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Intel® oneAPI Programming
Guide 1
Use this guide to learn about:

• Introduction to oneAPI Programming: A basic overview of oneAPI, Intel oneAPI Toolkits, and related
resources.

• oneAPI Programming Model: An introduction to the oneAPI programming model for SYCL* and OpenMP*
offload for C, C++, and Fortran.

• oneAPI Development Environment Setup: Instructions on how to set up the oneAPI application
development environment.

• Compile and Run oneAPI Programs: Details about how to compile code for various accelerators (CPU,
FPGA, etc.).

• API-based Programming: A brief introduction to common APIs and related libraries as well as details on
buffer usage.

• Software Development Process: An overview of the software development process using various oneAPI
tools, such as debuggers and performance analyzers, and optimizing code for a specific accelerator (CPU,
FPGA, etc.).

Introduction to oneAPI Programming

Obtaining high compute performance on today’s modern computer architectures requires code that is
optimized, power-efficient, and scalable. The demand for high performance continues to increase due to
needs in AI, video analytics, data analytics, as well as in traditional high-performance computing (HPC).

Central Processing Units (CPUs) and Graphics Processing Units (GPUs) are fundamental computing engines.
But as computing demands evolve, it is not always clear what the differences are between CPUs and GPUs
and which workloads are best suited to each.

Modern workload diversity has resulted in a need for architectural diversity; no single architecture is best for
every workload. A mix of scalar, vector, matrix, and spatial (SVMS) architectures deployed in CPU, GPU, AI,
and FPGA accelerators is required to extract the needed performance.

Today, coding for CPUs and accelerators (such as GPUs) requires different languages, libraries, and tools.
That means each hardware platform requires separate software investments and provides limited application
code reusability across different target architectures.

The oneAPI programming model simplifies the programming of CPUs and accelerators using modern C++
features to express parallelism using SYCL*. SYCL enables code reuse for the host (such as a CPU) and
accelerators (such as a GPU) using a single source language, with execution and memory dependencies
clearly communicated. Mapping within the SYCL code can be used to transition the application to run on the
hardware, or set of hardware, that best accelerates the workload. A host is available to simplify development
and debugging of device code, even on platforms that do not have an accelerator available.

oneAPI also supports programming on CPUs and accelerators using the OpenMP* offload feature with existing
C/C++ or Fortran code.

For more information on determining whether or not to use a CPU or GPU, see CPU vs. GPU: Making the Most
of Both.

Once you have gained an understanding of the oneAPI programming model, see the oneAPI GPU
Optimization Guide for information on how to optimize your software.

NOTE Not all programs can benefit from the single programming model offered by oneAPI. It is
important to understand how to design, implement, and use the oneAPI programming model for your
program.
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Learn more about the oneAPI initiative and programming model at oneapi.com. The site includes the oneAPI
Specification, SYCL Language Guide and API Reference, and other resources.

Intel oneAPI Programming Overview

The oneAPI programming model provides a comprehensive and unified portfolio of developer tools that can
be used across hardware targets, including a range of performance libraries spanning several workload
domains. The libraries include functions custom-coded for each target architecture, so the same function call
delivers optimized performance across supported architectures.

The oneAPI programming model

As shown in the figure above, applications that take advantage of the oneAPI programming model can run on
multiple target hardware platforms ranging from CPU to FPGA. Intel offers oneAPI products as part of a set of
toolkits. The Intel® oneAPI Base Toolkit, Intel® oneAPI HPC Toolkit, Intel® oneAPI IoT Toolkit, and several
other toolkits feature complementary tools based on specific developer workload needs. For example, the
Intel oneAPI Base Toolkit includes the Intel® oneAPI DPC++/C++ Compiler, the Intel® DPC++ Compatibility
Tool, select libraries, and analysis tools.

• Developers who want to migrate existing CUDA* code to SYCL* for compilation with the DPC++ compiler
can use the Intel DPC++ Compatibility Tool to help migrate their existing projects to SYCL* using DPC
++.

• The Intel oneAPI DPC++/C++ Compiler supports direct programming of code targeting accelerators.
Direct programming is coding for performance when APIs are not available for the algorithms expressed in
user code. It supports online and offline compilation for CPU and GPU targets and offline compilation for
FPGA targets.

• API-based programming is supported via sets of optimized libraries. The library functions provided in the
oneAPI product are pre-tuned for use with any supported target architecture, eliminating the need for
developer intervention. For example, the BLAS routine available from Intel® oneAPI Math Kernel
Library is just as optimized for a GPU target as a CPU target.
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• Finally, the compiled SYCL application can be analyzed and debugged to ensure performance, stability,
and energy efficiency goals are achieved using tools such as Intel® VTune™ Profiler or Intel® Advisor.

