
The computer algebra package Crack for solving
over-determined systems of equations

Thomas Wolf
Department of Mathematics

Brock University
St.Catharines

Ontario, Canada L2S 3A1
twolf@brocku.ca

March 20, 2004

Contents

1 Online help 2
1.1 Help to help . 2
1.2 Help to inspect data . 2
1.3 Help to proceed . 3
1.4 Help to change flags & parameters . 3
1.5 Help to change data of equations . 4
1.6 Help to work with identities . 4
1.7 Help to trace and debug . 5

2 The purpose of Crack 5

3 Technical details 6
3.1 System requirements . 6
3.2 Installation . 6
3.3 Updates / web demos . 6
3.4 The files . 6
3.5 The call . 7

1

3.6 The result . 8
3.7 Interactive mode, flags, parameters and the list of procedures 9
3.8 Performing long computations . 12

3.8.1 The backup facility . 12
3.8.2 The history facility . 13

3.9 Global variables . 13
3.10 Global flags and parameters . 14

4 Contents of the Crack package 18
4.1 Pseudo Differential Gröbner Basis . 18
4.2 Integrating exact PDEs . 19
4.3 Direct separation of PDEs . 23
4.4 Indirect separation of PDEs . 24
4.5 Solving standard ODEs . 26

5 General hints 26
5.1 Problems involving sin, cos or other special functions 26
5.2 Exchanging time for memory . 27

1 Online help

1.1 Help to help

hd Help to inspect data
hp Help to proceed
hf Help to change flags & parameters
hc Help to change data of equations
hi Help to work with identities
hb Help to trace and debug

1.2 Help to inspect data

e Print equations
eo Print overview of functions in equations
pi Print inequalities
f Print functions and variables
v Print all derivatives of all functions
s Print statistics

2

fc Print no of free cells
pe Print an algebraic expression
ph Print history of interactive input
pv Print value of any lisp variable
pd Plot the occurence of functions in equations
ss Find and print sub-systems
w Write equations into a file

1.3 Help to proceed

a Do one step automatically
g Go on for a number of steps automatically
t Toggle between automatic and user selection of equations (expert mode=nil/t).
p1 Print a list of all modules in batch mode
p2 Print a complete list of all modules
Execute the module with the number ‘#’ once
l Execute a specific module repeatedly
sb Save complete backup to file
rb Read backup from file
ep Enable parallelism
dp Disable parallelism
pp Start an identical parallel process
kp Kill a parallel process
x Exit interactive mode for good
q Quit current level or crack if in level 0

1.4 Help to change flags & parameters

pl Maximal length of an expression to be printed
pm Toggle to print more or less information about pdes (print more)
pa Toggle to print all or not all information about the pdes (print all)
cp Change the priorities of procedures
og Toggle ordering between ‘lexicographical ordering of functions having

a higher priority than any ordering of derivatives’ and the opposite
(lex fc=t) resp. (lex fc=nil)

od Toggle ordering between ‘the total order of derivatives having a higher
priority than lexicographical ordering’ (lex df=nil) or not (lex df=t)

3

oi Interactive change of ordering on variables
or Reverse ordering on variables
om Mix randomly ordering on variables
of Interactive change of ordering on functions
op Print current ordering
ne Root of the name of new generated equations (default: e)
nf Root of the name of new functions and constants (default: c)
ni Root of the name of new identities (default: id)
na Toggle for the NAT output switch (!*nat)
as Input of an assignment
kp Toggle for keeping a partitioned copy of each equation (keep parti)
fi Toggle for allowing or not allowing integrations of equations which

involve unresolved integrals (freeint)
fa Toggle for allowing or not allowing solutions of ODEs involving the

abs function (freeabs)
cs Switch on/off the confirmation of intended substitutions and of the

order of the investigation of subcases resulting in a factorization
fs Enforce direct separation
ll change of the line length
re Toggle for allowing to re-cycle equation names (do recycle eqn)
rf Toggle for allowing to re-cycle function names (do recycle fnc)
st Setting a CPU time limit for un-interrupted run
cm Adding a comment to the history list
lr Adding a LET-rule
cr Clearing a LET-rule

1.5 Help to change data of equations

r Replace or add one equation
n Replace one inequality
d Delete one equation
c Change a flag or property of one pde

1.6 Help to work with identities

i Print identities between equations
id Delete redundand equations
iw Write identities to a file

4

ir Remove list of identities
ia Add or replace an identity
ih Start recording histories and identities
ip Stop recording histories and identities
ii Integrate an identity
ic Check the consistency of identity data
iy Print the history of equations

1.7 Help to trace and debug

tm Toggle for tracing the main procedure (tr main)
tg Toggle for tracing the generalized separation (tr gensep)
ti Toggle for tracing the generalized integration (tr genint)
td Toggle for tracing the decoupling process (tr decouple)
tl Toggle for tracing the decoupling length reduction process (tr redlength)
ts Toggle for tracing the algebraic length reduction process (tr short)
to Toggle for tracing the ordering procedures process (tr orderings)
tr Trace an arbitrary procedure
ut Untrace a procedure
br Lisp break
pc Do a function call
in Reading in a REDUCE file

2 The purpose of Crack

The package Crack attempts the solution of an overdetermined system of algebraic
or ordinary or partial differential equations (ODEs/PDEs) with at most polynomial
nonlinearities.

Under ‘normal circumstances’ differential equations (DEs) which describe physi-
cal processes are not overdetermined, i.e. the number of DEs matches the number of
unknown functions which are involved. Applying the package Crack to such prob-
lems directly may be successful, especially if these are ODEs, but the main type of
application is to investigate qualitative properties of such DEs/systems of DEs and
to solve the overdetermined PDE-systems that result in these investigations.

