAN will nearly always
succeed. For binary operations their arguments have to be Taylor kernels
with the same template. This means that the expansion variable and the
expansion point must match. Expansion order is not so important,
different order usually means that one of them is truncated before doing
the operation.

If TAYLORKEEPORIGINAL is set to ON and if all Taylor kernels in exp have
their original expressions kept TAYLORCOMBINE will also combine these and

564 CHAPTER 82. TAYLOR: MANIPULATION OF TAYLOR SERIES

store the result as the original expression of the resulting Taylor kernel.
There is also the switch TAYLORAUTOEXPAND (see below).

There are a few restrictions to avoid mathematically undefined expressions:
it is not possible to take the logarithm of a Taylor kernel which has no
terms (i.e. is zero), or to divide by such a beast. There are some provisions
made to detect singularities during expansion: poles that arise because the
denominator has zeros at the expansion point are detected and properly
treated, i.e. the Taylor kernel will start with a negative power. (This is
accomplished by expanding numerator and denominator separately and
combining the results.) Essential singularities of the known functions (see
above) are handled correctly.

Differentiation of a Taylor expression is possible. Differentiating with
respect to one of the Taylor variables will decrease the order by one.

Substitution is a bit restricted: Taylor variables can only be replaced by
other kernels. There is one exception to this rule: one can always
substitute a Taylor variable by an expression that evaluates to a constant.
Note that REDUCE will not always be able to determine that an
expression is constant.

Only simple Taylor kernels can be integrated. More complicated
expressions that contain Taylor kernels as parts of themselves are
automatically converted into a standard representation by means of the
TAYLORTOSTANDARD operator. In this case a suitable warning is
printed.

It is possible to revert a Taylor series of a function f , i.e., to compute the
first terms of the expansion of the inverse of f from the expansion of f .
This is done by the operator

TAYLORREVERT(EXP:exprn,OLDVAR:kernel, NEWVAR:kernel):exprn

EXP must evaluate to a Taylor kernel with OLDVAR being one of its
expansion variables. Example:

taylor (u - u**2, u, 0, 5);
taylorrevert (ws, u, x);

This package introduces a number of new switches:

• If TAYLORAUTOCOMBINE is set to ON REDUCE automatically combines
Taylor expressions during the simplification process. This is

565

equivalent to applying TAYLORCOMBINE to every expression that
contains Taylor kernels. Default is ON.

• TAYLORAUTOEXPAND makes Taylor expressions “contagious” in the
sense that TAYLORCOMBINE tries to Taylor expand all non-Taylor
subexpressions and to combine the result with the rest. Default is
OFF.

• TAYLORKEEPORIGINAL, if set to ON, forces the package to keep the
original expression, i.e. the expression that was Taylor expanded. All
operations performed on the Taylor kernels are also applied to this
expression which can be recovered using the operator
TAYLORORIGINAL. Default is OFF.

• TAYLORPRINTORDER, if set to ON, causes the remainder to be printed
in big-O notation. Otherwise, three dots are printed. Default is ON.

566 CHAPTER 82. TAYLOR: MANIPULATION OF TAYLOR SERIES

Chapter 83

TPS: A truncated power
series package

Alan Barnes
Dept. of Computer Science and Applied Mathematics

Aston University, Aston Triangle,
Birmingham B4 7ET, England

e–mail: barnesa@aston.ac.uk

and

Julian Padget
School of Mathematics, University of Bath

Bath, BA2 7AY, England

e–mail: jap@maths.bath.ac.uk

This package implements formal Laurent series expansions in one variable
using the domain mechanism of REDUCE. This means that power series
objects can be added, multiplied, differentiated etc. like other first class
objects in the system. A lazy evaluation scheme is used in the package and
thus terms of the series are not evaluated until they are required for
printing or for use in calculating terms in other power series. The series
are extendible giving the user the impression that the full infinite series is
being manipulated. The errors that can sometimes occur using series that
are truncated at some fixed depth (for example when a term in the
required series depends on terms of an intermediate series beyond the
truncation depth) are thus avoided.

567

568 CHAPTER 83. TPS: A TRUNCATED POWER SERIES PACKAGE

83.1 Basic Truncated Power Series

83.1.1 PS Operator

Syntax:

PS(EXPRN:algebraic,DEPVAR:kernel,ABOUT:algebraic):ps object

The PS operator returns a power series object representing the univariate
formal power series expansion of EXPRN with respect to the dependent
variable DEPVAR about the expansion point ABOUT. EXPRN may itself
contain power series objects.

The algebraic expression ABOUT should simplify to an expression which is
independent of the dependent variable DEPVAR, otherwise an error will
result. If ABOUT is the identifier INFINITY then the power series
expansion about DEPVAR = ∞ is obtained in ascending powers of
1/DEPVAR.

The power series object representing EXPRN is compiled and then a
number of terms of the power series expansion are evaluated. The
expansion is carried out as far as the value specified by PSEXPLIM. If,
subsequently, the value of PSEXPLIM is increased, sufficient information is
stored in the power series object to enable the additional terms to be
calculated without recalculating the terms already obtained.

If the function has a pole at the expansion point then the correct Laurent
series expansion will be produced.

The following examples are valid uses of PS:

psexplim 6;
ps(log x,x,1);
ps(e**(sin x),x,0);
ps(x/(1+x),x,infinity);
ps(sin x/(1-cos x),x,0);

New user-defined functions may be expanded provided the user provides
LET rules giving

1. the value of the function at the expansion point

2. a differentiation rule for the new function.

83.1. BASIC TRUNCATED POWER SERIES 569

For example

operator sech;
forall x let df(sech x,x)= - sech x * tanh x;
let sech 0 = 1;
ps(sech(x**2),x,0);

The power series expansion of an integral may also be obtained (even if
REDUCE cannot evaluate the integral in closed form). An example of this
is

ps(int(e**x/x,x),x,1);

Note that if the integration variable is the same as the expansion variable
then REDUCE’s integration package is not called; if on the other hand the
two variables are different then the integrator is called to integrate each of
the coefficients in the power series expansion of the integrand. The
constant of integration is zero by default. If another value is desired, then
the shared variable PSINTCONST should be set to required value.

83.1.2 PSORDLIM Operator

Syntax:

PSORDLIM(UPTO:integer):integer

or

PSORDLIM():integer

An internal variable is set to the value of UPTO (which should evaluate to
an integer). The value returned is the previous value of the variable. The
default value is 15.

If PSORDLIM is called with no argument, the current value is returned.

The significance of this control is that the system attempts to find the
order of the power series required, that is the order is the degree of the
first non-zero term in the power series. If the order is greater than the
value of this variable an error message is given and the computation
aborts. This prevents infinite loops in examples such as

ps(1 - (sin x)**2 - (cos x)**2,x,0);

570 CHAPTER 83. TPS: A TRUNCATED POWER SERIES PACKAGE

where the expression being expanded is identically zero, but is not
recognised as such by REDUCE.

83.2 Controlling Power Series

83.2.1 PSTERM Operator

Syntax:

PSTERM(TPS:power series object,NTH:integer):algebraic

The operator PSTERM returns the NTH term of the existing power series
object TPS. If NTH does not evaluate to an integer or TPS to a power
series object an error results. It should be noted that an integer is treated
as a power series.

83.2.2 PSORDER Operator

Syntax:

PSORDER(TPS:power series object):integer

The operator PSORDER returns the order, that is the degree of the first
non-zero term, of the power series object TPS. TPS should evaluate to a
power series object or an error results. If TPS is zero, the identifier
UNDEFINED is returned.

83.2.3 PSSETORDER Operator

Syntax:

PSSETORDER(TPS:power series object, ORD:integer):integer

The operator PSSETORDER sets the order of the power series TPS to the
value ORD, which should evaluate to an integer. If TPS does not evaluate
to a power series object, then an error occurs. The value returned by this
operator is the previous order of TPS, or 0 if the order of TPS was
undefined. This operator is useful for setting the order of the power series
of a function defined by a differential equation in cases where the power
series package is inadequate to determine the order automatically.

83.2. CONTROLLING POWER SERIES 571

83.2.4 PSDEPVAR Operator

Syntax:

PSDEPVAR(TPS:power series object):identifier

The operator PSDEPVAR returns the expansion variable of the power series
object TPS. TPS should evaluate to a power series object or an integer,
otherwise an error results. If TPS is an integer, the identifier UNDEFINED is
returned.

83.2.5 PSEXPANSIONPT operator

Syntax:

PSEXPANSIONPT(TPS:power series object):algebraic

The operator PSEXPANSIONPT returns the expansion point of the power
series object TPS. TPS should evaluate to a power series object or an
integer, otherwise an error results. If TPS is integer, the identifier
UNDEFINED is returned. If the expansion is about infinity, the identifier
INFINITY is returned.

83.2.6 PSFUNCTION Operator

Syntax:

PSFUNCTION(TPS:power series object):algebraic

The operator PSFUNCTION returns the function whose expansion gave rise
to the power series object TPS. TPS should evaluate to a power series
object or an integer, otherwise an error results.

83.2.7 PSCHANGEVAR Operator

Syntax:

PSCHANGEVAR(TPS:power series object, X:kernel):power series object

The operator PSCHANGEVAR changes the dependent variable of the power
series object TPS to the variable X. TPS should evaluate to a power series
object and X to a kernel, otherwise an error results. Also X should not

572 CHAPTER 83. TPS: A TRUNCATED POWER SERIES PACKAGE

appear as a parameter in TPS. The power series with the new dependent
variable is returned.

83.2.8 PSREVERSE Operator

Syntax:

PSREVERSE(TPS:power series object):power series

Power series reversion. The power series TPS is functionally inverted. Four
cases arise:

1. If the order of the series is 1, then the expansion point of the
inverted series is 0.

2. If the order is 0 and if the first order term in TPS is non-zero, then
the expansion point of the inverted series is taken to be the
coefficient of the zeroth order term in TPS.

3. If the order is -1 the expansion point of the inverted series is the
point at infinity. In all other cases a REDUCE error is reported
because the series cannot be inverted as a power series. Puiseux
expansion would be required to handle these cases.

4. If the expansion point of TPS is finite it becomes the zeroth order
term in the inverted series. For expansion about 0 or the point at
infinity the order of the inverted series is one.

If TPS is not a power series object after evaluation an error results.

Here are some examples:

ps(sin x,x,0);
psreverse(ws); % produces series for asin x about x=0.
ps(exp x,x,0);
psreverse ws; % produces series for log x about x=1.
ps(sin(1/x),x,infinity);
psreverse(ws); % produces series for 1/asin(x) about x=0.

83.2.9 PSCOMPOSE Operator

Syntax:

83.2. CONTROLLING POWER SERIES 573

PSCOMPOSE(TPS1:power series, TPS2:power series):power series

PSCOMPOSE performs power series composition. The power series TPS1 and
TPS2 are functionally composed. That is to say that TPS2 is substituted
for the expansion variable in TPS1 and the result expressed as a power
series. The dependent variable and expansion point of the result coincide
with those of TPS2. The following conditions apply to power series
composition:

1. If the expansion point of TPS1 is 0 then the order of the TPS2 must
be at least 1.

2. If the expansion point of TPS1 is finite, it should coincide with the
coefficient of the zeroth order term in TPS2. The order of TPS2
should also be non-negative in this case.

3. If the expansion point of TPS1 is the point at infinity then the order
of TPS2 must be less than or equal to -1.

If these conditions do not hold the series cannot be composed (with the
current algorithm terms of the inverted series would involve infinite sums)
and a REDUCE error occurs.

Examples of power series composition include the following.

a:=ps(exp y,y,0); b:=ps(sin x,x,0);
pscompose(a,b);
% Produces the power series expansion of exp(sin x)
% about x=0.

a:=ps(exp z,z,1); b:=ps(cos x,x,0);
pscompose(a,b);
% Produces the power series expansion of exp(cos x)
% about x=0.

a:=ps(cos(1/x),x,infinity); b:=ps(1/sin x,x,0);
pscompose(a,b);
% Produces the power series expansion of cos(sin x)
% about x=0.

83.2.10 PSSUM Operator

Syntax:

574 CHAPTER 83. TPS: A TRUNCATED POWER SERIES PACKAGE

PSSUM(J:kernel = LOWLIM:integer, COEFF:algebraic, X:kernel,
ABOUT:algebraic, POWER:algebraic):power series

The formal power series sum for J from LOWLIM to INFINITY of

COEFF*(X-ABOUT)**POWER

or if ABOUT is given as INFINITY

COEFF*(1/X)**POWER

is constructed and returned. This enables power series whose general term
is known to be constructed and manipulated using the other procedures of
the power series package.

J and X should be distinct simple kernels. The algebraics ABOUT,
COEFF and POWER should not depend on the expansion variable X,
similarly the algebraic ABOUT should not depend on the summation
variable J. The algebraic POWER should be a strictly increasing integer
valued function of J for J in the range LOWLIM to INFINITY.

pssum(n=0,1,x,0,n*n);
% Produces the power series summation for n=0 to
% infinity of x**(n*n).

pssum(m=1,(-1)**(m-1)/(2m-1),y,1,2m-1);
% Produces the power series expansion of atan(y-1)
% about y=1.

pssum(j=1,-1/j,x,infinity,j);
% Produces the power series expansion of log(1-1/x)
% about the point at infinity.

pssum(n=0,1,x,0,2n**2+3n) + pssum(n=1,1,x,0,2n**2-3n);
% Produces the power series summation for n=-infinity
% to +infinity of x**(2n**2+3n).

83.2.11 Arithmetic Operations

As power series objects are domain elements they may be combined
together in algebraic expressions in algebraic mode of REDUCE in the

83.3. RESTRICTIONS AND KNOWN BUGS 575

normal way.

For example if A and B are power series objects then the commands such
as:

a*b;
a**2+b**2;

will produce power series objects representing the product and the sum of
the squares of the power series objects A and B respectively.

83.2.12 Differentiation

If A is a power series object depending on X then the input df(a,x); will
produce the power series expansion of the derivative of A with respect to
X.

83.3 Restrictions and Known Bugs

If A and B are power series objects and X is a variable which evaluates to
itself then currently expressions such as a/b and a*x do not evaluate to a
single power series object (although the results are in each case formally
valid). Instead use ps(a/b,x,0) and ps(a*x,x,0) etc..

576 CHAPTER 83. TPS: A TRUNCATED POWER SERIES PACKAGE

Chapter 84

TRI: TeX REDUCE
interface

Werner Antweiler, Andreas Strotmann and Volker Winkelmann
University of Cologne Computer Center, Abt. Anwendungssoftware, Robert-Koch-Straße

10
5000 K”oln 41, Germany

e–mail: antweil@epas.utoronto.ca strotmann@rrz.uni-koeln.de
winkelmann@rrz.uni-koeln.de

The REDUCE-TEX-Interface incorporates three levels of TEX output:
without line breaking, with line breaking, and with line breaking plus
indentation.

During loading the package some default initialisations are performed. The
default page width is set to 15 centimetres, the tolerance for page breaking
is set to 20 by default. Moreover, TRI is enabled to translate Greek names,
e.g. TAU or PSI, into equivalent TEX symbols, e.g. τ or ψ, respectively.
Letters are printed lowercase as defined through assertion of the set
LOWERCASE.

84.1 Switches for TRI

The three TRI modes can be selected by switches, which can be used
alternatively and incrementally. Switching TEX on gives standard
TEX-output; switching TEXBREAK gives broken TEX-output, and TEXINDENT
to give broken TEX-output plus indentation. Thus the three levels of TRI

577

578 CHAPTER 84. TRI: TEX REDUCE INTERFACE

are enabled or disabled according to:

On TeX; % switch TeX is on
On TeXBreak; % switches TeX and TeXBreak are on
On TeXIndent; % switches TeX, TeXBreak and TeXIndent are on
Off TeXIndent; % switch TeXIndent is off
Off TeXBreak; % switches TeXBreak and TeXIndent are off
Off TeX; % all three switches are off

How TRI breaks multiple lines of TEX-code may be controlled by setting
values for page width and tolerance

TeXsetbreak(page_width, tolerance);

Page width is measured in millimetres, and tolerance is a positive integer
in the closed interval [0 . . . 10000]. The higher the tolerance, the more
breakpoints become feasible. A tolerance of 0 means that actually no
breakpoint will be considered feasible, while a value of 10000 allows any
breakpoint to be considered feasible. For line-breaking without
indentation, suitable values for the tolerance lie between 10 and 100. As a
rule of thumb, use higher values the deeper the term is nested. If using
indentation, use much higher tolerance values; reasonable values for
tolerance here lie between 700 and 1500.

84.1.1 Adding Translations

Sometimes it is desirable to add special REDUCE-symbol-to-TEX-item
translations. For such a task TRI provides a function TeXlet which binds
any REDUCE-symbol to one of the predefined TEX-items. A call to this
function has the following syntax:

TeXlet(REDUCE-symbol, TEX-item);

For example

TeXlet(’velocity,’!v);
TeXlet(’gamma,\verb|’!\!G!a!m!m!a! |);
TeXlet(’acceleration,\verb|’!\!v!a!r!t!h!e!t!a! |);

Besides this method of single assertions one can assert one of (currently)
two standard sets providing substitutions for lowercase and Greek letters.
These sets are loaded by default. These sets can be switched on or off

84.2. EXAMPLES OF USE 579

using the functions

TeXassertset setname;
TeXretractset setname;

where the setnames currently defined are ’GREEK and ’LOWERCASE.

There are facilities for creating other sets of substitutions, using the
function TeXitem.

84.2 Examples of Use

Some representative examples demonstrate the capabilities of TRI.

load_package tri;
% TeX-REDUCE-Interface 0.50
% set greek asserted
% set lowercase asserted
% \tolerance 10
% \hsize=150mm

TeXsetbreak(150,250);
% \tolerance 250
% \hsize=150mm

on TeXindent;

(x+y)^16/(v-w)^16;
$$\displaylines{\qdd
\(x^{16}

+16\cdot x^{15}\cdot y
+120\cdot x^{14}\cdot y^{2}
+560\cdot x^{13}\cdot y^{3}
+1820\cdot x^{12}\cdot y^{4}
+4368\cdot x^{11}\cdot y^{5}\nl
\off{327680}
+8008\cdot x^{10}\cdot y^{6}
+11440\cdot x^{9}\cdot y^{7}
+12870\cdot x^{8}\cdot y^{8}
+11440\cdot x^{7}\cdot y^{9}
+8008\cdot x^{6}\cdot y^{10}\nl
\off{327680}
+4368\cdot x^{5}\cdot y^{11}

580 CHAPTER 84. TRI: TEX REDUCE INTERFACE

+1820\cdot x^{4}\cdot y^{12}
+560\cdot x^{3}\cdot y^{13}
+120\cdot x^{2}\cdot y^{14}
+16\cdot x\cdot y^{15}
+y^{16}

\)
/\nl
\(v^{16}

-16\cdot v^{15}\cdot w
+120\cdot v^{14}\cdot w^{2}
-560\cdot v^{13}\cdot w^{3}
+1820\cdot v^{12}\cdot w^{4}
-4368\cdot v^{11}\cdot w^{5}\nl
\off{327680}
+8008\cdot v^{10}\cdot w^{6}
-11440\cdot v^{9}\cdot w^{7}
+12870\cdot v^{8}\cdot w^{8}
-11440\cdot v^{7}\cdot w^{9}
+8008\cdot v^{6}\cdot w^{10}
-4368\cdot v^{5}\cdot w^{11}\nl
\off{327680}
+1820\cdot v^{4}\cdot w^{12}
-560\cdot v^{3}\cdot w^{13}
+120\cdot v^{2}\cdot w^{14}
-16\cdot v\cdot w^{15}
+w^{16}

\)
\Nl}$$

A simple example using matrices:

load_package ri;
% TeX-REDUCE-Interface 0.50
% set greek asserted
% set lowercase asserted
% \tolerance 10
% \hsize=150mm

on Tex;

mat((1,a-b,1/(c-d)),(a^2-b^2,1,sqrt(c)),((a+b)/(c-d),sqrt(d),1));
$$
\pmatrix{1&a

-b&

84.2. EXAMPLES OF USE 581

\frac{1}{
c
-d}\cr

a^{2}
-b^{2}&1&
\sqrt{c}\cr
\frac{a

+b}{
c
-d}&

\sqrt{d}&1\cr
}

$$

Note that the resulting output uses a number of TEX macros which are
defined in the file tridefs.tex which is distributed with the example file.

582 CHAPTER 84. TRI: TEX REDUCE INTERFACE

Chapter 85

TRIGSIMP: Simplification
and factorisation of
trigonometric and hyperbolic
functions

Wolfram Koepf, Andreas Bernig and Herbert Melenk
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: Koepf@zib.de

There are three procedures included in TRIGSIMP: trigsimp, trigfactorize
and triggcd. The first is for finding simplifications of trigonometric or
hyperbolic expressions with many options, the second for factorising them
and the third for finding the greatest common divisor of two trigonometric
or hyperbolic polynomials.

85.1 Simplifiying trigonometric expressions

As there is no normal form for trigonometric and hyperbolic functions, the
same function can convert in many different directions, e.g.
sin(2x)↔ 2 sin(x) cos(x). The user has the possibility to give several
parameters to the procedure trigsimp in order to influence the direction

583

584 CHAPTER 85. TRIGSIMP: TRIGONOMETRIC SIMPLIFICATION

of transformations. The decision whether a rational expression in
trigonometric and hyperbolic functions vanishes or not is possible.

To simplify a function f, one uses trigsimp(f[,options]). Example:

2: trigsimp(sin(x)^2+cos(x)^2);

1

Possible options are (* denotes the default):

1. sin (*) or cos

2. sinh (*) or cosh

3. expand (*) or combine or compact

4. hyp or trig or expon

5. keepalltrig

From each group one can use at most one option, otherwise an error
message will occur. The first group fixes the preference used while
transforming a trigonometric expression. The second group is the
equivalent for the hyperbolic functions. The third group determines the
type of transformations. With the default expand, an expression is written
in a form only using single arguments and no sums of arguments. With
combine, products of trigonometric functions are transformed to
trigonometric functions involving sums of arguments.

trigsimp(sin(x)^2,cos);

2
- cos(x) + 1

trigsimp(sin(x)*cos(y),combine);

sin(x - y) + sin(x + y)

2

85.2. FACTORISING TRIGONOMETRIC EXPRESSIONS 585

With compact, the REDUCE operator compact (see chapter 31) is applied
to f. This leads often to a simple form, but in contrast to expand one
doesn’t get a normal form.

trigsimp((1-sin(x)**2)**20*(1-cos(x)**2)**20,compact);

40 40
cos(x) *sin(x)

With the fourth group each expression is transformed to a trigonometric,
hyperbolic or exponential form:

trigsimp(sin(x),hyp);

- sinh(i*x)*i

trigsimp(e^x,trig);

x x
cos(---) + sin(---)*i

i i

Usually, tan, cot, sec, csc are expressed in terms of sin and cos. It can
be sometimes useful to avoid this, which is handled by the option
keepalltrig:

trigsimp(tan(x+y),keepalltrig);

- (tan(x) + tan(y))

tan(x)*tan(y) - 1

It is possible to use the options of different groups simultaneously.

