
Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 1

Intel® C++ Composer XE 2011
for Linux* Installation Guide
and Release Notes

Document number: 321412-003US

12 January 2011

Table of Contents
1 Introduction ... 3

1.1 Change History .. 3

1.2 Product Contents ... 4

1.3 System Requirements .. 4

1.3.1 Red Hat Enterprise Linux* 4 Support Deprecated ... 6

1.3.2 IA-64 Architecture (Intel® Itanium®) Development Not Supported 6

1.4 Documentation ... 6

1.5 Japanese Language Support ... 7

1.6 Technical Support .. 7

2 Installation ... 8

2.1.1 Activation of Purchase after Evaluation Using the Intel Activation Tool 8

2.1.2 Silent Install .. 9

2.1.3 Using a License Server ... 9

2.1.4 Eclipse* Integration Installation ... 9

2.1.5 Known Installation Issues ... 9

2.2 Installation Folders ... 9

2.3 Removal/Uninstall ...11

3 Intel® C++ Compiler ..11

3.1 Compatibility ...12

3.2 New and Changed Features ...12

3.2.1 Three intrinsics changed in update 2 ...12

3.2.2 Static Security Analysis Feature (formerly Source Checker) Requires Intel®

Inspector XE ..13

3.3 New and Changed Compiler Options ..14

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 2

3.4 Other Changes ...15

3.4.1 Establishing the Compiler Environment..15

3.4.2 Instruction Set Default Changed to Require Intel® Streaming SIMD Extensions 2

(Intel® SSE2) ...15

3.4.3 OpenMP* Legacy Libraries Removed ..16

3.5 Compatibility with Previous Versions ..16

3.6 Known Issues ...16

3.6.1 __GXX_EXPERIMENTAL_CXX0X__ Macro Not Supported16

3.6.2 Intel® Cilk™ Plus Known Issues ..16

3.6.3 Guided Auto-Parallel Known Issues ...17

3.6.4 TR1 System Headers ...17

3.6.5 Static Security Analysis Known Issues ...17

4 Intel® Debugger (IDB) ...18

4.1 Setting up the Java* Runtime Environment ...18

4.2 Starting the Debugger ...19

4.3 Additional Documentation ...19

4.4 Debugger Features ...19

4.4.1 Main Features of IDB ...19

4.5 Known Issues ...19

4.5.1 Signals Dialog Not Working ...19

4.5.2 Resizing GUI..19

4.5.3 $cdir, $cwd Directories ...19

4.5.4 info stack Usage ..20

4.5.5 $stepg0 Default Value Changed ...20

4.5.6 SIGTRAP error on some Linux* Systems ...20

4.5.7 idb GUI cannot be used to debug MPI processes ..20

4.5.8 Thread Syncpoint Creation in GUI ...20

4.5.9 Data Breakpoint Dialog ..20

4.5.10 Stack Alignment for IA-32 Architecture...21

4.5.11 GNOME Environment Issues ...21

4.5.12 Accessing Online-Help ...21

5 Eclipse Integration ...21

5.1 Supplied Integrations ..21

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 3

5.1.1 Integration notes ..22

5.2 How to Install the Intel C++ Eclipse Product Extension in Your Eclipse Platform22

5.2.1 Integrating the Intel® Debugger into Eclipse ..22

5.3 How to Obtain and Install Eclipse, CDT and a JRE ...23

5.3.1 Installing JRE, Eclipse and CDT ..23

5.4 Launching Eclipse for Development with the Intel C++ Compiler23

5.5 Installing on Fedora* Systems ..24

5.6 Selecting Compiler Versions ...24

6 Intel® Integrated Performance Primitives ...24

6.1 New and Changed Features ...25

6.2 Intel® IPP Cryptography Libraries are Available as a Separate Download26

6.3 Intel® IPP SPIRAL Domain (ippGEN) is a Separate Download26

6.4 Intel® IPP Code Samples ...26

7 Intel® Math Kernel Library ...26

7.1 Changes in This Version ...26

7.1.1 Changes in Initial Release ...26

7.1.2 Changes in Update 1 ...28

7.1.3 Changes in Update 2 ...28

7.2 Attributions ..29

8 Intel® Threading Building Blocks ...29

9 Disclaimer and Legal Information ...29

1 Introduction
This document describes how to install the product, provides a summary of new and changed

features and includes notes about features and problems not described in the product

documentation.

Intel® C++ Composer XE 2011 is the next release of the product formerly called Intel® C++

Compiler Professional Edition.

1.1 Change History

This section highlights important changes in product updates.

Update 2 (2011.2)

 Intel® Math Kernel Library updated to 10.3 Update 2

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 4

 Intel® Integrated Performance Primitives 7.0 Update 2

 Intel® Threading Building Blocks 3.0 Update 5

 3 intrinsics changed in immintrin.h

 Utility ―inspxe-runsc‖ changed

 Corrections to reported problems

Update 1 (2011.1)

 Intel® Math Kernel Library updated to 10.3 Update 1

 Corrections to reported problems

Product Release (2011.0)

 Initial product release

1.2 Product Contents

Intel® C++ Composer XE 2011 Update2 for Linux* includes the following components:

 Intel® C++ Compiler XE 12.0 Update 2 for building applications that run on IA-32 and

Intel® 64 architecture systems running the Linux* operating system

 Intel® Debugger 12.0 Update 2

 Intel® Integrated Performance Primitives 7.0 Update 1

 Intel® Math Kernel Library 10.3 Update 2

 Intel® Threading Building Blocks 3.0 Update 5

 Integration into the Eclipse* development environment

 On-disk documentation

1.3 System Requirements

For an explanation of architecture names, see

http://software.intel.com/en-us/articles/intel-architecture-platform-terminology/

Requirements to develop IA-32 architecture applications

 A PC based on an IA-32 or Intel® 64 architecture processor supporting the Intel®

Streaming SIMD Extensions 2 (Intel® SSE2) instructions (Intel® Pentium® 4 processor

or later, or compatible non-Intel processor)

o Development for a target different from the host may require optional library

components to be installed from your Linux Distribution.

o For the best experience, a multi-core or multi-processor system is recommended

 1GB of RAM (2GB recommended)

 2GB free disk space for all features

 One of the following Linux distributions (this is the list of distributions tested by Intel;

other distributions may or may not work and are not recommended - please refer to

Technical Support if you have questions):

o Asianux* 3.0

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 5

o Fedora* 12, 13

o Red Hat Enterprise Linux* 4, 5, 6

o SUSE LINUX Enterprise Server* 10, 11

o Ubuntu* 10.04

o Debian* 5.0

 Linux Developer tools component installed, including gcc, g++ and related tools

 Library libunwind.so is required in order to use the –traceback option. Some Linux

distributions may require that it be obtained and installed separately.

 If developing on an Intel® 64 architecture system, some Linux distributions may require

installation of one or more of the following additional Linux components: ia32-libs,

lib32gcc1, lib32stdc++6, libc6-dev-i386, gcc-multilib

Requirements to develop Intel® 64 architecture applications

 A PC based on an Intel® 64 architecture processor (Intel® Pentium 4 processor or later,

or compatible non-Intel processor)

o For the best experience, a multi-core or multi-processor system is recommended

 1GB of RAM (2GB recommended)

 2GB free disk space for all features

 100 MB of hard disk space for the virtual memory paging file. Be sure to use at least the

minimum amount of virtual memory recommended for the installed distribution of Linux

 One of the following Linux distributions (this is the list of distributions tested by Intel;

other distributions may or may not work and are not recommended - please refer to

Technical Support if you have questions):

o Asianux* 3.0

o Fedora* 12, 13

o Red Hat Enterprise Linux* 4, 5, 6

o SUSE LINUX Enterprise Server* 10.2, 11.1 SP1

o Ubuntu* 10.04

o Debian* 5.0

 Linux Developer tools component installed, including gcc, g++ and related tools

 Library libunwind.so is required in order to use the –traceback option. Some Linux

distributions may require that it be obtained and installed separately.

