
Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 1

Intel® Fortran Composer XE 2011
for Linux* Installation Guide and
Release Notes

Document number: 321415-003US

14 January 2011

Table of Contents
1 Introduction ... 3

1.1 Change History .. 3

1.2 Product Contents ... 3

1.3 System Requirements .. 3

1.3.1 Red Hat Enterprise Linux* 4 Support Deprecated ... 5

1.3.2 IA-64 Architecture (Intel® Itanium®) Development Not Supported 5

1.4 Documentation ... 5

1.5 Japanese Language Support ... 6

1.6 Technical Support .. 7

2 Installation ... 7

2.1 Activation of Purchase after Evaluation Using the Intel Activation Tool 8

2.2 Silent Install ... 8

2.3 Using a License Server .. 8

2.4 Known Installation Issues... 8

2.5 Installation Folders ... 9

2.6 Removal/Uninstall ...10

3 Intel® Fortran Compiler ..10

3.1 Compatibility ...11

3.1.1 Stack Alignment Change for REAL(16) and COMPLEX(16) Datatypes11

3.2 New and Changed Features ...11

3.2.1 Features from Fortran 2003 ...11

3.2.2 Features from Fortran 2008 ...11

3.2.3 Coarrays ..12

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 2

3.2.4 Static Security Analysis Feature (formerly Source Checker) Requires Intel®

Inspector XE ..15

3.2.5 Other Changes ..15

3.3 New and Changed Compiler Options ..16

3.4 Other Changes and Notes ..17

3.4.1 Optimization Reports Disabled by Default ..17

3.4.2 Establishing the Compiler Environment..17

3.4.3 OpenMP* Legacy Libraries Removed ..18

3.4.4 RANF Portability Function Is Now an Intrinsic ..18

3.5 Fortran 2003 and Fortran 2008 Feature Summary ..18

4 Intel® Debugger (IDB) ...21

4.1 Setting up the Java* Runtime Environment ...22

4.2 Starting the Debugger ...22

4.3 Additional Documentation ...22

4.4 Debugger Features ...22

4.4.1 Main Features of IDB ...22

4.5 Known Problems ...24

4.5.1 Coarray elements cannot be viewed. ...24

4.5.2 Signals Dialog not working Signals Dialog not working ..24

4.5.3 Resizing GUI..24

4.5.4 $cdir, $cwd Directories ...24

4.5.5 info stack Usage ..24

4.5.6 $stepg0 Default Value Changed ...24

4.5.7 SIGTRAP error on some Linux* Systems ...24

4.5.8 idb GUI cannot be used to debug MPI processes ..25

4.5.9 Thread Syncpoint Creation in GUI ...25

4.5.10 Data Breakpoint Dialog ..25

4.5.11 Stack Alignment for IA-32 Architecture...25

4.5.12 GNOME Environment Issues ...25

4.5.13 Accessing Online-Help ...25

5 Intel® Math Kernel Library ...26

5.1 What's New in Intel® MKL 10.3 Update 2 ...26

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 3

5.2 What's New in Intel® MKL 10.3 Update 1 ...26

5.3 What's New in Intel® MKL 10.3 ...26

5.4 Attributions ..28

6 Disclaimer and Legal Information ...28

1 Introduction
This document describes how to install the product, provide a summary of new and changed

product features and includes notes about features and problems not described in the product

documentation.

Intel® Fortran Composer XE 2011 is the next release of the product formerly called Intel®

Fortran Compiler Professional Edition.

1.1 Change History

This section highlights important changes in product updates.

Update 2 (12.0.2)

 Intel® Math Kernel Library updated to 10.3 Update 2

 The way that the Static Security Analysis feature creates data files has changed

 Corrections to reported problems

Update 1 (12.0.1)

 Intel® Math Kernel Library updated to 10.3 Update 1

 Corrections to reported problems

Product Release (12.0.0)

 Initial product release

1.2 Product Contents

Intel® Fortran Composer XE 2011 for Linux* includes the following components:

 Intel® Fortran Compiler XE 12.0.2 for building applications that run on IA-32 and

Intel® 64 architecture systems running the Linux* operating system

 Intel® Debugger 12.0.2

 Intel® Math Kernel Library 10.3 Update2

 On-disk documentation

1.3 System Requirements

For an explanation of architecture names, see

http://software.intel.com/en-us/articles/intel-architecture-platform-terminology

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 4

Requirements to develop IA-32 architecture applications

 A PC based on an IA-32 or Intel® 64 architecture processor supporting the Intel®

Streaming SIMD Extensions 2 (Intel® SSE2) instructions (Intel® Pentium® 4 processor

or later, or compatible non-Intel processor)

 Development for a target different from the host may require optional library components

to be installed from your Linux Distribution.

 For the best experience, a multi-core or multi-processor system is recommended

 1GB of RAM (2GB recommended)

 2GB free disk space for all features

 One of the following Linux distributions (this is the list of distributions tested by Intel;

other distributions may or may not work and are not recommended - please refer to

Technical Support if you have questions):

o Asianux* 3.0

o Fedora* 12,13

o Red Hat Enterprise Linux* 4, 5, 6

o SUSE LINUX Enterprise Server* 10,11

o Ubuntu* 10.04

o Debian* 5.0

 Linux Developer tools component installed, including gcc, g++ and related tools

 Library libunwind.so is required in order to use the –traceback option. Some Linux

distributions may require that it be obtained and installed separately.

 If developing on an Intel® 64 architecture system, some Linux distributions may require

installation of one or more of the following additional Linux components: ia32-libs,

lib32gcc1, lib32stdc++6, libc6-dev-i386, gcc-multilib

Requirements to develop Intel® 64 architecture applications

 A PC based on an Intel® 64 architecture processor (Intel® Pentium 4 processor or later,

or compatible non-Intel processor)

 For the best experience, a multi-core or multi-processor system is recommended

 1GB of RAM (2GB recommended)

 2GB free disk space for all features

 100 MB of hard disk space for the virtual memory paging file. Be sure to use at least the

minimum amount of virtual memory recommended for the installed distribution of Linux

 One of the following Linux distributions (this is the list of distributions tested by Intel;

other distributions may or may not work and are not recommended - please refer to

Technical Support if you have questions):

o Asianux* 3.0

o Fedora* 12, 13

o Red Hat Enterprise Linux* 4, 5, 6

o SUSE LINUX Enterprise Server* 10.2, 11.1 SP1

o Ubuntu* 10.04

 Linux Developer tools component installed, including gcc, g++ and related tools

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 5

 Library libunwind.so is required in order to use the –traceback option. Some Linux

distributions may require that it be obtained and installed separately.

Additional requirements to use the Graphical User Interface of the Intel® Debugger

 IA-32 Architecture system or Intel® 64 Architecture system

 Java* Runtime Environment (JRE) 5.0 (also called 1.5)

 A 32-bit JRE must be used on an IA-32 architecture system and a 64-bit JRE must be

used on an Intel® 64 architecture system

Notes

 The Intel compilers are tested with a number of different Linux distributions, with different

versions of gcc. Some Linux distributions may contain header files different from those

we have tested, which may cause problems. The version of glibc you use must be

consistent with the version of gcc in use. For best results, use only the gcc versions as

supplied with distributions listed above.