85.2 Factorising trigonometric expressions

With trigfactorize(p,x) one can factorise the trigonometric or
hyperbolic polynomial p with respect to the argument x. Example:

trigfactorize(sin(x),x/2);

586 CHAPTER 85. TRIGSIMP: TRIGONOMETRIC SIMPLIFICATION

x x
{2,cos(---),sin(---)}

2 2

If the polynomial is not coordinated or balanced the output will equal the
input. In this case, changing the value for x can help to find a factorisation:

trigfactorize(1+cos(x),x);

{cos(x) + 1}

trigfactorize(1+cos(x),x/2);

x x
{2,cos(---),cos(---)}

2 2

85.3 GCDs of trigonometric expressions

The operator triggcd is an application of trigfactorize. With its help
the user can find the greatest common divisor of two trigonometric or
hyperbolic polynomials. The syntax is: triggcd(p,q,x), where p and q
are the polynomials and x is the smallest unit to use. Example:

triggcd(sin(x),1+cos(x),x/2);

x
cos(---)

2

triggcd(sin(x),1+cos(x),x);

1

See also the ASSIST package (chapter 23).

Chapter 86

WU: Wu algorithm for poly
systems

Russell Bradford
School of Mathematical Sciences, University of Bath,

Bath, BA2 7AY, England

e–mail: rjb@maths.bath.ac.uk

The interface:

wu({x^2+y^2+z^2-r^2, x*y+z^2-1, x*y*z-x^2-y^2-z+1}, {x,y,z});

calls wu with the named polynomials, and with the variable ordering
x > y > z. In this example, r is a parameter.

The result is

2 3 2
{{{r + z - z - 1,

2 2 2 2 4 2 2 2
r *y + r *z + r - y - y *z + z - z - 2,

2
x*y + z - 1},

y},

6 4 6 2 6 4 7 4 6 4 5 4 4

587

588 CHAPTER 86. WU: WU ALGORITHM FOR POLY SYSTEMS

{{r *z - 2*r *z + r + 3*r *z - 3*r *z - 6*r *z + 3*r *z + 3*

4 3 4 2 4 2 10 2 9 2 8 2 7
r *z + 3*r *z - 3*r + 3*r *z - 6*r *z - 3*r *z + 6*r *z +

2 6 2 5 2 4 2 3 2 13 12 11
3*r *z + 6*r *z - 6*r *z - 6*r *z + 3*r + z - 3*z + z

10 9 8 7 6 4 3 2
+ 2*z + z + 2*z - 6*z - z + 2*z + 3*z - z - 1,

2 2 3 2
y *(r + z - z - 1),

2
x*y + z - 1},

2 3 2
y*(r + z - z - 1)}}

namely, a list of pairs of characteristic sets and initials for the
characteristic sets.

Thus, the first pair above has the characteristic set

r2 + z3 − z2 − 1, r2y2 + r2z + r2 − y4 − y2z2 + z2 − z − 2, xy + z2 − 1

and initial y.

According to Wu’s theorem, the set of roots of the original polynomials is
the union of the sets of roots of the characteristic sets, with the additional
constraints that the corresponding initial is non-zero. Thus, for the first
pair above, we find the roots of {r2 + z3 − z2 − 1, . . . } under the
constraint that y 6= 0. These roots, together with the roots of the other
characteristic set (under the constraint of y(r2 + z3 − z2 − 1) 6= 0),
comprise all the roots of the original set.

Chapter 87

XCOLOR: Calculation of the
color factor in non-abelian
gauge field theories

A. Kryukov
Institute for Nuclear Physics, Moscow State University

119899, Moscow, Russia

e–mail: kryukov@npi.msu.su

XCOLOR calculates the colour factor in non-abelian gauge field theories.
It provides two commands and two operators.

SUdim integer

Sets the order of the SU group. The default value is 3.

SpTT expression

Sets the normalisation coefficient A in the equation Sp(TiTj) = A∆(i, j).
The default value is 1/2.

QG(inQuark, outQuark, Gluon)

Describes the quark-gluon vertex. The parameters may be any identifiers.
The first and second of then must be in- and out- quarks correspondingly.
Third one is a gluon.

G3(Gluon1, Gluon2, Gluon3)

589

590 CHAPTER 87. XCOLOR: COLOR FACTOR IN GAUGE THEORY

Describes the three-gluon vertex. The parameters may be any identifiers.
The order of gluons must be clockwise.

In terms of QG and G3 operators one can input a diagram in “color” space
as a product of these operators. For example

591

e1
---->---

/ \
/ \

| e2 |
v1*............*v2

| |
\ /
\ e3 /
----<---

where --->--- is a quark and is a gluon.

The related REDUCE expression is QG(e3,e1,e2)*QG(e1,e3,e2).

592 CHAPTER 87. XCOLOR: COLOR FACTOR IN GAUGE THEORY

Chapter 88

XIDEAL: Gröbner for
exterior algebra

David Hartley
GMD, Institute I1, Schloss Birlinghoven

D–53757 St. Augustin, Germany

e–mail: David.Hartley@gmd.de

and
Philip A. Tuckey

Max Planck Institute for Physics
Foehringer Ring 6

D–80805 Munich, Germany

e–mail: pht@iws170.mppmu.mpg.de

XIDEAL extends the Gröbner base method to exterior algebras.

XIDEAL constructs Gröbner bases for solving the left ideal membership
problem: Gröbner left ideal bases or GLIBs. For graded ideals, where each
form is homogeneous in degree, the distinction between left and right
ideals vanishes. Furthermore, if the generating forms are all homogeneous,
then the Gröbner bases for the non-graded and graded ideals are identical.
In this case, XIDEAL is able to save time by truncating the Gröbner basis
at some maximum degree if desired. XIDEAL uses the EXCALC package
(chapter 39).

593

594 CHAPTER 88. XIDEAL: GRÖBNER FOR EXTERIOR ALGEBRA

88.1 Operators

XIDEAL

XIDEAL calculates a Gröbner left ideal basis in an exterior algebra. The
syntax is

XIDEAL(S:list of forms[,R:integer]):list of forms.

XIDEAL calculates the Gröbner left ideal basis for the left ideal generated
by S using graded lexicographical ordering based on the current kernel
ordering. The resulting list can be used for subsequent reductions with
XMODULOP as long as the kernel ordering is not changed. If the set of
generators S is graded, an optional parameter R can be given, and XIDEAL
produces a truncated basis suitable for reducing exterior forms of degree
less than or equal to R in the left ideal. This can save time and space with
large expressions, but the result cannot be used for exterior forms of
degree greater than R. See also the switches XSTATS and XFULLREDUCTION.

XMODULO

XMODULO reduces exterior forms to their (unique) normal forms modulo a
left ideal. The syntax is

XMODULO(F:form, S:list of forms):form

or

XMODULO(F:list of forms, S:list of forms):list of forms.

An alternative infix syntax is also available:

F XMODULO S.

XMODULO(F,S) first calculates a Gröbner basis for the left ideal generated
by S, and then reduces F. F may be either a single exterior form, or a list of
forms, and S is a list of forms. If F is a list of forms, each element is
reduced, and any which vanish are deleted from the result. If this operator
is used more than once, and S does not change between calls, then the
Gröbner basis is not recalculated. If the set of generators S is graded, then

88.2. SWITCHES 595

a truncated Gröbner basis is calculated using the degree of F (or the
maximal degree in F).

XMODULOP

XMODULOP reduces exterior forms to their (not necessarily unique) normal
forms modulo a set of exterior polynomials. The syntax is

XMODULOP(F:form, S:list of forms):form

or

XMODULOP(F:list of forms, S:list of forms):list of forms.

An alternative infix syntax is also available:

F XMODULOP S.

XMODULOP(F,S) reduces F with respect to the set of exterior polynomials S,
which is not necessarily a Gröbner basis. F may be either a single exterior
form, or a list of forms, and S is a list of forms. This operator can be used
in conjunction with XIDEAL to produce the same effect as XMODULO: for a
single form F in an ideal generated by the graded set S, F XMODULO S is
equivalent to F XMODULOP XIDEAL(S,EXDEGREE F).

88.2 Switches

XFULLREDUCE

ON XFULLREDUCE allows XIDEAL and XMODULO to calculate reduced (but not
necessarily normed) Gröbner bases, which speeds up subsequent
reductions, and guarantees a unique form (up to scaling) for the Gröbner
basis. OFF XFULLREDUCE turns of this feature, which may speed up
calculation of the Gröbner basis. XFULLREDUCE is ON by default.

XSTATS

ON XSTATS produces counting and timing information. As XIDEAL is
running, a hash mark (#) is printed for each form taken from the input list,

596 CHAPTER 88. XIDEAL: GRÖBNER FOR EXTERIOR ALGEBRA

followed by a sequences of carets (^) and dollar signs ($). Each caret
represents a new basis element obtained by a simple wedge product, and
each dollar sign represents a new basis element obtained from an
S-polynomial. At the end, a table is printed summarising the calculation.
XSTATS is OFF by default.

88.3 Examples

Suppose EXCALC and XIDEAL have been loaded, the switches are at
their default settings, and the following exterior variables have been
declared:

pform x=0,y=0,z=0,t=0,f(i)=1,h=0,hx=0,ht=0;

In a commutative polynomial ring, a single polynomial is its own Gröbner
basis. This is no longer true for exterior algebras because of the presence
of zero divisors, and can lead to some surprising reductions:

xideal {d x^d y - d z^d t};

{d T^d Z + d X^d Y,

d X^d Y^d Z,

d T^d X^d Y}

f(3)^f(4)^f(5)^f(6)
xmodulo {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};

0

The heat equation, hxx = ht can be represented by the following exterior
differential system.

S := {d h - ht*d t - hx*d x,
d ht^d t + d hx^d x,
d hx^d t - ht*d x^d t};

XMODULO can be used to check that the exterior differential system is closed
under exterior differentiation.

88.3. EXAMPLES 597

d S xmodulo S;

{}

Non-graded left and right ideals are no longer the same:

d t^(d z+d x^d y) xmodulo {d z+d x^d y};

0

(d z+d x^d y)^d t xmodulo {d z+d x^d y};

- 2*d t^d z

Higher order forms can now reduce lower order ones:

d x xmodulo {d y^d z + d x,d x^d y + d z};

0

Any form containing a 0-form term generates the whole ideal:

xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4)};

{1}

598 CHAPTER 88. XIDEAL: GRÖBNER FOR EXTERIOR ALGEBRA

Chapter 89

ZEILBERG: A package for
indefinite and definite
summation

Wolfram Koepf and Gregor Stölting
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: Koepf@zib.de

The ZEILBERG package provides an implementation of the Gosper and
Zeilberger algorithms for indefinite, and definite summation of
hypergeometric terms, respectively, with extensions for ratios of products
of powers, factorials, Γ function terms, binomial coefficients, and shifted
factorials that are rational-linear in their arguments.

89.1 The GOSPER summation operator

The gosper operator is an implementation of the Gosper algorithm.

• gosper(a,k) determines a closed form antidifference. If it does not
return a closed form solution, then a closed form solution does not
exist.

599

600 CHAPTER 89. ZEILBERG: INDEF & DEFINITE SUMMATION

• gosper(a,k,m,n) determines

n∑

k=m

ak

using Gosper’s algorithm. This is only successful if Gosper’s
algorithm applies.

Example:

gosper((-1)^(k+1)*(4*k+1)*factorial(2*k)/
(factorial(k)*4^k*(2*k-1)*factorial(k+1)),k);

k
- (- 1) *factorial(2*k)

2*k

2 *factorial(k + 1)*factorial(k)

gosper(binomial(k,n),k);

(k + 1)*binomial(k,n)

n + 1

89.2 EXTENDED GOSPER operator

The extended gosper operator is an implementation of an extended
version of Gosper’s algorithm.

• extended gosper(a,k) determines an antidifference gk of ak

whenever there is a number m such that hk − hk−m = ak, and hk is
an m-fold hypergeometric term, i. e.

hk/hk−m is a rational function with respect to k.

If it does not return a solution, then such a solution does not exist.

• extended gosper(a,k,m) determines an m-fold antidifference hk of
ak, i. e. hk − hk−m = ak, if it is an m-fold hypergeometric term.

89.3. SUMRECURSION OPERATOR 601

Examples:

extended_gosper(binomial(k/2,n),k);

k k - 1
(k + 2)*binomial(---,n) + (k + 1)*binomial(-------,n)

2 2

2*(n + 1)

extended_gosper(k*factorial(k/7),k,7);

k
(k + 7)*factorial(---)

7

89.3 SUMRECURSION operator

The sumrecursion operator is an implementation of the (fast) Zeilberger
algorithm.

• sumrecursion(f,k,n) determines a holonomic recurrence equation
for

sum(n) =
∞∑

k=−∞
f(n, k)

with respect to n. The resulting expression equals zero.

• sumrecursion(f,k,n,j) searches for a holonomic recurrence
equation of order j.Note that if j is too large, the recurrence equation
may not be unique, and only one particular solution is returned.

sumrecursion(binomial(n,k),k,n);

2*sum(n - 1) - sum(n)

89.4 HYPERRECURSION operator

If a recursion for a generalised hypergeometric function is to be
established, one can use

602 CHAPTER 89. ZEILBERG: INDEF & DEFINITE SUMMATION

• hyperrecursion(upper,lower,x,n) determines a holonomic
recurrence equation with respect to n for

pFq

(
a1, a2, · · · , ap

b1, b2, · · · , bq

∣∣∣∣∣x
)
,

where upper= {a1, a2, . . . , ap} is the list of upper parameters, and
lower= {b1, b2, . . . , bq} is the list of lower parameters depending on n.

• hyperrecursion(upper,lower,x,n,j) (j ∈ IN) searches only for a
holonomic recurrence equation of order j. This operator does not
automatically use extended sumrecursion.

hyperrecursion({-n,b},{c},1,n);

(b - c - n + 1)*sum(n - 1) + (c + n - 1)*sum(n)

If a hypergeometric expression is given in hypergeometric notation, then
the use of hyperrecursion is more natural than the use of sumrecursion.

Moreover the REDUCE operator

• hyperterm(upper,lower,x,k) yields the hypergeometric term

(a1)k · (a2)k · · · (ap)k

(b1)k · (b2)k · · · (bq)k k!
xk

with upper parameters upper= {a1, a2, . . . , ap}, and lower
parameters lower= {b1, b2, . . . , bq}

in connection with hypergeometric terms.

89.5 HYPERSUM operator

With the operator hypersum, hypergeometric sums are directly evaluated
in closed form whenever the extended Zeilberger algorithm leads to a
recurrence equation containing only two terms:

• hypersum(upper,lower,x,n) determines a closed form
representation for

89.6. SUMTOHYPER OPERATOR 603

pFq

(
a1, a2, · · · , ap

b1, b2, · · · , bq

∣∣∣∣∣x
)

, where upper= {a1, a2, . . . , ap} is the

list of upper parameters, and lower= {b1, b2, . . . , bq} is the list of
lower parameters depending on n. The result is given as a
hypergeometric term with respect to n.

If the result is a list of length m, we call it m-fold symmetric, which
is to be interpreted as follows: Its jth part is the solution valid for all
n of the form n = mk + j − 1 (k ∈ IN0). In particular, if the resulting
list contains two terms, then the first part is the solution for even n,
and the second part is the solution for odd n.

hypersum({a,1+a/2,c,d,-n},{a/2,1+a-c,1+a-d,1+a+n},1,n);

pochhammer(a - c - d + 1,n)*pochhammer(a + 1,n)

pochhammer(a - c + 1,n)*pochhammer(a - d + 1,n)

hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n);

pochhammer(a + 1,n)

pochhammer(a - d + 1,n)

Note that the operator togamma converts expressions given in
factorial-Γ-binomial-Pochhammer notation into a pure Γ function
representation:

togamma(hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n));

gamma(a - d + 1)*gamma(a + n + 1)

gamma(a - d + n + 1)*gamma(a + 1)

89.6 SUMTOHYPER operator

With the operator sumtohyper, sums given in
factorial-Γ-binomial-Pochhammer notation are converted into
hypergeometric notation.

604 CHAPTER 89. ZEILBERG: INDEF & DEFINITE SUMMATION

• sumtohyper(f,k) determines the hypergeometric representation of
∞∑

k=−∞
fk, i.e. its output is c*hypergeometric(upper,lower,x),

corresponding to the representation

∞∑

k=−∞
fk = c · pFq

(
a1, a2, · · · , ap

b1, b2, · · · , bq

∣∣∣∣∣x
)
,

where upper= {a1, a2, . . . , ap} and lower= {b1, b2, . . . , bq} are the
lists of upper and lower parameters.

Examples:

sumtohyper(binomial(n,k)^3,k);

hypergeometric({ - n, - n, - n},{1,1},-1)

89.7 Simplification Operators

For the decision that an expression ak is a hypergeometric term, it is
necessary to find out whether or not ak/ak−1 is a rational function with
respect to k. For the purpose to decide whether or not an expression
involving powers, factorials, Γ function terms, binomial coefficients, and
Pochhammer symbols is a hypergeometric term, the following
simplification operators can be used:

• simplify gamma(f) simplifies an expression f involving only
rational, powers and Γ function terms.

• simplify combinatorial(f) simplifies an expression f involving
powers, factorials, Γ function terms, binomial coefficients, and
Pochhammer symbols by converting factorials, binomial coefficients,
and Pochhammer symbols into Γ function terms, and applying
simplify gamma to its result. If the output is not rational, it is given
in terms of Γ functions. If factorials are preferred use

• gammatofactorial (rule) converting Γ function terms into factorials
using Γ (x)→ (x− 1)!.

• simplify gamma2(f) uses the duplication formula of the Γ function
to simplify f .

89.7. SIMPLIFICATION OPERATORS 605

• simplify gamman(f,n) uses the multiplication formula of the Γ
function to simplify f .

The use of simplify combinatorial(f) is a safe way to decide the
rationality for any ratio of products of powers, factorials, Γ function terms,
binomial coefficients, and Pochhammer symbols.

Example:

simplify_gamma2(gamma(2*n)/gamma(n));

2*n 2*n + 1
2 *gamma(---------)

2

2*sqrt(pi)

606 CHAPTER 89. ZEILBERG: INDEF & DEFINITE SUMMATION

Chapter 90

ZTRANS: Z-transform
package

Wolfram Koepf and Lisa Temme
Konrad–Zuse–Zentrum für Informationstechnik Berlin

Takustras̈e 7
D–14195 Berlin–Dahlem, Germany

e–mail: Koepf@zib.de

The Z-Transform of a sequence {fn} is the discrete analogue of the
Laplace Transform, and

Z{fn} = F (z) =
∞∑

n=0

fnz
−n .

This series converges in the region outside the circle
|z| = |z0| = lim sup

n→∞
n
√|fn| . In the same way that a Laplace Transform can

be used to solve differential equations, so Z-Transforms can be used to
solve difference equations.

SYNTAX: ztrans(fn, n, z) where fn is an expression, and n,z
are identifiers.

This package can compute the Z-Transforms of the following list of fn, and
certain combinations thereof.

607

608 CHAPTER 90. ZTRANS: Z-TRANSFORM PACKAGE

1 eαn 1
(n+k)

1
n!

1
(2n)!

1
(2n+1)!

sin(βn)
n! sin(αn+ φ) eαn sin(βn)

cos(βn)
n! cos(αn+ φ) eαn cos(βn)

sin(β(n+1))
n+1 sinh(αn+ φ) cos(β(n+1))

n+1

cosh(αn+ φ)
(n+k

m

)

Other Combinations

Linearity Z{afn + bgn} = aZ{fn}+ bZ{gn}

Multiplication by n Z{nk · fn} = −z d
dz

(
Z{nk−1 · fn, n, z}

)

Multiplication by λn Z{λn · fn} = F
(

z
λ

)

Shift Equation Z{fn+k} = zk

(
F (z)−

k−1∑
j=0

fjz
−j

)

Symbolic Sums Z
{

n∑
k=0

fk

}
= z

z−1 · Z{fn}

Z
{

n+q∑
k=p

fk

}
combination of the above

where k,λ ∈ N−{0}; and a,b are variables or fractions; and p,q ∈ Z or
are functions of n; and α, β and φ are angles in radians.

The calculation of the Laurent coefficients of a regular function results in
the following inverse formula for the Z-Transform:

If F (z) is a regular function in the region |z| > ρ then ∃ a sequence {fn}

609

with Z{fn} = F (z) given by

fn =
1

2πi

∮
F (z)zn−1dz

SYNTAX: invztrans(F (z), z, n) where F (z) is an expression,
and z,n are identifiers.

This package can compute the Inverse Z-Transforms of any rational function,
whose denominator can be factored over Q, in addition to the following list
of F (z).

sin
(

sin(β)
z

)
e
(

cos(β)
z

)
cos

(
sin(β)

z

)
e
(

cos(β)
z

)

√
z
A sin

(√
z
A

)
cos

(√
z
A

)

√
z
A sinh

(√
z
A

)
cosh

(√
z
A

)

z log
(

z√
z2−Az+B

)
z log

(√
z2+Az+B

z

)

arctan
(

sin(β)
z+cos(β)

)

here k,λ ∈ N−{0} and A,B are fractions or variables (B > 0) and α,β, &
φ are angles in radians.

Examples:

ztrans(sum(1/factorial(k),k,0,n),n,z);

1/z
e *z

z - 1

invztrans(z/((z-a)*(z-b)),z,n);

n n
a - b

610 CHAPTER 90. ZTRANS: Z-TRANSFORM PACKAGE

a - b

Part III

Standard Lisp Report

611

Chapter 91

The Standard Lisp Report

Jed Marti
A. C. Hearn
M. L. Griss

C. Griss

91.1 Introduction

Although the programming language LISP was first formulated in
1960 [16], a widely accepted standard has never appeared. As a result,
various dialects of LISP were produced [2, 9, 15, 19, 17, 18] in some cases
several on the same machine! Consequently, a user often faces considerable
difficulty in moving programs from one system to another. In addition, it
is difficult to write and use programs which depend on the structure of the
source code such as translators, editors and cross-reference programs.

