
NCPOLY: Computation in non–commutative

polynomial ideals

Herbert Melenk

Konrad–Zuse–Zentrum für Informationstechnik Berlin
Takustrasse 7

D–14195 Berlin – Dahlem
Germany

E–mail: melenk@zib.de

Joachim Apel

Institut für Informatik

Universität Leipzig

Augustusplatz 10–11

D–04109 Leipzig

Germany

E–mail: apel@informatik.uni–leipzig.de

1 Introduction

REDUCE supports a very general mechanism for computing with objects
under a non–commutative multiplication, where commutator relations must
be introduced explicitly by rule sets when needed. The package NCPOLY
allows you to set up automatically a consistent environment for comput-
ing in an algebra where the non–commutativity is defined by Lie-bracket
commutators. The package uses the REDUCE noncom mechanism for el-
ementary polynomial arithmetic; the commutator rules are automatically
computed from the Lie brackets. You can perform polynomial arithmetic
directly, including division and factorization. Additionally NCPOLY
supports computations in a one sided ideal (left or right), especially one

1

2 SETUP, CLEANUP 2

sided Gröbner bases and polynomial reduction.

2 Setup, Cleanup

Before the computations can start the environment for a non–commutative
computation must be defined by a call to nc setup:

nc_setup(<vars>[,<comms>][,<dir>]);

where

< vars > is a list of variables; these must include the non–commutative
quantities.

< comms > is a list of equations <u>*<v> - <v>*<u>=<rh> where < u >
and < v > are members of < vars >, and < rh > is a polynomial.

< dir > is either left or right selecting a left or a right one sided ideal. The
initial direction is left.

nc setup generates from < comms > the necessary rules to support an
algebra where all monomials are ordered corresponding to the given vari-
able sequence. All pairs of variables which are not explicitly covered in the
commutator set are considered as commutative and the corresponding rules
are also activated.

The second parameter in nc setup may be omitted if the operator is called
for the second time, e.g. with a reordered variable sequence. In such a case
the last commutator set is used again.

Remarks:

• The variables need not be declared noncom - nc setup performs all
necessary declarations.

• The variables need not be formal operator expressions; nc setup en-
capsulates a variable x internally as nc!*(!_x) expressions anyway
where the operator nc!∗ keeps the noncom property.

• The commands order and korder should be avoided because nc setup
sets these such that the computation results are printed in the correct
term order.

Example:

3 LEFT AND RIGHT IDEALS 3

nc_setup({KK,NN,k,n},
{NN*n-n*NN= NN, KK*k-k*KK= KK});

NN*n; -> NN*n
n*NN; -> NN*n - NN
nc_setup({k,n,KK,NN});
NN*n - NN -> n*NN;

Here KK,NN, k, n are non–commutative variables where the commutators
are described as [NN, n] = NN , [KK, k] = KK.

The current term order must be compatible with the commutators: the
product < u > ∗ < v > must precede all terms on the right hand side
< rh > under the current term order. Consequently

• the maximal degree of < u > or < v > in < rh > is 1,

• in a total degree ordering the total degree of < rh > may be not higher
than 1,

• in an elimination degree order (e.g. lex) all variables in < rh > must
be below the minimum of < u > and < v >.

• If < rh > does not contain any variables or has at most < u > or
< v >, any term order can be selected.

If you want to use the non–commutative variables or results from non–
commutative computations later in commutative operations it might be nec-
essary to switch off the non–commutative evaluation mode because not all
operators in REDUCE are prepared for that environment. In such a case
use the command

nc_cleanup;

without parameters. It removes all internal rules and definitions which
nc setup had introduced. To reactive non–commutative call nc setup
again.

3 Left and right ideals

A (polynomial) left ideal L is defined by the axioms

4 GRÖBNER BASES 4

u ∈ L, v ∈ L =⇒ u + v ∈ L

u ∈ L =⇒ k ∗ u ∈ L for an arbitrary polynomial k

where “*” is the non–commutative multiplication. Correspondingly, a right
ideal R is defined by

u ∈ R, v ∈ R =⇒ u + v ∈ R

u ∈ R =⇒ u ∗ k ∈ R for an arbitrary polynomial k

4 Gröbner bases

When a non–commutative environment has been set up by nc setup, a
basis for a left or right polynomial ideal can be transformed into a Gröbner
basis by the operator nc groebner:

nc_groebner(<plist>);

Note that the variable set and variable sequence must be defined before in
the nc setup call. The term order for the Gröbner calculation can be set by
using the torder declaration. The internal steps of the Gröbner calculation
can be watched by setting the switches trgroeb (=list all internal basis
polynomials) or trgroebs (=list additionally the S-polynomials) 1.

For details about torder, trgroeb and trgroebs see the REDUCE GROEB-
NER manual.