Additional requirements to use the Graphical User Interface of the Intel® Debugger

 Java* Runtime Environment (JRE) 5.0 (also called 1.5) or 6.0 (1.6) – 5.0 recommended

o A 32-bit JRE must be used on an IA-32 architecture system and a 64-bit JRE

must be used on an Intel® 64 architecture system

Notes

 The Intel compilers are tested with a number of different Linux distributions, with different

versions of gcc. Some Linux distributions may contain header files different from those

we have tested, which may cause problems. The version of glibc you use must be

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 6

consistent with the version of gcc in use. For best results, use only the gcc versions as

supplied with distributions listed above.

 The default for the Intel® compilers is to build IA-32 architecture applications that require

a processor supporting the Intel® SSE2 instructions - for example, the Intel® Pentium®

4 processor. A compiler option is available to generate code that will run on any IA-32

architecture processor. However, if your application uses Intel® Integrated Performance

Primitives or Intel® Threading Building Blocks, executing the application will require a

processor supporting the Intel® SSE2 instructions.

 Compiling very large source files (several thousands of lines) using advanced

optimizations such as -O3, -ipo and -openmp, may require substantially larger amounts

of RAM.

 The above lists of processor model names are not exhaustive - other processor models

correctly supporting the same instruction set as those listed are expected to work.

Please refer to Technical Support if you have questions regarding a specific processor

model

 Some optimization options have restrictions regarding the processor type on which the

application is run. Please see the documentation of these options for more information.

1.3.1 Red Hat Enterprise Linux* 4 Support Deprecated

In a future major release of Intel® C++ Composer XE, support will be removed for installation

and use on Red Hat Enterprise Linux 4. Intel recommends migrating to a newer version of these

operating systems.

1.3.2 IA-64 Architecture (Intel® Itanium®) Development Not Supported

This product version does not support development on or for IA-64 architecture (Intel®

Itanium®) systems. The version 11.1 compiler remains available for development of IA-64

architecture applications.

1.4 Documentation

Product documentation can be found in the Documentation folder as shown under Installation

Folders.

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize

options that optimize for instruction sets that are available in both Intel® and non-Intel

microprocessors (for example SIMD instruction sets), but do not optimize equally for non-Intel

microprocessors. In addition, certain compiler options for Intel compilers, including some that

are not specific to Intel micro-architecture, are reserved for Intel microprocessors. For a detailed

description of Intel compiler options, including the instruction sets and specific microprocessors

they implicate, please refer to the ―Intel® Compiler User and Reference Guides‖ under ―Compiler

Options." Many library routines that are part of Intel® compiler products are more highly

optimized for Intel microprocessors than for other microprocessors. While the compilers and

libraries in Intel® compiler products offer optimizations for both Intel and Intel-compatible

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 7

microprocessors, depending on the options you select, your code and other factors, you likely

will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize

to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel®

SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD

Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not guarantee

the availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the

best performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate

other compilers and libraries to determine which best meet your requirements. We hope to win

your business by striving to offer the best performance of any compiler or library; please let us

know if you find we do not.

Notice revision #20101101

1.5 Japanese Language Support

Intel compilers provide support for Japanese language users. Error messages, visual

development environment dialogs and some documentation are provided in Japanese in

addition to English. By default, the language of error messages and dialogs matches that of

your operating system language selection. Japanese-language documentation can be found in

the ja_JP subdirectory for documentation and samples.

If you wish to use Japanese-language support on an English-language operating system, or

English-language support on a Japanese-language operating system, you will find instructions

at http://software.intel.com/en-us/articles/changing-language-setting-to-see-english-on-a-

japanese-os-environment-or-vice-versa-on-linux/

1.6 Technical Support

Register your license at the Intel® Software Development Products Registration Center.

Registration entitles you to free technical support, product updates and upgrades for the

duration of the support term.

https://registrationcenter.intel.com/

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 8

For information about how to find Technical Support, Product Updates, User Forums, FAQs, tips

and tricks, and other support information, please visit:

http://www.intel.com/software/products/support/

Note: If your distributor provides technical support for this product, please contact them for

support rather than Intel.

2 Installation
The installation of the product requires a valid license file or serial number. If you are evaluating

the product, you can also choose the ―Evaluate this product (no serial number required)‖ option

during installation.

If you received your product on DVD, mount the DVD, change the directory (cd) to the top-

level directory of the mounted DVD and begin the installation using the command:

./install.sh

If you received the product as a downloadable file, first unpack it into a writeable directory of

your choice using the command:

tar –xzvf name-of-downloaded-file

Then change the directory (cd) to the directory containing the unpacked files and begin the

installation using the command:

./install.sh

Follow the prompts to complete installation.

Note that there are several different downloadable files available, each providing different

combinations of components. Please read the download web page carefully to determine which

file is appropriate for you.

You do not need to uninstall previous versions or updates before installing a newer version –

the new version will coexist with the older versions.

2.1.1 Activation of Purchase after Evaluation Using the Intel Activation Tool

Note for evaluation customers a new tool Intel Activation Tool ―Activate‖ is included in this

product release and installed at /opt/intel/ActivationTool/Activation/ directory.

If you installed the product using an Evaluation license or SN, or using the ―Evaluate this

product (no serial number required)‖ option during installation, and then purchased the product,

you can activate your purchase using the Intel Activation Tool at

/opt/intel/ActivationTool/Activation/Activate. It will convert your evaluation

software to a fully licensed product. To use the tool:

$ /opt/intel/ActivationTool/Activation/Activate [SN_Num_here]

http://www.intel.com/software/products/support/

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 9

2.1.2 Silent Install

For information on automated or ―silent‖ install capability, please see

http://software.intel.com/en-us/articles/intel-compilers-for-linux-silent-installation-guides/.

2.1.3 Using a License Server

If you have purchased a "floating" license, see http://software.intel.com/en-

us/articles/licensingsetting-up-the-client-floating-license/ for information on how to install using a

license file or license server. This article also provides a source for the Intel® License Server

that can be installed on any of a wide variety of systems.

2.1.4 Eclipse* Integration Installation

Please refer to the section below on Eclipse Integration

2.1.5 Known Installation Issues

 If you have enabled the Security-Enhanced Linux (SELinux) feature of your Linux

distribution, you must change the SELINUX mode to permissive before installing the

Intel C++ Compiler. Please see the documentation for your Linux distribution for details.

After installation is complete, you may reset the SELINUX mode to its previous value.

 On some versions of Linux, auto-mounted devices do not have the "exec" permission

and therefore running the installation script directly from the DVD will result in an error

such as:

bash: ./install.sh: /bin/bash: bad interpreter: Permission denied

If you see this error, remount the DVD with exec permission, for example:

mount /media/<dvd_label> -o remount,exec

and then try the installation again.

 The product is fully supported on Ubuntu and Debian Linux distributions for IA-32 and

Intel® 64 architecture systems as noted above under System Requirements. Due to a

restriction in the licensing software, however, it is not possible to use the Trial License

feature when evaluating IA-32 components on an Intel® 64 architecture system under

Ubuntu or Debian. This affects using a Trial License only. Use of serial numbers, license

files, floating licenses or other license manager operations, and off-line activation (with

serial numbers) is not affected. If you need to evaluate IA-32 components of the product

on an Intel® 64 architecture Ubuntu or Debian system, please visit the Intel® Software

Evaluation Center (http://www.intel.com/cd/software/products/asmo-

na/eng/download/eval/) to obtain an evaluation serial number.