In 1969, a model for such a standard was produced [12] as part of a general
effort to make a large LISP based algebraic manipulation program,
REDUCE [11], as portable as possible. The goal of this work was to define
a uniform subset of LISP 1.5 and its variants so that programs written in
this subset could run on any reasonable LISP system.

In the intervening years, two deficiencies in the approach taken in Ref. [12]
have emerged. First in order to be as general as possible, the specific
semantics and values of several key functions were left undefined.
Consequently, programs built on this subset could not make any

613

614 CHAPTER 91. THE STANDARD LISP REPORT

assumptions about the form of the values of such functions. The second
deficiency related to the proposed method of implementation of this
language. The model considered in effect two versions of LISP on any
given machine, namely Standard LISP and the LISP of the host machine
(which we shall refer to as Target LISP). This meant that if any definition
was stored in interpretive form, it would vary from implementation to
implementation, and consequently one could not write programs in
Standard LISP which needed to assume any knowledge about the structure
of such forms. This deficiency became apparent during recent work on the
development of a portable compiler for LISP [10]. Clearly a compiler has
to know precisely the structure of its source code; we concluded that the
appropriate source was Standard LISP and not Target LISP.

With these thoughts in mind we decided to attempt again a definition of
Standard LISP. However, our approach this time is more aggressive. In
this document we define a standard for a reasonably large subset of LISP
with as precise as possible a statement about the semantics of each
function. Secondly, we now require that the target machine interpreter be
modified or written to support this standard, rather than mapping
Standard LISP onto Target LISP as previously.

We have spent countless hours in discussion over many of the definitions
given in this report. We have also drawn on the help and advice of a lot of
friends whose names are given in the Acknowledgements. Wherever
possible, we have used the definition of a function as given in the LISP 1.5
Programmer’s Manual [16] and have only deviated where we felt it
desirable in the light of LISP programming experience since that time. In
particular, we have given considerable thought to the question of variable
bindings and the definition of the evaluator functions EVAL and APPLY.
We have also abandoned the previous definition of LISP arrays in favor of
the more accepted idea of a vector which most modern LISP systems
support. These are the places where we have strayed furthest from the
conventional definitions, but we feel that the consistency which results
from our approach is worth the redefinition.

We have avoided entirely in this report problems which arise from
environment passing, such as those represented by the FUNARG problem.
We do not necessarily exclude these considerations from our standard, but
in this report have decided to avoid the controversy which they create.
The semantic differences between compiled and interpreted functions is the
topic of another paper [10]. Only functions which affect the compiler in a

91.2. PRELIMINARIES 615

general way make reference to it.

This document is not intended as an introduction to LISP rather it is
assumed that the reader is already familiar with some version. The
document is thus intended as an arbiter of the syntax and semantics of
Standard LISP. However, since it is not intended as an implementation
description, we deliberately leave unspecified many of the details on which
an actual implementation depends. For example, while we assume the
existence of a symbol table for atoms (the ”object list” in LISP
terminology), we do not specify its structure, since conventional LISP
programming does not require this information. Our ultimate goal,
however, is to remedy this by defining an interpreter for Standard LISP
which is sufficiently complete that its implementation on any given
computer will be straightforward and precise. At that time, we shall
produce an implementation level specification for Standard LISP which
will extend the description of the primitive functions defined herein by
introducing a new set of lower level primitive functions in which the
structure of the symbol table, heap and so on may be defined.

The plan of this chapter is as follows. In Section 91.2 we describe the
various data types used in Standard LISP. In Section 91.3, a description of
all Standard LISP functions is presented, organized by type. These
functions are defined in an RLISP syntax which is easier to read than
LISP S-expressions. Section 91.4 describes global variables which control
the operation of Standard LISP.

91.2 Preliminaries

91.2.1 Primitive Data Types

integer Integers are also called ”fixed” numbers. The magnitude of an
integer is unrestricted. Integers in the LISP input stream are
recognized by the grammar:

<digit> ::= 0|1|2|3|4|5|6|7|8|9
<unsigned-integer> ::= <digit>|<unsigned-integer><digit>
<integer> ::= <unsigned-integer> |

+<unsigned-integer> |
—<unsigned-integer>

616 CHAPTER 91. THE STANDARD LISP REPORT

floating - Any floating point number. The precision of floating point
numbers is determined solely by the implementation. In BNF
floating point numbers are recognized by the grammar:

<base> ::= <unsigned-integer>.|.<unsigned-integer>|
<unsigned-integer>.<unsigned-integer>
<unsigned-floating> ::= <base>|
<base>E<unsigned-integer>|
<base>E-<unsigned-integer>|
<base>E+<unsigned-integer>

<floating> ::= <unsigned-floating>|
+<unsigned-floating>|-<unsigned-floating>

id An identifier is a string of characters which may have the following
items associated with it.

print name The characters of the identifier.

flags An identifier may be tagged with a flag. Access is by the
FLAG, REMFLAG, and FLAGP functions defined in
section 91.3.4 on page 629.

properties An identifier may have an indicator-value pair
associated with it. Access is by the PUT, GET, and
REMPROP functions defined in section 91.3.4 on page 629.

values/functions An identifier may have a value associated with
it. Access to values is by SET and SETQ defined in
section 91.3.6 on page 633. The method by which the value is
attached to the identifier is known as the binding type, being
one of LOCAL, GLOBAL, or FLUID. Access to the binding
type is by the GLOBAL, GLOBALP, FLUID, FLUIDP, and
UNFLUID functions.
An identifier may have a function or macro associated with it.
Access is by the PUTD, GETD, and REMD functions (see
“Function Definition”, section 91.3.5, on page 631). An
identifier may not have both a function and a value associated
with it.

OBLIST entry An identifier may be entered and removed from a
structure called the OBLIST. Its presence on the OBLIST does
not directly affect the other properties. Access to the OBLIST
is by the INTERN, REMOB, and READ functions.

91.2. PRELIMINARIES 617

The maximum length of a Standard LISP identifier is 24 characters
(excluding occurrences of the escape character !) but an
implementation may allow more. Special characters (digits in the
first position and punctuation) must be prefixed with an escape
character, an ! in Standard LISP. In BNF identifiers are recognized
by the grammar:

<special-character> ::= !<any-character>
<alphabetic> ::=

A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|
a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<lead-character> ::= <special-character>|<alphabetic>
<regular-character> ::= <lead-character>|<digit>
<last-part> ::= <regular-character> |

<last-part><regular-character>
<id> ::= <lead-character>|<lead-character><last-part>

Note: Using lower case letters in identifiers may cause portability
problems. Lower case letters are automatically converted to upper
case when the !*RAISE flag is T.

string A set of characters enclosed in double quotes as in ”THIS IS A
STRING”. A quote is included by doubling it as in ”HE SAID,
””LISP”””. The maximum size of strings is 80 characters but an
implementation may allow more. Strings are not part of the OBLIST
and are considered constants like numbers, vectors, and
function-pointers.

dotted-pair A primitive structure which has a left and right part. A
notation called dot-notation is used for dotted pairs and takes the
form:

(<left-part> . <right-part>)

The <left-part> is known as the CAR portion and the <right-part>
as the CDR portion. The left and right parts may be of any type.
Spaces are used to resolve ambiguity with floating point numbers.

vector A primitive uniform structure in which an integer index is used to
access random values in the structure. The individual elements of a

618 CHAPTER 91. THE STANDARD LISP REPORT

vector may be of any type. Access to vectors is restricted to
functions defined in “Vectors” section 91.3.9 on page 639. A notation
for vectors, vector-notation, has the elements of a vector surrounded
by square brackets1

<elements> ::= <any>|<any> <elements>
<vector> ::= [<elements>]

function-pointer An implementation may have functions which deal
with specific data types other than those listed. The use of these
entities is to be avoided with the exception of a restricted use of the
function-pointer, an access method to compiled EXPRs and
FEXPRs. A particular function-pointer must remain valid
throughout execution. Systems which change the location of a
function must use either an indirect reference or change all
occurrences of the associated value. There are two classes of use of
function-pointers, those which are supported by Standard LISP but
are not well defined, and those which are well defined.

Not well defined Function pointers may be displayed by the print
functions or expanded by EXPLODE. The value appears in the
convention of the implementation site. The value is not defined
in Standard LISP. Function pointers may be created by
COMPRESS in the format used for printing but the value used
is not defined in Standard LISP. Function pointers may be
created by functions which deal with compiled function loading.
Again, the values created are not well defined in Standard LISP.

Well defined The function pointer associated with an EXPR or
FEXPR may be retrieved by GETD and is valid as long as
Standard LISP is in execution. Function pointers may be stored
using PUTD, PUT, SETQ and the like or by being bound to
variables. Function pointers may be checked for equivalence by
EQ. The value may be checked for being a function pointer by
the CODEP function.

1Vector elements are not separated by commas as in the published version of this
document.

91.2. PRELIMINARIES 619

91.2.2 Classes of Primitive Data Types

The classes of primitive types are a notational convenience for describing
the properties of functions.

boolean The set of global variables {T,NIL}, or their respective values,
{T, NIL}.

extra-boolean Any value in the system. Anything that is not NIL has
the boolean interpretation T.

ftype The class of definable function types. The set of ids {EXPR,
FEXPR, MACRO}.

number The set of {integer, floating}.
constant The set of {integer, floating, string, vector, function-pointer}.

Constants evaluate to themselves (see the definition of EVAL in
“The Interpreter”, section 91.3.14 on page 653).

any The set of {integer, floating, string, id, dotted-pair, vector,
function-pointer}. An S-expression is another term for any. All
Standard LISP entities have some value unless an ERROR occurs
during evaluation or the function causes transfer of control (such as
GO and RETURN).

atom The set {any}-{dotted-pair}.

91.2.3 Structures

Structures are entities created out of the primitive types by the use of
dotted-pairs. Lists are structures very commonly required as actual
parameters to functions. Where a list of homogeneous entities is required
by a function this class will be denoted by <xxx-list> where xxx is the
name of a class of primitives or structures. Thus a list of ids is an id-list, a
list of integers an integer-list and so on.

list A list is recursively defined as NIL or the dotted-pair (any . list). A
special notation called list-notation is used to represent lists.
List-notation eliminates extra parentheses and dots. The list (a . (b .
(c . NIL))) in list notation is (a b c). List-notation and dot-notation

620 CHAPTER 91. THE STANDARD LISP REPORT

may be mixed as in (a b . c) or (a (b . c) d) which are (a . (b . c))
and (a . ((b . c) . (d . NIL))). In BNF lists are recognized by the
grammar:

<left-part> ::= (| <left-part> <any>
<list> ::= <left-part>) | <left-part> . <any>)

Note: () is an alternate input representation of NIL.

alist An association list; each element of the list is a dotted-pair, the CAR
part being a key associated with the value in the CDR part.

cond-form A cond-form is a list of 2 element lists of the form:

(ANTECEDENT:any CONSEQUENT:any)

The first element will henceforth be known as the antecedent and
the second as the consequent. The antecedent must have a value.
The consequent may have a value or an occurrence of GO or
RETURN as described in the “Program Feature Functions”,
section 91.3.7 on page 635.

lambda A LAMBDA expression which must have the form (in list
notation): (LAMBDA parameters body). “parameters” is a list of
formal parameters for “body” an S-expression to be evaluated. The
semantics of the evaluation are defined with the EVAL function (see
“The Interpreter”, section 91.3.14 on page 653).

function A LAMBDA expression or a function-pointer to a function. A
function is always evaluated as an EVAL, SPREAD form.

91.2.4 Function Descriptions

Each function is provided with a prototypical header line. Each formal
parameter is given a name and suffixed with its allowed type. Lower case,
italic tokens are names of classes and upper case, bold face, tokens are
parameter names referred to in the definition. The type of the value
returned by the function (if any) is suffixed to the parameter list. If it is
not commonly used the parameter type may be a specific set enclosed in
brackets {. . . }. For example:

PUTD(FNAME:id, TYPE:ftype, BODY:{lambda, function-pointer}):id

91.2. PRELIMINARIES 621

PUTD is a function with three parameters. The parameter FNAME is an
id to be the name of the function being defined. TYPE is the type of the
function being defined and BODY is a lambda expression or a
function-pointer. PUTD returns the name of the function being defined.

Functions which accept formal parameter lists of arbitrary length have the
type class and parameter enclosed in square brackets indicating that zero
or more occurrences of that argument are permitted. For example:

AND([U:any]):extra-boolean

AND is a function which accepts zero or more arguments which may be of
any type.

91.2.5 Function Types

EVAL type functions are those which are invoked with evaluated
arguments. NOEVAL functions are invoked with unevaluated arguments.
SPREAD type functions have their arguments passed in one-to-one
correspondence with their formal parameters. NOSPREAD functions
receive their arguments as a single list. EVAL, SPREAD functions are
associated with EXPRs and NOEVAL, NOSPREAD functions with
FEXPRs. EVAL, NOSPREAD and NOEVAL, SPREAD functions can be
simulated using NOEVAL, NOSPREAD functions or MACROs.

EVAL, SPREAD type functions may have a maximum of 15 parameters.
There is no limit on the number of parameters a NOEVAL, NOSPREAD
function or MACRO may have.

In the context of the description of an EVAL, SPREAD function, then we
speak of the formal parameters we mean their actual values. However, in a
NOEVAL, NOSPREAD function it is the unevaluated actual parameters.

A third function type, the MACRO, implements functions which create
S-expressions based on actual parameters. When a macro invocation is
encountered, the body of the macro, a lambda expression, is invoked as a
NOEVAL, NOSPREAD function with the macro’s invocation bound as a
list to the macros single formal parameter. When the macro has been
evaluated the resulting S-expression is reevaluated. The description of the
EVAL and EXPAND functions provide precise details.

622 CHAPTER 91. THE STANDARD LISP REPORT

91.2.6 Error and Warning Messages

Many functions detect errors. The description of such functions will
include these error conditions and suggested formats for display of the
generated error messages. A call on the ERROR function is implied but
the error number is not specified by Standard LISP. In some cases a
warning message is sufficient. To distinguish between errors and warnings,
errors are prefixed with five asterisks and warnings with only three.

Primitive functions check arguments that must be of a certain primitive
type for being of that type and display an error message if the argument is
not correct. The type mismatch error always takes the form:

***** PARAMETER not TYPE for FN

Here PARAMETER is the unacceptable actual parameter, TYPE is the
type that PARAMETER was supposed to be. FN is the name of the
function that detected the error.

91.2.7 Comments

The character % signals the start of a comment, text to be ignored during
parsing. A comment is terminated by the end of the line it is on. The
function READCH must be able to read a comment one character at a
time. Comments are transparent to the function READ. % may occur as a
character in identifiers by preceding it with the escape character !.

91.3 Functions

91.3.1 Elementary Predicates

Functions in this section return T when the condition defined is met and
NIL when it is not. Defined are type checking functions and elementary
comparisons.

91.3. FUNCTIONS 623

ATOM(U:any):boolean eval, spread
Returns T if U is not a pair.

EXPR PROCEDURE ATOM(U);
NULL PAIRP U;

CODEP(U:any):boolean eval, spread
Returns T if U is a function-pointer.

CONSTANTP(U:any):boolean eval, spread
Returns T if U is a constant (a number, string, function-pointer, or
vector).

EXPR PROCEDURE CONSTANTP(U);
NULL OR(PAIRP U, IDP U);

EQ(U:any, V:any):boolean eval, spread
Returns T if U points to the same object as V. EQ is not a reliable
comparison between numeric arguments.

EQN(U:any, V:any):boolean eval, spread
Returns T if U and V are EQ or if U and V are numbers and have
the same value and type.

EQUAL(U:any, V:any):boolean eval, spread
Returns T if U and V are the same. Dotted-pairs are compared
recursively to the bottom levels of their trees. Vectors must have
identical dimensions and EQUAL values in all positions. Strings
must have identical characters. Function pointers must have EQ
values. Other atoms must be EQN equal.

624 CHAPTER 91. THE STANDARD LISP REPORT

FIXP(U:any):boolean eval, spread
Returns T if U is an integer (a fixed number).

FLOATP(U:any):boolean eval, spread
Returns T if U is a floating point number.

IDP(U:any):boolean eval, spread
Returns T if U is an id.

MINUSP(U:any):boolean eval, spread
Returns T if U is a number and less than 0. If U is not a number or
is a positive number, NIL is returned.

EXPR PROCEDURE MINUSP(U);
IF NUMBERP U THEN LESSP(U, 0) ELSE NIL;

NULL(U:any):boolean eval, spread
Returns T if U is NIL.

EXPR PROCEDURE NULL(U);
U EQ NIL;

NUMBERP(U:any):boolean eval, spread
Returns T if U is a number (integer or floating).

EXPR PROCEDURE NUMBERP(U);
IF OR(FIXP U, FLOATP U) THEN T ELSE NIL;

91.3. FUNCTIONS 625

ONEP(U:any):boolean eval, spread.
Returns T if U is a number and has the value 1 or 1.0. Returns NIL
otherwise. a

EXPR PROCEDURE ONEP(U);
OR(EQN(U, 1), EQN(U, 1.0));

aThe definition in the published report is incorrect as it does not return T for
U of 1.0.

PAIRP(U:any):boolean eval, spread
Returns T if U is a dotted-pair.

STRINGP(U:any):boolean eval, spread
Returns T if U is a string.

VECTORP(U:any):boolean eval, spread
Returns T if U is a vector.

ZEROP(U:any):boolean eval, spread.
Returns T if U is a number and has the value 0 or 0.0. Returns NIL
otherwise.a

EXPR PROCEDURE ZEROP(U);
OR(EQN(U, 0), EQN(U, 0.0));

aThe definition in the published report is incorrect as it does not return T for
U of 0.0.

91.3.2 Functions on Dotted-Pairs

The following are elementary functions on dotted-pairs. All functions in
this section which require dotted-pairs as parameters detect a type

626 CHAPTER 91. THE STANDARD LISP REPORT

mismatch error if the actual parameter is not a dotted-pair.

CAR(U:dotted-pair):any eval, spread
CAR(CONS(a, b)) → a. The left part of U is returned. The type
mismatch error occurs if U is not a dotted-pair.

CDR(U:dotted-pair):any eval, spread
CDR(CONS(a, b)) → b. The right part of U is returned. The type
mismatch error occurs if U is not a dotted-pair.

The composites of CAR and CDR are supported up to 4 levels, namely:

CAAAAR CAAAR CAAR
CAAADR CAADR CADR
CAADAR CADAR CDAR
CAADDR CADDR CDDR
CADAAR CDAAR
CADADR CDADR
CADDAR CDDAR
CADDDR CDDDR
CDAAAR
CDAADR
CDADAR
CDADDR
CDDAAR
CDDADR
CDDDAR
CDDDDR

CONS(U:any, V:any):dotted-pair eval, spread
Returns a dotted-pair which is not EQ to anything and has U as its
CAR part and V as its CDR part.

91.3. FUNCTIONS 627

LIST([U:any]):list noeval, nospread, or macro
A list of the evaluation of each element of U is returned. The order of
evaluation need not be first to last as the following definition implies.a

FEXPR PROCEDURE LIST(U);
EVLIS U;

aThe published report’s definition implies a specific ordering.

RPLACA(U:dotted-pair, V:any):dotted-pair eval, spread
The CAR portion of the dotted-pair U is replaced by V. If dotted-
pair U is (a . b) then (V . b) is returned. The type mismatch error
occurs if U is not a dotted-pair.

RPLACD(U:dotted-pair, V:any):dotted-pair eval, spread
The CDR portion of the dotted-pair U is replaced by V. If dotted-
pair U is (a . b) then (a . V) is returned. The type mismatch error
occurs if U is not a dotted-pair.

91.3.3 Identifiers

The following functions deal with identifiers and the OBLIST, the
structure of which is not defined. The function of the OBLIST is to
provide a symbol table for identifiers created during input. Identifiers
created by READ which have the same characters will therefore refer to
the same object (see the EQ function in “Elementary Predicates”,
section 91.3.1 on page 622).

628 CHAPTER 91. THE STANDARD LISP REPORT

COMPRESS(U:id-list):{atom-vector} eval, spread
U is a list of single character identifiers which is built into a Stand-
ard LISP entity and returned. Recognized are numbers, strings,
and identifiers with the escape character prefixing special charac-
ters. The formats of these items appear in “Primitive Data Types”
section 91.2.1 on page 615. Identifiers are not interned on the OB-
LIST. Function pointers may be compressed but this is an undefined
use. If an entity cannot be parsed out of U or characters are left over
after parsing an error occurs:

***** Poorly formed atom in COMPRESS

EXPLODE(U:{atom}-{vector}):id-list eval, spread
Returned is a list of interned characters representing the characters to
print of the value of U. The primitive data types have these formats:

integer Leading zeroes are suppressed and a minus sign prefixes the
digits if the integer is negative.

floating The value appears in the format [-]0.nn...nnE[-]mm if the
magnitude of the number is too large or small to display in
[-]nnnn.nnnn format. The crossover point is determined by the
implementation.

id The characters of the print name of the identifier are produced
with special characters prefixed with the escape character.

string The characters of the string are produced surrounded by dou-
ble quotes ”. . . ”.

function-pointer The value of the function-pointer is created as a
list of characters conforming to the conventions of the system
site.

The type mismatch error occurs if U is not a number, identifier,
string, or function-pointer.

91.3. FUNCTIONS 629

GENSYM():identifier eval, spread
Creates an identifier which is not interned on the OBLIST and con-
sequently not EQ to anything else.

INTERN(U:{id,string}):id eval, spread
INTERN searches the OBLIST for an identifier with the same print
name as U and returns the identifier on the OBLIST if a match
is found. Any properties and global values associated with U may
be lost. If U does not match any entry, a new one is created and
returned. If U has more than the maximum number of characters
permitted by the implementation (the minimum number is 24) an
error occurs:

***** Too many characters to INTERN

REMOB(U:id):id eval, spread
If U is present on the OBLIST it is removed. This does not affect U
having properties, flags, functions and the like. U is returned.

91.3.4 Property List Functions

With each id in the system is a “property list”, a set of entities which are
associated with the id for fast access. These entities are called “flags” if
their use gives the id a single valued property, and “properties” if the id is
to have a multivalued attribute: an indicator with a property.

Flags and indicators may clash, consequently care should be taken to avoid
this occurrence. Flagging X with an id which already is an indicator for X
may result in that indicator and associated property being lost. Likewise,
adding an indicator which is the same id as a flag may result in the flag
being destroyed.

630 CHAPTER 91. THE STANDARD LISP REPORT

FLAG(U:id-list, V:id):NIL eval, spread
U is a list of ids which are flagged with V. The effect of FLAG is
that FLAGP will have the value T for those ids of U which were
flagged. Both V and all the elements of U must be identifiers or the
type mismatch error occurs.