Applications of Crack include a program Conlaw for the computation of con-
servation laws of DEs, a program LiePDE for the computation of infinitesimal
symmetries of DEs and a program ApplySym for the computation of symmetry

5

and similarity variables from infinitesimal symmetries.

3 Technical details

3.1 System requirements

The required system is Reduce, version 3.6. or 3.7. (either the PSL version of
Reduce as distributed by the Konrad Zuse Institut / Berlin or the CSL version of
Reduce as distributed by CODEMIST Ltd). The PSL version is faster whereas the
CSL version seems to be more stable under WINDOWS. Also it provides a portable
compiled code.

Memory requirements depend crucially on the application. The crack.rlg file
is produced from running crack.tst in a 4MB session running Reduce, version
3.7 under Linux. On the other hand it is not difficult to formulate problems that
consume any amount of memory.

3.2 Installation

In a running Reduce session either do
in "crack.red"$

or, in order to speed up computation, either compile it with on comp$

before the above command, or, generate a fast-loading compiled file once with
faslout "crack"$

in "crack.red"$

faslend$

and load that file to run Crack with
load crack$

3.3 Updates / web demos

The latest version of Crack and related programs is available from
http://lie.math.brocku.ca/twolf/crack/. Publications related to Crack can
be found under
http://lie.math.brocku.ca/twolf/home/publications.html#1.

3.4 The files

The following files are provided with Crack

6

• crack.red contains read-in statements of a number of files cr*.red.

• crack.tst contains test-examples.

• crack.rlg contains the output of crack.tst.

• crack.tex is this manual.

3.5 The call

Crack is called by

crack({equ1, equ2, . . . , equm},
{ineq1, ineq2, . . . , ineqn},
{fun1, fun2, . . . , funp},
{var1, var2, . . . , varq});

m,n, p, q are arbitrary.

• The equi are identically vanishing partial differential expressions, i.e. they rep-
resent equations 0 = equ i, which are to be solved for the functions funj as far
as possible, thereby drawing only necessary conclusions and not restricting the
general solution.

• The ineqi are algebraic or differential expressions which must not vanish iden-
tically for any solution to be determined, i.e. only such solutions are computed
for which none of the expressions ineqi vanishes identically in all independent
variables.

• The dependence of the (scalar) functions funj on independent variables must
be defined beforehand with DEPEND rather than declaring these functions as
operators. Their arguments may themselves only be identifiers representing
variables, not expressions. Also other unknown functions not in funj must not
be represented as operators but only using DEPEND.

• The functions funj and their derivatives may only occur polynomially.

• The vark are further independent variables, which are not already arguments
of any of the funj. If there are none then the fourth argument is the empty
list {}, although it does no harm to include arguments of functions funj.

7

• The dependence of the equ i on the independent variables and on constants
and functions other than funj is arbitrary.

• Crack can be run in automatic batch mode (by default) or interactively with
the switch OFF BATCH MODE.

3.6 The result

The result is a list of solutions
{sol1, . . .}

where each solution is a list of 4 lists:

{{con1, con2, . . . , conq},
{funa = ex a, funb = ex b, . . . , funp = ex p},
{func, fund, . . . , funr},
{ineq1, ineq2, . . . , ineqs}. }

For example, in the case of a linear system, the input consists of at most one solution
sol1.

If Crack finds a contradiction as e.g. 0 = 1 then there exists no solution
and it returns the empty list {}. If Crack can factorize algebraically a non-linear
equation then factors are set to zero individually and different sub-cases are studied
by Crack calling itself recursively. If during such a recursive call a contradiction
results, then this sub-case will not have a solution but other sub-cases still may have
solutions. The empty list is also returned if no solution exists which satisfies the
inequalities ineqi 6= 0.

The expressions con i (if there are any), are the remaining necessary and sufficient
conditions for the functions func, . . . , funr in the third list. Those functions can be
original functions from the equations to be solved (of the second argument of the
call of Crack) or new functions or constants which arose from integrations. The
dependence of new functions on variables is declared with DEPEND and to visualize
this dependence the algebraic mode function FARGS(funi) can be used. If there
are no con i then all equations are solved and the functions in the third list are
unconstrained. The second list contains equations fun i = ex i where each fun i is an
original function and ex i is the computed expression for fun i. The elements of the
fourth list are the expressions who have been assumed to be unequal zero in the
derivation of this solution.

8

3.7 Interactive mode, flags, parameters and the list of pro-
cedures

Under normal circumstances one will try to have problems solved automatically by
Crack. An alternative is to input OFF BATCH MODE; before calling Crack and to
solve problems interactively. In interactive mode it is possible to

• inspect data, like equations and their properties, unknown functions, variables,
identities, a statistics,

• save, change, add or drop equations,

• add inequalities,

• inspect and change flags and parameters which govern individual modules as
well as their interplay,

• pick a list of methods to be used out of about 30 different ones, and specify their
priorities and in this way very easily compose an automatic solving strategy,

• or, for more interactive work, to specify how to proceed, i.e. which computa-
tional step to do and how often, like doing

one automatic step,

one specific step,

a number of automatic steps,

a specific step as often as possible or a specified number of times.

To get interactive help one enters ‘h’ or ‘?’.
Flags and parameters are stored as symbolic fluid variables which means that

they can be accessed by lisp(...), like lisp(print :=5); before calling
Crack. print , for example, is a measure of the maximal length of expressions to
be printed on the screen (the number of factors in terms). A complete list of flags
and parameters is given at the beginning of the file crinit.red.