 The default for the Intel® compilers is to build IA-32 architecture applications that require

a processor supporting the Intel® SSE2 instructions - for example, the Intel® Pentium®

4 processor. A compiler option is available to generate code that will run on any IA-32

architecture processor.

 Compiling very large source files (several thousands of lines) using advanced

optimizations such as -O3, -ipo and -openmp, may require substantially larger amounts

of RAM.

 The above lists of processor model names are not exhaustive - other processor models

correctly supporting the same instruction set as those listed are expected to work.

Please refer to Technical Support if you have questions regarding a specific processor

model

 Some optimization options have restrictions regarding the processor type on which the

application is run. Please see the documentation of these options for more information.

1.3.1 Red Hat Enterprise Linux* 4 Support Deprecated

In a future major release of Intel® Fortran Composer XE, support will be removed for installation

and use on Red Hat Enterprise Linux 4. Intel recommends migrating to a newer version of these

operating systems.

1.3.2 IA-64 Architecture (Intel® Itanium®) Development Not Supported

This product version does not support development on or for IA-64 architecture (Intel®

Itanium®) systems. The version 11.1 compiler remains available for development of IA-64

architecture applications.

1.4 Documentation

Product documentation can be found in the Documentation folder as shown under Installation

Folders.

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 6

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or

utilize options that optimize for instruction sets that are available in both Intel® and non-Intel

microprocessors (for example SIMD instruction sets), but do not optimize equally for non-

Intel microprocessors. In addition, certain compiler options for Intel compilers, including

some that are not specific to Intel micro-architecture, are reserved for Intel

microprocessors. For a detailed description of Intel compiler options, including the

instruction sets and specific microprocessors they implicate, please refer to the ―Intel®

Compiler User and Reference Guides‖ under ―Compiler Options." Many library routines

that are part of Intel® compiler products are more highly optimized for Intel microprocessors

than for other microprocessors. While the compilers and libraries in Intel® compiler

products offer optimizations for both Intel and Intel-compatible microprocessors, depending

on the options you select, your code and other factors, you likely will get extra performance

on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not

optimize to the same degree for non-Intel microprocessors for optimizations that are not

unique to Intel microprocessors. These optimizations include Intel® Streaming SIMD

Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and

Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent

optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining

the best performance on Intel® and non-Intel microprocessors, Intel recommends that you

evaluate other compilers and libraries to determine which best meet your requirements.

We hope to win your business by striving to offer the best performance of any compiler or

library; please let us know if you find we do not.

Notice revision #20101101

1.5 Japanese Language Support

Intel compilers provide support for Japanese language users when the combined English-

Japanese product is installed. Error messages, visual development environment dialogs and

some documentation are provided in Japanese in addition to English. By default, the language

of error messages and dialogs matches that of your operating system language selection.

Japanese-language documentation can be found in the ja_JP subdirectory for documentation

and samples.

If you wish to use Japanese-language support on an English-language operating system, or

English-language support on a Japanese-language operating system, you will find instructions

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 7

at

http://software.intel.com/en-us/articles/changing-language-setting-to-see-english-on-a-japanese-

os-environment-or-vice-versa-on-linux/

1.6 Technical Support

Register your license at the Intel® Software Development Products Registration Center.

Registration entitles you to free technical support, product updates and upgrades for the

duration of the support term.

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips

and tricks, and other support information, please visit:

http://www.intel.com/software/products/support/

Note: If your distributor provides technical support for this product, please contact them for

support rather than Intel.

2 Installation
The installation of the product requires a valid license file or serial number. If you are evaluating

the product, you can also choose the ―Evaluate this product (no serial number required)‖ option

during installation

If you received your product on DVD, mount the DVD, change the directory (cd) to the top-

level directory of the mounted DVD and begin the installation using the command:

./install.sh

If you received the product as a downloadable file, first unpack it into a writeable directory of

your choice using the command:

tar –xzvf name-of-downloaded-file

Then change the directory (cd) to the directory containing the unpacked files and begin the

installation using the command:

./install.sh

Follow the prompts to complete installation.

Note that there are several different downloadable files available, each providing different

combinations of components. Please read the download web page carefully to determine which

file is appropriate for you.

You do not need to uninstall previous versions or updates before installing a newer version –

the new version will coexist with the older versions.

https://registrationcenter.intel.com/
http://www.intel.com/software/products/support/

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 8

2.1 Activation of Purchase after Evaluation Using the Intel Activation Tool

Note for evaluation customers: a new tool Intel Activation Tool ―Activate‖ is included in this

product release and installed at /opt/intel/ActivationTool/Activation/ directory.

If you installed the product using an Evaluation license or serial number (SN), or using the

―Evaluate this product (no serial number required)‖ option during installation, and then

purchased the product, you can activate your purchase using the Intel Activation Tool at

/opt/intel/ActivationTool/Activation/Activate. It will convert your evaluation

software to a fully licensed product. To use the tool:

$ /opt/intel/ActivationTool/Activation/Activate [SN_here]

2.2 Silent Install

For information on automated or ―silent‖ install capability, please see

http://software.intel.com/en-us/articles/intel-compilers-for-linux-silent-installation-guides

2.3 Using a License Server

If you have purchased a ―floating‖ license, see http://software.intel.com/en-us/articles/licensing-

setting-up-the-client-floating-license/ for information on how to install using a license file or

license server. This article also provides a source for the Intel® License Server that can be

installed on any of a wide variety of systems.

2.4 Known Installation Issues

 If you have enabled the Security-Enhanced Linux (SELinux) feature of your Linux

distribution, you must change the SELINUX mode to permissive before installing the

Intel Fortran Compiler. Please see the documentation for your Linux distribution for

details. After installation is complete, you may reset the SELINUX mode to its previous

value.

 On some versions of Linux, auto-mounted devices do not have the "exec" permission

and therefore running the installation script directly from the DVD will result in an error

such as:

bash: ./install.sh: /bin/bash: bad interpreter: Permission denied

If you see this error, remount the DVD with exec permission, for example:

mount /media/<dvd_label> -o remount,exec

and then try the installation again.

 The product is fully supported on Ubuntu and Debian Linux distributions for IA-32 and

Intel® 64 architecture systems as noted above under System Requirements. Due to a

restriction in the licensing software, however, it is not possible to use the Trial License

feature when evaluating IA-32 components on an Intel® 64 architecture system under

Ubuntu or Debian. This affects using a Trial License only. Use of serial numbers,

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 9

license files, floating licenses or other license manager operations, and off-line activation

(with serial numbers) is not affected. If you need to evaluate IA-32 components of the

product on an Intel® 64 architecture Ubuntu or Debian system, please visit the Intel®

Software Evaluation Center

(http://www.intel.com/cd/software/products/asmo-na/eng/download/eval/) to obtain an

evaluation serial number.