FLAGP(U:any, V:any):boolean eval, spread
Returns T if U has been previously flagged with V, else NIL. Returns
NIL if either U or V is not an id.

GET(U:any, IND:any):any eval, spread
Returns the property associated with indicator IND from the prop-
erty list of U. If U does not have indicator IND, NIL is returned.
GET cannot be used to access functions (use GETD instead).

PUT(U:id, IND:id, PROP:any):any eval, spread
The indicator IND with the property PROP is placed on the property
list of the id U. If the action of PUT occurs, the value of PROP is
returned. If either of U and IND are not ids the type mismatch error
will occur and no property will be placed. PUT cannot be used to
define functions (use PUTD instead).

REMFLAG(U:any-list, V:id):NIL eval, spread
Removes the flag V from the property list of each member of the
list U. Both V and all the elements of U must be ids or the type
mismatch error will occur.

REMPROP(U:any, IND:any):any eval, spread
Removes the property with indicator IND from the property list of U.
Returns the removed property or NIL if there was no such indicator.

91.3. FUNCTIONS 631

91.3.5 Function Definition

Functions in Standard LISP are global entities. To avoid function-variable
naming clashes no variable may have the same name as a function.

DE(FNAME:id, PARAMS:id-list, FN:any):id noeval, nospread
The function FN with the formal parameter list PARAMS is added
to the set of defined functions with the name FNAME. Any previ-
ous definitions of the function are lost. The function created is of
type EXPR. If the !*COMP variable is non-NIL, the EXPR is first
compiled. The name of the defined function is returned.

FEXPR PROCEDURE DE(U);
PUTD(CAR U, ’EXPR, LIST(’LAMBDA, CADR U, CADDR U));

DF(FNAME:id, PARAM:id-list, FN:any):id noeval, nospread
The function FN with formal parameter PARAM is added to the set
of defined functions with the name FNAME. Any previous definitions
of the function are lost. The function created is of type FEXPR. If
the !*COMP variable is T the FEXPR is first compiled. The name
of the defined function is returned.

FEXPR PROCEDURE DF(U);
PUTD(CAR U, ’FEXPR, LIST(’LAMBDA, CADR U, CADDR U));

DM(MNAME:id, PARAM:id-list, FN:any):id noeval, nospread
The macro FN with the formal parameter PARAM is added to the
set of defined functions with the name MNAME. Any previous def-
initions of the function are overwritten. The function created is of
type MACRO. The name of the macro is returned.

FEXPR PROCEDURE DM(U);
PUTD(CAR U, ’MACRO, LIST(’LAMBDA, CADR U, CADDR U));

632 CHAPTER 91. THE STANDARD LISP REPORT

GETD(FNAME:any):{NIL, dotted-pair} eval, spread
If FNAME is not the name of a defined function, NIL is returned. If
FNAME is a defined function then the dotted-pair

(TYPE:ftype . DEF:{function-pointer, lambda})

is returned.

PUTD(FNAME:id, TYPE:ftype, BODY:function):id eval, spread
Creates a function with name FNAME and definition BODY of type
TYPE. If PUTD succeeds the name of the defined function is re-
turned. The effect of PUTD is that GETD will return a dotted-
pair with the functions type and definition. Likewise the GLOBALP
predicate will return T when queried with the function name.
If the function FNAME has already been declared as a GLOBAL or
FLUID variable the error:

***** FNAME is a non-local variable

occurs and the function will not be defined. If function FNAME
already exists a warning message will appear:

*** FNAME redefined

The function defined by PUTD will be compiled before definition if
the !*COMP global variable is non-NIL.

REMD(FNAME:id):{NIL, dotted-pair} eval, spread
Removes the function named FNAME from the set of defined func-
tions. Returns the (ftype . function) dotted-pair or NIL as does
GETD. The global/function attribute of FNAME is removed and
the name may be used subsequently as a variable.

91.3. FUNCTIONS 633

91.3.6 Variables and Bindings

A variable is a place holder for a Standard LISP entity which is said to be
bound to the variable. The scope of a variable is the range over which the
variable has a defined value. There are three different binding mechanisms
in Standard LISP.

Local Binding This type of binding occurs only in compiled functions.
Local variables occur as formal parameters in lambda expressions
and as PROG form variables. The binding occurs when a lambda
expression is evaluated or when a PROG form is executed. The scope
of a local variable is the body of the function in which it is defined.

Global Binding Only one binding of a global variable exists at any time
allowing direct access to the value bound to the variable. The scope
of a global variable is universal. Variables declared GLOBAL may
not appear as parameters in lambda expressions or as PROG form
variables. A variable must be declared GLOBAL prior to its use as a
global variable since the default type for undeclared variables is
FLUID.

Fluid Binding Fluid variables are global in scope but may occur as
formal parameters or PROG form variables. In interpreted functions
all formal parameters and PROG form variables are considered to
have fluid binding until changed to local binding by compilation.
When fluid variables are used as parameters they are rebound in
such a way that the previous binding may be restored. All references
to fluid variables are to the currently active binding.

FLUID(IDLIST:id-list):NIL eval, spread
The ids in IDLIST are declared as FLUID type variables (ids not
previously declared are initialized to NIL). Variables in IDLIST al-
ready declared FLUID are ignored. Changing a variable’s type from
GLOBAL to FLUID is not permissible and results in the error:

***** ID cannot be changed to FLUID

634 CHAPTER 91. THE STANDARD LISP REPORT

FLUIDP(U:any):boolean eval, spread
If U has been declared FLUID (by declaration only) T is returned,
otherwise NIL is returned.

GLOBAL(IDLIST:id-list):NIL eval, spread
The ids of IDLIST are declared global type variables. If an id has not
been declared previously it is initialized to NIL. Variables already de-
clared GLOBAL are ignored. Changing a variables type from FLUID
to GLOBAL is not permissible and results in the error:

***** ID cannot be changed to GLOBAL

GLOBALP(U:any):boolean eval, spread
If U has been declared GLOBAL or is the name of a defined function,
T is returned, else NIL is returned.

SET(EXP:id, VALUE:any):any eval, spread
EXP must be an identifier or a type mismatch error occurs. The
effect of SET is replacement of the item bound to the identifier by
VALUE. If the identifier is not a local variable or has not been de-
clared GLOBAL it is automatically declared FLUID with the result-
ing warning message:

*** EXP declared FLUID

EXP must not evaluate to T or NIL or an error occurs:

***** Cannot change T or NIL

91.3. FUNCTIONS 635

SETQ(VARIABLE:id, VALUE:any):any noeval, nospread
If VARIABLE is not local or GLOBAL it is by default declared
FLUID and the warning message:

*** VARIABLE declared FLUID

appears. The value of the current binding of VARIABLE is replaced
by the value of VALUE. VARIABLE must not be T or NIL or an
error occurs:

***** Cannot change T or NIL

MACRO PROCEDURE SETQ(X);
LIST(’SET, LIST(’QUOTE, CADR X), CADDR X);

UNFLUID(IDLIST:id-list):NIL eval, spread
The variables in IDLIST that have been declared as FLUID vari-
ables are no longer considered as fluid variables. Others are ignored.
This affects only compiled functions as free variables in interpreted
functions are automatically considered fluid [10].

91.3.7 Program Feature Functions

These functions provide for explicit control sequencing, and the definition
of blocks altering the scope of local variables.

636 CHAPTER 91. THE STANDARD LISP REPORT

GO(LABEL:id) noeval, nospread
GO alters the normal flow of control within a PROG function. The
next statement of a PROG function to be evaluated is immediately
preceded by LABEL. A GO may only appear in the following situa-
tions:

1. At the top level of a PROG referencing a label which also ap-
pears at the top level of the same PROG.

2. As the consequent of a COND item of a COND appearing on
the top level of a PROG.

3. As the consequent of a COND item which appears as the con-
sequent of a COND item to any level.

4. As the last statement of a PROGN which appears at the top
level of a PROG or in a PROGN appearing in the consequent
of a COND to any level subject to the restrictions of 2 and 3.

5. As the last statement of a PROGN within a PROGN or as the
consequent of a COND in a PROGN to any level subject to
the restrictions of 2, 3 and 4.

If LABEL does not appear at the top level of the PROG in which
the GO appears, an error occurs:

***** LABEL is not a known label

If the GO has been placed in a position not defined by rules 1-5,
another error is detected:

***** Illegal use of GO to LABEL

91.3. FUNCTIONS 637

PROG(VARS:id-list, [PROGRAM:{id, any}]):any noeval, nospread
VARS is a list of ids which are considered fluid when the PROG is
interpreted and local when compiled (see “Variables and Bindings”,
section 91.3.6 on page 633). The PROGs variables are allocated
space when the PROG form is invoked and are deallocated when
the PROG is exited. PROG variables are initialized to NIL. The
PROGRAM is a set of expressions to be evaluated in order of their
appearance in the PROG function. Identifiers appearing in the top
level of the PROGRAM are labels which can be referenced by GO.
The value returned by the PROG function is determined by a RE-
TURN function or NIL if the PROG “falls through”.

PROGN([U:any]):any noeval, nospread
U is a set of expressions which are executed sequentially. The value
returned is the value of the last expression.

PROG2(A:any, B:any)any eval, spread
Returns the value of B.

EXPR PROCEDURE PROG2(A, B);
B;

RETURN(U:any) eval, spread
Within a PROG, RETURN terminates the evaluation of a PROG
and returns U as the value of the PROG. The restrictions on the
placement of RETURN are exactly those of GO. Improper placement
of RETURN results in the error:

***** Illegal use of RETURN

638 CHAPTER 91. THE STANDARD LISP REPORT

91.3.8 Error Handling

ERROR(NUMBER:integer, MESSAGE:any) eval, spread
NUMBER and MESSAGE are passed back to a surrounding ER-
RORSET (the Standard LISP reader has an ERRORSET). MES-
SAGE is placed in the global variable EMSG!* and the error number
becomes the value of the surrounding ERRORSET. FLUID variables
and local bindings are unbound to return to the environment of the
ERRORSET. Global variables are not affected by the process.

ERRORSET(U:any, MSGP:boolean, TR:boolean):any eval, spread
If an error occurs during the evaluation of U, the value of NUMBER
from the ERROR call is returned as the value of ERRORSET. In
addition, if the value of MSGP is non-NIL, the MESSAGE from the
ERROR call is displayed upon both the standard output device and
the currently selected output device unless the standard output de-
vice is not open. The message appears prefixed with 5 asterisks. The
MESSAGE list is displayed without top level parentheses. The MES-
SAGE from the ERROR call will be available in the global variable
EMSG!*. The exact format of error messages generated by Standard
LISP functions described in this document are not fixed and should
not be relied upon to be in any particular form. Likewise, error
numbers generated by Standard LISP functions are implementation
dependent.
If no error occurs during the evaluation of U, the value of (LIST
(EVAL U)) is returned.
If an error has been signaled and the value of TR is non-NIL a trace-
back sequence will be initiated on the selected output device. The
traceback will display information such as unbindings of FLUID vari-
ables, argument lists and so on in an implementation dependent for-
mat.

91.3. FUNCTIONS 639

91.3.9 Vectors

Vectors are structured entities in which random elements may be accessed
with an integer index. A vector has a single dimension. Its maximum size
is determined by the implementation and available space. A suggested
input “vector notation” is defined in “Classes of Primitive Data Types”,
section 91.2.2 on page 619 and output with EXPLODE, “Identifiers”
section 91.3.3 on page 627.

GETV(V:vector, INDEX:integer):any eval, spread
Returns the value stored at position INDEX of the vector V. The
type mismatch error may occur. An error occurs if the INDEX does
not lie within 0. . . UPBV(V) inclusive:

***** INDEX subscript is out of range

MKVECT(UPLIM:integer):vector eval, spread
Defines and allocates space for a vector with UPLIM+1 elements
accessed as 0. . . UPLIM. Each element is initialized to NIL. An error
will occur if UPLIM is < 0 or there is not enough space for a vector
of this size:

***** A vector of size UPLIM cannot be allocated

PUTV(V:vector, INDEX:integer, VALUE:any):any eval, spread
Stores VALUE into the vector V at position INDEX. VALUE is re-
turned. The type mismatch error may occur. If INDEX does not lie
in 0. . . UPBV(V) an error occurs:

***** INDEX subscript is out of range

640 CHAPTER 91. THE STANDARD LISP REPORT

UPBV(U:any):NIL,integer eval, spread
Returns the upper limit of U if U is a vector, or NIL if it is not.

91.3.10 Boolean Functions and Conditionals

AND([U:any]):extra-boolean noeval, nospread
AND evaluates each U until a value of NIL is found or the end of the
list is encountered. If a non-NIL value is the last value it is returned,
or NIL is returned.

FEXPR PROCEDURE AND(U);
BEGIN

IF NULL U THEN RETURN NIL;
LOOP: IF NULL CDR U THEN RETURN EVAL CAR U

ELSE IF NULL EVAL CAR U THEN RETURN NIL;
U := CDR U;
GO LOOP

END;

COND([U:cond-form]):any noeval, nospread
The antecedents of all U’s are evaluated in order of their appearance
until a non-NIL value is encountered. The consequent of the selected
U is evaluated and becomes the value of the COND. The consequent
may also contain the special functions GO and RETURN subject to
the restraints given for these functions in “Program Feature Funct-
ions”, section 91.3.7 on page 635. In these cases COND does not
have a defined value, but rather an effect. If no antecedent is non-NIL
the value of COND is NIL. An error is detected if a U is improperly
formed:

***** Improper cond-form as argument of COND

91.3. FUNCTIONS 641

NOT(U:any):boolean eval, spread
If U is NIL, return T else return NIL (same as function NULL).

EXPR PROCEDURE NOT(U);
U EQ NIL;

OR([U:any]):extra-boolean noeval, nospread
U is any number of expressions which are evaluated in order of their
appearance. When one is found to be non-NIL it is returned as the
value of OR. If all are NIL, NIL is returned.

FEXPR PROCEDURE OR(U);
BEGIN SCALAR X;
LOOP: IF NULL U THEN RETURN NIL

ELSE IF (X := EVAL CAR U) THEN RETURN X;
U := CDR U;
GO LOOP

END;

91.3.11 Arithmetic Functions

Conversions between numeric types are provided explicitly by the FIX
and FLOAT functions and implicitly by any multi-parameter arithmetic
function which receives mixed types of arguments. A conversion from fixed
to floating point numbers may result in a loss of precision without a
warning message being generated. Since integers may have a greater
magnitude that that permitted for floating numbers, an error may be
signaled when the attempted conversion cannot be done. Because the
magnitude of integers is unlimited the conversion of a floating point
number to a fixed number is always possible, the only loss of precision
being the digits to the right of the decimal point which are truncated. If a
function receives mixed types of arguments the general rule will have the
fixed numbers converted to floating before arithmetic operations are
performed. In all cases an error occurs if the parameter to an arithmetic
function is not a number:

***** XXX parameter to FUNCTION is not a number

642 CHAPTER 91. THE STANDARD LISP REPORT

XXX is the value of the parameter at fault and FUNCTION is the name of
the function that detected the error. Exceptions to the rule are noted
where they occur.

ABS(U:number):number eval, spread
Returns the absolute value of its argument.

EXPR PROCEDURE ABS(U);
IF LESSP(U, 0) THEN MINUS(U) ELSE U;

ADD1(U:number):number eval, spread
Returns the value of U plus 1 of the same type as U (fixed or floating).

EXPR PROCEDURE ADD1(U);
PLUS2(U, 1);

DIFFERENCE(U:number, V:number):number eval, spread
The value U - V is returned.

DIVIDE(U:number, V:number):dotted-pair eval, spread
The dotted-pair (quotient . remainder) is returned. The quotient
part is computed the same as by QUOTIENT and the remainder
the same as by REMAINDER. An error occurs if division by zero is
attempted:

***** Attempt to divide by 0 in DIVIDE

EXPR PROCEDURE DIVIDE(U, V);
(QUOTIENT(U, V) . REMAINDER(U, V));

91.3. FUNCTIONS 643

EXPT(U:number, V:integer):number eval, spread
Returns U raised to the V power. A floating point U to an inte-
ger power V does not have V changed to a floating number before
exponentiation.

FIX(U:number):integer eval, spread
Returns an integer which corresponds to the truncated value of U.
The result of conversion must retain all significant portions of U. If
U is an integer it is returned unchanged.

FLOAT(U:number):floating eval, spread
The floating point number corresponding to the value of the argu-
ment U is returned. Some of the least significant digits of an integer
may be lost do to the implementation of floating point numbers.
FLOAT of a floating point number returns the number unchanged.
If U is too large to represent in floating point an error occurs:

***** Argument to FLOAT is too large

GREATERP(U:number, V:number):boolean eval, spread
Returns T if U is strictly greater than V, otherwise returns NIL.

LESSP(U:number, V:number):boolean eval, spread
Returns T if U is strictly less than V, otherwise returns NIL.

644 CHAPTER 91. THE STANDARD LISP REPORT

MAX([U:number]):number noeval, nospread, or macro
Returns the largest of the values in U. If two or more values are the
same the first is returned.

MACRO PROCEDURE MAX(U);
EXPAND(CDR U, ’MAX2);

MAX2(U:number, V:number):number eval, spread
Returns the larger of U and V. If U and V are the same value U is
returned (U and V might be of different types).

EXPR PROCEDURE MAX2(U, V);
IF LESSP(U, V) THEN V ELSE U;

MIN([U:number]):number noeval, nospread, or macro
Returns the smallest of the values in U. If two or more values are the
same the first of these is returned.

MACRO PROCEDURE MIN(U);
EXPAND(CDR U, ’MIN2);

MIN2(U:number, V:number):number eval, spread
Returns the smaller of its arguments. If U and V are the same value,
U is returned (U and V might be of different types).

EXPR PROCEDURE MIN2(U, V);
IF GREATERP(U, V) THEN V ELSE U;

MINUS(U:number):number eval, spread
Returns -U.

EXPR PROCEDURE MINUS(U);
DIFFERENCE(0, U);

91.3. FUNCTIONS 645

PLUS([U:number]):number noeval, nospread, or macro
Forms the sum of all its arguments.

MACRO PROCEDURE PLUS(U);
EXPAND(CDR U, ’PLUS2);

PLUS2(U:number, V:number):number eval, spread
Returns the sum of U and V.

QUOTIENT(U:number, V:number):number eval, spread
The quotient of U divided by V is returned. Division of two positive
or two negative integers is conventional. When both U and V are
integers and exactly one of them is negative the value returned is
the negative truncation of the absolute value of U divided by the
absolute value of V. An error occurs if division by zero is attempted:

***** Attempt to divide by 0 in QUOTIENT

REMAINDER(U:number, V:number):number eval, spread
If both U and V are integers the result is the integer remainder of
U divided by V. If either parameter is floating point, the result is
the difference between U and V*(U/V) all in floating point. If either
number is negative the remainder is negative. If both are positive or
both are negative the remainder is positive. An error occurs if V is
zero:

***** Attempt to divide by 0 in REMAINDER

EXPR PROCEDURE REMAINDER(U, V);
DIFFERENCE(U, TIMES2(QUOTIENT(U, V), V));

646 CHAPTER 91. THE STANDARD LISP REPORT

SUB1(U:number):number eval, spread
Returns the value of U less 1. If U is a FLOAT type number, the
value returned is U less 1.0.

EXPR PROCEDURE SUB1(U);
DIFFERENCE(U, 1);

TIMES([U:number]):number noeval, nospread, or macro
Returns the product of all its arguments.

MACRO PROCEDURE TIMES(U);
EXPAND(CDR U, ’TIMES2);

TIMES2(U:number, V:number):number eval, spread
Returns the product of U and V.

91.3.12 MAP Composite Functions

MAP(X:list, FN:function):any eval, spread
Applies FN to successive CDR segments of X. NIL is returned.

EXPR PROCEDURE MAP(X, FN);
WHILE X DO << FN X; X := CDR X >>;

MAPC(X:list, FN:function):any eval, spread
FN is applied to successive CAR segments of list X. NIL is returned.

EXPR PROCEDURE MAPC(X, FN);
WHILE X DO << FN CAR X; X := CDR X >>;

91.3. FUNCTIONS 647

MAPCAN(X:list, FN:function):any eval, spread
A concatenated list of FN applied to successive CAR elements of X
is returned.

EXPR PROCEDURE MAPCAN(X, FN);
IFNULL X THEN NIL
ELSE NCONC(FN CAR X, MAPCAN(CDR X, FN));

MAPCAR(X:list, FN:function):any eval, spread
Returned is a constructed list of FN applied to each CAR of list X.

EXPR PROCEDURE MAPCAR(X, FN);
IFNULL X THEN NIL
ELSE FN CAR X . MAPCAR(CDR X, FN);

MAPCON(X:list, FN:function):any eval, spread
Returned is a concatenated list of FN applied to successive CDR
segments of X.

EXPR PROCEDURE MAPCON(X, FN);
IFNULL X THEN NIL
ELSE NCONC(FN X, MAPCON(CDR X, FN));

MAPLIST(X:list, FN:function):any eval, spread
Returns a constructed list of FN applied to successive CDR segments
of X.

EXPR PROCEDURE MAPLIST(X, FN);
IFNULL X THEN NIL
ELSE FN X . MAPLIST(CDR X, FN);

648 CHAPTER 91. THE STANDARD LISP REPORT

91.3.13 Composite Functions

APPEND(U:list, V:list):list eval, spread
Returns a constructed list in which the last element of U is followed
by the first element of V. The list U is copied, V is not.

EXPR PROCEDURE APPEND(U, V);
IFNULL U THEN V
ELSE CAR U . APPEND(CDR U, V);

ASSOC(U:any, V:alist):{dotted-pair, NIL} eval, spread
If U occurs as the CAR portion of an element of the alist V, the
dotted-pair in which U occurred is returned, else NIL is returned.
ASSOC might not detect a poorly formed alist so an invalid con-
struction may be detected by CAR or CDR.

EXPR PROCEDURE ASSOC(U, V);
IF NULL V THEN NIL

ELSE IF ATOM CAR V THEN
ERROR(000, LIST(V, "is a poorly formed alist"))

ELSE IF U = CAAR V THEN CAR V
ELSE ASSOC(U, CDR V);

DEFLIST(U:dlist, IND:id):list eval, spread
A ”dlist” is a list in which each element is a two element list: (ID:id
PROP:any). Each ID in U has the indicator IND with property
PROP placed on its property list by the PUT function. The value
of DEFLIST is a list of the first elements of each two element list.
Like PUT, DEFLIST may not be used to define functions.