One more parameter shall be mentioned, which is the list of modules/procedures
called proc list . In interactive mode this list can be looked at with ‘p’ or be
changed with ‘cp’. This list defines in which order the different modules/procedures
are tried whenever Crack has to decide of what to do next. Exceptions to this rule
may be specified. For example, some procedure, say P1, requires after its execution
another specific procedure, say P2, to be executed, no matter whether P2 is next

9

according to proc list or not. This is managed by P1 writing a task for procedure
P2 into a hot-list. Tasks listed in the global variable ‘to do list’ are dealt with in
the ‘to do’ step which should always come first in proc list . A way to have the
convenience of running Crack automatically and still being able to break the fixed
rhythm prescribed by proc list is to have the entry stop batch in proc list

and have Crack started in automatic batch mode. Then execution is continuing
until none of the procedures which come before stop batch are applicable any more
so that stop batch is executed next which will stop automatic execution and go
into interactive mode. This allows either to continue the computation interactively,
or to change the proc list with ‘cp’ and to continue in automatic mode.

The default value of proc list does not include all possible modules because
not all are suitable for any kind of overdetermined system to be solved. The complete
list is shown in interactive mode under ‘cp’. A few basic modules are described in
the following section. The efficiency of Crack in automatic mode is very much de-
pending on the content of proc list and the sequence of its elements. Optimizing
proc list for a given task needs experience which can not be formalized in a few
simple rules and will therefore not be explained in more detail here. The following
remarks are only guidelines.

to do : hot list of steps to be taken next, should always come first,

subst level ? : substitutions of functions by expressions, substitutions differ by
their maximal allowed size and other properties,

separation : what is described as direct separation in the next section,

gen separation : what is described as indirect separation in the next section, only
to be used for linear problems,

quick gen separation : generalized separation of equations with an upper size
limit,

quick integration : integration of very specific short equations,

full integration : integration of equations which lead to a substitution,

integration : any integration,

factorization : splitting the computation into the investigation of different sub-
cases resulting from the algebraic factorization of an equation, only useful for
non-linear problems,

10

change proc list : reserved name of a procedure to be written by the user that
does nothing else but changing proc list in a fixed manner. This is to be used
if the computation splits naturally into different parts and if it is clear from
the beginning what the computational methods (proc list) have to be.

stop batch : If the first steps to simplify or partially solve a system of equations
are known and should be done automatically and afterwards Crack should
switch into interactive mode then stop batch is added to proc list with a
priority just below the steps to be done automatically.

drop lin dep : module to support solving big linear systems (still experimental),

find 1 term eqn : module to support solving big linear systems (still experimen-
tal),

trian lin alg : module to support solving big linear systems (still experimental),

undetlinode : parametric solution of single under determined linear ODE (with
non-constant coefficients), only applicable for linear problems (Too many re-
dundant functions resulting from integrations may prevent further integra-
tions. If they are involved in single ODEs then the parametric solution of such
ODEs treated as single underdetermined equations is useful. Danger: new
generated equations become very big if the minimal order of any function in
the ODE is high.),

undetlinpde : parametric solution of single under determined linear PDE (with
non-constant coefficients), only applicable for linear problems (still experimen-
tal),

alg length reduction : length reduction by algebraic combination, only for linear
problems, one has to be careful when combining it with decoupling as infinite
loops may occur when shortening and lowering order reverse each other,

diff length reduction : length reduction by differential reduction,

decoupling : steps towards the computation of a differential Gröbner Basis,

add differentiated pdes : only useful for non-linear differential equations with
leading derivative occuring non-linearly,

add diff star pdes : for the treatment of non-linear indirectly separable equa-
tions,

11

multintfac : to find integrating factors for a system of equations, should have
very slow priority if used at all,

alg solve deriv : to be used for equations quadratic in the leading derivative,

alg solve system : to be used if a (sub-)system of equations shall be solved for a
set of functions or their derivatives algebraically,

subst derivative : substitution of a derivative of a function everywhere by a new
function if such a derivative exists

undo subst derivative : undo the above substitution.

del redundant fc : Drop redundant functions and constants. An overdetermined
PDE-system is formulated and solved to set redundant constants / functions
of integration to zero. This may take longer if many functions occur.

point trafo : An interactive point transformation not to be used in automatic
batch mode,

sub problem : Solve a subset of equations first (still experimental),

del redundant de : Delete redundant equations,

idty integration : Integrate an identity (still experimental).

3.8 Performing long computations

3.8.1 The backup facility

If one does a long computation automatically then the computer or the link to it may
go down and the computation may have to be started again. Even worse in a longer
interactive session which is of an exploring nature, i.e. where every step may blow up
the size of expressions or where a step (for example, decoupling, solving a subsystem,
searching for a length-reduction, dropping redundant functions,...) may just take
too long and where one would want to go back to the situation before this step and
try something else. For these situations there is an interactive command for saving
a bakup: sb "file name" which saves all global variables + data into an ASCII file
and a command rb "file name" which reads these data from a file. The format is
independent of the computer used and independent of the underlying Lisp version.
This has been used by the author to set up long and complex computations on a small

12

computer and to continue the same interactive session on larger computers later. To
continue such a session one calls Crack without data: CRACK({},{},{},{})$

and loads the complete environment with rb "file name".

3.8.2 The history facility

Sometimes one does not only want to store an environment but also how one got
there in an interactive session, to repeat the same steps or only some of them in a
later session. In the global variable history all interactive input during one call of
Crack is recorded and can be looked at during a Crack run with the pv (print-
variable) command pv history . In order to save typing the same input in a later
session the program Crack always tries to read any expected input first from the
global variable old history. All that is needed is to do is typing
lisp reverse history ;

after a run of Crack and to assign the result to the Lisp variable old history.
The next run of Crack will try to read any expected interactive input first from
old history and only if that is nil then read it from the keyboard.