2.5 Installation Folders

The compiler installs, by default, under /opt/intel – this is referenced as <install-dir>

in the remainder of this document. You are able to specify a different location, and can also

perform a ―non-root‖ install in the location of your choice.

The directory organization has changed since the Intel® Compilers 11.1 release.

Under <install-dir> are the following directories:

 bin – contains symbolic links to executables for the latest installed version

 lib – symbolic link to the lib directory for the latest installed version

 include – symbolic link to the include directory for the latest installed version

 man – symbolic link to the directory containing man pages for the latest installed version

 mkl – symbolic link to the directory for the latest installed version of Intel® Math Kernel

Library

 composerxe – symbolic link to the composerxe-2011 directory

 composerxe-2011 – directory containing symbolic links to subdirectories for the latest

installed Intel® Composer XE 2011 compiler release

 composerxe-2011-<n>.<pkg> - physical directory containing files for a specific

compiler version. <n> is the update number, and <pkg> is a package build identifier

Each composerxe-2011 directory contains the following directories that reference the latest

installed Intel® Composer XE 2011 compiler:

 bin – directory containing scripts to establish the compiler environment and symbolic

links to compiler executables for the host platform

 pkg_bin – symbolic link to the compiler bin directory

 include – symbolic link to the compiler include directory

 lib – symbolic link to the compiler lib directory

 mkl – symbolic link to the mkl directory

 debugger – symbolic link to the debugger directory

 man – symbolic link to the directory containing man pages for the latest installed version

 Documentation – symbolic link to the documentation directory

 Samples – symbolic link to the samples directory

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 10

 eclipse_support – symbolic link to a directory created by the Intel Debugger

component that is shared between Intel Fortran and Intel C++. Intel does not provide

Eclipse support for Fortran.

Each composerxe-2011-<n>.<pkg> directory contains the following directories that

reference a specific update of the Intel® Composer XE 2011 compiler:

 bin – all executables

 compiler – shared libraries and header files

 debugger – debugger files

 Documentation – documentation files

 man – man pages

 mkl – Intel® Math Kernel Library libraries and header files

 Samples – Product samples and tutorial files

 eclipse_support –directory created by the Intel Debugger component that is shared

between Intel Fortran and Intel C++. Intel does not provide Eclipse support for Fortran.

If you have both the Intel C++ and Intel Fortran compilers installed, they will share folders for a

given version and update.

This directory layout allows you to choose whether you want the latest compiler, no matter

which version, the latest update of the Intel® Composer XE 2011 compiler, or a specific update.

Most users will reference <install-dir>/bin for the compilervars.sh [.csh] script,

which will always get the latest compiler installed. This layout should remain stable for future

releases.

2.6 Removal/Uninstall

Removing (uninstalling) the product should be done by the same user who installed it (root or a

non-root user). If sudo was used to install, it must be used to uninstall as well. It is not possible

to remove the compiler while leaving any of the performance library components installed.

1. Open a terminal window and set default (cd) to any folder outside <install-dir>

2. Type the command: <install-dir>/bin/ia32/uninstall_cprof.sh (substitute

intel64 for ia32 as desired)

3. Follow the prompts

4. Repeat steps 2 and 3 to remove additional platforms or versions

If you also have the same-numbered version of Intel® C++ Compiler installed, it may also be

removed.

3 Intel® Fortran Compiler
This section summarizes changes, new features and late-breaking news about the Intel Fortran

Compiler.

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 11

3.1 Compatibility

In general, object code and modules compiled with earlier versions of Intel Fortran Compiler for

Linux* (8.0 and later) may be used in a build with version 12.0. Exceptions include:

 Sources that use the CLASS keyword to declare polymorphic variables must be

recompiled.

 Objects built with the multi-file interprocedural optimization (-ipo) option must be

recompiled.

 Objects that use the REAL(16) or REAL*16 datatypes must be recompiled.

 Objects built for the Intel® 64 architecture with a compiler version earlier than 10.0 and

that have module variables must be recompiled. If non-Fortran sources reference these

variables, the external names may need to be changed to remove an incorrect leading

underscore.

 Modules that specified an ATTRIBUTES ALIGN directive and were compiled with

versions earlier than 11.0 must be recompiled. The compiler will notify you if this issue

is encountered.

3.1.1 Stack Alignment Change for REAL(16) and COMPLEX(16) Datatypes

In previous releases, when a REAL(16) or COMPLEX(16) (REAL*16 or COMPLEX*32) item

was passed by value, the stack address was aligned at 4 bytes. For improved performance, the

version 12 compiler aligns such items at 16 bytes and expects received arguments to be aligned

on 16-byte boundaries. This change is also compatible with gcc.

This change primarily affects compiler-generated calls to library routines that do computations

on REAL(16) values, including intrinsics. If you have code compiled with earlier versions and

link it with the version 12 libraries, or have an application linked to the shared version of the Intel

run-time libraries, it may give incorrect results.

In order to avoid errors, you must recompile all Fortran sources that use the REAL(16) and

COMPLEX(16) datatypes.

3.2 New and Changed Features

3.2.1 Features from Fortran 2003

 FINAL subroutines

 GENERIC keyword for type-bound procedures

 A generic interface may have the same name as a derived type

 Bounds specification and bounds remapping list on a pointer assignment

3.2.2 Features from Fortran 2008

 Maximum array rank has been raised to 31 dimensions (Fortran 2008 specifies 15)

 Coarrays

 CODIMENSION attribute

 SYNC ALL statement

 SYNC IMAGES statement

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 12

 SYNC MEMORY statement

 CRITICAL and END CRITICAL statements

 LOCK and UNLOCK statements

 ERROR STOP statement

 ALLOCATE and DEALLOCATE may specify coarrays

 Intrinsic procedures IMAGE_INDEX, LCOBOUND, NUM_IMAGES, THIS_IMAGE,

UCOBOUND

o Note: ATOMIC_DEFINE and ATOMIC_REF are not supported in this version

 CONTIGUOUS attribute

 MOLD keyword in ALLOCATE

 DO CONCURRENT

 NEWUNIT keyword in OPEN

 G0 and G0.d format edit descriptor

 Unlimited format item repeat count specifier

 A CONTAINS section may be empty

 Intrinsic procedures BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_YN, BGE, BGT,

BLE, BLT, DSHIFTL, DSHIFTR, ERF, ERFC, ERFC_SCALED, GAMMA, HYPOT, IALL,

IANY, IPARITY, IS_CONTIGUOUS, LEADZ, LOG_GAMMA, MASKL, MASKR,

MERGE_BITS, NORM2, PARITY, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR,

STORAGE_SIZE, TRAILZ,

 Additions to intrinsic module ISO_FORTRAN_ENV: ATOMIC_INT_KIND,

ATOMIC_LOGICAL_KIND, CHARACTER_KINDS, INTEGER_KINDS, INT8, INT16,

INT32, INT64, LOCK_TYPE, LOGICAL_KINDS, REAL_KINDS, REAL32, REAL64,

REAL128, STAT_LOCKED, STAT_LOCKED_OTHER_IMAGE, STAT_UNLOCKED

3.2.3 Coarrays

No special procedure is necessary to run a program that uses coarrays; you simply run the

executable file. The underlying parallelization implementation is Intel® MPI. Installation of the

compiler automatically installs the necessary Intel® MPI run-time libraries to run on shared

memory. The Intel® Cluster Toolkit installs the necessary Intel® MPI run-time libraries to run on

distributed memory. Use of coarray applications with any other MPI implementation, or with

OpenMP*, is not supported.