The Intel oneAPI Base Toolkit is available as a free download from the Intel Developer Zone.

Users familiar with Intel® Parallel Studio and Intel® System Studio may be interested in the Intel oneAPI HPC
Toolkit and Intel oneAPI IoT Toolkit respectively.

oneAPI Toolkit Distribution

oneAPI Toolkits are available via multiple distribution channels:

• Local product installation: install the oneAPI toolkits from the Intel® Developer Zone. Refer to the 
Installation Guides for specific install information.

• Install from containers or repositories: install the oneAPI toolkits from one of several supported containers
or repositories. Instructions for each are available from the Installation Guides.

• Pre-installed in the Intel® DevCloud: use a free development sandbox for access to the latest Intel
hardware and select oneAPI tools. Learn more about Intel DevCloud and sign up for free access.

Related Documentation

The following documents are useful starting points for developers getting started with oneAPI projects.

• Get started guides for select oneAPI toolkits:

• Get Started with Intel oneAPI Base Toolkit for Linux* | Windows* | MacOS*
• Get Started with Intel oneAPI HPC Toolkit for Linux* | Windows* | MacOS*
• Get Started with Intel oneAPI IoT Toolkit for Linux* | Windows*

• Release notes for select oneAPI toolkits:

• Intel oneAPI Base Toolkit
• Intel oneAPI HPC Toolkit
• Intel oneAPI IoT Toolkit

• Language reference material:

• SYCL* Language Guide and API Reference
• SYCL* Specification (PDF) 1.2.1 | 2020
• Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems using C++ and

SYCL (book by James Reinders, Ben Ashbaugh, James Broadman, Michael Kinsner, John Pennycook,
and Xinmin Tian, parts of this book were reused under the Creative Commons license.)

• LLVM/OpenMP* Documentation
• OpenMP* Specifications (examples documents recommended)

oneAPI Programming Model

In heterogenous computing, the host processor takes advantage of accelerator devices to execute code more
efficiently.

The oneAPI programming model supports two important portable methods of heterogenous computing: Data
Parallel C++ with SYCL* and OpenMP* for C, C++, and Fortran.

SYCL is a cross-platform abstraction layer that enables code for heterogeneous processors to be written
using standard ISO C++ with the host and kernel code for an application contained in the same source file.
The DPC++ open source project is adding SYCL support to the LLVM C++ compiler. The Intel® oneAPI DPC+
+/C++ Compiler is available as part of the Intel oneAPI Base Toolkit.
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OpenMP has been a standard programming language for over 20 years, and Intel implements version 5 of
the OpenMP standard. The Intel oneAPI DPC++/C++ Compiler with OpenMP offload support is available as
part of the Intel oneAPI Base Toolkit, Intel oneAPI HPC Toolkit, and Intel oneAPI IoT Toolkit. The Intel®
Fortran Compiler Classic and Intel® Fortran Compiler with OpenMP offload support is available as part of the
Intel oneAPI HPC Toolkit.

NOTE OpenMP is not supported for FPGA devices.

The next sections briefly describe each language and provide pointers to more information.

Data Parallelism in C++ using SYCL*

Open, Multivendor, Multiarchitecture support for productive data parallel programming in C++ is
accomplished via standard C++ with support for SYCL. SYCL (pronounced ‘sickle’) is a royalty-free, cross-
platform abstraction layer that enables code for heterogeneous processors to be written using standard ISO
C++ with the host and kernel code for an application contained in the same source file. The DPC++ open
source project is adding SYCL support to the LLVM C++ compiler.

Simple Sample Code Using Queue Lambda by Reference
The best way to introduce SYCL is through an example. Since SYCL is based on modern C++, this example
uses several features that have been added to C++ in recent years, such as lambda functions and uniform
initialization. Even if developers are not familiar with these features, their semantics will become clear from
the context of the example. After gaining some experience with SYCL, these newer C++ features will become
second nature.

The following application sets each element of an array to the value of its index, so that a[0] = 0, a[1] = 1,
etc.