2.2 Installation Folders

The compiler installs, by default, under /opt/intel – this is referenced as <install-dir>

in the remainder of this document. You are able to specify a different location, and can also

perform a ―non-root‖ install in the location of your choice.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 10

The directory organization has changed since the Intel® Compilers 11.1 release.

Under <install-dir> are the following directories:

 bin – contains symbolic links to executables for the latest installed version

 lib – symbolic link to the lib directory for the latest installed version

 include – symbolic link to the include directory for the latest installed version

 man – symbolic link to the directory containing man pages for the latest installed version

 ipp – symbolic link to the directory for the latest installed version of Intel® Integrated

Performance Primitives

 mkl – symbolic link to the directory for the latest installed version of Intel® Math Kernel

Library

 tbb – symbolic link to the directory for the latest installed version of Intel® Threading

Building Blocks

 composerxe – symbolic link to the composerxe-2011 directory

 composerxe-2011 – directory containing symbolic links to subdirectories for the latest

installed Intel® Composer XE 2011 compiler release

 composerxe-2011-<n>.<pkg> - physical directory containing files for a specific

compiler version. <n> is the update number, and <pkg> is a package build identifier.

Each composerxe-2011 directory contains the following directories that reference the latest

installed Intel® Composer XE 2011 compiler:

 bin – directory containing scripts to establish the compiler environment and symbolic

links to compiler executables for the host platform

 pkg_bin – symbolic link to the compiler bin directory

 include – symbolic link to the compiler include directory

 lib – symbolic link to the compiler lib directory

 ipp – symbolic link to the ipp directory

 mkl – symbolic link to the mkl directory

 tbb – symbolic link to the tbb directory

 debugger – symbolic link to the debugger directory

 eclipse_support – symbolic link to the eclipse_support directory

 man – symbolic link to the man directory

 Documentation – symbolic link to the Documentation directory

 Samples – symbolic link to the Samples directory

Each composerxe-2011-<n>.<pkg> directory contains the following directories that

reference a specific update of the Intel® Composer XE 2011 compiler:

 bin – all executables

 compiler – shared libraries and header files

 debugger – debugger files

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 11

 Documentation – documentation files

 man – man pages

 eclipse_support – files to support Eclipse integration

 ipp – Intel® Integrated Performance Primitives libraries and header files

 mkl – Intel® Math Kernel Library libraries and header files

 tbb – Intel® Threading Building Blocks libraries and header files

 Samples – Product samples and tutorial files

If you have both the Intel C++ and Intel Fortran compilers installed, they will share folders for a

given version and update.

This directory layout allows you to choose whether you want the latest compiler, no matter

which version, the latest update of the Intel® Composer XE 2011 compiler, or a specific update.

Most users will reference <install-dir>/bin for the compilervars.sh [.csh] script,

which will always get the latest compiler installed. This layout should remain stable for future

releases.

2.3 Removal/Uninstall

Removing (uninstalling) the product should be done by the same user who installed it (root or a

non-root user). If sudo was used to install, it must be used to uninstall as well. It is not possible

to remove the compiler while leaving any of the performance library or Eclipse* integration

components installed.

1. Open a terminal window and set default (cd) to any folder outside <install-dir>

2. Type the command: <install-dir>/bin /uninstall_cproc.sh (substitute

intel64 or ia64 for ia32 as desired)

3. Follow the prompts

4. Repeat steps 2 and 3 to remove additional platforms or versions

If you have the same-numbered version of Intel® Fortran Compiler installed, it may also be

removed.

If you have added the Intel C++ Eclipse integration to an instance of Eclipse in your

environment, you will need to update your Eclipse configuration by removing the Intel integration

extension site from your Eclipse configuration. To do this, Go to Help > About Eclipse and click

on "Installation Details". Select "Intel(R) C++ Compiler XE 12.0 for Linux* OS " under "Installed

Software" and click on "Uninstall..." Click "Finish". When asked to restart Eclipse, select "Yes".

3 Intel® C++ Compiler
This section summarizes changes, new features and late-breaking news about the Intel C++

Compiler.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 12

3.1 Compatibility

In version 11.0, the IA-32 architecture default for code generation changed to assume that

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions are supported by the processor

on which the application is run. See below for more information.

3.2 New and Changed Features

The following features are new or significantly enhanced in Intel® C++ Compiler XE 12.0. For

more information on these features, please refer to the documentation.

 Intel® Cilk™ Plus language extensions for the Intel® C++ Compiler make it easy to add

parallelism to both new and existing software.

 Guided Auto-Parallelism

 Features from C++0x

o rvalue references

o Standard atomics

o Support of C99 hexadecimal floating point constants when in ―Windows C++‖

mode

o Right angle brackets

o Extended friend declarations

o Mixed string literal concatenations

o Support for long long

o Variadic macros

o Static assertions

o Auto-typed variables

o Extern templates

o __func__ predefined identifier

o Declared type of an expression (decltype)

o Universal character name literals

o Strongly-typed enums

o Lambdas

 An option to use math library functions that are faster but return results with less

precision or accuracy

 An option to use math library functions that return consistent results across different

models and manufacturers of processors

3.2.1 Three intrinsics changed in update 2

Three intrinsics (_rdrand16_step(), _rdrand32_step(), _rdrand64_step()) have been changed in

update 2. The documentation has not been updated with these new changes. These intrinsic

return a hardware-generated random value and are declared in the ―immintrin.h‖ header file.

These three intrinsics are mapped to a single RDRAND instruction, generate random numbers

of 16/32/64 bit wide random integers.

Syntax

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 13

1. extern int _rdrand16_step(unsigned short *random_val);

2. extern int _rdrand32_step(unsigned int *random_val);

3. extern int _rdrand64_step(unsigned __int64 *random_val);

Description

The intrinsics perform one attempt to generate a hardware generated random value

using the instruction RDRAND. The generated random value is written to the given

memory location and the success status is returned: 1 if the hardware returned a valid

random value and 0 otherwise.

Return

A hardware-generated 16/32/64 random value.

Constraints

The _rdrand64_step() intrinsic can be used only on systems with the 64-bit registers

support.

3.2.2 Static Security Analysis Feature (formerly Source Checker) Requires Intel®

Inspector XE

The ―Source Checker‖ feature, from compiler version 11.1, has been enhanced and renamed

―Static Security Analysis‖. The compiler options to enable Static Security Analysis remain the

same as in compiler version 11.1 (for example, -diag-enable sc), but the results are now

written to a file that is interpreted by Intel® Inspector XE rather than being included in compiler

diagnostics output.

3.2.2.1 The command line utility “inspxe-runsc” changed since update 2

This utility is distributed with Intel® Composer XE 2011 and has been changed since update 2.

This change only affects users who use Composer XE 2011 to perform Static Security Analysis

(SSA). Those that do not use SSA and those that perform SSA without using this utility are

unaffected. SSA is only available to users of Intel® Parallel Studio XE 2011 or Intel® C++

Studio XE 2011, so users who do not have those products are unaffected.

Inspxe-runsc executes a build specification, a description of how an application is built.

Usually build specification files are generated by observing a build as it executes and recoding

the compilations and links that are performed. Inspxe-runsc repeats these actions using the

Intel compiler in SSA mode. SSA results are generated at the link step so a build specification

that describes a build with more than one link step will generate more than one SSA result when

inspxe-runsc is invoked.