By default, the number of images created is equal to the number of execution units on the

current system. You can override that by specifying the option /Qcoarray-num-images:<n>

on the ifort command that compiles the main program. You can also specify the number of

images in an environment variable FOR_COARRAY_NUM_IMAGES.

3.2.3.1 Specifying Shared or Distributed Memory Processing of Coarrays

The documentation for the –coarray option currently says:

Using /Qcoarray (Windows*) or -coarray (Linux*) with no argument is equivalent to

running on multi-node (distributed memory) if an Intel® Cluster Toolkit license is installed

or on single node (shared memory) if there is no Intel® Cluster Toolkit license installed.

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 13

The implementation has changed since the above text was written. The new behavior is that

if -coarray is specified without the memory argument, shared memory is used whether or not

the Intel® Cluster Toolkit license is present. To use distributed memory, which requires that a

license for Intel® Cluster Toolkit is present, specify –coarray=distributed.

3.2.3.2 How to Debug a Coarray Application

The following instructions describe how to debug a Coarray application.

1. Add a stall loop to your application before the area of code you wish to debug, e.g.:

LOGICAL VOLATILE :: WAIT_FOR_DEBUGGER

LOGICAL, VOLATILE :: TICK

 :

DO WHILE(WAIT_FOR_DEBUGGER)

 TICK = .NOT. TICK

 END DO

! Code you want to debug is here

!

The use of VOLATILE is required to ensure that the loop will not be removed by the

compiler. If the problem is only found on one image, you can wrap the loop in
IF (THIS_IMAGE() .EQ. 4) THEN

or the like.
2. Compile and link with debug enabled (-g).

3. Create at least N+1 terminal windows on the machine where the application will be

running, where N is the number of images your application will have.

4. In a terminal window, start the application.

linuxprompt> ./my_app

5. In each of the other terminal windows, set your default directory to be the same as the

location of the application executable. Use the ps command in one of the windows to

find out which processes are running your application:

linuxprompt> ps –ef | grep 'whoami' | grep my_app

There will be several processes. The oldest is the one you started in step 4 – it has run

the MPI launcher and is now waiting for the others to terminate. Do not debug it.

The others will look like this:

<your-user-name> 25653 25650 98 15:06 ? 00:00:49 my_app

<your-user-name> 25654 25651 97 15:06 ? 00:00:48 my_app

<your-user-name> 25655 25649 98 15:06 ? 00:00:49 my_app

The first number is the PID of the process (e.g., 25653 in the first line).

 Call the PIDs of these N processes running "my_app" P1, P2, P3 and so on.

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 14

6. In each window other than the first, start your debugger and set it to stop processes

when attached:

linuxprompt> idb –idb

(idb) set $stoponattach = 1

or

linuxprompt> gdb

7. Attach to one of the processes (e.g. to P1 in window 1, to P2 in window 2, etc.)

(idb) attach <P1> my_app

or

(gdb) attach <P1>

8. Get execution out of the stall loop:

(idb) assign WAIT_FOR_DEBUGGER = .FALSE.

or

(gdb) set WAIT_FOR_DEBUGGER = .false.

9. You can now debug.

If you are using idb, you can use the multiprocess capability of idb to have only one debugger

window instead of N. First, attach to each process and get out of the loop (steps 7 and 8).

(idb) attach <P1> my_app

(idb) assign WAIT_FOR_DEBUGGER = .FALSE.

(idb) attach <P2> my_app

(idb) assign WAIT_FOR_DEBUGGER = .FALSE.

(idb) attach <P3> my_app

(idb) assign WAIT_FOR_DEBUGGER = .FALSE.

Use the "process" command to switch debugging focus from one process to another:

(idb) process <Pn>

Processes not focused on will remain in the state they were left in: with breakpoints and

watchpoints set but not running.

3.2.3.3 Coarray Known Issues

The following features are known not to work in this version:

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 15

 Character data type coarrays

 Coarrays of derived type where the type contains an ultimate component that is

ALLOCATABLE or POINTER

 Output (WRITE, PRINT, etc.) of an array slice of a coarray referencing another image.

A whole array reference, or a single element works.

 Default initialization of a REAL(16) or COMPLEX(16) coarray

 LOCK and UNLOCK cannot be used on another image.

 STAT= or ERRMSG= arguments on LOCK, UNLOCK, SYNC IMAGES, SYNC

MEMORY, or SYNC ALL are not being set correctly.

3.2.4 Static Security Analysis Feature (formerly Source Checker) Requires Intel®

Inspector XE

The ―Source Checker‖ feature, from compiler version 11.1, has been enhanced and renamed

―Static Security Analysis‖. The compiler options to enable Static Security Analysis remain the

same as in compiler version 11.1 (for example, -Qdiag-enable sc), but the results are now

written to a file that is interpreted by Intel® Inspector XE rather than being included in compiler

diagnostics output.

3.2.5 Other Changes

 The ability to create a source listing file with identifier cross-reference has been added

 Guided auto-parallelism

 An option to use math library functions that are faster but return results with less precision or

accuracy

 An option to use math library functions that return consistent results across different models

and manufacturers of processors

 The ability to generate a build dependencies output file has been added

3.2.5.1 Change in Static Security Analysis Behavior

The inspxe-runsc command line utility that is distributed with Intel® Composer XE 2011 has

been changed. This change only affects users who use Composer XE 2011 to perform Static

Security Analysis (SSA). Those that do not use SSA and those that perform SSA without using

this utility are unaffected. SSA is only available to users of Intel® Parallel Studio XE 2011 or

Intel® C++ Studio XE 2011, so users who do not have those products are unaffected.

inspxe-runsc executes a build specification, a description of how an application is built.

Usually build specification files are generated by observing a build as it executes and recoding

the compilations and links that are performed. inspxe-runsc repeats these actions using the

Intel compiler in SSA mode. SSA results are generated at the link step so a build specification

that describes a build with more than one link step will generate more than one SSA result when

inspxe-runsc is invoked.