3.9 Global variables

The following is a complete list of identifiers used as global lisp variables (to be
precise symbolic fluid variables) within Crack. Some are flags and parameters,
others are glaboal variables, some of them can be accessed after the Crack run.

!*allowdfint bak !*dfprint bak !*exp bak !*ezgcd bak !*fullroots bak

!*gcd bak !*mcd bak !*nopowers bak !*ratarg bak !*rational bak

!*batch mode abs adjust fnc allflags batchcount backup

collect sol confirm subst cont contradiction cost limit5

current dir default proc list do recycle eqn do recycle fnc

eqname expert mode explog facint flin force sep fname

fnew freeabs freeint ftem full proc list gcfree!* genint

glob var global list integer global list ninteger

global list number high gensep homogen history idname

idnties independence ineq inter divint keep parti last steps

length inc level lex df lex fc limit time lin problem

lin test const logoprint low gensep max gc counter

max gc elimin max gc fac max gc red len max gc short

max gc ss max red len maxalgsys mem eff my gc counter

nequ new gensep nfct nid odesolve old history

13

orderings target limit 0 target limit 1 target limit 2

target limit 3 target limit 4 poly only potint print

print all print more proc list prop list pvm able

quick decoup record hist recycle eqns recycle fcts recycle ids

reducefunctions repeat mode safeint session simple orderings

size hist size watch sol list solvealg stepcounter stop

struc dim struc eqn subst 0 subst 1 subst 2 subst 3 subst 4

time time limit to do list tr decouple tr genint tr gensep

tr main tr orderings tr redlength tr short trig1 trig2

trig3 trig4 trig5 trig6 trig7 trig8 userrules vl

3.10 Global flags and parameters

The list below gives a selection of flags and global parameters that are available
to fine tune the performance according to specific needs of the system of equations
that is studied. Usually they are not needed and very few are used regularly by the
author. The interactive command that changes the flag/parameter is given in [],
default values of the flags/parameters are given in (). The values of the flags and
parameters can either be set after loading Crack and before starting Crack with
a lisp assignment, for example,
lisp(print_:=8)$

or after starting Crack in interactive mode with specific commands, like pl to
change specifically the print length determining parameter print , or the command
as to do an assignment. The values of parameters/flags can be inspected interac-
tively using pv.

!*batch mode [x] (t) : running crack in interactive mode (!*batch mode=nil)
or not (!*batch mode=t). It can also be set in algebraic mode before starting
Crack by ON/OFF BATCH MODE. Interactive mode can be left and automatic
computation be started by the interactive commant x.

expert mode [t] (nil) : For expert mode=t the equations that are involved in
the next computational step are selected by Crack, for expert mode=nil the
user is asked to select one or two equations which are to be worked with in
the next computational step.

nfct (1) : index of the next new function or constant

nequ (1) : index of the next new equation

14

nid (1) : index of the next new identity

fname [nf] (’c) : name of new functions and constants (integration)

eqname [ne] (’e) : name of new equations

idname [ni] (’id) : name of new equations

cont (nil) : interactive user control for integration or substitution of large ex-
pressions (enabled = t)

independence (nil) : interactive control of linear independence (enabled = t)

genint (15) : if =nil then generalized integration disabled else equal the maximal
number of new functions and extra equations due to the generalized integration
of one equation

facint (1000) : if equal nil then no search for integrating factors otherwise equal
the max product terms*kernels for searching an integrating factor

potint (t) : allowing ‘potential integration’

safeint (t) : uses only solutions of ODEs with non-vanishing denominator

freeabs [fi] (t) : Do not use solutions of ODEs that involve the abs function

freeint [fi] (t) : Do only integrations if expl. part is integrable

odesolve (100) : maximal length of a de (number of terms) to be integrated as
ode

max factor (400) : maximal number of terms to be factorized

low gensep (6) : max. size of expressions to be separated in a generalized way by
‘quick gen separation’

high gensep (300) : min. size of expressions to separate in a generalized way by
‘quick gen separation’

new gensep (nil) : whether or not a newer (experimental) form of gensep should
be used

subst * : maximal length of an expression to be substituted, used with different
values for different procedures subst level *

15

cost limit5 (100) : maximal number of extra terms generated by a subst.

max red len (50000) : maximal product of lengths of two equations to be com-
bined with length-reducing decoupling

target limit * (nil) : maximal product length(pde)*length(substituted expres-
sion) for PDEs in which substitutions are to be made, nil ==¿ no length limit,
used with different values for different procedures subst level *

length inc (1.0) : factor by which the length of an expression may grow when
performing diff length reduction

tr main [tm] (nil) : Trace main procedure

tr gensep [ts] (nil) : Trace generalized separation

tr genint [ti] (nil) : Trace generalized integration

tr decouple [td] (nil) : Trace decoupling process

tr redlength [tr] (nil) : Trace length reduction

tr orderings [to] (nil) : Trace orderings stuff

homogen (nil) : Test for homogeneity of each equation (for debugging)

solvealg (nil) : Use SOLVE for algebraic equations

print [pl] (12) : maximal length of an expression to be printed

print more [pm] (t) : Print more informations about the pdes

print all [pa] (nil) : Print all informations about the pdes

logoprint (t) : print logo after crack call

poly only (nil) : all equations are polynomials only

time (nil) : print the time needed for running crack

dec hist (0) : length of pde history list during decoupling

maxalgsys (20) : max. number of equations to be solved in specialsol

16

adjust fnc (nil) : if t then free constants/functions are scaled and redundant
ones are dropped to simplify the result after the computation has been com-
pleted

lex df [od] (nil) : if t then use lexicographical instead of total degree ordering
of derivatives

lex fc [og] (t) : if t then lexicographical ordering of functions has higher pri-
ority than any ordering of derivatives

collect sol (t) : whether solutions found shall be collected and returned to-
gether at the end or not (to save memory), matters only for non-linear problems
with very many special solutions. If a computation has to be performed with
any solution that is found, then these commands can be put into a procedure
algebraic procedure crack out(eqns,assigns,freef,ineq) which is cur-
rently empty in file crmain.red but which is called for each solution.