The versions of inspxe-runsc included in Composer XE 2011 and Composer XE 2011 Update 1

generate all the SSA results in a single directory. In the multiple link case this violated the rule

that all the SSA results for one and only one project must be created in the same directory. The

updated version of inspxe-runsc respects this rule by generating results for each link step in a

separate directory. The name of that directory is formed from the name of the file being linked.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 14

Thus if a build specification describes a project that builds two executables, file1.exe and

file2.exe, then earlier versions of inspxe-runsc would create two results, one for file1 and one for

file2, say r000sc and r001sc, in the same directory. The new version of inspxe-runsc will also

create two results, but the one for file1 will be created in ―My Inspector XE results – file1\r000sc‖

and the one for file2 will be created in ―My Inspector XE results – file2\r000sc‖. The directories

containing the results are both created in the same parent directory.

Inspxe-runsc has a command line switch, -result-dir (-r), that specifies where results are to be

created. The meaning of this switch has changed. Previous this would name the directory

where the result itself, say r000sc, would be created. Now it names the parent directory where

the ―My Inspector XE Results - name‖ directory or directories will be created. So the directory

named in the –r switch is effectively two levels up from the results themselves.

The change to inspxe-runsc effectively moves the result directory, and user action is required to

adapt to this change. Those using scripts that invoke inspxe-runsc with the –r switch must

update their scripts to reflect the new interpretation of the –r switch argument described earlier.

Users must move their old result files into the new directory so that SSA results produced by

earlier versions of inspxe-runsc share the same directory as results produced by the new

version of inspxe-runsc. Users that had been using inspxe-runsc with a build specification with

only one link step should move their old results into a directory of the form ―My Inspector XE

results – name‖. If this is not done, then all the problems in the newly created result will appear

to be ―New‖. Users that had been using inspxe-runsc with a build specification with multiple link

steps have been having various issues with SSA that will be resolved by using the new utility.

Such users are best advised to copy the most recent into their old results into each of the new

―My Inspector XE results – name‖ directories. This offers the best chance that some old

problem state information will be correctly applied to new results when they are created in the

future.

3.3 New and Changed Compiler Options

For details on these and all compiler options, see the Compiler Options section of the on-disk

documentation.

 -ansi-alias-check

 -auto-p32

 -cilk-serialize

 -diag-sc-dir

 -ffriend-injection

 -fzero-initialized-in-bss

 -fimf-absolute-error

 -fimf-accuracy-bits

 -fimf-arch-consistency

 -fimf-max-error

 -fimf-precision

 -fp-trap

 -fp-trap-all

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 15

 -fvar-tracking

 -fvar-tracking-assignments

 -guide

 -guide-data-trans

 -guide-file

 -guide-file-append

 -guide-opts

 -guide-par

 -guide-vec

 -intel-extensions

 -opt-args-in-regs

 -opt-matmul

 -prof-value-profiling

 -profile-functions

 -profile-loops

 -regcall

 -simd

 -Wremarks

 -Wsign-compare

 -Wstrict-aliasing

For a list of deprecated compiler options, see the Compiler Options section of the

documentation.

3.4 Other Changes

3.4.1 Establishing the Compiler Environment

The compilervars.sh script is used to establish the compiler environment.

compilervars.csh is also provided.

The command takes the form:

source <install-dir>/bin/compilervars.sh argument

Where argument is either ia32 or intel64 as appropriate for the architecture you are

building for. Establishing the compiler environment also establishes the environment for the

Intel® Debugger, Intel® Performance Libraries and, if present, Intel® Fortran Compiler.

3.4.2 Instruction Set Default Changed to Require Intel® Streaming SIMD Extensions 2

(Intel® SSE2)

When compiling for the IA-32 architecture, -msse2 (formerly -xW) is the default. Programs built

with –msse2 in effect require that they be run on a processor that supports the Intel® Streaming

SIMD Extensions 2 (Intel® SSE2), such as the Intel® Pentium® 4 processor and some non-Intel

processors. No run-time check is made to ensure compatibility – if the program is run on an

unsupported processor, an invalid instruction fault may occur. Note that this may change

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 16

floating point results since the Intel® SSE instructions will be used instead of the x87

instructions and therefore computations will be done in the declared precision rather than

sometimes a higher precision.

All Intel® 64 architecture processors support Intel® SSE2.

To specify the older default of generic IA-32, specify –mia32

3.4.3 OpenMP* Legacy Libraries Removed

The OpenMP ―legacy‖ libraries have been removed in this release. Only the ―compatibility‖

libraries are provided.

3.5 Compatibility with Previous Versions

This section summarizes changes in the C++ compiler that may present compatibility issues

when mixing code compiled with previous versions of Intel Parallel Composer or Intel C++

Compiler with code compiled with this version of Intel Parallel Composer.

3.6 Known Issues

3.6.1 __GXX_EXPERIMENTAL_CXX0X__ Macro Not Supported

In the Gnu* version 4.3 or later environments, using the -std=c++0x or -std=gnu++0x option

may lead to a diagnostic of the form:

This file requires compiler and library support for the upcoming ISO

C++ standard, C++0x. This support is currently experimental, and must

be enabled with the -std=c++0x or -std=gnu++0x compiler options.

The Intel compiler does not currently define the __GXX_EXPERIMENTAL_CXX0X__ macro in

any mode, since it does not yet support some C++0x features (such as variadic templates)

enabled by the macro in the C++ standard library headers. This may lead to incompatibilities

with g++ when using the C++ standard library in the -std=c++0x or -std=gnu++0x modes.

One such example is that the va_copy macro may not be defined in stdarg.h. This can be

worked around by adding the compiler flag -Dva_copy=__builtin_va_copy .

3.6.2 Intel® Cilk™ Plus Known Issues

1) Link error ―undefined reference to `__cilkrts_*'‖

If you are using a version of binutils prior to 2.17, you may get linker errors like below

when using Intel® Cilk™ Plus code:

undefined reference to `__cilkrts_get_tls_worker'

This is because the Intel Cilk™ Plus runtime library cannot be automatically linked unless

you have binutils 2.17 or above. The work-around is to update your copy of binutils

or manually link in the runtime library using –lcilkrts on your linker command line.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 17

2) A cilk_spawn under the if in an if/else conditional statement may result in a

compilation error.

The Intel C++ Compiler will complain about the following code:

if (expr)

 cilk_spawn a();

else

 b();

test.cpp

test.cpp(12): error: expected a statement

 else

 ^

The work-around is to add {} around "cilk_spawn" like below:

if (expr) {

 cilk_spawn a();

} else

 b();

3.6.3 Guided Auto-Parallel Known Issues

Guided Auto Parallel (GAP) analysis for single file, function name or specific range of source

code does not work when Whole Program Interprocedural Optimization (-ipo) is enabled

3.6.4 TR1 System Headers

If you are using the TR1 (C++ Library Technical Report 1) system headers on a system with
g++ version 4.3 or later installed, the Intel C/C++ compiler will give errors when it tries to
compile the <type_traits> header file. This is because the Intel C/C++ compiler does not yet
support the C++0x feature called variadic templates. You will see these types of compilation
errors:

../include/c++/4.3.0/tr1_impl/type_traits(170): error: expected an

identifier

 template<typename _Res, typename... _ArgTypes>

 ^

include/c++/4.3.0/tr1_impl/type_traits(171): error: expected a ")"

 struct __is_function_helper<_Res(_ArgTypes...)>

There is no workaround, other than not using these headers or using an older version of the g++
compiler.