The versions of inspxe-runsc included in Composer XE 2011 and Composer XE 2011

Update 1 generate all the SSA results in a single directory. In the multiple link case this violated

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 16

the rule that all the SSA results for one and only one project must be created in the same

directory. The updated version of inspxe-runsc respects this rule by generating results for

each link step in a separate directory. The name of that directory is formed from the name of

the file being linked. Thus if a build specification describes a project that builds two

executables, file1.out and file2.out, then earlier versions of inspxe-runsc would create two

results, one for file1 and one for file2, say r000sc and r001sc, in the same directory. The new

version of inspxe-runsc will also create two results, but the one for file1 will be created in ―My

Inspector XE results – file1/r000sc‖ and the one for file2 will be created in ―My Inspector XE

results – file2/r000sc‖. The directories containing the results are both created in the same

parent directory.

inspxe-runsc has a command line switch, -result-dir (-r), that specifies where results are to

be created. The meaning of this switch has changed. Previous this would name the directory

where the result itself, say r000sc, would be created. Now it names the parent directory where

the ―My Inspector XE Results - name‖ directory or directories will be created. So the directory

named in the –r switch is effectively two levels up from the results themselves.

The change to inspxe-runsc effectively moves the result directory, and user action is

required to adapt to this change. Those using scripts that invoke inspxe-runsc with the –r

switch must update their scripts to reflect the new interpretation of the –r switch argument

described earlier. Users must move their old result files into the new directory so that SSA

results produced by earlier versions of inspxe-runsc share the same directory as results

produced by the new version of inspxe-runsc. Users that had been using inspxe-runsc

with a build specification with only one link step should move their old results into a directory of

the form ―My Inspector XE results – name‖. If this is not done, then all the problems in the

newly created result will appear to be ―New‖. Users that had been using inspxe-runsc with a

build specification with multiple link steps have been having various issues with SSA that will be

resolved by using the new utility. Such users are best advised to copy the most recent into their

old results into each of the new ―My Inspector XE results – name‖ directories. This offers the

best chance that some old problem state information will be correctly applied to new results

when they are created in the future.

3.3 New and Changed Compiler Options

Please refer to the compiler documentation for details

 -assume [no]fpe_summary

 -assume [no]old_ldout_format

 -coarray

 -coarray-num-images

 -fzero-initialized-in-bss

 -fimf-absolute-error

 -fimf-accuracy-bits

 -fimf-arch-consistency

 -fimf-max-error

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 17

 -fimf-precision

 -fvar-tracking

 -fvar-tracking-assignments

 -gen-dep

 -gen-depformat

 -guide

 -guide-data-trans

 -guide-file

 -guide-file-append

 -guide-opts

 -guide-par

 -guide-vec

 -list

 -list-line-len

 -list-page-len

 -opt-args-in-regs

 -par-runtime-control

 -prof-value-profiling

 -profile-functions

 -profile-loops-report

 -show=keyword

 -simd

 -standard-semantics

For a list of deprecated compiler options, see the Compiler Options section of the

documentation.

3.4 Other Changes and Notes

3.4.1 Optimization Reports Disabled by Default

As of version 11.1, the compiler no longer issues, by default, optimization report messages

regarding vectorization, automatic parallelization and OpenMP threaded loops. If you wish to

see these messages you must request them by

specifying -diag-enable vec, -diag-enable par and/or -diag-enable openmp, or by

using -vec-report, -par-report and/or -openmp-report.

Also, as of version 11.1, optimization report messages are sent to stderr and not stdout.

3.4.2 Establishing the Compiler Environment

The compilervars.sh script is used to establish the compiler environment.

The command takes the form:

source <install-dir>/bin/compilervars.sh argument

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 18

Where xxx is the package identifier and argument is either ia32 or intel64 as appropriate

for the architecture you are building for. Establishing the compiler environment also establishes

the environment for the Intel® Debugger, Intel® Performance Libraries and, if present, Intel®

C++ Compiler.

3.4.3 OpenMP* Legacy Libraries Removed

The OpenMP ―legacy‖ libraries have been removed in this release. Only the ―compatibility‖

libraries are provided.

3.4.4 RANF Portability Function Is Now an Intrinsic

The RANF function in the portability library is a non-standard random number generator. As of

the version 12.0 compiler, RANF is an intrinsic function with a new, higher-performance

implementation. If your program has added USE IFPORT to provide access to RANF, no

changes will be seen and you will get the older version. If your program does not have USE

IFPORT, or you add INTRINSIC RANF, you will get the new version that returns a different

sequence, for a given seed, than the older version. The portability subroutine SRAND is still

used to set the seed for RANF. Intel recommends use of the standard intrinsic

RANDOM_NUMBER, but RANF is provided for compatibility with applications already using it.

3.5 Fortran 2003 and Fortran 2008 Feature Summary

The Intel Fortran Compiler supports many features that are new in Fortran 2003. Additional

Fortran 2003 features will appear in future versions. Fortran 2003 features supported by the

current compiler include:

 The Fortran character set has been extended to contain the 8-bit ASCII characters ~ \ []

` ^ { } | # @

 Names of length up to 63 characters

 Statements of up to 256 lines

 Square brackets [] are permitted to delimit array constructors instead of (/ /)

 Structure constructors with component names and default initialization

 Array constructors with type and character length specifications

 A named PARAMETER constant may be part of a complex constant

 Enumerators

 Allocatable components of derived types

 Allocatable scalar variables

 Deferred-length character entities

 PUBLIC types with PRIVATE components and PRIVATE types with PUBLIC

components

 ERRMSG keyword for ALLOCATE and DEALLOCATE

 SOURCE= keyword for ALLOCATE (Polymorphic source not supported)

 Type extension

 CLASS declaration

 Polymorphic entities

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 19

 Inheritance association

 Deferred bindings and abstract types

 Type-bound procedures

 TYPE CONTAINS declaration

 ABSTRACT attribute

 DEFERRED attribute

 NON_OVERRIDABLE attribute

 GENERIC keyword for type-bound procedures

 FINAL subroutines

 ASYNCHRONOUS attribute and statement

 BIND(C) attribute and statement

 PROTECTED attribute and statement

 VALUE attribute and statement

 VOLATILE attribute and statement

 INTENT attribute for pointer objects

 Reallocation of allocatable variables on the left hand side of an assignment statement

when the right hand side differs in shape or length (requires

option -assume realloc_lhs if not deferred-length character)

 Bounds specification and bounds remapping on a pointer assignment

 ASSOCIATE construct

 SELECT TYPE construct

 In all I/O statements, the following numeric values can be of any kind: UNIT=, IOSTAT=

 NAMELIST I/O is permitted on an internal file

 Restrictions on entities in a NAMELIST group are relaxed

 Changes to how IEEE Infinity and NaN are represented in formatted input and output

 FLUSH statement

 WAIT statement

 ACCESS='STREAM' keyword for OPEN

 ASYNCHRONOUS keyword for OPEN and data transfer statements

 ID keyword for INQUIRE and data transfer statements

 POS keyword for data transfer statements

 PENDING keyword for INQUIRE

 The following OPEN numeric values can be of any kind: RECL=

 The following READ and WRITE numeric values can be of any kind: REC=, SIZE=

 The following INQUIRE numeric values can be of any kind: NEXTREC=, NUMBER=,

RECL=, SIZE=

 Recursive I/O is allowed in the case where the new I/O being started is internal I/O that

does not modify any internal file other than its own

 IEEE Infinities and NaNs are displayed by formatted output as specified by Fortran 2003

 BLANK, DECIMAL, DELIM, ENCODING, IOMSG, PAD, ROUND, SIGN, SIZE I/O

keywords

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 20

 DC, DP, RD, RC, RN, RP, RU, RZ format edit descriptors

 In an I/O format, the comma after a P edit descriptor is optional when followed by a

repeat specifier

 Rename of user-defined operators in USE

 INTRINSIC and NON_INTRINSIC keywords in USE

 IMPORT statement

 Allocatable dummy arguments

 Allocatable function results

 PROCEDURE declaration

 Procedure pointers

 ABSTRACT INTERFACE

 PASS and NOPASS attributes

 The COUNT_RATE argument to the SYSTEM_CLOCK intrinsic may be a REAL of any

kind

 Execution of a STOP statement displays a warning if an IEEE floating point exception is

signaling

 MAXLOC or MINLOC of a zero-sized array returns zero if the

option -assume noold_maxminloc is specified.