struc eqn (nil) : whether the equations has the form of structural equations (an
application are the Killing vector and Killing tensor computations)

quick decoup (nil) : whether decoupling should be done faster with less care for
saving memory

idnties (nil) : list of identities resulting from reductions and integrability con-
ditions

record hist (nil) : whether the history of equations is to be recorded

keep parti [kp] (nil) : whether for each equation a copy in partitioned form is
to be stored to speed up several simplifications but which needs more memory

size watch (nil) : whether before each computational step the size of the system
shall be recorded in the global variable size hist

inter divint (nil) : whether the integration of divergence identities with more
than 2 differentiation variables shall be confirmed interactively

do recycle (nil) : whether function names shall be recycled or not (saves mem-
ory but computation is less clear to follow)

old history (nil) : old history is interactive input to be read from this list

17

confirm subst [cs] (nil) : whether substitutions have to be confirmed interac-
tively

mem eff (t) : whether to be memory efficient even if slower

force sep (nil) : whether direct separation should be forced even if functions
occur in the supposed to be linear independent explicit expressions (for non-
lin. prob.)

4 Contents of the Crack package

The package Crack contains a number of modules. The basic ones are for comput-
ing a pseudo differential Gröbner Basis (using integrability conditions in a systematic
way), integrating exact PDEs, separating PDEs, solving DEs containing functions
of only a subset of all variables and solving standard ODEs (of Bernoulli or Euler
type, linear, homogeneous and separable ODEs). These facilities will be described
briefly together with examples. The test file crack.tst demonstrates these and
others.

4.1 Pseudo Differential Gröbner Basis

This module (called ‘decoupling’ in proc list) reduces derivatives in equations by
using other equations and it applies integrability conditions to formulate additional
equations which are subsequently reduced, and so on.

A general algorithm to bring a system of PDEs into a standard form where all
integrability conditions are satisfied by applying a finite number of additions, mul-
tiplications and differentiations is based on the general theory of involutive systems
[1, 2, 3].

Essential to this theory is a total ordering of partial derivatives which allows
assignment to each PDE of a Leading Derivative (LD) according to a chosen ordering
of functions and derivatives. Examples for possible orderings are

lex. order of functions > lex. order of variables,

lex. order of functions > total differential order > lex. order of variables,

total order > lex. order of functions > lex. order of variables

or mixtures of them by giving weights to individual functions and variables. Above,
the ‘>’ indicate “before” in priority of criteria. The principle is then to

18

take two equations at a time and differentiate them as often as necessary to get
equal LDs,

regard these two equations as algebraic equations in the common LD and calculate
the remainder w.r.t. the LD, i.e. to generate an equation without the LD by
the Euclidean algorithm, and

add this equation to the system.

Usually pairs of equations are taken first, such that only one must be differentiated.
If in such a generation step one of both equations is not differentiated then it is
called a simplification step and this equation will be replaced by the new equation.

The algorithm ends if each combination of two equations yields only equations
which simplify to an identity modulo the other equations. A more detailed descrip-
tion is given e.g. in [5, 6].

Other programs implementing this algorithm are described e.g. in [9, 5, 10, 6, 7,
8] and [11].

In the interactive mode of Crack it is possible to change the lexicographical
ordering of variables, of functions, to choose between ‘total differential order’ or-
dering of variables or lexicographical ordering of variables and to choose whether
lexicographical ordering of functions should have a higher priority than the ordering
of the variables in a derivative, or not.

An example of the computation of a differential Gröbner Basis is given in the
test file crack.tst.

4.2 Integrating exact PDEs

The technical term ‘exact’ is adapted for PDEs from exterior calculus and is a
small abuse of language but it is useful to characterize the kind of PDEs under
consideration.

The purpose of the integration module in Crack is to decide whether a given
differential expression D which involves unknown functions f i(xj), 1 ≤ i ≤ m of
independent variables xj, 1 ≤ j ≤ n is a total derivative of another expression I
w.r.t. some variable xk, 1 ≤ k ≤ n

D(xi, f j, f j,p , f j,pq , . . .) =
dI(xi, f j, f j,p , f j,pq , . . .)

dxk
.

The index k is reserved in the following for the integration variable xk. With an
appropriate function of integration cr, which depends on all variables except xk it
is no loss of generality to replace 0 = D by 0 = I + cr in a system of equations.

19

Of course there always exists a function I with a total derivative equal to D but
the question is whether for arbitrary f i the integral I is functionally dependent only
on the f i and their derivatives, and not on integrals of f i.
Preconditions:
D is a polynomial in the f i and their derivatives. The number of functions and
variables is free. For deciding the existence of I only, the explicit occurrence of the
variables xi is arbitrary. In order to actually calculate I explicitly, D must have
the property that all terms in D must either contain an unknown function of xk or
must be formally integrable w.r.t. xk. That means if I exists then only a special
explicit occurrence of xk can prevent the calculation of I and furthermore only in
those terms which do not contain any unknown function of xk. If such terms occur
in D and I exists then I can still be expressed as a polynomial in the f i, f i,j , . . .
and terms containing indefinite integrals with integrands explicit in xk.
Algorithm:
Successive partial integration of the term with the highest xk-derivative of any f i. By
that the differential order w.r.t. xk is reduced successively. This procedure is always
applicable because steps involve only differentiations and the polynomial integration
(
∫