3.6.5 Static Security Analysis Known Issues

3.6.5.1 Excessive false messages on C++ classes with virtual functions

Note that use of the Static Security Analysis feature also requires the use of Intel® Inspector

XE.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 18

Static security analysis reports a very large number of incorrect diagnostics when processing
any program that contains a C++ class with virtual functions. In some cases the number of
spurious diagnostics is so large that the result file becomes unusable.

If your application contains this common C++ source construct, add the following command line

switch to suppress the undesired messages:/Qdiag-disable:12020,12040 (Windows) or –

diag-disable 12020,12040 (Linux). This switch must be added at the link step

because that is when static security analysis results are created. Adding the switch at the
compile step alone is not sufficient.

If you are using a build specification to perform static security analysis, add the –disable-id

12020,12040 switch to the invocation of the inspxe-runsc, for example,
 inspxe-runsc –spec-file mybuildspec.spec -disable-id 12020,12040

If you have already created a static security analysis result that was affected by this issue and
you are able to open that result in the Intel® Parallel Inspector XE GUI, then you can hide the
undesired messages as follows:

 The messages you will want to suppress are “Arg count mismatch” and “Arg type

mismatch”. For each problem type, do the following:

 Click on the undesired problem type in the Problem filter. This hides all other problem
types.

 Click on any problem in the table of problem sets

 Type control-A to select all the problems

 Right click and select Change State -> Not a problem from the pop-up menu to set the
state of all the undesired problems

 Reset the filter on problem type to All

 Repeat for the other unwanted problem type

 Set the Investigated/Not investigated filter to Not investigated. You may have to scroll
down in the filter pane to see it as it is near the bottom. This hides all the undesired
messages because the ―Not a problem‖ state is considered a ―not investigated‖ state.

4 Intel® Debugger (IDB)
The following notes refer to the Graphical User Interface (GUI) available for the Intel® Debugger

(IDB) when running on IA-32 and Intel® 64 architecture systems. In this version, the idb

command invokes the GUI – to get the command-line interface, use idbc.

4.1 Setting up the Java* Runtime Environment

The Intel® IDB Debugger graphical environment is a Java application and requires a Java

Runtime Environment (JRE) to execute. The debugger will run with a version 5.0 (also called

1.5) or 6.0 (1.6) JRE.

Install the JRE according to the JRE provider's instructions.

Finally you need to export the path to the JRE as follows:

export PATH=<path_to_JRE_bin_dir>:$PATH

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 19

4.2 Starting the Debugger

To start the debugger, first make sure that the compiler environment has been established as

described at Establishing the Compiler Environment. Then use the command:

idb

or

idbc

as desired.

Once the GUI is started and you see the console window, you're ready to start the debugging

session.

Note: Make sure that the executable you want to debug is built with debug info and is an

executable file. Change permissions if required, e.g. chmod +x <application_bin_file>

4.3 Additional Documentation

Online help titled Intel® Compilers / Intel® Debugger Online Help is accessible from the

debugger graphical user interface as Help > Help Contents.

Context-sensitive help is also available in several debugger dialogs where a Help button is

displayed.

4.4 Debugger Features

4.4.1 Main Features of IDB

The debugger supports all features of the command line version of the Intel® IDB Debugger.

Debugger functions can be called from within the debugger GUI or the GUI-command line.

Please refer to the Known Limitations when using the graphical environment.

4.5 Known Issues

4.5.1 Signals Dialog Not Working

The Signals dialog accessible via the GUI dialog Debug / Signal Handling or the shortcut Ctrl+S

is not working correctly. Please refer to the Intel® Debugger (IDB) Manual for use of the signals

command line commands instead.

4.5.2 Resizing GUI

If the debugger GUI window is reduced in size, some windows may fully disappear. Enlarge the

window and the hidden windows will appear again.

4.5.3 $cdir, $cwd Directories

$cdir is the compilation directory (if recorded). This is supported in that the directory is set; but

$cdir is not itself supported as a symbol.

$cwd is the current working directory. Neither the semantics nor the symbol are supported.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 20

The difference between $cwd and '.' is that $cwd tracks the current working directory as it

changes during a debug session. '.' is immediately expanded to the current directory at the time

an entry to the source path is added.

4.5.4 info stack Usage

The GDB mode debugger command info stack does not currently support negative frame

counts the way GDB does, for the following command:

 info stack [num]

A positive value of num prints the innermost num frames, a zero value prints all frames and a

negative one prints the innermost –num frames in reverse order.

4.5.5 $stepg0 Default Value Changed

The debugger variable $stepg0 changed default to a value of 0. With the value "0" the

debugger will step over code without debug information if you do a "step" command. Set the

debugger variable to 1 to be compatible with previous debugger versions as follows:

(idb) set $stepg0 = 1

4.5.6 SIGTRAP error on some Linux* Systems

On some Linux distributions (e.g. Red Hat Enterprise Linux Server release 5.1 (Tikanga)) a

SIGTRAP error may occur when the debugger stops at a breakpoint and you continue

debugging. As a workaround you may define the SIGTRAP signal as follows on command line:

(idb) handle SIGTRAP nopass noprint nostop

SIGTRAP is used by the debugger.

SIGTRAP No No No Trace/breakpoint trap

(idb)

Caveat: With this workaround all SIGTRAP signals to the debuggee are blocked.

4.5.7 idb GUI cannot be used to debug MPI processes

The idb GUI cannot be used to debug MPI processes. The command line interface (idbc) can

be used for this purpose.

4.5.8 Thread Syncpoint Creation in GUI

While for plain code and data breakpoints the field ―Location‖ is mandatory, thread syncpoints

require both ―Location‖ and ―Thread Filter‖ to be specified. The latter specifies the threads to

synchronize. Please note that for the other breakpoint types this field restricts the breakpoints

created to the threads listed.

4.5.9 Data Breakpoint Dialog

The fields ―Within Function‖ and ―Length‖ are not used. The location to watch provides the

watched length implicitly (the type of the effective expression is used). Also ―Read‖ access is not

working.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 21

4.5.10 Stack Alignment for IA-32 Architecture

Due to changes in the default stack alignment for the IA-32 architecture, the usage of inferior

calls (i.e. evaluation of expressions that cause execution of debuggee code) might fail. This can

cause as well crashes of the debuggee and therefore a restart of the debug session. If you need

to use this feature, make sure to compile your code with 4 byte stack alignment by proper usage

of the –falign-stack=<mode> option.

4.5.11 GNOME Environment Issues

With GNOME 2.28, debugger menu icons may not being displayed by default. To get the menu
icons back, you need to go to the ―System->Preferences->Appearance, Interface‖ tab and
enable, "Show icons in menus". If there is not ―Interface‖ tab available, you can change this with

the corresponding GConf keys in console as follows:
 gconftool-2 --type boolean --set

/desktop/gnome/interface/buttons_have_icons true

 gconftool-2 --type boolean --set

/desktop/gnome/interface/menus_have_icons true

4.5.12 Accessing Online-Help

On systems where the Online-Help is not accessible from the IDB Debugger GUI Help menu,
you can access the web-based debugger documentation from
http://software.intel.com/en-us/articles/intel-software-technical-documentation/

5 Eclipse Integration
The Intel C++ Compiler installs an Eclipse feature and associated plugins (the Intel C++ Eclipse

Product Extension) which provide support for the Intel C++ compiler when added as an Eclipse

product extension site to an existing instance of the Eclipse* Integrated Development

Environment (IDE). With this feature, you will be able to use the Intel C++ compiler from within

the Eclipse integrated development environment to develop your applications.