EXPR PROCEDURE DEFLIST(U, IND);
IF NULL U THEN NIL
ELSE << PUT(CAAR U, IND, CADAR U);

CAAR U >> . DEFLIST(CDR U, IND);

91.3. FUNCTIONS 649

DELETE(U:any, V:list):list eval, spread
Returns V with the first top level occurrence of U removed from it.

EXPR PROCEDURE DELETE(U, V);
IF NULL V THEN NIL
ELSE IF CAR V = U THEN CDR V
ELSE CAR V . DELETE(U, CDR V);

DIGIT(U:any):boolean eval, spread
Returns T if U is a digit, otherwise NIL.

EXPR PROCEDURE DIGIT(U);
IF MEMQ(U, ’(!0 !1 !2 !3 !4 !5 !6 !7 !8 !9))
THEN T ELSE NIL;

LENGTH(X:any):integer eval, spread
The top level length of the list X is returned.

EXPR PROCEDURE LENGTH(X);
IF ATOM X THEN 0
ELSE PLUS(1, LENGTH CDR X);

LITER(U:any):boolean eval, spread
Returns T if U is a character of the alphabet, NIL otherwise.a

EXPR PROCEDURE LITER(U);
IF MEMQ(U, ’(!A !B !C !D !E !F !G !H !I !J !K !L !M

!N !O !P !Q !R !S !T !U !V !W !X !Y !Z
!a !b !c !d !e !f !g !h !i !j !k !l !m
!n !o !p !q !r !s !t !u !v !w !x !y !z))

THEN T ELSE NIL;

aThe published report omits escape characters. These are required for both
upper and lower case as some systems default to lower.

650 CHAPTER 91. THE STANDARD LISP REPORT

MEMBER(A:any, B:list):extra-boolean eval, spread
Returns NIL if A is not a member of list B, returns the remainder of
B whose first element is A.

EXPR PROCEDURE MEMBER(A, B);
IF NULL B THEN NIL
ELSE IF A = CAR B THEN B
ELSE MEMBER(A, CDR B);

MEMQ(A:any, B:list):extra-boolean eval, spread
Same as MEMBER but an EQ check is used for comparison.

EXPR PROCEDURE MEMQ(A, B);
IF NULL B THEN NIL

ELSE IF A EQ CAR B THEN B
ELSE MEMQ(A, CDR B);

NCONC(U:list, V:list):list eval, spread
Concatenates V to U without copying U. The last CDR of U is
modified to point to V.

EXPR PROCEDURE NCONC(U, V);
BEGIN SCALAR W;

IF NULL U THEN RETURN V;
W := U;
WHILE CDR W DO W := CDR W;
RPLACD(W, V);
RETURN U

END;

91.3. FUNCTIONS 651

PAIR(U:list, V:list):alist eval, spread
U and V are lists which must have an identical number of elements.
If not, an error occurs (the 000 used in the ERROR call is arbitrary
and need not be adhered to). Returned is a list where each element
is a dotted-pair, the CAR of the pair being from U, and the CDR
the corresponding element from V.

EXPR PROCEDURE PAIR(U, V);
IF AND(U, V) THEN (CAR U . CAR V) . PAIR(CDR U, CDR V)
ELSE IF OR(U, V) THEN ERROR(000,

"Different length lists in PAIR")
ELSE NIL;

REVERSE(U:list):list eval, spread
Returns a copy of the top level of U in reverse order.

EXPR PROCEDURE REVERSE(U);
BEGIN SCALAR W;

WHILE U DO << W := CAR U . W;
U := CDR U >>;

RETURN W
END;

SASSOC(U:any, V:alist, FN:function):any eval, spread
Searches the alist V for an occurrence of U. If U is not in the alist
the evaluation of function FN is returned.

EXPR PROCEDURE SASSOC(U, V, FN);
IF NULL V THEN FN()
ELSE IF U = CAAR V THEN CAR V
ELSE SASSOC(U, CDR V, FN);

652 CHAPTER 91. THE STANDARD LISP REPORT

SUBLIS(X:alist, Y:any):any eval, spread
The value returned is the result of substituting the CDR of each
element of the alist X for every occurrence of the CAR part of that
element in Y.

EXPR PROCEDURE SUBLIS(X, Y);
IF NULL X THEN Y

ELSE BEGIN SCALAR U;
U := ASSOC(Y, X);
RETURN IF U THEN CDR U

ELSE IF ATOM Y THEN Y
ELSE SUBLIS(X, CAR Y) .

SUBLIS(X, CDR Y)
END;

SUBST(U:any, V:any, W:any):any eval, spread
The value returned is the result of substituting U for all occurrences
of V in W.

EXPR PROCEDURE SUBST(U, V, W);
IF NULL W THEN NIL
ELSE IF V = W THEN U
ELSE IF ATOM W THEN W
ELSE SUBST(U, V, CAR W) . SUBST(U, V, CDR W);

91.3. FUNCTIONS 653

91.3.14 The Interpreter

APPLY(FN:{id,function}, ARGS:any-list):any eval, spread
APPLY returns the value of FN with actual parameters ARGS. The
actual parameters in ARGS are already in the form required for
binding to the formal parameters of FN. Implementation specific
portions described in English are enclosed in boxes.

EXPR PROCEDURE APPLY(FN, ARGS);
BEGIN SCALAR DEFN;

IF CODEP FN THEN RETURN

Spread the actual parameters in ARGS
following the conventions: for calling
functions, transfer to the entry point
of the function, and return the value
returned by the function.

;

IF IDP FN THEN RETURN
IF NULL(DEFN := GETD FN) THEN

ERROR(000, LIST(FN, "is an undefined function"))
ELSE IF CAR DEFN EQ ’EXPR THEN

APPLY(CDR DEFN, ARGS)
ELSE ERROR(000,

LIST(FN, "cannot be evaluated by APPLY"));
IF OR(ATOM FN, NOT(CAR FN EQ ’LAMBDA)) THEN

ERROR(000,
LIST(FN, "cannot be evaluated by APPLY"));

RETURN
Bind the actual parameters in ARGS to
the formal parameters of the lambda
expression. If the two lists are not
of equal length then ERROR(000, "Number
of parameters do not match"); The value
returned is EVAL CADDR FN.

END;

654 CHAPTER 91. THE STANDARD LISP REPORT

EVAL(U:any):any eval, spread
The value of the expression U is computed. Error numbers are ar-
bitrary. Portions of EVAL involving machine specific coding are
expressed in English enclosed in boxes.

EXPR PROCEDURE EVAL(U);
BEGIN SCALAR FN;

IF CONSTANTP U THEN RETURN U;
IF IDP U THEN RETURN

U is an id. Return the value most
currently bound to U or if there
is no such binding: ERROR(000,
LIST("Unbound:", U));

IF PAIRP CAR U THEN RETURN
IF CAAR U EQ ’LAMBDA THEN APPLY(CAR U, EVLIS CDR U)
ELSE ERROR(000, LIST(CAR U,

"improperly formed LAMBDA expression"))
ELSE IF CODEP CAR U THEN

RETURN APPLY(CAR U, EVLIS CDR U);
FN := GETD CAR U;
IF NULL FN THEN

ERROR(000, LIST(CAR U, "is an undefined function"))
ELSE IF CAR FN EQ ’EXPR THEN

RETURN APPLY(CDR FN, EVLIS CDR U)
ELSE IF CAR FN EQ ’FEXPR THEN

RETURN APPLY(CDR FN, LIST CDR U)
ELSE IF CAR FN EQ ’MACRO THEN

RETURN EVAL APPLY(CDR FN, LIST U)
END;

EVLIS(U:any-list):any-list eval, spread
EVLIS returns a list of the evaluation of each element of U.

EXPR PROCEDURE EVLIS(U);
IF NULL U THEN NIL
ELSE EVAL CAR U . EVLIS CDR U;

91.3. FUNCTIONS 655

EXPAND(L:list, FN:function):list eval, spread
FN is a defined function of two arguments to be used in the expansion
of a MACRO. EXPAND returns a list in the form:

(FN L0 (FN L1 . . . (FN Ln−1 Ln) . . .))

where n is the number of elements in L, Li is the ith element of L.

EXPR PROCEDURE EXPAND(L,FN);
IF NULL CDR L THEN CAR L
ELSE LIST(FN, CAR L, EXPAND(CDR L, FN));

FUNCTION(FN:function):function noeval, nospread
The function FN is to be passed to another function. If FN is to have
side effects its free variables must be fluid or global. FUNCTION is
like QUOTE but its argument may be affected by compilation. We
do not consider FUNARGs in this report.

QUOTE(U:any):any noeval, nospread
Stops evaluation and returns U unevaluated.

FEXPR PROCEDURE QUOTE(U);
CAR U;

91.3.15 Input and Output

The user normally communicates with Standard LISP through “standard
devices”. The default devices are selected in accordance with the
conventions of the implementation site. Other input and output devices or
files may be selected for reading and writing using the functions described
herein.

656 CHAPTER 91. THE STANDARD LISP REPORT

CLOSE(FILEHANDLE:any):any eval, spread
Closes the file with the internal name FILEHANDLE writing any
necessary end of file marks and such. The value of FILEHANDLE
is that returned by the corresponding OPEN. The value returned is
the value of FILEHANDLE. An error occurs if the file can not be
closed.

***** FILEHANDLE could not be closed

EJECT():NIL eval, spread
Skip to the top of the next output page. Automatic EJECTs are
executed by the print functions when the length set by the PAGE-
LENGTH function is exceeded.

LINELENGTH(LEN:{integer, NIL}):integer eval, spread
If LEN is an integer the maximum line length to be printed before
the print functions initiate an automatic TERPRI is set to the value
LEN. No initial Standard LISP line length is assumed. The previous
line length is returned except when LEN is NIL. This special case
returns the current line length and does not cause it to be reset. An
error occurs if the requested line length is too large for the currently
selected output file or LEN is negative or zero.

***** LEN is an invalid line length

LPOSN():integer eval, spread
Returns the number of lines printed on the current page. At the top
of a page, 0 is returned.

91.3. FUNCTIONS 657

OPEN(FILE:any, HOW:id):any eval, spread
Open the file with the system dependent name FILE for output if
HOW is EQ to OUTPUT, or input if HOW is EQ to INPUT. If the
file is opened successfully, a value which is internally associated
with the file is returned. This value must be saved for use by RDS
and WRS. An error occurs if HOW is something other than INPUT
or OUTPUT or the file can’t be opened.

***** HOW is not option for OPEN
***** FILE could not be opened

PAGELENGTH(LEN:{integer, NIL}):integer eval, spread
Sets the vertical length (in lines) of an output page. Automatic page
EJECTs are executed by the print functions when this length is
reached. The initial vertical length is implementation specific. The
previous page length is returned. If LEN is 0, no automatic page
ejects will occur.

POSN():integer eval, spread
Returns the number of characters in the output buffer. When the
buffer is empty, 0 is returned.

PRINC(U:id):id eval, spread
U must be a single character id such as produced by EXPLODE or
read by READCH or the value of !$EOL!$. The effect is the character
U displayed upon the currently selected output device. The value of
!$EOL!$ causes termination of the current line like a call to TERPRI.

658 CHAPTER 91. THE STANDARD LISP REPORT

PRINT(U:any):any eval, spread
Displays U in READ readable format and terminates the print line.
The value of U is returned.

EXPR PROCEDURE PRINT(U);
<< PRIN1 U; TERPRI(); U >>;

PRIN1(U:any):any eval, spread
U is displayed in a READ readable form. The format of display is
the result of EXPLODE expansion; special characters are prefixed
with the escape character !, and strings are enclosed in ”. . . ”. Lists
are displayed in list-notation and vectors in vector-notation.

PRIN2(U:any):any eval, spread
U is displayed upon the currently selected print device but output is
not READ readable. The value of U is returned. Items are displayed
as described in the EXPLODE function with the exceptions that
the escape character does not prefix special characters and strings
are not enclosed in ”. . . ”. Lists are displayed in list-notation and
vectors in vector-notation. The value of U is returned.

RDS(FILEHANDLE:any):any eval, spread
Input from the currently selected input file is suspended and fur-
ther input comes from the file named. FILEHANDLE is a system
dependent internal name which is a value returned by OPEN. If
FILEHANDLE is NIL the standard input device is selected. When
end of file is reached on a non-standard input device, the standard
input device is reselected. When end of file occurs on the standard
input device the Standard LISP reader terminates. RDS returns the
internal name of the previously selected input file.

***** FILEHANDLE could not be selected for input

91.3. FUNCTIONS 659

READ():any
The next expression from the file currently selected for input. Valid
input forms are: vector-notation, dot-notation, list-notation, num-
bers, function-pointers, strings, and identifiers with escape charac-
ters. Identifiers are interned onW the OBLIST (see the INTERN
function in ”Identifiers”, section 91.3.3 on page 627). READ returns
the value of !$EOF!$ when the end of the currently selected input
file is reached.

READCH():id
Returns the next interned character from the file currently selected
for input. Two special cases occur. If all the characters in an input
record have been read, the value of !$EOL!$ is returned. If the file

selected for input has all been read the value of !$EOF!$ is returned.
Comments delimited by % and end-of-line are not transparent to
READCH.

TERPRI():NIL
The current print line is terminated.

WRS(FILEHANDLE:any):any eval, spread
Output to the currently active output file is suspended and further
output is directed to the file named. FILEHANDLE is an internal
name which is returned by OPEN. The file named must have been
opened for output. If FILEHANDLE is NIL the standard output
device is selected. WRS returns the internal name of the previously
selected output file.

***** FILEHANDLE could not be selected for output

660 CHAPTER 91. THE STANDARD LISP REPORT

91.3.16 LISP Reader

An EVAL read loop has been chosen to drive a Standard LISP system to
provide a continuity in functional syntax. Choices of messages and the
amount of extra information displayed are decisions left to the
implementor.

EXPR PROCEDURE STANDARD!-LISP();
BEGIN SCALAR VALUE;

RDS NIL; WRS NIL;
PRIN2 "Standard LISP"; TERPRI();
WHILE T DO

<< PRIN2 "EVAL:"; TERPRI();
VALUE := ERRORSET(QUOTE EVAL READ(), T, T);
IF NOT ATOM VALUE THEN PRINT CAR VALUE;
TERPRI() >>;

END;

QUIT()
Causes termination of the LISP reader and control to be transferred
to the operating system.

91.4 System GLOBAL Variables

These variables provide global control of the LISP system, or implement
values which are constant throughout execution.2

*COMP = NIL global
The value of !*COMP controls whether or not PUTD compiles the
function defined in its arguments before defining it. If !*COMP is
NIL the function is defined as an xEXPR. If !*COMP is something
else the function is first compiled. Compilation will produce certain
changes in the semantics of functions particularly FLUID type access.

2The published document does not specify that all these are GLOBAL.

91.4. SYSTEM GLOBAL VARIABLES 661

EMSG* = NIL global
Will contain the MESSAGE generated by the last ERROR call (see
“Error Handling” section 91.3.8 on page 638).

EOF = <an uninterned identifier> global
The value of !$EOF!$ is returned by all input functions when the end
of the currently selected input file is reached.

EOL = <an uninterned identifier> global
The value of !$EOL!$ is returned by READCH when it reaches the
end of a logical input record. Likewise PRINC will terminate its
current line (like a call to TERPRI) when !$EOL!$ is its argument.

*GC = NIL global
!*GC controls the printing of garbage collector messages. If NIL
no indication of garbage collection may occur. If non-NIL various
system dependent messages may be displayed.

NIL = NIL global
NIL is a special global variable. It is protected from being modified
by SET or SETQ.

*RAISE = NIL global
If !*RAISE is non-NIL all characters input through Standard LISP
input/output functions will be raised to upper case. If !*RAISE is
NIL characters will be input as is.

T = T global
T is a special global variable. It is protected from being modified by
SET or SETQ.

662 CHAPTER 91. THE STANDARD LISP REPORT

91.5 The Extended Syntax

Whenever it is possible to define Standard LISP functions in LISP the text
of the function will appear in an extended syntax. These definitions are
supplied as an aid to understanding the behavior of functions and not as a
strict implementation guide. A formal scheme for the translation of
extended syntax to Standard LISP is presented to eliminate
misinterpretation of the definitions.

91.5.1 Definition

The goal of the transformation scheme is to produce a PUTD invocation
which has the function translated from the extended syntax as its actual
parameter. A rule has a name in brackets <. . .> by which it is known and
is defined by what follows the meta symbol ::=. Each rule of the set
consists of one or more “alternatives” separated by the | meta symbol,
being the different ways in which the rule will be matched by source text.
Each alternative is composed of a “recognizer” and a “generator” separated
by the =⇒ meta symbol. The recognizer is a concatenation of any of three
different forms. 1) Terminals - Upper case lexemes and punctuation which
is not part of the meta syntax represent items which must appear as is in
the source text for the rule to succeed. 2) Rules - Lower case lexemes
enclosed in <. . .> are names of other rules. The source text is matched if
the named rule succeeds. 3) Primitives - Lower case singletons not in
brackets are names of primitives or primitive classes of Standard LISP.
The syntax and semantics of the primitives are given in Part I.

The recognizer portion of the following rule matches an extended syntax
procedure:

<function> ::= ftype PROCEDURE id (<id list>);
<statement>; =⇒

A function is recognized as an “ftype” (one of the tokens EXPR, FEXPR,
etc.) followed by the keyword PROCEDURE, followed by an “id” (the
name of the function), followed by an <id list> (the formal parameter
names) enclosed in parentheses. A semicolon terminates the title line. The
body of the function is a <statement> followed by a semicolon. For
example:

91.5. THE EXTENDED SYNTAX 663

EXPR PROCEDURE NULL(X); EQ(X, NIL);

satisfies the recognizer, causes the generator to be activated and the rule to
be matched successfully.

The generator is a template into which generated items are substituted.
The three syntactic entities have corresponding meanings when they
appear in the generator portion. 1) Terminals - These lexemes are copied
as is to the generated text. 2) Rules - If a rule has succeeded in the
recognizer section then the value of the rule is the result of the generator
portion of that rule. 3) Primitives - When primitives are matched the
primitive lexeme replaces its occurrence in the generator.

If more than one occurrence of an item would cause ambiguity in the
generator portion this entity appears with a bracketed subscript. Thus:

<conditional> ::=
IF <expression> THEN <statement1>

ELSE <statement2> . . .

has occurrences of two different <statement>s. The generator portion uses
the subscripted entities to reference the proper generated value.

The <function> rule appears in its entirety as:

<function> ::= ftype PROCEDURE id (<id list>);<statement>; =⇒
(PUTD (QUOTE id)

(QUOTE ftype)
(QUOTE (LAMBDA (<id list>) <statement>)))

If the recognizer succeeds (as it would in the case of the NULL procedure
example) the generator returns:

(PUTD (QUOTE NULL) (QUOTE EXPR) (QUOTE (LAMBDA (X) (EQ X NIL))))

The identifier in the template is replaced by the procedure name NULL,
<id list> by the single formal parameter X, the <statement> by (EQ X
NIL) which is the result of the <statement> generator. EXPR replaces
ftype, the type of the defined procedure.

664 CHAPTER 91. THE STANDARD LISP REPORT

91.5.2 The Extended Syntax Rules

<function> ::= ftype PROCEDURE id (<id list>); <statement>; =⇒
(PUTD (QUOTE id)

(QUOTE ftype)
(QUOTE (LAMBDA (<id list>) <statement>)))

<id list> ::= id =⇒ id |
id, <id list> =⇒ id <id list> |
=⇒ NIL

<statement> ::= <expression> =⇒ <expression> |
<proper statement> =⇒ <proper statement>

<proper statement> ::=
<assignment statement> =⇒ <assignment statement> |
<conditional statement> =⇒ <conditional statement> |
<while statement> =⇒ <while statement> |
<compound statement> =⇒ <compound statement>

<assignment statement> ::= id := <expression> =⇒
(SETQ id <expression>)

<conditional statement> ::=
IF <expression> THEN <statement1> ELSE <statement2> =⇒

(COND (<expression> <statement1>)(T <statement2>)) |
IF <expression> THEN <statement> =⇒

(COND (<expression> <statement>))

<while statement> ::= WHILE <expression> DO <statement> =⇒
(PROG NIL
LBL (COND ((NULL <expression>) (RETURN NIL)))

<statement>
(GO LBL))

<compound statement> ::=
BEGIN SCALAR <id list>; <program list> END =⇒

(PROG (<id list>) <program list>) |
BEGIN <program list> END =⇒

(PROG NIL <program list>) |
<< <statement list> >> =⇒ (PROGN <statement list>)

91.5. THE EXTENDED SYNTAX 665

<program list> ::= <full statement> =⇒ <full statement> |
<full statement> <program list> =⇒

<full statement> <program list>

<full statement> ::= <statement> =⇒ <statement> | id: =⇒ id

<statement list> ::= <statement> =⇒ <statement> |
<statement>; <statement list> =⇒

<statement> <statement list>

<expression> ::=
<expression1> . <expression2> =⇒

(CONS <expression1> <expression2> |
<expression1> = <expression2> =⇒

(EQUAL <expression1> <expression2>) |
<expression1> EQ <expression2> =⇒

(EQ <expression1> <expression2>) |
’<expression> =⇒ (QUOTE <expression>) |
function <expression> =⇒ (function <expression>) |
function(<argument list>) =⇒ (function <argument list>) |
number =⇒ number |
id =⇒ id

<argument list> ::= () =⇒ |
<expression> =⇒ <expression> |
<expression>, <argument list> =⇒ <expression> <argument list>

Notice the three infix operators . EQ and = which are translated into calls
on CONS, EQ, and EQUAL respectively. Note also that a call on a
function which has no formal parameters must have () as an argument list.
The QUOTE function is abbreviated by ’.

666 CHAPTER 91. THE STANDARD LISP REPORT

Part IV

Appendix

667

Appendix A

Reserved Identifiers

We list here all identifiers that are normally reserved in REDUCE
including names of commands, operators and switches initially in the
system. Excluded are words that are reserved in specific implementations
of the system.