hn ∂h
∂x

dx = hn+1/(n + 1)) where h is a partial derivative of some function f i. For
a more detailed description see [14].
Stop:
Iteration stops if no term with any xk-derivative of any f i is left. If in the remaining
un-integrated terms any f i(xk) itself occurs, then I is not expressible with f i and its
derivatives only. In case no f i(xk) occurs then any remaining terms can contain xk

only explicitly. Whether they can be integrated depends on their formal integrability.
For their integration the Reduce integrator is applied.
Speed up:
The partial integration as described above preserves derivatives with respect to
other variables. For example, the three terms f,x , ff,xxx , f,xxy can not combine
somehow to the same terms in the integral because if one ignores x-derivatives then
it is clear that f, f 2 and f,y are like three completely different expressions from the
point of view of x-integrations. This allows the following drastic speed up for large
expressions. It is possible to partition the complete sum of terms into partial sum
such that each of the partial sum has to be integrable on its own. That is managed
by generating a label for each term and collecting terms with equal label into partial
sums. The label is produced by dropping all x-derivatives from all functions to be
computed and dropping all factors which are not powers of derivatives of functions
to be computed.

The partitioning into partial sums has two effects. Firstly, if the integration of

20

one partial sum fails then the remaining sums do not have to be tried for integration.
Secondly, doing partial integration for each term means doing many subtractions.
It is much faster to subtract terms from small sums than from large sums.

Example :
We apply the above algorithm to

D := 2f,y g′ + 2f,xy g + gg′3 + xg′4 + 3xgg′2g′′ = 0 (1)

with f = f(x, y), g = g(x), ′ ≡ d/dx. Starting with terms containing g and at first
with the highest derivative g,xx , the steps are

∫
3xgg,2x g,xx dx =

∫
d(xgg,3x) − ∫

(∂x(xg)g,3x) dx

= xgg,3x − ∫
g,3x (g + xg,x)dx,

I := I + xgg,3x

D := D − g,3x (g + xg,x)− 3xgg,2x g,xx

The new terms −g,3x (g + xg,x) are of lower order than g,xx and so in the expression
D the maximal order of x-derivatives of g is lowered. The conditions that D is exact
are the following.

The leading derivative must occur linearly before each partial integration step.

After the partial integration of the terms with first order x-derivatives of f the
remaining D must not contain f or other derivatives of f , because such terms
cannot be integrated w.r.t. x without specifying f .

The result of x- and y-integration in the above example is (remember g = g(x))

0 = 2fg + xygg,3x +c1(x) + c2(y) (= I). (2)

Crack can now eliminate f and substitute for it in all other equations.
Generalization:
If after applying the above basic algorithm, terms are left which contain functions
of xk but each of these functions depends only on a subset of all xi, 1 ≤ i ≤ n, then
a generalized version of the above algorithm can still provide a formal expression for
the integral I (see [14]). The price consists of additional differential conditions, but
they are equations in less variables than occur in the integrated equation. Integrating
for example

D̃ = D + g2(y2 + x sin y + x2ey) (3)

21

by introducing as few new functions and additional conditions as possible gives as
the integral Ĩ

Ĩ = 2fg + xygg,3x +c1(x) + c2(y)

+
1

3
y3c′′3 − cos y(xc′′3 − c3) + ey(x2c′′3 − 2xc′3 + 2c3)

with c3 = c3(x), ′ ≡ d/dx and the single additional condition g2 = c′′′3 . The integra-
tion of the new terms of (3) is achieved by partial integration again, for example

∫
g2x2dx = x2

∫
g2dx−

∫
(2x

∫
g2dx)dx

= x2
∫

g2dx− 2x
∫ ∫

g2dx + 2
∫ ∫ ∫

g2dx

= x2c′′3 − 2xc′3 + 2c3.

Characterization:
This algorithm is a decision algorithm which does not involve any heuristic. After
integration the new equation is still a polynomial in f i and in the new constant
or function of integration. Therefore the algorithms for bringing the system into
standard form can still be applied to the PDE-system after the equation D = 0 is
replaced by I = 0.

The complexity of algorithms for bringing a PDE-system into a standard form
depends nonlinearly on the order of these equations because of the nonlinear increase
of the number of different leading derivatives and by that the number of equations
generated intermediately by such an algorithm. It therefore in general pays off to
integrate equations during such a standard form algorithm.

If an f i, which depends on all variables, can be eliminated after an integration,
then depending on its length it is in general helpful to substitute f i in other equations
and to reduce the number of equations and functions by one. This is especially
profitable if the replaced expression is short and contains only functions of less
variables than f i.
Test:
The corresponding test input is

depend f,x,y;

depend g,x;

crack({2*df(f,y)*df(g,x)+2*df(f,x,y)*g+g*df(g,x)**3

+x*df(g,x)**4+3*x*g*df(g,x)**2*df(g,x,2)

+g**2*(y**2+x*sin y+x**2*e**y)},

{},{f,g},{});

22

The meaning of the Reduce command depend is to declare that f depends in an
unknown way on x and y. For more details on the algorithm see [14].