5.1 Supplied Integrations

The Intel feature provided in the directory

<install-dir>/eclipse_support/cdt6.0/eclipse

supports and requires Eclipse Platform version 3.5, Eclipse C/C++ Development Tools (CDT)

version 6.0 or later and a functional Java Runtime Environment (JRE) (version 5.0 (also called

1.5) or 6.0 (1.6).

The Intel feature provided in the directory

<install-dir>/eclipse_support/cdt7.0/eclipse

supports and requires Eclipse Platform version 3.6, Eclipse C/C++ Development Tools (CDT)

version 7.0 or later and a functional Java Runtime Environment (JRE) (version 5.0 (also called

1.5) or 6.0 (1.6).

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 22

5.1.1 Integration notes

If you already have the proper versions of Eclipse, CDT and a functional JRE installed and

configured in your environment, then you can add the Intel C++ Eclipse Product Extension to

your Eclipse Platform, as described in the section, below, entitled How to Install the Intel C++

Eclipse Product Extension in Your Eclipse Platform. Otherwise, you will first need to obtain and

install Eclipse, CDT and a JRE, as described in the section, below, entitled How to Obtain and

Install Eclipse, CDT and a JRE and then install the Intel C++ Eclipse Product Extension.

5.2 How to Install the Intel C++ Eclipse Product Extension in Your Eclipse

Platform

To add the Intel C++ product extension to your existing Eclipse configuration, follow these

steps, from within Eclipse.

Open the "Available Software" page by selecting: Help > Install New Software...

Click on the "Add..." button. Select "Local...". A directory browser will open. Browse to select the

eclipse directory in your Intel C++ compiler installation. For example, if you installed the

compiler as root to the default directory, you would browse to

/opt/intel/composerxe-2011.xxx/eclipse_support/cdt6.0/eclipse. (This

assumes you are using CDT 6.0) Select ―OK‖ to close the directory browser. Then select "OK"

to close the ―Add Site‖ dialog. Select the two boxes for the Intel C++ integration: there will be

one box for ―Intel® C++ Compiler Documentation‖ and a second box for ―Intel® C++ Compiler

XE 12.0 for Linux* OS‖. Note: The Intel features will not be visible if you have Group items by

category set – unset this option to view the Intel features. If you also installed the Intel®

Debugger (idb) with its Eclipse product extension and would like to use idb from within Eclipse,

repeat the above steps for the idb product extension site.

Click the ―Next‖ button. An ―Install‖ dialog will open which gives you a chance to review and

confirm you want to install the checked items. Click ―Next‖. You will now be asked to accept the

license agreement. Accept the license agreement and click ―Finish‖. Select ―OK‖ on the

―Security Warning‖ dialog that says you are installing software that contains unsigned content.

The installation of the Intel support will proceed.

When asked to restart Eclipse, select ―Yes‖. When Eclipse restarts, you will be able to create

and work with CDT projects that use the Intel C++ compiler. See the Intel C++ Compiler

documentation for more information. You can find the Intel C++ documentation under Help >

Help Contents > Intel(R) C++ Compiler XE 12.0 User and Reference

Guides.

5.2.1 Integrating the Intel® Debugger into Eclipse

After completing the above steps, including restarting Eclipse, follow these steps to integrate the

Intel® Debugger into Eclipse:

 Create a Debug launch configuration by selecting Run > Debug Configurations…

 In the dialog box that pops up, right click on C/C++ Application and select New.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 23

 If you are using CDT 7.0, you will now see some tabs on the right. At the bottom-right

you should see a label Using GDB (DSF) Create Process Launcher – Select

other… Click this label – a new dialog will appear. Select Standard Create

Process Launcher and click OK.

 Go to the Debugger tab and select the Intel® Debugger (idbc) from the combo box.

Replace idbc with the full path to idbc.

5.3 How to Obtain and Install Eclipse, CDT and a JRE

Eclipse is a Java application and therefore requires a Java Runtime Environment (JRE) to

execute. The choice of a JRE is dependent on your operating environment (machine

architecture, operating system, etc.) and there are many JRE's available to choose from.

A package containing both Eclipse 3.6 and CDT 7.0 is available from:

http://www.eclipse.org/downloads/

Scroll down to find ―Eclipse IDE for C/C++ Developers‖. Choose either the Linux 32-bit or Linux

64-bit download as desired.

To download a package containing both Eclipse 3.5 and CDT 6.0, go to

http://wiki.eclipse.org/Older_Versions_Of_Eclipse

and select "Eclipse Galileo SR2 Packages (v 3.5.2). Scroll down to find ―Eclipse IDE for C/C++

Developers‖. Choose either the Linux 32-bit or Linux 64-bit download as desired.

5.3.1 Installing JRE, Eclipse and CDT

Once you have downloaded the appropriate files for Eclipse, CDT, and a JRE, you can install

them as follows:

1. Install your chosen JRE according to the JRE provider's instructions.

2. Create a directory where you would like to install Eclipse and cd to this directory. This

directory will be referred to as <eclipse-install-dir>

3. Copy the Eclipse package binary .tgz file to the <eclipse-install-dir> directory.

4. Expand the .tgz file.

5. Start eclipse

You are now ready to add the Intel C++ product extension to your Eclipse configuration as

described in the section, How to Install the Intel C++ Eclipse Product Extension in Your Eclipse

Platform. If you need help with launching Eclipse for the first time, please read the next section.

5.4 Launching Eclipse for Development with the Intel C++ Compiler

If you have not already set your LANG environment variable, you will need to do so. For

example,

setenv LANG en_US

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 24

Setup Intel C++ compiler related environment variables by executing the iccvars.csh (or

.sh) script prior to starting Eclipse:

source <install-dir>/bin/iccvars.csh arch_arg (where "arch_arg" is one of "ia32"

or "intel64").

Since Eclipse requires a JRE to execute, you must ensure that an appropriate JRE is available

to Eclipse prior to its invocation. You can set the PATH environment variable to the full path of

the folder of the java file from the JRE installed on your system or reference the full path of the

java executable from the JRE installed on your system in the -vm parameter of the Eclipse

command, e.g.:

eclipse -vm /JRE folder/bin/java

Invoke the Eclipse executable directly from the directory where it has been installed. For

example:

<eclipse-install-dir>/eclipse/eclipse

5.5 Installing on Fedora* Systems

If the Intel C++ Compiler for Linux is installed on an IA-32 or Intel® 64 architecture Fedora*

system as a "local" installation, i.e. not installed as root, the installation may fail to properly

execute the Eclipse graphical user interfaces to the compiler or debugger. The failure

mechanism will typically be displayed as a JVM Terminated error. The error condition can

also occur if the software is installed from the root account at the system level, but executed by

less privileged user accounts.

The cause for this failure is that a more granular level of security has been implemented on

Fedora, but this new security capability can adversely affect access to system resources, such

as dynamic libraries. This new SELinux security capability may require adjustment by your

system administrator in order for the compiler installation to work for regular users.

5.6 Selecting Compiler Versions

For Eclipse projects you can select among the installed versions of the Intel C++ Compiler. On

IA-32 architecture systems, the supported Intel compiler versions are 9.1, 10.0, 10.1, 11.0, 11.1

and 12.0. On Intel® 64 architecture systems, only compiler versions 11.0, 11.1 and 12.0 are

supported.