Commands ALGEBRAIC ANTISYMMETRIC ARRAY BYE CLEAR
CLEARRULES COMMENT CONT DECOMPOSE DEFINE
DEPEND DISPLAY ED EDITDEF END EVEN FACTOR FOR
FORALL FOREACH GO GOTO IF IN INDEX INFIX INPUT
INTEGER KORDER LET LINEAR LISP LISTARGP LOAD
LOAD PACKAGE MASS MATCH MATRIX MSHELL
NODEPEND NONCOM NONZERO NOSPUR ODD OFF ON
OPERATOR ORDER OUT PAUSE PRECEDENCE
PRINT PRECISION PROCEDURE QUIT REAL REMFAC
REMIND RETRY RETURN SAVEAS SCALAR SETMOD
SHARE SHOWTIME SHUT SPUR SYMBOLIC SYMMETRIC
VECDIM VECTOR WEIGHT WRITE WTLEVEL

Boolean Operators EVENP FIXP FREEOF NUMBERP ORDP PRIMEP

Infix Operators := = >= > <= < => + * / ^ ** . WHERE SETQ OR AND
MEMBER MEMQ EQUAL NEQ EQ GEQ GREATERP LEQ
LESSP PLUS DIFFERENCE MINUS TIMES QUOTIENT
EXPT CONS

669

670 APPENDIX A. RESERVED IDENTIFIERS

Numerical Operators ABS ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC
ASECH ASIN ASINH ATAN ATANH ATAN2 COS COSH COT
COTH CSC CSCH EXP FACTORIAL FIX FLOOR HYPOT LN
LOG LOGB LOG10 NEXTPRIME ROUND SEC SECH SIN
SINH SQRT TAN TANH

Prefix Operators APPEND ARGLENGTH CEILING COEFF COEFFN
COFACTOR CONJ DEG DEN DET DF DILOG EI EPS ERF
FACTORIZE FIRST GCD G IMPART INT INTERPOL LCM
LCOF LENGTH LHS LINELENGTH LTERM MAINVAR MAT
MATEIGEN MAX MIN MKID NULLSPACE NUM PART PF
PRECISION RANDOM RANDOM NEW SEED RANK REDERR
REDUCT REMAINDER REPART REST RESULTANT
REVERSE RHS SECOND SET SHOWRULES SIGN SOLVE
STRUCTR SUB SUM THIRD TP TRACE VARNAME

Reserved Variables CARD NO E EVAL MODE FORT WIDTH HIGH POW I
INFINITY K!* LOW POW NIL PI ROOT MULTIPLICITY
T

Switches ADJPREC ALGINT ALLBRANCH ALLFAC BFSPACE
COMBINEEXPT COMBINELOGS COMP COMPLEX CRAMER
CREF DEFN DEMO DIV ECHO ERRCONT EVALLHSEQP EXP
EXPANDLOGS EZGCD FACTOR FORT FULLROOTS GCD
IFACTOR INT INTSTR LCM LIST LISTARGS MCD
MODULAR MSG MULTIPLICITIES NAT NERO NOSPLIT
OUTPUT PERIOD PRECISE PRET PRI RAT RATARG
RATIONAL RATIONALIZE RATPRI REVPRI RLISP88
ROUNDALL ROUNDBF ROUNDED SAVESTRUCTR
SOLVESINGULAR TIME TRA TRFAC TRIGFORM TRINT

Other Reserved Ids BEGIN DO EXPR FEXPR INPUT LAMBDA LISP MACRO
PRODUCT REPEAT SMACRO SUM UNTIL WHEN WHILE WS

Bibliography

[1] George A. Baker(Jr.) and Peter Graves-Morris. Padé Approximants,
Part I: Basic Theory. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1981.

[2] Computation Center. LISP Reference Manual, CDC-6000. The
University of Texas at Austin.

[3] S.-C. Chou. Proving elementary geometry theorems using Wu’s
algorithm. In Contemp. Math., volume 19, pages 243 – 286. AMS,
Providence, Rhode Island, 1984.

[4] S.-C. Chou. Mechanical geometry theorem proving. Reidel, Dortrecht,
1988.

[5] S.-C. Chou. Automated reasoning in geometries using the
characteristic set method and Gröbner basis method. In Proc.
ISSAC-90, pages 255–260. ACM Press, 1990.

[6] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra
meets computer logic. ACM SIGSAM Bulletin, 31(2):2–9, June 1997.

[7] Andreas Dolzmann and Thomas Sturm. Simplification of
quantifier-free formulae over ordered fields. Journal of Symbolic
Computation, 24(2):209–231, August 1997.

[8] Andreas Dolzmann and Thomas Sturm. Redlog User Manual. FMI,
Universität Passau, D-94030 Passau, Germany, April 1999. Edition
2.0 for Version 2.0.

[9] Stanford Center for Information Processing. LISP/360 Reference
Manual. Stanford University.

671

672 BIBLIOGRAPHY

[10] M. L. Griss and A. C. Hearn. A portable LISP compiler.
Software—Practice and Experience, 11:541–605, June 1981.

[11] A. C. Hearn. REDUCE user’s manual: Version 3.3. Publication CP78
(Rev 1/88), RAND, 1988.

[12] A. C. Hearn, P. K. Kuo, and D. R. Yennie. Radiative corrections to
an electron-positron scattering experiment. Phys. Rev.,
187:2088–2096, 1969.

[13] Wolfram Koepf. REDUCE package for the indefinite and definite
summation. SIGSAM Bulletin, 29(1):14–30, January 1995.

[14] T. H. Koornwinder. On Zeilberger’s algorithm and its q-analogue: a
rigorous description. J. of Comput. and Appl. Math., 48:91–111, 1993.

[15] MACLISP Reference Manual, March 1976.

[16] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P.
Hart, and Michael I. Levin. LISP 1.5 Programmers Manual. The
M.I.T. Press, Cambridge, Massachusettes, 1965.

[17] Mats Nordstrom, Erik Sandewall, and Diz Breslow. LISP F1: A
FORTRAN Implementation of LISP 1.5. Uppsala University,
Department of Computer Sciences.

[18] Lynn H. Quam and Whitfield Diffie. Stanford LISP 1.6 Manual.
Stanford Artificial Intelligence Laboratory, operating note 28.7 edition.

[19] Warren Teitelman. INTERLISP Reference Manual. XEROX, Palo
Alto Research Centers, 3333 Coyote Road, Palo Alto, California
94304, 1978.

[20] Volker Weispfenning. Comprehensive Gröbner bases. Journal of
Symbolic Computation, 14:1–29, July 1992.

[21] W.-T. Wu. On the decision problem and the mechanization of
theorem-proving in elementary geometry. In Contemp. Math.,
volume 19, pages 213 – 234. AMS, Providence, Rhode Island, 1984.

[22] W.-T. Wu. Some recent advances in mechanical theorem proving of
geometry. In Contemp. Math., volume 19, pages 235 – 241. AMS,
Providence, Rhode Island, 1984.

BIBLIOGRAPHY 673

[23] W.-T. Wu. Mechanical Theorem Proving in Geometries. Number 1 in
Texts and Monographs in Symbolic Computation. Springer, Wien,
1994.

Index

!*CSYSTEMS global
(AVECTOR), 272

><
3-D vector, 455
diphthong, 455

| operator, 338
(), 620
*

3-D vector, 455
power series, 575
vector, 270

**
power series, 575

*** (warning message), 622
***** (error message), 622, 638
*COMP (fluid), 631, 632
*COMP (global), 660
*COMP variable, 631
*GC (global), 661
*RAISE (global), 617, 661
+

3-D vector, 455
power series, 575
vector, 270

-
3-D vector, 455
power series, 575
vector, 270

-list, 619
., 245
. (CONS), 60
/

3-D vector, 455
power series, 575
vector, 270

:-, 472
::=, 354
::=:, 355
:=:, 354
;BEGIN; marker, 358
;END; marker, 358
@ operator, 336
[. . .] syntax, 621
#

Hodge-* operator, 338
EOF (global), 659, 661
EOL (global), 657, 659, 661
%, 622
%

read by READCH, 659
ˆ

3-D vector, 455
exterior multiplication, 335

| operator, 337
=, 471
{. . . }

as syntax, 620
3j and 6j symbols, 543

ABAGLISTP, 248
ABS, 642
ABS, 80
ACFSF, 497, 499
ACOS, 83, 87

674

INDEX 675

ACOSH, 83, 87
ACOT, 83, 87
ACOTH, 83, 87
ACSC, 83, 87
ACSCH, 83, 87
ADD1, 642
ADD COLUMNS, 403, 405
ADD ROWS, 403
ADD TO COLUMNS, 403, 405
ADD TO ROWS, 403, 405
ADJ, 467
ADJPREC, 149
Airy functions, 543
Airy Ai, 543
Airy Aiprime, 543
Airy Bi, 543
Airy Biprime, 543
ALATOMP, 255
ALG TO SYMB, 256
ALGEBRAIC, 197
Algebraic mode, 197, 203, 204
ALGINT, 193, 231
alist, 620
alist

in ASSOC, 648
in SASSOC, 651
in SUBLIS, 652

ALKERNP, 255
ALL, 497
ALL!*, 352
ALLBRANCH, 99
ALLFAC, 116, 119
allsymmetrybases, 558
ALTITUDE, 364
AND, 640
AND, 497
ANGLE SUM, 364
antecedent (cond-form), 620
ANTICOM, 320, 466
ANTICOMM, 466

ANTICOMMUTE, 467
ANTISYMMETRIC, 107, 320
any, 619
APPEND, 648
APPEND, 61
APPENDN, 245
APPLY, 653
APPLYSYM, 194, 235
ARBCONST operator, 450
ARBVARS, 99
ARGLENGTH, 131
ARNUM, 194, 239
ARRAY, 75
ARRAY TO LIST, 259
ASEC, 83, 87
ASECH, 83, 87
ASFIRST, 246
ASFLIST, 246
ASIN, 83, 87
ASINH, 83, 87
ASLAST, 246
ASREST, 246
Assignment, 64, 65, 67, 72, 202,

204
ASSIST, 194, 243
ASSLIST, 246
ASSOC, 648
ASSOC, 498
association list, 620
assumptions, 101
Asymptotic command, 153, 166
ATAN, 83, 87, 90
ATAN2, 83, 87
ATANH, 83, 87
ATENSOR, 265
ATOM, 623
atom, 619
AUGMENT, 328
AUGMENT COLUMNS, 403, 407
AVEC function, 270

676 INDEX

AVECTOR, 194, 269
AVECTOR package

example, 273–275
AXP, 552
AXX, 552

B PART, 554
BAG, 247
BAGLISTP, 248
BAGLMAT, 261
BAGP, 248
BALANCED MOD, 149
BAND MATRIX, 404, 407
BEGIN ...END, 71–74
BELAST, 245
Bernoulli, 542
Bernoulli numbers, 542
Bernoulli polynomials, 543
BernoulliP, 543
Bernstein base, 446
Bessel functions, 542
BesselI, 542
BesselJ, 542
BesselK, 542
BesselY, 542
Beta, 542
Beta function, 542
Bezout, 140
BF PART, 554
BFSPACE, 148
Binomial, 542
Binomial coefficients, 542
Block, 71, 74
BLOCK MATRIX, 404, 407
BNDEQ!*, 339
BOOLEAN, 194, 277
Boolean, 55
boolean, 619
BOS, 552
BOTH, 416

BOUNDS, 437, 443
BPART, 554
Buchberger’s Algorithm, 375
BYE, 77

C1 CIRCLE, 364
CALI, 194, 283
Call by value, 187, 189
CAMAL, 285
CAMAL, 194, 285
Canonical form, 111
canonicaldecomposition, 558
CAR, 626
CAR

composite forms, 626
CARD NO, 123
CARTAN SYSTEM, 329
cartesian coordinates, 453
Catalan, 541
CAUCHY SYSTEM, 329
CC TANGENT, 364
CDR, 626
CDR

composite forms, 626
CEILING, 80
Celestial Mechanics, 285
CFRAC, 489
CGB, 290
CGBFULLRED, 294
CGBGEN, 292
CGBGS, 294
CGBREAL, 293
CGBSTAT, 294
chain rule, 337
CHAN, 554
CHANGEVAR, 295
CHANGEVR, 194
CHAR MATRIX, 404, 408
CHAR POLY, 403, 404, 408
character, 558

INDEX 677

Character set, 43
CHARACTERISTIC VARIETY, 330
CHARACTERS, 329
Chebyshev fit, 437
Chebyshev polynomials, 543
Chebyshev base T, 446
Chebyshev base U, 446
Chebyshev df, 443
Chebyshev eval, 444
Chebyshev fit, 443
Chebyshev int, 443
ChebyshevT, 543
ChebyshevU, 543
CHECKPROLIST, 253
Chi, 544
CHIRAL, 555
CHIRAL1, 555
CHOLESKY, 404
CHOOSE PC, 364
CHOOSE PL, 365
Ci, 544
CIRCLE, 365
CIRCLE1, 365
CIRCLE CENTER, 365
CIRCLE SQRADIUS, 365
CL TANGENT, 365
CLEANUP, 329, 330
CLEAR, 156, 160, 256
CLEARBAG, 247
CLEARFLAG, 253
CLEARFUNCTIONS, 256
CLEAROP, 256
CLEARPHYSOP, 463
CLEARRULES, 161
Clebsch Gordan coefficients, 543
Clebsch Gordan, 543
CLOSE, 656
CLOSED, 330
CLOSURE, 329
COBASIS, 327

code templates, 358
CODEP, 618, 623
COEFF, 128
COEFF MATRIX, 404
Coefficient, 147–150
COEFFN, 129
COERCEMAT, 261
COFACTOR, 181
coframe, 338, 341
COFRAME

WITH METRIC, 341
WITH SIGNATURE, 341

COFRAMING, 326, 327
COLLECT, 67
COLLINEAR, 365
COLUMN DIM, 403, 405
COMBINATIONS, 251
COMBINEEXPT, 86
COMBINELOGS, 85
COMBNUM, 250
COMM, 466, 536
Command, 75
Command terminator, 169
COMMENT, 48
comments, 622
COMMUTE, 467
COMP, 219
COMPACT, 194, 297
COMPACT operator, 297
COMPACT package, 297
COMPANION, 404
Compiler, 219
COMPLEX, 150
Complex coefficient, 150
Compound statement, 70, 72
COMPRESS, 618, 628
CONCURRENT, 365
COND, 640
cond-form, 620
Conditional statement, 66

678 INDEX

CONJ, 80
CONS, 626
CONS, 245
consequent (cond-form), 620
constant, 619
CONSTANTP, 623
Constructor, 205
CONT, 176
CONTACT, 326
CONTFR, 194
CONTFRAC, 489
continuation lines, 357
contour, 372
CONTRACT, 465
CONVERT, 411
COORDINATES, 327, 330
COORDINATES operator, 272
COORDS vector, 272
COPY INTO, 403, 405
COS, 83, 87
COSH, 83, 87
COT, 83, 87
COTH, 83, 87
CP, 554
CRACK, 194, 299
CRAMER, 95, 179
CREF, 221, 222
CRESYS, 536
CROSS, 328
CROSS

vector, 270
cross product, 270, 455
Cross reference, 221
CROSSVECT, 259
CSC, 83, 87
CSCH, 83, 87
CURL

operator, 271
curl

vector field, 271

curl operator, 456
CVIT, 194, 303
CVITBTR, 303
CVITOP, 303
CVITRACE, 303
CYCLICPERMLIST, 250
cylindrical coordinates, 453

D, 552
D PART, 554
data structures, 619
DE, 631
Declaration, 75
DECLARE function, 356
DECOMPOSE, 141
default

term order, 376
defid, 510
defindex, 510
DEFINE, 78
definite integration (simple), 274
DEFINT, 194, 305
DEFINT function, 274
DEFLINEINT function, 275
DEFLIST, 648
DEFN, 203, 223, 224
DEFPOLY, 239
DEG, 143
Degree, 143
DEL, 552
DELETE, 649
DELETE, 244
DELETE ALL, 244
DELLASTDIGIT, 249
DELPAIR, 244
DELSQ

operator, 271
delsq operator, 456
DEMO, 76
DEN, 134, 143

INDEX 679

DEPATOM, 252
DEPEND, 109
depend, 103
DEPEND statement, 457
DEPTH, 245
DEPVARP, 255
DER, 552
derivative

variational, 339
derivatives, 313
DERIVED SYSTEMS, 329
DESIR, 194, 309
DET, 112, 179
DETIDNUM, 249
DETRAFO, 237
DF, 631
DF, 87, 88
DFP, 314
DFP COMMUTE, 316
DFPART, 194, 313
DIAGONAL, 403, 405
diagonalize, 558
DIFFERENCE, 642
Differentiation, 87, 88, 109
differentiation

partial, 336
vector, 271

DIFFSET, 249
DIGIT, 649
DILOG, 83, 90
dilog, 544
Dilogarithm function, 544
DIM, 329
DIM GRASSMANN VARIETY, 329
dimension, 335
Dirac γ matrix, 212
direct product, 410
DISJOIN, 330
DISPJACOBIAN, 296
DISPLAY, 174

Display, 111
DISPLAYFLAG, 253
DISPLAYFRAME command, 342
Displaying structure, 126
DISTRIBUTE, 257
DIV, 117, 147, 498
DIV

operator, 271
div operator, 456
divergence

vector field, 271
DIVIDE, 642
division by zero, 642, 645
DIVPOL, 258
DLINEINT, 458
dlist, 648
DM, 631
DO, 67, 69
Dollar sign, 63
DOT, 464
DOT

vector, 270
Dot product, 211, 270
dot product, 456
dot-notation, 617, 619
DOT HAM, 554
dotgrad operator, 456
dotted-pair, 617, 625, 626
DOUBLE switch, 353
DR, 552
DRR, 555
DUMMY, 194, 319
DUMMY BASE, 319
dummy names, 320
DUMMYPRI, 267
DVFSF, 497, 498
DVINT, 458
DVOLINT, 458
DYW, 554

680 INDEX

E, 46
ECHO, 169
ED, 173, 174
EDITDEF, 175
EDS, 323, 326
EDS: Exterior differential

dystems, 323
EDSDEBUG, 330
EDSDISJOINT, 330
EDSSLOPPY, 330
EDSVERBOSE, 330
Ei, 83, 544
EJECT, 656, 657
EllipticE, 544
EllipticF, 544
EllipticK, 544
EllipticTheta, 544
ELMULT, 244
EMSG* (global), 638, 661
END, 77
end of file, 661
end of line, 661
EPS, 213, 343
EQ, 623
EQ

in MEMQ, 650
of dotted-pairs, 626
of function-pointers, 618, 623
of GENSYMs, 629
of identifiers, 627

EQN, 623
EQUAL, 623
EQUAL, 498, 499
EQUAL

in ASSOC, 648
in DELETE, 649
in MEMBER, 650
in SASSOC, 651
in SUBST, 652

Equation, 57

EQUIV, 330, 497
ERF, 90
erf, 544
erfc, 544
ERRCONT, 173
ERROR, 622, 638, 661
error

type mismatch error, 622
error messages, 622
ERRORSET, 638
escape character, 622
Euclidean metric, 341
Euler, 542
Euler polynomials, 542
Euler Gamma, 541
EulerP, 543
EVAL, 654
EVAL, 353
EVAL

function, 620
function type, 621
lambda expressions, 620
MACRO functions, 621
of constants, 619

EVAL MODE, 197
evalb, 527
EVALLHSEQP, 57
EVEN, 104
Even operator, 104
EVENP, 56
EVLIS, 654
EX, 497
EXCALC, 194, 325, 333
EXCALC package

example, 336, 337, 339, 340,
342

Exclamation mark, 43
EXCLUDE, 514
EXDEGREE command, 334
EXFACTORS, 330

INDEX 681

EXP, 83, 87, 90, 134, 137
EXPAND, 655
EXPAND CASES, 96
EXPANDLOGS, 85
EXPLICIT, 252
EXPLODE, 618, 628, 639
EXPR, 618, 619, 631
EXPR, 203
Expression, 53
EXPT, 643
EXTEND, 403, 405
extended gosper, 600
exterior calculus, 333
exterior differentiation, 336
exterior form

declaration, 334
vector, 334
with indices, 340

exterior product, 335, 343
extra-boolean, 619
EXTRACTLIST, 253
EXTRACTMAT, 367
EXTREMUM, 252
EZGCD, 137

FACTOR, 115, 135
FACTORIAL, 80, 190
Factorization, 134
FACTORIZE, 135, 136
FALSE, 497
Fast loading of code, 220
FAST LA, 413
FCOMB, 554
FDOMAIN command, 336
FER, 552
FEXPR, 618, 619, 621, 631
FEXPR, 203
Fibonacci, 542
Fibonacci, 542
Fibonacci polynomials, 543

FibonacciP, 543
FIDE, 194, 345
file handle, 656–659
File handling, 169
files, 656, 657
FIND COMPANION, 403, 408
FIRST, 60
FIRSTROOT, 515
FIX, 641, 643
FIX, 81
FIXP, 624
FIXP, 56
FJACOB, 554
FLAG, 616, 630
FLAGP, 616, 630
flags, 629
FLOAT, 641, 643
floating

input, 616
output, 628

FLOATP, 624
FLOOR, 81
FLUID, 616, 633
fluid

in traceback, 638
unbinding by ERROR, 638

fluid binding, 633
fluid binding

as default, 633
FLUIDP, 634
FOLLOWLINE, 250
FOR, 74
FOR ALL, 155, 156
FOR EACH, 67, 68, 202
FORDER command, 343
formal parameter limit, 621
FORT, 123
FORT WIDTH, 125
FORTRAN, 123, 124
FORTUPPER, 125

682 INDEX

FOURIER, 286
Fourier cosine transform, 307
Fourier Series, 285
Fourier sine transform, 307
FPART, 554
FPS, 194, 349
fps search depth, 350
FRAME command, 342
FREEOF, 56
FREQUENCY, 244
Fresnel C, 544
Fresnel S, 544
frobenius, 432
ftype, 619
FUIDP, 616
FULLROOTS, 97
FUN, 552
FUNARGs not supported, 655
FUNCTION, 357, 655
Function, 191
function, 620
function

as GLOBAL, 631
as global, 632

function-pointer, 618
function-pointer

output, 628
functions, 616
FUNCVAR, 252

G, 212
G3, 589
Gamma, 542
Gamma function, 542
gammatofactorial, 604
garbage collector, 661
GCD, 137
GDIMENSION, 379
Gegenbauer polynomials, 543
GegenbauerP, 543