 Type inquiry intrinsic functions

 COMMAND_ARGUMENT_COUNT intrinsic

 EXTENDS_TYPE_OF and SAME_TYPE_AS intrinsic functions

 GET_COMMAND intrinsic

 GET_COMMAND_ARGUMENT intrinsic

 GET_ENVIRONMENT_VARIABLE intrinsic

 IS_IOSTAT_END intrinsic

 IS_IOSTAT_EOR intrinsic

 MAX/MIN/MAXVAL/MINVAL/MAXLOC/MINLOC intrinsics allow CHARACTER

arguments

 MOVE_ALLOC intrinsic

 NEW_LINE intrinsic

 SELECTED_CHAR_KIND intrinsic

 The following intrinsics take an optional KIND= argument: ACHAR, COUNT, IACHAR,

ICHAR, INDEX, LBOUND, LEN, LEN_TRIM, MAXLOC, MINLOC, SCAN, SHAPE, SIZE,

UBOUND, VERIFY

 ISO_C_BINDING intrinsic module

 IEEE_EXCEPTIONS, IEEE_ARITHMETIC and IEEE_FEATURES intrinsic modules

 ISO_FORTRAN_ENV intrinsic module

Fortran 2003 features not yet supported include:

 User-defined derived type I/O

 Parameterized derived types

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 21

 A polymorphic SOURCE= specifier for ALLOCATE

The Intel® Fortran Compiler also supports some features from the Fortran 2008 standard.

Additional features will be supported in future releases. Fortran 2008 features supported by the

current version include:

 Maximum array rank has been raised to 31 dimensions (Fortran 2008 specifies 15)

 Coarrays

 CODIMENSION attribute

 SYNC ALL statement

 SYNC IMAGES statement

 SYNC MEMORY statement

 CRITICAL and END CRITICAL statements

 LOCK and UNLOCK statements

 ERROR STOP statement

 ALLOCATE and DEALLOCATE may specify coarrays

 Intrinsic procedures IMAGE_INDEX, LCOBOUND, NUM_IMAGES, THIS_IMAGE,

UCOBOUND

o Note: ATOMIC_DEFINE and ATOMIC_REF are not supported in this version

 CONTIGUOUS attribute

 MOLD keyword in ALLOCATE

 DO CONCURRENT

 NEWUNIT keyword in OPEN

 G0 and G0.d format edit descriptor

 Unlimited format item repeat count specifier

 A CONTAINS section may be empty

 Intrinsic procedures BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_YN, BGE, BGT,

BLE, BLT, DSHIFTL, DSHIFTR, ERF, ERFC, ERFC_SCALED, GAMMA, HYPOT, IALL,

IANY, IPARITY, IS_CONTIGUOUS, LEADZ, LOG_GAMMA, MASKL, MASKR,

MERGE_BITS, NORM2, PARITY, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR,

STORAGE_SIZE, TRAILZ,

 Additions to intrinsic module ISO_FORTRAN_ENV: ATOMIC_INT_KIND,

ATOMIC_LOGICAL_KIND, CHARACTER_KINDS, INTEGER_KINDS, INT8, INT16,

INT32, INT64, LOCK_TYPE, LOGICAL_KINDS, REAL_KINDS, REAL32, REAL64,

REAL128, STAT_LOCKED, STAT_LOCKED_OTHER_IMAGE, STAT_UNLOCKED

4 Intel® Debugger (IDB)
The following notes refer to the Graphical User Interface (GUI) available for the Intel® Debugger

(IDB) when running on IA-32 and Intel® 64 architecture systems. In this version, the idb

command invokes the GUI – to get the command-line interface, use idbc.

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 22

4.1 Setting up the Java* Runtime Environment

The Intel® IDB Debugger graphical environment is a Java application and requires a Java

Runtime Environment (JRE) to execute. The debugger will run with a version 5.0 (also called

1.5).

Install the JRE according to the JRE provider's instructions.

Finally you need to export the path to the JRE as follows:

 export PATH=<path_to_JRE_bin_dir>:$PATH

4.2 Starting the Debugger

To start the debugger, first make sure that the compiler environment has been established as

described at Establishing the Compiler Environment. Then use the command:

idb

or

idbc

as desired.

Once the GUI is started and you see the console window, you're ready to start the debugging

session.

Note: Make sure, the executable you want to debug is built with debug info and is an executable

file. Change permissions if required, e.g. chmod +x <application_bin_file>

4.3 Additional Documentation

Online help titled Intel® Compilers / Intel® Debugger Online Help is accessible from the

debugger graphical user interface as Help > Help Contents.

Context-sensitive help is also available in several debugger dialogs where a Help button is

displayed.

4.4 Debugger Features

4.4.1 Main Features of IDB

The debugger supports all features of the command line version of the Intel® IDB Debugger.

Debugger functions can be called from within the debugger GUI or the GUI-command line.

Please refer to the Known Limitations when using the graphical environment.

4.4.1.1 Threads Window

 Improved Data Sharing Dectection

 Support for OpenMP* 3.0

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 23

 Support for Linux* OS synchronization functionsImproved data sharing detection

analysis performance

4.4.1.2 Extended Breakpoints Feature

With this feature you can set breakpoints on routines in shared libraries which have not yet been

loaded. The requested breakpoint will be realized whenever possible. You‘ll see unrealized

breakpoints marked with a yellow triangle (not having an address, file and symbol name) in the

GUI. On the command line those are marked as <PENDING>. Any ambiguity is directly resolved

and you will get multiple realizations, e.g. requesting a breakpoint for an overloaded function. In

the GUI, those are visualized as a tree with the requesting breakpoint as its node. On the

command line the requesting breakpoint is marked as <MULTIPLE> and its realizations follow.

Please note that for the command line this feature is only available in GDB mode.

4.4.1.3 Command solib-search-path now Implemented

The command line debugger idbc and the Command window of the GUI debugger now support

the existing gdb command solib-search-path which is used to look up images or shared

libraries when they have not been found in the usual places such as $LD_LIBRARY_PATH.