6 Intel® Integrated Performance Primitives
This section summarizes changes, new features and late-breaking news about this version of

Intel® Integrated Performance Primitives (Intel® IPP). For detailed information about IPP see

the following links:

 New features: see the information below and visit the main Intel IPP product page on

the Intel web site at: http://www.intel.com/software/products/ipp; and the Intel IPP

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 25

Release Notes at http://software.intel.com/en-us/articles/intel-ipp-70-library-release-

notes/.

 Documentation, help, and samples: see the documentation links on the IPP product

page at: http://www.intel.com/software/products/ipp.

6.1 New and Changed Features

 A JPEG-XR (HD Photo) codec is now included in the IPP UIC sample framework for

grayscale, RGB and RGBA images with 8, 16, and 32-bit integer and 16 and 32-bit

floating point pixel depths.

 A new interfaces directory has been added that contains high-level application code, in

the form of source and pre-built binaries. Several popular data compression libraries

(e.g., bzip2, zlib and gzip) have been modified for use with the IPP library and can be

found in the interfaces directory for immediate use.

 There is a new ipp_lzopack (data compression) library, located in

the interfaces directory mentioned above, as part of this release.

 Additional optimizations for the 256-bit AVX SIMD instruction set (available on Intel

processors code named ―Sandy Bridge‖) have been incorporated.

 Further AES-NI optimizations have been applied to the cryptography domain (separate

download, see below) and data compression (CRC32 for ipp_bzip2), substantially

improving performance on those processors that support the AES-NI instructions.

 Multi-threading is now part of the ipp_zlib library (by use of the OpenMP multi-threading

library).

 A new directory hierarchy has been established to simplify integration of the Intel IPP

library with the Intel Compiler products. This change may require that you update your

build scripts and makefiles.

 Directories formerly designated as "em64t" are now designated by the "intel64" tag. This

change may require that you update your build scripts and makefiles .

 Library filenames have been normalized to be consistent between 32-bit and 64-bit

architectures (i.e., the "em64t" tag has been removed from all 64-bit library file names).

This change may require that you update your build scripts.

 The domain-specific "emerged" and "merged" static library files have been combined for

simpler reference (e.g., ippsemerged.lib + ippsmerged_t.lib ⇒ ipps_t.lib) and the single-

threaded static libraries are now designated by a "_l" suffix (multi-threaded static

libraries continue to be designated with a "_t" suffix). This change may require that you

update your build scripts and makefiles.

 Support for the JPEG-XR (HD Photo) forward and inverse transforms for 16s, 32s and

32f data types and variable length code (VLC) encode and decode functions for 32s data

types has been added.

 The speech recognition functions (ippSR domain) are not part of this release; this

domain will continue to be supported in the IPP 6.1 product.

 The SPIRAL generated functions (ippGEN domain) are now being distributed as a

separate download. See instructions below for more information.

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 26

6.2 Intel® IPP Cryptography Libraries are Available as a Separate

Download

The Intel® IPP cryptography libraries are available as a separate download. For download and

installation instructions, please read

http://software.intel.com/en-us/articles/download-ipp-cryptography-libraries/

6.3 Intel® IPP SPIRAL Domain (ippGEN) is a Separate Download

In order to decrease the size of the IPP library installation package, the SPIRAL domain

(ippGEN) is now distributed as a separate library add-on. Go to the Intel® Software

Development Products Registration Center to download the ippGEN component of the IPP

library.

SPIRAL for IPP is a separate installation package that contains the binaries and header files

needed to utilize the functions contained in the ippGEN domain. It is an add-on to the IPP

library and, therefore, requires that the core IPP library already be installed on your system.

You must first install the IPP library product before installing the respective SPIRAL add-on

library.

6.4 Intel® IPP Code Samples

The Intel® IPP code samples are organized into downloadable packages for Windows*, Linux*

and Mac OS* at

http://www.intel.com/software/products/ipp

The samples include source code for audio/video codecs, image processing and media player

applications, and for calling functions from C++, C# and Java*. Instructions on how to build the

sample are described in a readme file that comes with the installation package for each sample.

7 Intel® Math Kernel Library
This section summarizes changes, new features and late-breaking news about this version of

the Intel® Math Kernel Library.

7.1 Changes in This Version

7.1.1 Changes in Initial Release

1) BLAS

 New functions for computing 2 matrix-vector products at once: [D/S]GEM2VU,

[Z/C]GEM2VC

 New functions for computing mixed precision general matrix-vector products:

[DZ/SC]GEMV

 New function for computing the sum of two scaled vectors: *AXPBY

 Intel® AVX optimizations in key functions: SMP LINPACK, level 3 BLAS, DDOT, DAXPY

2) LAPACK

 New C interfaces for LAPACK supporting row-major ordering

https://registrationcenter.intel.com/
https://registrationcenter.intel.com/

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 27

 Integrated Netlib LAPACK 3.2.2 including one new computational routine (*GEQRFP)

and two new auxiliary routines (*GEQR2P and *LARFGP) and the earlier LAPACK 3.2.1

update

 Intel® AVX optimizations in key functions: DGETRF, DPOTRF, DGEQRF

3) PARDISO

 Improved performance of factor and solve steps in multi-core environments

 Introduced the ability to solve for sparse right-hand sides and perform partial solves—

produces partial solution vector

 Improved performance of the out-of-core (OOC) factorization step

 Support for zero-based (C-style) array indexing

 Zeros on the diagonal of the matrix are no longer required in sparse data structures for

symmetric matrices

 New ILP64 PARDISO interface allows the use of both LP64 and ILP64 versions when

linked to the LP64 libraries

 The memory required for storing files on the disk in OOC mode can now be estimated

just after reordering

4) Sparse BLAS

 Format conversion functions now support all data types (single and double precision for

real and complex data) and can return sorted or unsorted arrays

5) FFTs

 New MPI FFTW 3.3alpha1 wrappers cover new cluster functionality

 Improved load-balancing of cluster FFTs provides improved performance

 Intel AVX optimizations in all 1D/2D/3D FFTs

 Improved performance of 2D and 3D mixed-radix FFTs for single and double precision

data for all systems supporting the SSE4.2 instruction set

 Support for split-complex data represented as two real arrays introduced for 2D/3D FFTs

 Support for 1D complex-to-complex transforms of large prime lengths

 Introduced Hybrid parallelism (MPI + OpenMP*) on cluster 1D complex transforms and

increased performance on vector lengths which are a multiple of the number of MPI

processes

6) VML

 A new function for computing (ax+b)/(cy+d) where a, b, c, and d are scalars, and x and y

are real vectors: v[s/d]LinearFrac()

 Intel AVX optimizations for real functions

 A new mode for setting denormals to zero, overflow support for complex vectors, and for

every VML function a new function with an additional parameter for setting the accuracy

mode

7) VSL

 A set of new Summary Statistics functions was added covering basic statistics,

covariance and correlation, pooled, group, partial, and robust covariance/correlation,

quantiles and streaming quantiles, outliers detection algorithm, and missing values

support

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 28

o Performance optimized algorithms: MI algorithm for support of missing values,

TBS algorithm for computation of robust covariance, BACON algorithm for

detection of outliers, ZW algorithm for computation of quantiles (streaming data

case), and 1PASS algorithm for computation of pooled covariance

 Improved performance of SFMT19937 Basic Random Number Generator (BRNG)

 Intel® AVX optimizations: MT19937 and MT2203 BRNGs

8) Added runtime dispatching dynamic libraries allowing link to a single interface library which

loads dependent libraries dynamically at runtime depending on runtime CPU detection

and/or library function calls

9) The custom dynamic libraries builder now uses the runtime dispatching dynamic libraries on

the Linux* and Mac OS* X operating systems

10) A new directory structure has been established to simplify integration of Intel MKL with the