Generalised Hypergeometric
functions, 545

generic function, 313
GENERIC FUNCTION, 313
GENPOS, 330
GENSYM, 629
GENTRAN, 194, 351, 521
GENTRAN

file output, 361
preevaluation, 354, 359
templates, 358

GENTRAN package
example, 352

GENTRANIN command, 358
GENTRANOPT, 521
GENTRANOUT command, 361
GENTRANSEG switch, 357
GENTRANSHUT command, 361
GEOMETRY, 363
GEQ, 498
GET, 616, 630
GET

not for functions, 630
GET COLUMNS, 403, 405
GET ROWS, 403, 406
GETCSYSTEM command, 272
GETD, 616, 618, 632
GETROOT, 515
GETV, 639
GHOSTFACTOR, 260
GINDEPENDENT SETS, 379
GLEXCONVERT, 379
GLOBAL, 616, 634
global binding, 633
GLOBALP, 616, 632, 634
GLTBASIS, 378, 382
GNUPLOT, 194, 371
GO, 620, 636
GO

in COND, 636, 640

INDEX 683

GO TO, 72, 73
Golden Ratio, 541
gosper, 599
Gosper’s Algorithm, 547
GRA, 554
GRAD

operator, 271
grad operator, 456
gradient

vector field, 271
GRADLEX, 389
GRADLEX

term order, 376
GRAM SCHMIDT, 404, 411
GRAS, 552
Grassmann Operators, 259
GRASSMANN VARIETY, 329
GRASSP, 260
GRASSPARITY, 260
GREATERP, 643
GREATERP, 498
GREDUCE, 383
GROEBFULLREDUCTION, 378, 382
GROEBNER, 195, 375, 377
Groebner, 95
Groebner Bases, 425
GROEBNER package, 375
GROEBNER package

example, 377
GROEBNERF, 381, 384
GROEBOPT, 378, 382
GROEBRESTRICTION, 383
GROEBSTAT, 382
GROESOLVE, 384
Group statement, 65, 66, 70
GSYS, 291
GSYS2CGB, 292
GVARS, 377
GVARSLAST, 378
gvarslast, 377

GZERODIM?, 378

Hankel functions, 542
Hankel transform, 307
Hankel1, 542
Hankel2, 542
HARMONIC, 285
HCONCMAT, 262
HDIFF, 286
HERMAT, 262
Hermite polynomials, 543
Hermite base, 446
HermiteP, 543
HERMITIAN TP, 403, 406
HESSIAN, 404, 408
HFACTORS scale factors, 272
hidden3d, 372
High energy trace, 215
High energy vector expression,

211, 214
HIGH POW, 129
HIGHESTDERIV, 450
HILBERT, 404, 409
HINT, 286
History, 174
Hodge-* duality operator, 338,

343
HSUB, 286
hyperrecursion, 602
hypersum, 602
hyperterm, 602
HYPEXPAND, 258
HYPOT, 83, 87
HYPREDUCE, 258

I, 46
i, 239
I SOLVE, 519
iBeta, 542
id

684 INDEX

escape character, 617
input, 616
maximum length, 617
minimum size, 629
output, 628

id-list, 619
ideal dimension, 379
IDEALQUOTIENT, 384
IDEALS, 195, 385
Identifier, 45
identifier (see id), 616
IDP, 624
IF, 65, 66
IFACTOR, 135
iGamma, 542
IMAGINARY, 409
imaginary unit, 239
IMPART, 80, 81, 83
IMPL, 497
IMPLICIT, 252
IMPLICIT option, 357
IMPLICIT TAYLOR operator,

562
IN, 169
incomplete Beta function, 542
incomplete Gamma function, 542
Indefinite integration, 88
INDEPENDENCE, 327
independent sets, 379
INDEX, 212
INDEX EXPAND, 330
INDEXSYMMETRIES

command, 340
INEQ, 195, 387
INFINITY, 46, 514
INFIX, 108
Infix operator, 48–51
inner product, 456
inner product

exterior form, 337

INPUT, 657
INPUT, 174
Input, 169
INSERT, 244
INSERT KEEP ORDER, 244
Instant evaluation, 76, 131, 154,

178, 180
INT, 88, 176, 231, 305
INTEGER, 71
Integer, 54
integer

input, 615
magnitude, 615, 641
output, 628

integer-list, 619
INTEGRAL ELEMENT, 329
Integration, 88, 106
integration

definite (simple), 274
line, 275
volume, 274

Interactive use, 173, 176
INTERN, 616, 629, 659
INTERPOL, 142
INTERSECT, 249
intersect, 526
INTERSECTION POINT, 365
Interval, 437
Introduction, 37
INTSTR, 112
INVARIANTS, 330
INVBASE, 195, 389, 390
INVERSE, 555
INVERSE TAYLOR, 562
INVERT, 330
INVLAP, 393
INVOLUTION, 329
INVOLUTIVE, 330
INVTORDER, 390
invztrans, 609

INDEX 685

ISOLATER, 514

JACOB, 554
Jacobi Elliptic Functions and

Integrals, 544
Jacobi’s polynomials, 543
JACOBIAN, 404, 409, 440
Jacobicd, 544
Jacobicn, 544
Jacobics, 544
Jacobidc, 544
Jacobidn, 544
Jacobids, 544
Jacobinc, 544
Jacobind, 544
Jacobins, 544
JacobiP, 543
Jacobisc, 544
Jacobisd, 544
Jacobisn, 544
JOIN, 67
jordan, 434
JORDAN BLOCK, 404, 409
jordansymbolic, 433

K-transform, 307
KBASIS, 266
KEEP command, 343
Kernel, 111, 112, 115, 128
kernel form, 112
KERNLIST, 244
Khinchin, 541
KORDER, 128, 464
KORDERLIST, 252
KRONECKER PRODUCT, 404, 410
Kummer functions, 543
KummerM, 543
KummerU, 543

l’Hôpital’s rule, 399, 458
L2 ANGLE, 365

Label, 72, 73
Laguerre polynomials, 543
Laguerre base, 446
LaguerreP, 543
laline!*, 510
LAMBDA, 620
LAMBDA, 201
lambda expression, 620
Lambert ω function, 544
Lambert’s W, 95
Lambert W, 544
LAPLACE, 195, 393
Laplace transform, 307
Laplacian

vector field, 271
lasimp, 509
LAST, 245
latex, 509
Laurent series, 561
Laurent series expansions, 567
LCM, 138
LCOF, 144
Leading coefficient, 144
LEADTERM, 257
Legendre polynomials, 187, 543
Legendre base, 446
LegendreP, 543
LENGTH, 649
LENGTH, 59, 76, 90, 133, 135, 179,

499
LEQ, 498
Lerch Phi function, 544
Lerch Phi, 544
LESSP, 643
LESSP, 498
LET, 85, 88, 100, 106–108, 152,

161, 189, 190
Levi-Cevita tensor, 343
LEX, 389
LEX

686 INDEX

term order, 376
LHS, 57
li, 544
LIE, 195, 397
Lie Derivative, 338
LIE LIST, 398
LIECLASS, 398
LIENDIMCOM1, 397
LIFT, 328
LIMIT, 399, 458
LIMIT+, 400
LIMIT-, 400
LIMITS, 195, 399
LINALG, 195, 403
LINE, 365
line integrals, 275
LINEAR, 105
Linear operator, 105, 106, 109
LINEAR DIVISORS, 330
LINEARISE, 329
LINEINT, 458
LINEINT function, 275
LINELENGTH, 656
LINELENGTH, 114
LISP, 197
Lisp, 197
LIST, 627
LIST, 117
List, 59
list, 619
list, 93
List operation, 59, 61
list-notation, 619
LIST TO ARRAY, 259
LIST TO IDS, 249
LISTARGP, 61
LISTARGS, 61
LISTBAG, 248
LITER, 649
LN, 83, 87

LOAD, 220
LOAD PACKAGE, 193, 221
local binding, 633
LOG, 83, 87, 90
LOG10, 83, 87
LOGB, 83, 87
Lommel functions, 543
Lommel1, 543
Lommel2, 543
Loop, 67, 68
LOT, 365
LOW POW, 129
LOWER MATRIX, 409
LOWESTDEG, 258
lpon, 393
LPOSN, 656
LPOWER, 145
LRSETQ, 356
lrsetq operator, 355
LSETQ, 355
lsetq operator, 354
LTERM, 145, 209
ltrig, 393
LU DECOM, 404, 411
LYST, 554
LYST1, 554
LYST2, 554

M, 470
M ROOTS, 419
M SOLVE, 419
MACIERZ, 554
MACRO, 619, 621, 631
MACRO, 203
MAINVAR, 146
MAKE IDENTITY, 404, 409
MAP, 646
MAP, 91
map, 93
MAPC, 646

INDEX 687

MAPCAN, 647
MAPCAR, 647
MAPCON, 647
MAPLIST, 647
MASS, 214, 216
MAT, 177, 178
MATCH, 159
MATEIGEN, 180
MATEXTC, 262
MATEXTR, 262
Mathematical function, 83
MATHML, 415, 416
mathstyle, 510
matrices

in GENTRAN, 354, 355, 360
MATRIX, 178
Matrix assignment, 183
Matrix calculations, 177
MATRIX, see also SPARSE, 531
MATRIX AUGMENT, 403, 406
MATRIX STACK, 403, 406
MATRIXP, 404, 533
MATSUBC, 262
MATSUBR, 262
MAX, 644
MAX, 81
MAX2, 644
MAXEXPPRINTLEN!*, 357
MCD, 137, 139
MEDIAN, 365
Meijer’s G function, 545
MEMBER, 650
member, 528
MEMQ, 650
MERGE LIST, 244
metric structure, 341
MIDPOINT, 365
MIN, 644
MIN, 81
MIN2, 644

Minimum, 437
MINOR, 403, 406
MINUS, 644
MINUSP, 624
MINVECT, 259
mixed-mode arithmetic, 641
MKAND, 497
MKDEPEND, 330
MKID, 92, 261
MKIDM, 261
MKIDNEW, 249
MKLIST, 244
MKOR, 497
MKPOLY, 515
MKRANDTABL, 250
MKSET, 249, 526
MKVECT, 639
MML, 416
Mode, 76
Mode communication, 203
MODSR, 195, 419
MODULAR, 149
Modular coefficient, 149
MONOM, 257
monomial base, 446
Moore–Penrose inverse, 411
Motzkin, 542
Motzkin, 542
MP, 365
MPVECT, 259
MRV LIMIT, 422
MRVLIMIT, 421
MSG, 223
MSHELL, 216
MULT COLUMNS, 403, 405
MULT ROW, 405
MULT ROWS, 403
Multiple assignment statement,

64
MULTIPLICITIES, 96

688 INDEX

MULTIROOT, 517

N GAT, 554
NASSOC, 498
NAT, 125, 327
NAT flag, 340
nc cleanup, 427
nc compact, 430
nc divide, 429
nc factorize, 429
nc factorize all, 430
nc groebner, 428
nc preduce, 429
nc setup, 426
NCONC, 650
NCPOLY, 195, 425
NEARESTROOT, 515
NEARESTROOTS, 515
NEGATIVE, 514
NEQ, 498, 499
NERO, 122
Newton’s method, 437
NEXTPRIME, 82
NIL

cannot be changed, 634, 635,
661

NIL (global), 619, 622, 661
NOCONVERT, 148
NODEPEND, 109
NODEPEND statement, 457
NODRR, 555
NOETHER function, 339
NOEVAL

function type, 621
Non-commuting operator, 106
NONCOM, 106, 320, 461, 466
NONZERO, 104
NORDP, 255
NORMFORM, 195, 431
NOSPLIT, 117

NOSPREAD
function type, 621

NOSPUR, 215
NOSUM command, 340
NOSUM switch, 340
NOT, 641
NOT, 497
NOT NEGATIVE, 409
NOXPND

@, 337
D, 337

NULL, 624
NULLSPACE, 182
NUM, 146
NUM FIT, 444
NUM INT, 437, 440
NUM MIN, 437, 438
NUM ODESOLVE, 437, 441
NUM SOLVE, 437, 439
Number, 44, 45
number, 619
NUMBERP, 624
NUMBERP, 56
NUMERIC, 195, 437
Numerical operator, 79
Numerical precision, 46

OBLIST, 627
OBLIST entry, 616, 629, 659
ODD, 104
Odd operator, 104
ODDP, 250
ODEDEGREE, 450
ODELINEARITY, 450
ODEORDER, 450
ODESOLVE, 195, 449, 450
ODWA, 554
OFF, 76, 77
OFSF, 497, 498
ON, 76, 77

INDEX 689

ONE FORMS, 327
ONE OF, 96
ONEP, 625
ONLY INTEGER, 409
OPAPPLY, 467
OPEN, 656, 657
OPERATOR, 208
Operator, 48–51
Operator precedence, 49, 51
OPORDER, 464
OPTIMIZE, 521
OR, 641
OR, 497
ORDER, 115, 128
ordering

exterior form, 343
ordinary differential equations,

449
ORDP, 56, 106
ORTHOGONAL, 366
Orthogonal polynomials, 539
ORTHOVEC, 195, 453
OTHER CC POINT, 366
OTHER CL POINT, 366
OUT, 169, 170
OUTPUT, 657
OUTPUT, 114
Output, 120, 124
Output declaration, 114, 115

P3 ANGLE, 366
P3 CIRCLE, 366
P3 CIRCLE1, 366
P4 CIRCLE, 366
PADÉ, 490
PAGELENGTH, 656, 657
PAIR, 651
PAIR, 245
PAIRP, 625
PAR, 366

PARALLEL, 366
PARSEML, 416
PART, 59, 127, 130, 499
partial derivatives, 313
partial differentiation, 336
PAUSE, 176
PDE2EDS, 326
PDE2JET, 330
PEDALPOINT, 366
Percent sign, 48
PERIOD, 125
PERIODIC, 488
PERIODIC2RATIONAL, 488
PERMUTATIONS, 250
PF, 93
PFAFFIAN, 330
PFORM statement, 334
PG, 554
PHYSINDEX, 463, 466
PHYSOP, 195, 461
PI, 47
PIVOT, 403, 406
PLOT, 194, 371
PLOT XMESH, 372
PLOT YMESH, 373
PLOTKEEP, 372
PLOTREFINE, 372
plotrefine, 372
PLOTRESET, 372
PLUS, 645
PLUS2, 645
PM, 195, 469
Pochhammer, 542
Pochhammer’s symbol, 542
POINCARE, 330
POINT, 366
POINT ON BISECTOR, 366
POINT ON CIRCLE, 366
POINT ON CIRCLE1, 366
POINT ON LINE, 366

690 INDEX

poleorder, 507
Polygamma, 542
Polygamma functions, 542
Polylog, 544
Polylogarithm function, 544
Polynomial, 133
POSITION, 245
POSITIVE, 514
POSN, 657
power series, 567
power series

arithmetic, 574
composition, 573
differentiation, 575
of integral, 569
of user defined function, 568

PP LINE, 366
PR, 554
PRECEDENCE, 108
PRECISE, 85, 86
PRECISION, 148
precision, 353
PRECISION command, 353
PRECP, 255
predicate , 622
PREDUCE, 384
Prefix, 79, 107, 108
Prefix operator, 48, 49
PRET, 223
PRETTYPRINT, 224
Prettyprinting, 223, 224
PRGEN, 536
PRI, 115
PRIMEP, 56
PRIN1, 658
PRIN2, 658
PRINC, 657, 661
PRINT, 658
print name, 616

PRINT!-PRECISION command,
353

PRINT PRECISION, 148
PROCEDURE, 185
Procedure body, 187, 189
Procedure heading, 186
PROD operator, 547
PRODUCT, 67, 68
PROG, 637
PROG

default value, 637
variables, 637

PROG2, 637
PROGN, 637
Program, 48
Program structure, 43
PROLONG, 329
Proper statement, 58, 63, 64
PROPERTIES, 327
properties, 616, 629
property list, 629
PRSYS, 536
PS, 196, 567
PS operator, 568
PSCHANGEVAR operator, 571
PSCOMPOSE operator, 572
PSDEPVAR operator, 571
PSE ELE, 554
PSEUDO DIVIDE, 139
PSEUDO INVERSE, 404, 411
PSEUDO REMAINDER, 139
PSEXPANSIONPT operator, 571
PSEXPLIM operator, 568
PSFUNCTION operator, 571
Psi, 542
Psi function, 542
PSINTCONST (shared), 569
PSORDER operator, 570
PSORDLIM operator, 569
PSREVERSE operator, 572

INDEX 691

PSSETORDER operator, 570
PSSUM operator, 573
PSTERM operator, 570
Puiseux expansion, 572
PULLBACK, 328
PUT, 616, 618, 630
PUT

not for functions, 630
PUTBAG, 247
PUTCSYSTEM command, 273
PUTD, 616, 618, 632
PUTFLAG, 253
PUTGRASS, 260
PUTPROP, 254
PUTV, 639

QBINOMIAL, 476
QBRACKETS, 476
QFACTORIAL, 476
QG, 589
QPHIHYPERTERM, 476
QPOCHHAMMER, 476
QPSIHYPERTERM, 476
QSUM, 475
QSUMRECURSION, 477
Quadrature, 437
QUASILINEAR, 330
QUASILINPDE, 235
QUIT, 660
QUIT, 77
QUOTE, 655
QUOTE, 200
QUOTIENT, 645

R SOLVE, 519
RANDOM, 82
RANDOM MATRIX, 404, 409
RANDOM NEW SEED, 82
RANDOMLIST, 250
RANDPOLY, 195, 481

randpoly
coeffs, 483
degree, 482
dense, 482
expons, 483
ord, 482
sparse, 482
terms, 482

RANK, 183
RANPOS, 330
RAT, 117
RATAPRX, 487
RATARG, 129, 142
RATIONAL, 147
Rational coefficient, 147
Rational function, 133
RATIONAL2PERIODIC, 488
RATIONALIZE, 150
ratjordan, 433
RATPRI, 119
RATROOT, 517
RDS, 658
REACTEQN, 195, 493
reacteqn

inputmat, 494
outputmat, 494
rates, 494
species, 494

READ, 616, 622, 627, 659
READCH, 622, 659, 661
REAL, 71
Real, 44, 45
Real coefficient, 147, 148
REALROOTS, 514, 515
RED HOM COORDS, 367
REDERR, 189
REDEXPR, 257
REDLOG, 289, 495
REDUCT, 146
relations

692 INDEX

side, 297
REMAINDER, 645
REMAINDER, 139
REMD, 616, 632
REMEMBER, 192
REMFAC, 116
REMFLAG, 616, 630
REMFORDER command, 343
REMGRASS, 260
REMIND, 212
REMOB, 616, 629
REMOVE, 244
REMOVE COLUMNS, 403, 407
REMOVE ROWS, 403, 407
REMPROP, 616, 630
REMSYM, 251
RENOSUM command, 340
REORDER, 330
REPART, 80, 81, 83
REPEAT, 70–72, 74
REPL, 497
REPLAST, 245
requirements, 100
Reserved variable, 46, 47
RESET, 195, 243, 505
RESETREDUCE, 505
RESIDUE, 195, 507
residue, 507
REST, 60
RESTASLIST, 246
RESTRICT, 328
RESTRICTIONS, 327
RESULT, 536
RESULTANT, 140
RETRY, 174
RETUNR

in CODE, 640
RETURN, 620, 637
RETURN, 72–74
RETURN

in COND, 636
REVERSE, 651
REVERSE, 61
REVGRADLEX, 389
REVGRADLEX

term order, 376
REVPRI, 119
RHS, 57
RIEMANNCONX command, 343
Riemannian Connections, 343
RLATAB, 500
RLCNF, 501
RLDNF, 501
RLFI, 195, 509
RLGQE, 502
RLGQEA, 502
RLGSN, 500
Rlisp, 219
RLISP88, 210
RLITAB, 500
RLNNF, 501
RLOPT, 503
RLPNF, 501
RLQE, 501
RLQEA, 502
RLREALTIME, 499
RLROOTNO, 514
RLSET, 497
RLSIMPL, 499
RLTAB, 500
RLVERBOSE, 499
ROOT OF, 95, 96
ROOT VAL, 515
ROOTS, 195, 513–515
ROOTS AT PREC, 515
ROOTSCOMPLEX, 515
ROOTSREAL, 515
ROUND, 83
ROUNDALL, 149
ROUNDBF, 148

INDEX 693

ROUNDED, 46, 54, 86, 122, 148
ROW DIM, 403, 405
ROWS PIVOT, 403, 406
RPLACA, 627
RPLACD, 627
rsetq operator, 354
RSOLVE, 195, 519
Rule lists, 160
RZUT, 554

S, 471
s i, 544
S INT, 554
S PART, 554
SASSOC, 651
SAVEAS, 113
SAVESTRUCTR, 127
Saving an expression, 125
SCALAR, 71
Scalar, 53
SCALEFACTORS operator, 272
SCALOP, 463
SCALVECT, 259
SCIENTIFIC NOTATION, 44
SCOPE, 196
scope, 633
scope

fluid, 633
fluid and compiled, 635
global, 633
local, 633

SCOPE function
RESETLENGTH, 523
SETLENGTH, 522

SCOPE option
INAME, 522

SD, 472
SD PART, 554
SDIV, 498
SEC, 83, 87

SECH, 83, 87
SECOND, 60
segmenting expressions, 357
SELECT, 93
Selector, 205
SEMANTIC, 470
Semicolon, 63
SEMILINEAR, 330
SET, 616, 634
SET, 65, 92
SET COFRAMING, 326
setdiff, 527
SETMOD, 149
SETP, 249
SETQ, 616, 618, 635
SETS, 196, 525
SGN

indeterminate sign, 338
SHARE, 204
Shi, 544
SHORTEST, 267
SHOW, 255
SHOW GRID, 373
SHOWRULES, 165
SHOWTIME, 78
SHUT, 169–171
SI, 471
Si, 544
Side effect, 58
side relations, 297
SIGN, 83
SIMPLEX, 404, 412
Simplex Algorithm, 412
Simplification, 54, 111
SIMPLIFY, 253
simplify combinatorial, 604
simplify gamma, 604
simplify gamma2, 604
simplify gamman, 605
SIMPSYS, 536

694 INDEX

SIN, 83, 87
SINH, 83, 87
SixJSymbol, 543
size, 372
SMACRO, 203
smithex, 432
smithex int, 432
SolidHarmonicY, 543
SOLVE, 94, 95, 99
SOLVE package

with ROOTS package, 513
SOLVESINGULAR, 99
SORTLIST, 251
SORTNUMLIST, 251
SORTOUTODE, 450
SPACEDIM command, 335
SPADD COLUMNS, 532
SPADD ROWS, 532
SPADD TO COLUMNS, 532
SPADD TO ROWS, 532
SPARSE, 531
SPARSE, Sparse matrices, 531
SPARSEMATP, 533
SPAUGMENT COLUMNS, 532
SPBAND MATRIX, 532
SPBLOCK MATRIX, 532
SPCHAR MATRIX, 532
SPCHAR POLY, 532
SPCHOLESKY, 532
SPCOEFF MATRIX, 532
SPCOL DIM, 532
SPCOMPANION, 532
SPCOPY INTO, 532
SPDE, 196, 535
SPDIAGONAL, 532
SPECFN, 85, 196, 539
SPECFN2, 196, 545
SPEXTEND, 532
SPFIND COMPANION, 532
SPGET COLUMNS, 532