#include <CL/sycl.hpp>
#include <iostream>

constexpr int num=16;
using namespace sycl;

int main() {
  auto r = range{num};
  buffer<int> a{r};

  queue{}.submit([&](handler& h) {
    accessor out{a, h};
    h.parallel_for(r, [=](item<1> idx) {
      out[idx] = idx;
    });
  });

  host_accessor result{a};
  for (int i=0; i<num; ++i)
    std::cout << result[i] << "\n";
}

The first thing to notice is that there is just one source file: both the host code and the offloaded accelerator
code are combined in a single source file. The second thing to notice is that the syntax is standard C++:
there aren’t any new keywords or pragmas used to express the parallelism. Instead, the parallelism is
expressed through C++ classes. For example, the buffer class on line 9 represents data that will be
offloaded to the device, and the queue class on line 11 represents a connection from the host to the
accelerator.
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The logic of the example works as follows. Lines 8 and 9 create a buffer of 16 int elements, which have no
initial value. This buffer acts like an array. Line 11 constructs a queue, which is a connection to an
accelerator device. This simple example asks the SYCL runtime to choose a default accelerator device, but a
more robust application would probably examine the topology of the system and choose a particular
accelerator. Once the queue is created, the example calls the submit() member function to submit work to
the accelerator. The parameter to this submit() function is a lambda function, which executes immediately
on the host. The lambda function does two things. First, it creates an accessor on line 12, which can write
elements in the buffer. Second, it calls the parallel_for() function on line 13 to execute code on the
accelerator.

The call to parallel_for() takes two parameters. One parameter is a lambda function, and the other is the
range object “r” that represents the number of elements in the buffer. SYCL arranges for this lambda to be
called on the accelerator once for each index in that range, i.e. once for each element of the buffer. The
lambda simply assigns a value to the buffer element by using the out accessor that was created on line 12.
In this simple example, there are no dependencies between the invocations of the lambda, so the program is
free to execute them in parallel in whatever way is most efficient for this accelerator.

After calling parallel_for(), the host part of the code continues running without waiting for the work to
complete on the accelerator. However, the next thing the host does is to create a host_accessor on line 18,
which reads the elements of the buffer. The SYCL runtime knows this buffer is written by the accelerator, so
the host_accessor constructor (line 18) is blocked until the work submitted by the parallel_for() is
complete. Once the accelerator work completes, the host code continues past line 18, and it uses the out
accessor to read values from the buffer.

Additional Resources
This introduction to SYCL is not meant to be a complete tutorial. Rather, it just gives you a flavor of the
language. There are many more features to learn, including features that allow you to take advantage of
common accelerator hardware such as local memory, barriers, and SIMD. There are also features that let you
submit work to many accelerator devices at once, allowing a single application to run work in parallel on
many devices simultaneously.

The following resources are useful to learning and mastering SYCL using a DPC++ compiler:

• Explore SYCL with Samples from Intel provides an overview and links to simple sample applications
available from GitHub*.

• The DPC++ Foundations Code Sample Walk-Through is a detailed examination of the Vector Add sample
code, the DPC++ equivalent to a basic Hello World application.

• The oneapi.com site includes a Language Guide and API Reference with descriptions of classes and their
interfaces. It also provides details on the four programming models - platform model, execution model,
memory model, and kernel programming model.

• The DPC++ Essentials training course is a guided learning path for SYCL using Jupyter* Notebooks on
Intel® DevCloud.

• Data Parallel C++ Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL is
a comprehensive book that introduces and explains key programming concepts and language details
about SYCL and Heterogeneous programming.

C/C++ or Fortran with OpenMP* Offload Programming Model

The Intel® oneAPI DPC++/C++ Compiler and the Intel® Fortran Compiler enable software developers to use
OpenMP* directives to offload work to Intel accelerators to improve the performance of applications.

  1  Intel® oneAPI Programming Guide
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This section describes the use of OpenMP directives to target computations to the accelerator. Developers
unfamiliar with OpenMP directives can find basic usage information documented in the OpenMP Support
sections of the Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference or Intel® Fortran
Compiler for oneAPI Developer Guide and Reference.

NOTE OpenMP is not supported for FPGA devices.

Basic OpenMP Target Construct
The OpenMP target construct is used to transfer control from the host to the target device. Variables are
mapped between the host and the target device. The host thread waits until the offloaded computations are
complete. Other OpenMP tasks may be used for asynchronous execution on the host; use the nowait clause
to specify that the encountering thread does not wait for the target region to complete.

C/C++

The C++ code snippet below targets a SAXPY computation to the accelerator.