Intel® Parallel Studio XE family of products and directories formerly designated as "em64t"

are now designated by the "intel64" tag

11) Intel® Itanium® architecture (IA-64) support is not included in this release. Intel® MKL 10.2

is the latest release for IA-64

12) The sparse solver functionality has been fully integrated into the core Intel MKL libraries and

the libraries with "solver" in the filename have been removed from the product

7.1.2 Changes in Update 1

1) PARDISO/DSS: Added true F90 overloaded API (see the Intel MKL reference manual for

more information)

2) PARDISO: Improved the statistical reporting to be more reader friendly

3) Sparse BLAS: Improved performance of ?BSRMM functions on the latest Intel& processors

4) FFTs: Support for negative strides

5) FFT examples: Added examples for split-complex FFTs in C and Fortran using both the

DFTI and FFTW3 interfaces

6) VML: Improved performance of real in-place Add/Sub/Mul/Sqr functions on systems

supporting SSE2 and SSE3

7) Poisson Library: Changed the default behavior of the Poisson library functions from

sequential to threaded operation

8) Bug fixes: http://software.intel.com/en-us/articles/intel-mkl-103-bug-fixes/

7.1.3 Changes in Update 2

1) BLAS: Improved performance of transposition functions on the Intel® Xeon® processor

5600 series

2) BLAS: Added examples for transposition routines

3) FFT: Added Fortran examples showing how to reduce application footprint by linking only

functions with the desired precision

4) FFT: Added check for stride consistency on in-place real transforms with CCE storage

5) FFT: Expanded threading to new cases for multi-dimensional transforms

6) VSL: Improved performance of Multivariate Gaussian random number generator for single-

and double-precision on 4-core Intel® Xeon® processors 5500 series

7) VML: Improved performance of in-place operation of Add, Mul, and Sub functions on the

Intel® Xeon® processor 5500 series

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 29

8) Bug fixes: http://software.intel.com/en-us/articles/intel-mkl-103-bug-fixes/

7.2 Attributions

As referenced in the End User License Agreement, attribution requires, at a minimum,

prominently displaying the full Intel product name (e.g. "Intel® Math Kernel Library") and

providing a link/URL to the Intel® MKL homepage (www.intel.com/software/products/mkl) in

both the product documentation and website.

The original versions of the BLAS from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/blas/index.html.

The original versions of LAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson,

Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, and D. Sorensen. Our FORTRAN 90/95 interfaces to LAPACK are

similar to those in the LAPACK95 package at http://www.netlib.org/lapack95/index.html. All

interfaces are provided for pure procedures.

The original versions of ScaLAPACK from which that part of Intel® MKL was derived can be

obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are

L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.

Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

PARDISO in Intel® MKL is compliant with the 3.2 release of PARDISO that is freely distributed

by the University of Basel. It can be obtained at http://www.pardiso-project.org.

Some FFT functions in this release of Intel® MKL have been generated by the SPIRAL software

generation system (http://www.spiral.net/) under license from Carnegie Mellon University. Some

FFT functions in this release of the Intel® MKL DFTI have been generated by the UHFFT

software generation system under license from University of Houston. The Authors of SPIRAL

are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan

Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W.

Johnson, and Nick Rizzolo.

8 Intel® Threading Building Blocks
For information on changes to Intel® Threading Building Blocks, please read the file CHANGES

in the TBB documentation directory.

9 Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R)

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR

Intel® C++ Composer XE 2011 for Linux*
Installation Guide and Release Notes 30

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING

BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A

SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate

features within each processor family, not across different processor families. Go to:

http://www.intel.com/products/processor%5Fnumber/

Celeron, Centrino, Intel, Intel logo, Intel386, Intel486, Intel Atom, Intel Core, Itanium, MMX,

Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2010 Intel Corporation. All Rights Reserved.

http://www.intel.com/products/processor_number/

	1 Introduction
	1.1 Change History
	1.2 Product Contents
	1.3 System Requirements
	1.3.1 Red Hat Enterprise Linux* 4 Support Deprecated
	1.3.2 IA-64 Architecture (Intel® Itanium®) Development Not Supported

	1.4 Documentation
	1.5 Japanese Language Support
	1.6 Technical Support

	2 Installation
	2.1.1 Activation of Purchase after Evaluation Using the Intel Activation Tool
	2.1.2 Silent Install
	2.1.3 Using a License Server
	2.1.4 Eclipse* Integration Installation
	2.1.5 Known Installation Issues
	2.2 Installation Folders
	2.3 Removal/Uninstall

	3 Intel® C++ Compiler
	3.1 Compatibility
	3.2 New and Changed Features
	3.2.1 Three intrinsics changed in update 2
	3.2.2 Static Security Analysis Feature (formerly Source Checker) Requires Intel® Inspector XE
	3.2.2.1 The command line utility “inspxe-runsc” changed since update 2

	3.3 New and Changed Compiler Options
	3.4 Other Changes
	3.4.1 Establishing the Compiler Environment
	3.4.2 Instruction Set Default Changed to Require Intel® Streaming SIMD Extensions 2 (Intel® SSE2)
	3.4.3 OpenMP* Legacy Libraries Removed

	3.5 Compatibility with Previous Versions
	3.6 Known Issues
	3.6.1 __GXX_EXPERIMENTAL_CXX0X__ Macro Not Supported
	3.6.2 Intel® Cilk™ Plus Known Issues
	3.6.3 Guided Auto-Parallel Known Issues
	3.6.4 TR1 System Headers
	3.6.5 Static Security Analysis Known Issues
	3.6.5.1 Excessive false messages on C++ classes with virtual functions

	4 Intel® Debugger (IDB)
	4.1 Setting up the Java* Runtime Environment
	4.2 Starting the Debugger
	4.3 Additional Documentation
	4.4 Debugger Features
	4.4.1 Main Features of IDB

	4.5 Known Issues
	4.5.1 Signals Dialog Not Working
	4.5.2 Resizing GUI
	4.5.3 $cdir, $cwd Directories
	4.5.4 info stack Usage
	4.5.5 $stepg0 Default Value Changed
	4.5.6 SIGTRAP error on some Linux* Systems
	4.5.7 idb GUI cannot be used to debug MPI processes
	4.5.8 Thread Syncpoint Creation in GUI
	4.5.9 Data Breakpoint Dialog
	4.5.10 Stack Alignment for IA-32 Architecture
	4.5.11 GNOME Environment Issues
	4.5.12 Accessing Online-Help

	5 Eclipse Integration
	5.1 Supplied Integrations
	5.1.1 Integration notes

	5.2 How to Install the Intel C++ Eclipse Product Extension in Your Eclipse Platform
	5.2.1 Integrating the Intel® Debugger into Eclipse

	5.3 How to Obtain and Install Eclipse, CDT and a JRE
	5.3.1 Installing JRE, Eclipse and CDT

	5.4 Launching Eclipse for Development with the Intel C++ Compiler
	5.5 Installing on Fedora* Systems
	5.6 Selecting Compiler Versions

	6 Intel® Integrated Performance Primitives
	6.1 New and Changed Features
	6.2 Intel® IPP Cryptography Libraries are Available as a Separate Download
	6.3 Intel® IPP SPIRAL Domain (ippGEN) is a Separate Download
	6.4 Intel® IPP Code Samples

	7 Intel® Math Kernel Library
	7.1 Changes in This Version
	7.1.1 Changes in Initial Release
	7.1.2 Changes in Update 1
	7.1.3 Changes in Update 2

	7.2 Attributions

	8 Intel® Threading Building Blocks
	9 Disclaimer and Legal Information