2: nc_setup({k,n,NN,KK},{NN*n-n*NN=NN,KK*k-k*KK=KK},left);

3: p1 := (n-k+1)*NN - (n+1);

p1 := - k*nn + n*nn - n + nn - 1

4: p2 := (k+1)*KK -(n-k);

p2 := k*kk + k - n + kk

5: nc_groebner ({p1,p2});

1The command lisp(!*trgroebfull:=t); causes additionally all elementary polyno-
mial operations to be printed.

5 LEFT OR RIGHT POLYNOMIAL DIVISION 5

{k*nn - n*nn + n - nn + 1,

k*kk + k - n + kk,

n*nn*kk - n*kk - n + nn*kk - kk - 1}

Important: Do not use the operators of the GROEBNER package directly
as they would not consider the non–commutative multiplication.

5 Left or right polynomial division

The operator nc divide computes the one sided quotient and remainder of
two polynomials:

nc_divide(<p1>,<p2>);

The result is a list with quotient and remainder. The division is performed
as a pseudo–division, multiplying < p1 > by coefficients if necessary. The
result {< q >, < r >} is defined by the relation

< c > ∗ < p1 >=< q > ∗ < p2 > + < r > for direction left and

< c > ∗ < p1 >=< p2 > ∗ < q > + < r > for direction right,

where < c > is an expression that does not contain any of the ideal variables,
and the leading term of < r > is lower than the leading term of < p2 >
according to the actual term order.

6 Left or right polynomial reduction

For the computation of the one sided remainder of a polynomial modulo a
given set of other polynomials the operator nc preduce may be used:

nc_preduce(<polynomial>,<plist>);

The result of the reduction is unique (canonical) if and only if < plist > is
a one sided Gröbner basis. Then the computation is at the same time an
ideal membership test: if the result is zero, the polynomial is member of the
ideal, otherwise not.

7 FACTORIZATION 6

7 Factorization

7.1 Technique

Polynomials in a non–commutative ring cannot be factored using the ordi-
nary factorize command of REDUCE. Instead one of the operators of this
section must be used:

nc_factorize(<polynomial>);

The result is a list of factors of < polynomial >. A list with the input
expression is returned if it is irreducible.

As non–commutative factorization is not unique, there is an additional op-
erator which computes all possible factorizations

nc_factorize_all(<polynomial>);

The result is a list of factor decompositions of < polynomial >. If there are
no factors at all the result list has only one member which is a list containing
the input polynomial.

7.2 Control of the factorization

In contrast to factoring in commutative polynomial rings, the non–commutative
factorization is rather time consuming. Therefore two additional operators
allow you to reduce the amount of computing time when you look only
for isolated factors in special context, e.g. factors with a limited degree or
factors which contain only explicitly specified variables:

left_factor(<polynomial>[,<deg>[,<vars>]])
right_factor(<polynomial>[,<deg>[,<vars>]])
left_factors(<polynomial>[,<deg>[,<vars>]])
right_factors(<polynomial>[,<deg>[,<vars>]])

where < polynomial > is the form under investigation, < vars > is an op-
tional list of variables which must appear in the factor, and < deg > is an
optional integer degree bound for the total degree of the factor, a zero for
an unbounded search, or a monomial (product of powers of the variables)
where each exponent is an individual degree bound for its base variable; un-
mentioned variables are allowed in arbitrary degree. The operators ∗ factor
stop when they have found one factor, while the operators ∗ factors select

8 OUTPUT OF EXPRESSIONS 7

all one–sided factors within the given range. If there is no factor of the de-
sired type, an empty list is returned by ∗ factors while the routines ∗ factor
return the input polynomial.

7.3 Time of the factorization

The share variable nc factor time sets an upper limit for the time to be
spent for a call to the non–commutative factorizer. If the value is a positive
integer, a factorization is terminated with an error message as soon as the
time limit is reached. The time units are milliseconds.

7.4 Usage of SOLVE

The factorizer internally uses solve, which is controlled by the REDUCE
switch varopt. This switch (which per default is set on) allows, to reorder
the variable sequence, which is favourable for the normal system. It should
be avoided to set varopt off , when using the non–commutative factorizer,
unless very small polynomials are used.

8 Output of expressions

It is often desirable to have the commutative parts (coefficients) in a non–
commutative operation condensed by factorization. The operator

nc_compact(<polynomial>)

collects the coefficients to the powers of the lowest possible non-commutative
variable.

load ncpoly;

nc_setup({n,NN},{NN*n-n*NN=NN})$
p1 := n**4 + n**2*nn + 4*n**2 + 4*n*nn + 4*nn + 4;

4 2 2
p1 := n + n *nn + 4*n + 4*n*nn + 4*nn + 4

nc_compact p1;

8 OUTPUT OF EXPRESSIONS 8

2 2 2
(n + 2) + (n + 2) *nn