4.3 Direct separation of PDEs

As a result of repeated integrations the functions in the remaining equations have
less and less variables. It therefore may happen that after a substitution an equation
results where at least one variable occurs only explicitly and not as an argument of an
unknown function. Consequently all coefficients of linearly independent expressions
in this variable can be set to zero individually.
Example:
f = f(x, y), g = g(x), x, y, z are independent variables. The equation is

0 = f,y +z(f2 + g,x) + z2(g,x +yg2) (4)

x-separation? → no
y-separation? → no
z-separation? → yes: 0 = f,y = f2 + g,x = g,x +yg2

y-separation? → yes: 0 = g,x = g2 (from the third equation from the z-separation)
If z2 had been replaced in (4) by a third function h(z) then direct separation

would not have been possible. The situation changes if h is a parametric function
which is assumed to be independently given and which should not be calculated, i.e.
f and g should be calculated for any arbitrary given h(z). Then the same separation
could have been done with an extra treatment of the special case h,zz = 0, i.e. h
linear in z. This different treatment of unknown functions makes it necessary to
input explicitly the functions to be calculated as the third argument to Crack.
The input in this case would be

depend f,x,y;

depend g,x;

depend h,z;

crack({df(f,y)+z*f**2+(z+h)*df(g,x)+h*y*g**2},{},{f,g},{z});

The fourth parameter for Crack is necessary to make clear that in addition to the
variables of f and g, z is also an independent variable.

If the flag independence is not nil then Crack will stop if linear independence
of the explicit expressions of the separation variable (in the example 1, z, z2) is not
clear and ask interactively whether separation should be done or not.

23

4.4 Indirect separation of PDEs

For the above direct separation a precondition is that at least one variable occurs
only explicitly or as an argument of parametric functions. The situation where
each variable is an argument of at least one function but no function contains all
independent variables of an equation needs a more elaborate treatment.

The steps are these

A variable xa is chosen which occurs in as few functions as possible. This variable
will be separated directly later which requires that all unknown functions fi

containing xa are to be eliminated. Therefore, as long as F := {fi} is not
empty do the following:

Choose the function fi(yp) in F with the smallest number of variables yp and
with zij as those variables on which fi does not depend.

Identify all different products Pik of powers of fi-derivatives and of fi in the
equation. Determine the zij-dependent factors Cik of the coefficients of
Pik and store them in a list.

For each Cil (i fixed, l = 1, . . .) choose a zij and :

divide by Cil the equation and all following elements Cim with m > l of
this list, such that these elements are still the actual coefficients in
the equation after the division,

differentiate the equation and the Cim,m > l w.r.t. zij

The resulting equation no longer contains any unknown function of xa and can be
separated w.r.t. xa directly in case xa still occurs explicitly. In both cases the
equation(s) is (are) free of xa afterwards and inverting the sequence of integra-
tion and multiplication of all those equations (in case of direct separability)
will also result in an equation(s) free of xa. More exactly, the steps are

multiplication of the equation(s) and the Cim with m < l by the elements of
the Cik-lists in exactly the inverse order,

integration of these exact PDEs and the Cim w.r.t. zij.

The equations originating that way are used to evaluate those functions which do
not depend on xa and which survived in the above differentiations. Substi-
tuting these functions in the original equation, may enable direct separability
w.r.t. variables on which the fi do not depend on.

24

The whole procedure is repeated for another variable xb if the original DE could not
be separated directly and still has the property that it contains only functions
of a subset of all variables in the equation.

The additional bookkeeping of coefficients Cik and their updating by division, differ-
entiation, integration and multiplication is done to use them as integrating factors
for the backward integration. The following example makes this clearer. The equa-
tion is

0 = f(x)g(y)− 1

2
xf ′(x)− g′(y)− (1 + x2)y. (5)

The steps are (equal levels of indentation in the example correspond to those in the
algorithm given above)

x1 := x, F = {f}
Identify f1 := f, y1 := x, z11 := y

and P1 = {f ′, f}, C1 = {1, g}
Divide C12 and (5) by C11 = 1 and differentiate w.r.t. z11 = y :

0 = fg′ − g′′ − (1 + x2) (6)

C12 = g′

Divide (6) by C12 = g′ and differentiate w.r.t. z11 = y :

0 = −(g′′/g′)′ − (1 + x2)(1/g′)′

Direct separation w.r.t. x and integration:

x2 : 0 = (1/g′)′ ⇒ c1g
′ = 1 ⇒ g = y/c1 + c2

x0 : 0 = (g′′/g′)′ ⇒ c3g
′ = g′′ ⇒ c3 = 0

Substitution of g in the original DE

0 = (y/c1 + c2)f − 1

2
xf ′ − 1/c1 − (1 + x2)y

provides a form which allows Crack standard methods to succeed by direct
separation w.r.t. y

y1 : 0 = f/c1 − 1− x2 ⇒ f ′ = 2c1x
y0 : 0 = c2f − 1

2
xf ′ − 1/c1 ⇒ 0 = c2c1(1 + x2)− c1x

2 − 1/c1

25

and direct separation w.r.t. x:

x0 : 0 = c2c1 − c1

x2 : 0 = c2c1 − 1/c1

⇒ 0 = c1 − 1/c1

⇒ c1 = ±1 ⇒ c2 = 1.

We get the two solutions f = 1 + x2, g = 1 + y and f = −1 − x2, g = 1 − y. The
corresponding input to Crack would be

depend f,x;

depend g,y;

crack({f*g-x*df(f,x)/2-df(g,y)-(1+x**2)*y},{},{f,g},{});

4.5 Solving standard ODEs

For solving standard ODEs the package ODESolve by Malcalm MacCallum and
Francis Wright [16] is applied. This package is distributed with Reduce and can be
used independently of Crack. The syntax of ODESolve is quite similar to that
of Crack
depend function, variable;
odesolve(ODE, function, variable);
In the present form (1998) it solves standard first order ODEs (Bernoulli and Eu-
ler type, with separable variables, . . .) and linear higher order ODEs with constant
coefficients. An improved version is currently under preparation by Francis Wright.
The applicability of ODESolve is increased by a Crack-subroutine which recog-
nizes such PDEs in which there is only one unknown function of all variables and
all occurring derivatives of this function are only derivatives w.r.t. one variable of
only one partial derivative. For example the PDE for f(x, y)

0 = f,xxy +f,xxyy

can be viewed as a first order ODE in y for f,xxy .