Please invoke the command line help to see the solib-search-path command usage:

(idb) help set solib-search-path

(idb) help show solib-search-path

or the abbreviated commands:

(idb) h set sol

(idb) h sho sol

4.4.1.4 New Command for Disassembly Style Display

The IDB debugger now provides two styles of disassembly views in the Assembler window or

on the Command windows.

The new commands on the Command window are:

(idb) set disassembly-flavor [att|intel]

(idb) show disassembly-flavor

The commands can also be found by invoking the help:

(idb) help set

(idb) help show

In the GUI/Assembler window right-click ‗Change Style‘ to switch between Intel and ATT style.

ATT stands for AT&T style (also known as GNU style).

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 24

4.5 Known Problems

4.5.1 Coarray elements cannot be viewed.

The IDB Debugger cannot view coarray elements. Please refer to section 3.2.3.1 'How to Debug

a Coarray Application' where a workaround is described.

4.5.2 Signals Dialog not working Signals Dialog not working

The Signals dialog accessible via the GUI dialog Debug / Signal Handling or the shortcut Ctrl+S

is not working correctly. Please refer to the Intel® Debugger (IDB) Manual for use of the signals

command line commands instead.

4.5.3 Resizing GUI

If the debugger GUI window is reduced in size, some windows may fully disappear. Enlarge the

window and the hidden windows will appear again.

4.5.4 $cdir, $cwd Directories

$cdir is the compilation directory (if recorded). This is supported in that the directory is set; but

$cdir is not itself supported as a symbol.

$cwd is the current working directory. Neither the semantics nor the symbol are supported.

The difference between $cwd and '.' is that $cwd tracks the current working directory as it

changes during a debug session. '.' is immediately expanded to the current directory at the time

an entry to the source path is added.

4.5.5 info stack Usage

The GDB mode debugger command info stack does not currently support negative frame

counts the way gdb does, for the following command:

 info stack [num]

A positive value of num prints the innermost num frames, a zero value prints all frames, and a

negative value prints the innermost –num frames in reverse order.

4.5.6 $stepg0 Default Value Changed

The debugger variable $stepg0 changed default to a value of 0. With the value "0" the

debugger will step over code without debug information if you do a "step" command. Set the

debugger variable to 1 to be compatible with previous debugger versions as follows:

(idb) set $stepg0 = 1

4.5.7 SIGTRAP error on some Linux* Systems

On some Linux distributions (e.g. Red Hat Enterprise Linux Server release 5.1 (Tikanga)) a

SIGTRAP error may occur when the debugger stops at a breakpoint and you continue

debugging. As a workaround you may define the SIGTRAP signal as follows on command line:

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 25

(idb) handle SIGTRAP nopass noprint nostop

SIGTRAP is used by the debugger.

SIGTRAP No No No Trace/breakpoint trap

(idb)

Caveat: With this workaround all SIGTRAP signals to the debuggee are

blocked.

4.5.8 idb GUI cannot be used to debug MPI processes

The idb GUI cannot be used to debug MPI processes. The command line interface (idbc) can

be used for this purpose.

4.5.9 Thread Syncpoint Creation in GUI

While for plain code and data breakpoints the field ―Location‖ is mandatory, thread syncpoints

require both ―Location‖ and ―Thread Filter‖ to be specified. The latter specifies the threads to

synchronize. Please note that for the other breakpoint types this field restricts the breakpoints

created to the threads listed.

4.5.10 Data Breakpoint Dialog

The fields ―Within Function‖ and ―Length‖ are not used. The location to watch provides the

watched length implicitly (the type of the effective expression is used). Also ―Read‖ access is not

working.

4.5.11 Stack Alignment for IA-32 Architecture

Due to changes in the default stack alignment for the IA-32 architecture, the usage of inferior

calls (i.e. evaluation of expressions that cause execution of debuggee code) might fail. This can

cause as well crashes of the debuggee and therefore a restart of the debug session. If you need

to use this feature, make sure to compile your code with 4 byte stack alignment by proper usage

of the –falign-stack=<mode> option.

4.5.12 GNOME Environment Issues

With GNOME 2.28, debugger menu icons may not being displayed by default. To get the menu

icons back, you need to go to the ―System->Preferences->Appearance, Interface‖ tab and

enable, "Show icons in menus". If there is not ―Interface‖ tab available, you can change this with

the corresponding GConf keys in console as follows:

 gconftool-2 --type boolean --set /desktop/gnome/interface/buttons_have_icons true

 gconftool-2 --type boolean --set /desktop/gnome/interface/menus_have_icons true

4.5.13 Accessing Online-Help

On systems where the Online-Help is not accessible from the IDB Debugger GUI Help menu,

you can access the web-based debugger documentation from:

http://software.intel.com/en-us/articles/intel-software-technical-documentation

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 26

5 Intel® Math Kernel Library
This section summarizes changes, new features and late-breaking news about this version of

the Intel® Math Kernel Library (Intel® MKL).

5.1 What's New in Intel® MKL 10.3 Update 2

 BLAS: Improved performance of transposition functions on the Intel® Xeon® processor

5600 series

 BLAS: Added examples for transposition routines

 FFT: Added Fortran examples showing how to reduce application footprint by linking

only functions with the desired precision

 FFT: Added check for stride consistency on in-place real transforms with CCE storage

 FFT: Expanded threading to new cases for multi-dimensional transforms

 VSL: Improved performance of Multivariate Gaussian random number generator for

single- and double-precision on 4-core Intel® Xeon® processors 5500 series

 VML: Improved performance of in-place operation of Add, Mul, and Sub functions on the

Intel® Xeon® processor 5500 series

 Bug fixes

5.2 What's New in Intel® MKL 10.3 Update 1

 PARDISO/DSS: Added true F90 overloaded API (see the Intel® MKL reference manual
for more information)

 PARDISO: Improved the statistical reporting to be more reader friendly
 Sparse BLAS: Improved performance of ?BSRMM functions on the latest Intel&

processors
 FFTs: Support for negative strides
 FFT examples: Added examples for split-complex FFTs in C and Fortran using both the

DFTI and FFTW3 interfaces
 VML: Improved performance of real in-place Add/Sub/Mul/Sqr functions on systems

supporting SSE2 and SSE3
 Poisson Library: Changed the default behavior of the Poisson library functions from

sequential to threaded operation
 Bug fixes

5.3 What's New in Intel® MKL 10.3

 BLAS
o New functions for computing 2 matrix-vector products at once:

[D/S]GEM2VU, [Z/C]GEM2VC
o New functions for computing mixed precision general matrix-vector products:

[DZ/SC]GEMV
o New function for computing the sum of two scaled vectors: *AXPBY
o Intel® AVX optimizations in key functions: SMP LINPACK, level 3 BLAS,