SPGET ROWS, 532
SPGRAM SCHMIDT, 532
spherical coordinates, 453
SphericalHarmonicY, 543
SPHERMITIAN TP, 532
SPHESSIAN, 532
SPJACOBIAN, 532
SPJORDAN BLOCK, 532
SPLIT FIELD, 241
SPLITPLUSMINUS, 258
SPLITTERMS, 257
SPLU DECOM, 532
SPMAKE IDENTITY, 532
SPMATRIX AUGMENT, 532
SPMATRIX STACK, 532
SPMINOR, 532
SPMULT COLUMNS, 532
SPMULT ROWS, 532
SPPIVOT, 532
SPPSEUDO INVERSE, 532
SPREAD

function type, 621
SPREMOVE COLUMNS, 532
SPREMOVE ROWS, 532
SPROW DIM, 532
SPROWS PIVOT, 532
SPSTACK ROWS, 532
SPSUB MATRIX, 532
SPSWAP COLUMNS, 532
SPSWAP ENTRIES, 532
SPSWAP ROWS, 532
SpTT, 589
SPUR, 216
SQFRF, 517
SQRDIST, 367
SQRT, 83, 87
SQUAREP, 404, 533
STACK ROWS, 403, 407
standard devices, 655
Standard form, 205

INDEX 695

standard input, 658
Standard Lisp Report, 613
standard output, 659
Standard quotient, 205
STANDARD-LISP, 660
STATE, 463
Statement, 63
Stirling numbers, 542
Stirling1, 542
Stirling2, 542
String, 47
string, 617
string

output, 628
STRINGP, 625
STRUCTR, 126, 127
STRUCTURE EQUATIONS, 327, 330
structures, 619
Structuring, 111
Struve functions, 543
StruveH, 543
StruveH transform, 307
StruveL, 543
SUB, 57, 151, 499
SUB1, 646
SUB MATRIX, 403
SUBLIS, 652
SUBMAT, 262
SUBROUTINE, 357
subset, 528
subset eq, 528
SUBST, 652
Substitution, 151
SUCH THAT, 156
SUdim, 589
SUM, 67, 68, 196, 547
SUM operator, 547
SUM-SQ, 548
sumrecursion, 601
sumtohyper, 603

SUMVECT, 259
SUPPRESS, 255
surface, 372
SUSY2, 551
SVD, 404, 412, 532
SVEC, 454
SWAP COLUMNS, 403, 406
SWAP ENTRIES, 403, 406
SWAP ROWS, 403, 406
Switch, 76, 77
SWITCHES, 243
SWITCHORG, 243
SYMB TO ALG, 256
SYMBOL MATRIX, 330
SYMBOL RELATIONS, 330
SYMBOLIC, 197
Symbolic mode, 197, 199, 203,

204
Symbolic procedure, 202
SYMDIFF, 249
SYMLINE, 367
SYMMETRIC, 106, 320, 409
SYMMETRICP, 404, 533
SYMMETRIZE, 251
SYMMETRY, 196, 557
symmetrybasis, 558
symmetrybasispart, 558
SYMPOINT, 367
SYMTREE, 320
SYSTEM, 327

T, 47
T

cannot be changed, 634, 635,
661

T (global), 619, 622, 661
TABLEAU, 329
TAN, 83, 87, 90
tangent vector, 336
TANH, 83, 87

696 INDEX

TAYLOR, 196, 561
TAYLOR package, 561
Taylor Series, 561
Taylor series

arithmetic, 563
differentiation, 564
integration, 564
reversion, 564
substitution, 564

TAYLORAUTOCOMBINE
switch, 564

TAYLORAUTOEXPAND switch,
564, 565

TAYLORCOMBINE, 563
TAYLORKEEPORIGINAL, 563
TAYLORKEEPORIGINAL

switch, 562, 565
TAYLORPRINTORDER switch,

565
TAYLORPRINTTERMS

variable, 562
TAYLORSERIESP, 563
TAYLORTEMPLATE, 563
TAYLORTOSTANDARD, 563
TCLEAR, 266
templates, 358
TENSOP, 463
TENSOR, 266
tensor product, 410
terminal, 372
Terminator, 63
TERPRI, 656, 659
TESTBOOL, 280
TEX, 577
TEXBREAK, 577
TEXINDENT, 577
TeXitem, 579
TeXlet, 578
TeXsetbreak, 578
THIRD, 60

ThreeJSymbol, 543
TIME, 76
TIMES, 646
TIMES2, 646
title, 372
TOEPLITZ, 404, 410
togamma, 603
TORDER, 377
TORSION, 329
TP, 181
TPMAT, 262
TPS, 196, 567
TRA, 233
TRACE, 181
TRACEFPS, 350
tracing

EXCALC, 342
TRAD, 555
TRANSFORM, 328
TRFAC, 136
TRGROEB, 382
TRGROEB1, 382
TRGROEBS, 382
TRI, 196, 577
TRI

page-width, 578
tolerance, 578

TRIANG ADJOINT, 404, 412
TRIGEXPAND, 258
trigfactorize, 585
TRIGFORM, 97
triggcd, 586
trigonometric base, 446
TRIGREDUCE, 258
TRIGSIMP, 85, 196, 583
trigsimp, 584
trigsimp

combine, 584
compact, 584
cos, 584

INDEX 697

cosh, 584
expand, 584
expon, 584
hyp, 584
keepalltrig, 584
sin, 584
sinh, 584
trig, 584

TRUE, 497
truncated power series, 567
TSYM, 266
TVECTOR command, 334

UNFLUID, 616, 635
UNION, 249
union, 526
UNITMAT, 260
UNTIL, 67
UPBV, 640
UPPER MATRIX, 409
User packages, 193

values, 616
VANDERMONDE, 404, 410
VARDF, 339
Variable, 46
variable scope, 633
variational derivative, 339
VARNAME, 125, 126
varopt, 102
VARPOINT, 367
VCONCMAT, 262
VDF, 457
VEC command, 269
VECDIM, 218
VECOP, 463
VECTOR, 214
vector, 617, 639
vector

addition, 455

cross product, 455
differentiation, 271
division, 455
dot product, 456
exponentiation, 456
inner product, 456
integration, 271
modulus, 456
multiplication, 455
subtraction, 455

vector-notation, 618
VECTORADD, 455
VECTORCROSS, 455
VECTORDIFFERENCE, 455
VECTOREXPT, 456
VECTORMINUS, 455
VECTORP, 625
VECTORPLUS, 455
VECTORQUOTIENT, 455
VECTORRECIP, 455
VECTORTIMES, 455
VERBATIM, 509
view, 372
VINT, 458
VMOD, 456
VMOD operator, 270
VOLINT, 458
VOLINTEGRAL function, 274
VOLINTORDER vector, 274
VORDER, 458
VOUT, 454
VSTART, 453
VTAYLOR, 457

W COMB, 554
WAR, 554
warning messages, 622
WEB, 416
WEIGHT, 167
WHEN, 161

698 INDEX

WHERE, 161
WHILE, 69, 71, 72, 74
Whittaker functions, 543
WhittakerM, 543
WhittakerW, 543
Workspace, 113
WRITE, 120
WRS, 659
WS, 39, 174
WTLEVEL, 167
WU, 196, 587

XCOLOR, 196, 589
XFULLREDUCE, 595
XIDEAL, 196, 593, 594
xlabel, 372
XMODULO, 594
XMODULOP, 595
XPND

@, 337
D, 337

XSTATS, 595

Y-transform, 307
ylabel, 372

ZEILBERG, 196, 599
ZERO FORMS, 327
ZEROP, 625
Zeta, 542
Zeta function (Riemann’s), 542
Zeta function, 544
zlabel, 372
ZTRANS, 196, 607
ztrans, 607

	I REDUCE User's Manual
	Abstract
	Introductory Information
	Structure of Programs
	The REDUCE Standard Character Set
	Numbers
	Identifiers
	Variables
	Strings
	Comments
	Operators

	Expressions
	Scalar Expressions
	Integer Expressions
	Boolean Expressions
	Equations
	Proper Statements as Expressions

	Lists
	Operations on Lists
	LIST
	FIRST
	SECOND
	THIRD
	REST
	. (Cons) Operator
	APPEND
	REVERSE
	List Arguments of Other Operators
	Caveats and Examples

	Statements
	Assignment Statements
	Set Statement

	Group Statements
	Conditional Statements
	FOR Statements
	WHILE …DO
	REPEAT …UNTIL
	Compound Statements
	Compound Statements with GO TO
	Labels and GO TO Statements
	RETURN Statements

	Commands and Declarations
	Array Declarations
	Mode Handling Declarations
	END
	BYE Command
	SHOWTIME Command
	DEFINE Command

	Built-in Prefix Operators
	Numerical Operators
	ABS
	CEILING
	CONJ
	FACTORIAL
	FIX
	FLOOR
	IMPART
	MAX/MIN
	NEXTPRIME
	RANDOM
	RANDOM_NEW_SEED
	REPART
	ROUND
	SIGN

	Mathematical Functions
	DF Operator
	Adding Differentiation Rules

	INT Operator
	Options
	Advanced Use
	References

	LENGTH Operator
	MAP Operator
	MKID Operator
	PF Operator
	SELECT Operator
	SOLVE Operator
	Handling of Undetermined Solutions
	Solutions of Equations Involving Cubics and Quartics
	Other Options
	Parameters and Variable Dependency

	Even and Odd Operators
	Linear Operators
	Non-Commuting Operators
	Symmetric and Antisymmetric Operators
	Declaring New Prefix Operators
	Declaring New Infix Operators
	Creating/Removing Variable Dependency

	Display and Structuring of Expressions
	Kernels
	The Expression Workspace
	Output of Expressions
	LINELENGTH Operator
	Output Declarations
	Output Control Switches
	WRITE Command
	Suppression of Zeros
	FORTRAN Style Output Of Expressions
	Saving Expressions for Later Use as Input
	Displaying Expression Structure

	Changing the Internal Order of Variables
	Obtaining Parts of Algebraic Expressions
	COEFF Operator
	COEFFN Operator
	PART Operator
	Substituting for Parts of Expressions

	Polynomials and Rationals
	Controlling the Expansion of Expressions
	Factorization of Polynomials
	Cancellation of Common Factors
	Determining the GCD of Two Polynomials

	Working with Least Common Multiples
	Controlling Use of Common Denominators
	REMAINDER Operator
	RESULTANT Operator
	DECOMPOSE Operator
	INTERPOL operator
	Obtaining Parts of Polynomials and Rationals
	DEG Operator
	DEN Operator
	LCOF Operator
	LPOWER Operator
	LTERM Operator
	MAINVAR Operator
	NUM Operator
	REDUCT Operator

	Polynomial Coefficient Arithmetic
	Rational Coefficients in Polynomials
	Real Coefficients in Polynomials
	Modular Number Coefficients in Polynomials
	Complex Number Coefficients in Polynomials

	Substitution Commands
	SUB Operator
	LET Rules
	FOR ALL …LET
	FOR ALL …SUCH THAT …LET
	Removing Assignments and Substitution Rules
	Overlapping LET Rules
	Substitutions for General Expressions

	Rule Lists
	Asymptotic Commands

	File Handling Commands
	IN Command
	OUT Command
	SHUT Command

	Commands for Interactive Use
	Referencing Previous Results
	Interactive Editing
	Interactive File Control

	Matrix Calculations
	MAT Operator
	Matrix Variables
	Matrix Expressions
	Operators with Matrix Arguments
	DET Operator
	MATEIGEN Operator
	TP Operator
	Trace Operator
	Matrix Cofactors
	NULLSPACE Operator
	RANK Operator

	Matrix Assignments
	Evaluating Matrix Elements

	Procedures
	Procedure Heading
	Procedure Body
	Using LET Inside Procedures
	LET Rules as Procedures
	REMEMBER Statement

	User Contributed Packages
	Symbolic Mode
	Symbolic Infix Operators
	Symbolic Expressions
	Quoted Expressions
	Lambda Expressions
	Symbolic Assignment Statements
	FOR EACH Statement
	Symbolic Procedures
	Standard Lisp Equivalent of Reduce Input
	Communicating with Algebraic Mode
	Passing Algebraic Mode Values to Symbolic Mode
	Passing Symbolic Mode Values to Algebraic Mode
	Complete Example
	Defining Procedures for Intermode Communication

	Rlisp '88
	References

	Calculations in High Energy Physics
	High Energy Physics Operators
	. (Cons) Operator
	G Operator for Gamma Matrices
	EPS Operator

	Vector Variables
	Additional Expression Types
	Vector Expressions
	Dirac Expressions

	Trace Calculations
	Mass Declarations
	Example
	Extensions to More Than Four Dimensions

	REDUCE and Rlisp Utilities
	The Standard Lisp Compiler
	Fast Loading Code Generation Program
	The Standard Lisp Cross Reference Program
	Restrictions
	Usage
	Options

	Prettyprinting Reduce Expressions
	Prettyprinting Standard Lisp S-Expressions

	Maintaining REDUCE

	II Additional REDUCE Documentation
	ALGINT: Integration of square roots
	APPLYSYM: Infinitesimal symmetries
	ARNUM: An algebraic number package
	DEFPOLY
	SPLIT_FIELD

	ASSIST: Various Useful Utilities
	Control of Switches
	Manipulation of the List Structure
	The Bag Structure and its Associated Functions
	Sets and their Manipulation Functions
	General Purpose Utility Functions
	Properties and Flags
	Control Functions
	Handling of Polynomials
	Handling of Transcendental Functions
	Coercion from lists to arrays and converse
	Handling of n--dimensional Vectors
	Handling of Grassmann Operators
	Handling of Matrices

	ATENSOR: Tensor Simplification
	Basic tensors and tensor expressions
	Operators for tensors
	Switches

	AVECTOR: Vector Algebra
	Vector declaration and initialisation
	Vector algebra
	Vector calculus
	Volume and Line Integration

	BOOLEAN: A package for boolean algebra
	Entering boolean expressions
	Normal forms
	Evaluation of a boolean expression

	CALI: Commutative Algebra
	CAMAL: Celestial Mechanics
	Operators for Fourier Series
	A Short Example

	CGB: Comprehensive Gröbner Bases
	Introduction
	Using the REDLOG Package
	Term Ordering Mode
	CGB: Comprehensive Gröbner Basis
	GSYS: Gröbner System
	Switch CGBGEN: Only the Generic Case

	GSYS2CGB: Gröbner System to CGB
	Switch CGBREAL: Computing over the Real Numbers
	Switches

	CHANGEVR: Change of Variables in DEs
	An example: the 2-D Laplace Equation

	COMPACT: Compacting expressions
	CRACK: Overdetermined systems of DEs
	CVIT:Dirac gamma matrix traces
	DEFINT: Definite Integration for REDUCE
	DESIR: Linear Homogeneous DEs
	DFPART: Derivatives of generic functions
	Generic Functions
	Partial Derivatives
	Substitutions

	DUMMY: Expressions with dummy vars
	EDS: Exterior differential systems
	Introduction
	Data Structures and Concepts
	EDS
	Coframing
	Systems and background coframing
	Integral elements
	Properties and normal form

	The EDS Package
	Constructing EDS objects
	Inspecting EDS objects
	Manipulating EDS objects
	Analysing and Testing exterior systems
	Switches
	Auxilliary functions
	Experimental Functions

	EXCALC: Differential Geometry
	Declarations
	Exterior Multiplication
	Partial Differentiation
	Exterior Differentiation
	Inner Product
	Lie Derivative
	Hodge-* Duality Operator
	Variational Derivative
	Handling of Indices
	Metric Structures
	Riemannian Connections
	Ordering and Structuring

	FIDE: Finite differences for PDEs
	FPS: Formal power series
	GENTRAN: A code generation package
	Simple Use
	Precision
	The EVAL Function
	The :=: Operator
	The ::= Operator
	The ::=: Operator

	Explicit Type Declarations
	Expression Segmentation
	Template Processing
	Output Redirection

	GEOMETRY: Plane geometry
	Introduction
	Basic Data Types and Constructors
	Procedures
	Examples

	GNUPLOT: Plotting Functions
	GROEBNER: A Gröbner basis package
	
	Term Ordering

	The Basic Operators
	Term Ordering Mode
	GROEBNER: Calculation of a Gröbner Basis
	GZERODIM?: Test of dim= 0
	GDIMENSION, GINDEPENDENT_SETS
	GLEXCONVERT: Conversion to a Lexical Base
	GROEBNERF: Factorizing Gröbner Bases
	GREDUCE, PREDUCE: Reduction of Polynomials

	Ideal Decomposition & Equation System Solving

	IDEALS: Arithmetic for polynomial ideals
	Initialization
	Bases
	Operators

	INEQ: Support for solving inequalities
	INVBASE: Involutive Bases
	The Basic Operators
	Term Ordering
	Computing Involutive Bases

	LAPLACE: Laplace transforms etc.
	LIE: Classification of Lie algebras
	liendmc1
	lie1234

	LIMITS: A package for finding limits
	Normal entry points
	Direction-dependent limits

	LINALG: Linear algebra package
	Introduction
	Basic matrix handling
	Constructors
	High level algorithms
	Predicates

	Explanations
	Basic matrix handling
	Constructors
	Higher Algorithms
	Fast Linear Algebra

	MATHML : MathML Interface for REDUCE
	MODSR: Modular solve and roots
	MRVLIMIT: Limits of ``exp-log'' functions
	NCPOLY: Ideals in non--comm case
	Setup, Cleanup
	Left and right ideals
	Gröbner bases
	Left or right polynomial division
	Left or right polynomial reduction
	Factorisation
	Output of expressions

	NORMFORM: matrix normal forms
	Smithex
	Smithex_int
	Frobenius
	Ratjordan
	Jordansymbolic
	Jordan

	NUMERIC: Solving numerical problems
	Syntax
	Intervals, Starting Points
	Accuracy Control

	Minima
	Roots of Functions/ Solutions of Equations
	Integrals
	Ordinary Differential Equations
	Bounds of a Function
	Chebyshev Curve Fitting
	General Curve Fitting
	Function Bases

	ODESOLVE: Ordinary differential eqns
	Use
	Commentary

	ORTHOVEC: scalars and vectors
	Initialisation
	Input-Output
	Algebraic Operations
	Differential Operations
	Integral Operations

	PHYSOP: Operator Calculus
	The NONCOM2 Package
	The PHYSOP package
	Type declaration commands
	Ordering of operators in an expression
	Arithmetic operations on operators
	Special functions

	PM: A REDUCE pattern matcher
	The Match Function
	Qualified Matching
	Substituting for replacements
	Programming with Patterns

	QSUM: q-hypergeometric sums
	Elementary q-Functions
	The QGOSPER operator
	The QSUMRECURSION operator
	Global Variables and Switches

	RANDPOLY: Random polynomials
	Optional arguments
	Advanced use of RANDPOLY
	Examples

	RATAPRX: Rational Approximations
	
	Periodic Representation
	Continued Fractions
	Padé Approximation

	REACTEQN: Chemical reaction equations
	REDLOG: Logic System
	Introduction
	Contexts
	Overview

	Context Selection
	Format and Handling of Formulas
	First-order Operators
	OFSF Operators
	DVFSF Operators
	ACFSF Operators
	Extended Built-in Commands
	Global Switches

	Simplification
	Standard Simplifier
	Tableau Simplifier
	Gröbner Simplifier

	Normal Forms
	Boolean Normal Forms
	Miscellaneous Normal Forms

	Quantifier Elimination and Variants
	Quantifier Elimination
	Generic Quantifier Elimination
	Linear Optimization

	RESET: Reset REDUCE to its initial state
	RESIDUE: A residue package
	RLFI: REDUCE LaTeX formula interface
	ROOTS: A REDUCE root finding package
	Top Level Functions
	Functions that refer to real roots only
	Functions that return both real and complex roots
	Other top level functions

	Switches Used in Input
	Root Package Switches

	RSOLVE: Rational polynomial solver
	Examples

	SCOPE: Source code optimisation package
	SETS: A basic set theory package
	Infix operator precedence
	Explicit set representation and MKSET
	Union and intersection
	Symbolic set expressions
	Set difference
	Predicates on sets
	Set membership
	Set inclusion
	Set equality

	SPARSE: Sparse Matrices
	Introduction
	Sparse Matrix Calculations
	Linear Algebra Package for Sparse Matrices
	Basic matrix handling
	Constructors
	High level algorithms
	Predicates

	SPDE: Symmetry groups of PDE's
	System Functions and Variables

	SPECFN: Package for special functions
	Simplification and Approximation
	Constants
	Functions

	SPECFN2: Special special functions
	REDUCE operator HYPERGEOMETRIC
	Enlarging the HYPERGEOMETRIC operator

	SUM: A package for series summation
	SUSY2: Super Symmetry
	Operators
	Operators for constructing Objects
	Commands

	Options

	SYMMETRY: Symmetric matrices
	Operators for linear representations
	Display Operators

	TAYLOR: Manipulation of Taylor series
	TPS: A truncated power series package
	Basic Truncated Power Series
	PS Operator
	PSORDLIM Operator

	Controlling Power Series
	PSTERM Operator
	PSORDER Operator
	PSSETORDER Operator
	PSDEPVAR Operator
	PSEXPANSIONPT operator
	PSFUNCTION Operator
	PSCHANGEVAR Operator
	PSREVERSE Operator
	PSCOMPOSE Operator
	PSSUM Operator
	Arithmetic Operations
	Differentiation

	Restrictions and Known Bugs

	TRI: TeX REDUCE interface
	Switches for TRI
	Adding Translations

	Examples of Use

	TRIGSIMP: Trigonometric simplification
	Simplifiying trigonometric expressions
	Factorising trigonometric expressions
	GCDs of trigonometric expressions

	WU: Wu algorithm for poly systems
	XCOLOR: Color factor in gauge theory
	XIDEAL: Gröbner for exterior algebra
	Operators
	Switches
	Examples

	ZEILBERG: Indef & definite summation
	The GOSPER summation operator
	EXTENDED_GOSPER operator
	SUMRECURSION operator
	HYPERRECURSION operator
	HYPERSUM operator
	SUMTOHYPER operator
	Simplification Operators

	ZTRANS: Z-transform package

	III Standard Lisp Report
	The Standard Lisp Report
	Introduction
	Preliminaries
	Primitive Data Types
	Classes of Primitive Data Types
	Structures
	Function Descriptions
	Function Types
	Error and Warning Messages
	Comments

	Functions
	Elementary Predicates
	Functions on Dotted-Pairs
	Identifiers
	Property List Functions
	Function Definition
	Variables and Bindings
	Program Feature Functions
	Error Handling
	Vectors
	Boolean Functions and Conditionals
	Arithmetic Functions
	MAP Composite Functions
	Composite Functions
	The Interpreter
	Input and Output
	LISP Reader

	System GLOBAL Variables
	The Extended Syntax
	Definition
	The Extended Syntax Rules

	IV Appendix
	Reserved Identifiers
	Index