5 General hints

5.1 Problems involving sin, cos or other special functions

If the equations to be solved involve special functions, like sin and cos then one is
inclined to add let-rules for simplifying expressions. Before doing this the simpli-

26

fication rules at the end of the file crinit.red should be inspected such that new
rules do not lead to cycles with existing rules. One possibility is to replace existing
rules, for example to substitute the existing rule

trig1_:={sin(~x)**2 => 1-cos(x)**2}$ by the new rule
trig1_:={cos(~x)**2 => 1-sin(x)**2}$. These rules are switched off when

integrations are performed in order not to interfere with the Reduce Integrator.

5.2 Exchanging time for memory

The optimal order of applying different methods to the equations of a system is not
fixed. It does depend, for example, on the distributions of unknown functions in the
equations and on what the individual methods would produce in the next step. For
example, it is possible that the decoupling module which applies integrability con-
ditions through cross differentiations of equations is going well up to a stage when it
suddenly produces huge equations. They not only occupy much memory, they also
are slow to handle. Right before this explosion started other methods should have
been tried (shortening of equations, any integrations, solution of underdetermined
ODEs if there are any,...). These alternative methods are normally comparatively
slow or unfavourable as they introduce new functions but under the current circum-
stances they may be perfect to avoid any growth and to complete the calculation.
How could one have known beforehand that some method will lead to an explosion?
One does not know. But one can regularly make a backup with the interactive sb

command and restart at this situation if necessary.

Acknowledgement

Andreas Brand is the author of a number of core modules of Crack. The currently
used data structure and program structure of the kernel of Crack are due to him.
He contributed to the development of Crack until 1997.

Francis Wright contributed a module that provides simplifications of expressions
involving symbolic derivatives and integrals. Also, Crack makes extensive use of
the Reduce program ODESolve written by Malcolm MacCallum and Francis
Wright.

Arrigo Triulzi contributed in supporting the use of different total orderings of
derivatives in doing pseudo differential Gröbner basis computations.

Work on this package has been supported by the Konrad Zuse Institute / Berlin
through a fellowship of T.W.. Winfried Neun and Herbert Melenk are thanked for

27

many discussions and constant support.
Anthony Hearn provided free copies of Reduce to us as a Reduce developers

group which also is thankfully acknowledged.

References

[1] C. Riquier, Les systèmes d’équations aux dérivées partielles, Gauthier–Villars,
Paris (1910).

[2] J. Thomas, Differential Systems, AMS, Colloquium publications, v. 21, N.Y.
(1937).

[3] M. Janet, Leçons sur les systèmes d’équations aux dérivées, Gauthier–Villars,
Paris (1929).

[4] V.L. Topunov, Reducing Systems of Linear Differential Equations to a Passive
Form, Acta Appl. Math. 16 (1989) 191–206.

[5] A.V. Bocharov and M.L. Bronstein, Efficiently Implementing Two Methods of
the Geometrical Theory of Differential Equations: An Experience in Algorithm
and Software Design, Acta. Appl. Math. 16 (1989) 143–166.

[6] G.J. Reid, A triangularization algorithm which determines the Lie symmetry
algebra of any system of PDEs, J.Phys. A: Math. Gen. 23 (1990) L853-L859.

[7] G. J. Reid, A. D. Wittkopf and A. Boulton, Reduction of systems of nonlinear
partial differential equations to simplified involutive forms, European Journal
of Applied Mathematics, Vol 7. (1996) 604-635.

[8] G. J. Reid, A. D. Wittkopf and P. Lin, Differential-Elimination Completion
Algorithms for Differential Algebraic Equations and Partial Differential Alge-
braic Equations, to appear in Studies in Applied Mathematics (Submitted July
1995).

[9] F. Schwarz, Automatically Determining Symmetries of Partial Differential
Equations, Computing 34, (1985) 91-106.

[10] W.I. Fushchich and V.V. Kornyak, Computer Algebra Application for Deter-
mining Lie and Lie–Bäcklund Symmetries of Differential Equations, J. Symb.
Comp. 7, (1989) 611–619.

28

[11] E.L. Mansfield, The differential algebra package diffgrob2, Mapletech 3, (1996)
33-37 .

[12] E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, Band 1,
Gewöhnliche Differentialgleichungen, Chelsea Publishing Company, New York,
1959.

[13] T. Wolf, An Analytic Algorithm for Decoupling and Integrating systems of Non-
linear Partial Differential Equations, J. Comp. Phys., no. 3, 60 (1985) 437-446
and, Zur analytischen Untersuchung und exakten Lösung von Differentialgle-
ichungen mit Computeralgebrasystemen, Dissertation B, Jena (1989).

[14] T. Wolf, The Symbolic Integration of Exact PDEs, preprint, (1991).

[15] M.A.H. MacCallum, F.J. Wright, Algebraic Computing with REDUCE, Claren-
don Press, Oxford (1991).

[16] M.A.H. MacCallum, An Ordinary Differential Equation Solver for REDUCE,
Proc. ISAAC’88, Springer Lect. Notes in Comp Sci. 358, 196–205.

[17] H. Stephani, Differential equations, Their solution using symmetries, Cam-
bridge University Press (1989).

[18] T. Wolf, An efficiency improved program LiePDE for determining Lie - symme-
tries of PDEs, Proceedings of the workshop on Modern group theory methods
in Acireale (Sicily) Nov. (1992)

[19] V.I. Karpman, Phys. Lett. A 136, 216 (1989)

[20] B. Champagne, W. Hereman and P. Winternitz, The computer calculation of
Lie point symmetries of large systems of differential equation, Comp. Phys.
Comm. 66, 319-340 (1991)

29