DDOT, DAXPY
 LAPACK

o New C interfaces for LAPACK supporting row-major ordering

http://software.intel.com/en-us/articles/intel-mkl-103-bug-fixes/

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 27

o Integrated Netlib LAPACK 3.2.2 including one new computational routine
(*GEQRFP) and two new auxiliary routines (*GEQR2P and *LARFGP) and
the earlier LAPACK 3.2.1 update

o Intel® AVX optimizations in key functions: DGETRF, DPOTRF, DGEQRF
 PARDISO

o Improved performance of factor and solve steps in multi-core environments
o Introduced the ability to solve for sparse right-hand sides and perform partial

solves—produces partial solution vector
o Improved performance of the out-of-core (OOC) factorization step
o Support for zero-based (C-style) array indexing
o Zeros on the diagonal of the matrix are no longer required in sparse data

structures for symmetric matrices
o New ILP64 PARDISO interface allows the use of both LP64 and ILP64

versions when linked to the LP64 libraries
o The memory required for storing files on the disk in OOC mode can now be

estimated just after reordering
 Sparse BLAS

o Format conversion functions now support all data types (single and double
precision for real and complex data) and can return sorted or unsorted
arrays

 FFTs
o Intel AVX optimizations in all 1D/2D/3D FFTs
o Improved performance of 2D and 3D mixed-radix FFTs for single and double

precision data for all systems supporting the SSE4.2 instruction set
o Support for split-complex data represented as two real arrays introduced for

2D/3D FFTs
o Support for 1D complex-to-complex transforms of large prime lengths

 VML
o A new function for computing (ax+b)/(cy+d) where a, b, c, and d are scalars,

and x and y are real vectors: v[s/d]LinearFrac()
o Intel AVX optimizations for real functions
o A new mode for setting denormals to zero, overflow support for complex

vectors, and for every VML function a new function with an additional
parameter for setting the accuracy mode

 VSL
o A set of new Summary Statistics functions was added covering basic

statistics, covariance and correlation, pooled, group, partial, and robust
covariance/correlation, quantiles and streaming quantiles, outliers detection
algorithm, and missing values support

 Performance optimized algorithms: MI algorithm for support of
missing values, TBS algorithm for computation of robust covariance,
BACON algorithm for detection of outliers, ZW algorithm for
computation of quantiles (streaming data case), and 1PASS
algorithm for computation of pooled covariance

o Improved performance of SFMT19937 Basic Random Number Generator
(BRNG)

o Intel® AVX optimizations: MT19937 and MT2203 BRNGs
 Added runtime dispatching dynamic libraries allowing link to a single interface

library which loads dependent libraries dynamically at runtime depending on runtime
CPU detection and/or library function calls

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 28

 The custom dynamic libraries builder now uses the runtime dispatching dynamic
libraries on the Linux* and Mac OS* X operating systems

 A new directory structure has been established to simplify integration of Intel MKL
with the Intel® Parallel Studio XE family of products and directories formerly
designated as "em64t" are now designated by the "intel64" tag

 The sparse solver functionality has been fully integrated into the core Intel MKL
libraries and the libraries with "solver" in the filename have been removed from the
product

5.4 Attributions

As referenced in the End User License Agreement, attribution requires, at a minimum,

prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and

providing a link/URL to the Intel® MKL homepage (www.intel.com/software/products/mkl) in

both the product documentation and website.

The original versions of the BLAS from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/blas/index.html.

The original versions of LAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson,

Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are

similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All

interfaces are provided for pure procedures.

The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are

L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.

Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed

by the University of Basel. It can be obtained at http://www.pardiso-project.org.

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software

generation system (http://www.spiral.net/) under license from Carnegie Mellon University. Some

FFT functions in this release of the Intel® MKL DFTI have been generated by the UHFFT

software generation system under license from University of Houston. The Authors of SPIRAL

are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan

Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W.

Johnson, and Nick Rizzolo.

6 Disclaimer and Legal Information

Intel® Fortran Composer XE 2011 for Linux*
Installation Guide and Release Notes 29

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R)

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING

BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate

features within each processor family, not across different processor families. Go to:

http://www.intel.com/products/processor_number/ for details.

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Intel Atom, Intel Core, Itanium, MMX,

Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2011 Intel Corporation. All Rights Reserved.

	1 Introduction
	1.1 Change History
	1.2 Product Contents
	1.3 System Requirements
	1.3.1 Red Hat Enterprise Linux* 4 Support Deprecated
	1.3.2 IA-64 Architecture (Intel® Itanium®) Development Not Supported

	1.4 Documentation
	1.5 Japanese Language Support
	1.6 Technical Support

	2 Installation
	2.1 Activation of Purchase after Evaluation Using the Intel Activation Tool
	2.2 Silent Install
	2.3 Using a License Server
	2.4 Known Installation Issues
	2.5 Installation Folders
	2.6 Removal/Uninstall

	3 Intel® Fortran Compiler
	3.1 Compatibility
	3.1.1 Stack Alignment Change for REAL(16) and COMPLEX(16) Datatypes

	3.2 New and Changed Features
	3.2.1 Features from Fortran 2003
	3.2.2 Features from Fortran 2008
	3.2.3 Coarrays
	3.2.3.1 Specifying Shared or Distributed Memory Processing of Coarrays
	3.2.3.2 How to Debug a Coarray Application
	3.2.3.3 Coarray Known Issues

	3.2.4 Static Security Analysis Feature (formerly Source Checker) Requires Intel® Inspector XE
	3.2.5 Other Changes
	3.2.5.1 Change in Static Security Analysis Behavior

	3.3 New and Changed Compiler Options
	3.4 Other Changes and Notes
	3.4.1 Optimization Reports Disabled by Default
	3.4.2 Establishing the Compiler Environment
	3.4.3 OpenMP* Legacy Libraries Removed
	3.4.4 RANF Portability Function Is Now an Intrinsic

	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	3.5 Fortran 2003 and Fortran 2008 Feature Summary

	4 Intel® Debugger (IDB)
	1.1
	4.1 Setting up the Java* Runtime Environment
	4.2 Starting the Debugger
	4.3 Additional Documentation
	4.4 Debugger Features
	4.4.1 Main Features of IDB
	4.4.1.1 Threads Window
	4.4.1.2 Extended Breakpoints Feature
	4.4.1.3 Command solib-search-path now Implemented
	4.4.1.4 New Command for Disassembly Style Display

	4.5 Known Problems
	4.5.1 Coarray elements cannot be viewed.
	4.5.2 Signals Dialog not working Signals Dialog not working
	4.5.3 Resizing GUI
	4.5.4 $cdir, $cwd Directories
	4.5.5 info stack Usage
	4.5.6 $stepg0 Default Value Changed
	4.5.7 SIGTRAP error on some Linux* Systems
	4.5.8 idb GUI cannot be used to debug MPI processes
	4.5.9 Thread Syncpoint Creation in GUI
	4.5.10 Data Breakpoint Dialog
	4.5.11 Stack Alignment for IA-32 Architecture
	4.5.12 GNOME Environment Issues
	4.5.13 Accessing Online-Help

	1
	5 Intel® Math Kernel Library
	5.1 What's New in Intel® MKL 10.3 Update 2
	5.2 What's New in Intel® MKL 10.3 Update 1
	5.3 What's New in Intel® MKL 10.3
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	5.4 Attributions

	6 Disclaimer and Legal Information