#pragma omp target map(tofrom:fa), map(to:fb,a)
#pragma omp parallel for firstprivate(a)
for(k=0; k<FLOPS_ARRAY_SIZE; k++)
       fa[k] = a * fa[k] + fb[k]

Array fa is mapped both to and from the accelerator since fa is both input to and output from the
calculation. Array fb and the variable a are required as input to the calculation and are not modified, so
there is no need to copy them out. The variable FLOPS_ARRAY_SIZE is implicitly mapped to the accelerator.
The loop index k is implicitly private according to the OpenMP specification.

Fortran

This Fortran code snippet targets a matrix multiply to the accelerator.

!$omp target map(to: a, b ) map(tofrom: c )
!$omp parallel do private(j,i,k)
      do j=1,n
         do i=1,n
            do k=1,n
               c(i,j) = c(i,j) + a(i,k) * b(k,j)
            enddo
         enddo
      enddo
!$omp end parallel do
!$omp end target

Arrays a and b are mapped to the accelerator, while array c is both input to and output from the accelerator.
The variable n is implicitly mapped to the accelerator. The private clause is optional since loop indices are
automatically private according to the OpenMP specification.

Map Variables
To optimize data sharing between the host and the accelerator, the target data directive maps variables to
the accelerator and the variables remain in the target data region for the extent of that region. This feature
is useful when mapping variables across multiple target regions.

C/C++

#pragma omp target data [clause[[,] clause],...]
 structured-block
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Fortran

!$omp target data [clause[[,] clause],...]
structured-block
!$omp end target data

Clauses

The clauses can be one or more of the following. See TARGET DATA for more information.

• DEVICE (integer-expression)
• IF ([TARGET DATA:] scalar-logical-expression)
• MAP ([[map-type-modifier[,]] map-type: ] list)

NOTE Map type can be one or more of the following:

• alloc
• to
• from
• tofrom
• delete
• release

• SUBDEVICE ([integer-constant ,] integer-expression [ : integer-expression [ : integer-expression]])
• USE_DEVICE_ADDR (list) // available only in ifx
• USE_DEVICE_PTR (ptr-list)

DEVICE (integer-expression)
IF ([TARGET DATA:] scalar-logical-expression)
MAP ([[map-type-modifier[,]] map-type: alloc | to | from | tofrom | delete | release] list)
SUBDEVICE ([integer-constant ,] integer-expression [ : integer-expression [ : integer-
expression]])
USE_DEVICE_ADDR (list) // available only in ifx
USE_DEVICE_PTR (ptr-list)

Use the target update directive or always map-type-modifier in map clause to synchronize an original
variable in the host with the corresponding variable in the device.

Compile to Use OMP TARGET
The following example commands illustrate how to compile an application using OpenMP target.

C/C++

• Linux:

icx -fiopenmp -fopenmp-targets=spir64 code.c
• Windows (you can use icx or icpx):

icx /Qiopenmp /Qopenmp-targets=spir64 code.c
Fortran

• Linux:

ifx -fiopenmp -fopenmp-targets=spir64 code.f90
• Windows:

ifx /Qiopenmp /Qopenmp-targets=spir64 code.f90
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Additional OpenMP Offload Resources
• Intel offers code samples that demonstrate using OpenMP directives to target accelerators at https://

github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming. Specific samples include:

• Matrix Multiplication is a simple program that multiplies together two large matrices and verifies the
results. This program is implemented using two ways: SYCL* and OpenMP.

• The ISO3DFD sample refers to Three-Dimensional Finite-Difference Wave Propagation in Isotropic
Media. The sample is a three-dimensional stencil used to simulate a wave propagating in a 3D isotropic
medium. The sample shows some of the more common challenges and techniques when targeting OMP
accelerator devices in more complex applications to achieve good performance.

• openmp_reduction is a simple program that calculates pi. This program is implemented using C++ and
OpenMP for CPUs and accelerators based on Intel® Architecture.

• Get Started with OpenMP* Offload Feature
• Details on using Intel compilers with OpenMP offload, including lists of supported options and example

code, is available in the compiler developer guides:

• Intel® oneAPI DPC+/C+ Compiler Developer Guide and Reference
• Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide

• LLVM/OpenMP Runtimes describes the distinct types of runtimes available and can be helpful when
debugging OpenMP offload.

• openmp.org has an examples document: https://www.openmp.org/wp-content/uploads/openmp-
examples-4.5.0.pdf. Chapter 4 of the examples document focuses on accelerator devices and the target
construct.

• Using OpenMP - the Next Step is a good OpenMP reference book. Chapter 6 covers OpenMP support for
heterogeneous systems. For additional information on this book, see https://www.openmp.org/tech/
using-openmp-next-step.

Device Selection

Offloading code to a device (such as a CPU, GPU, or FPGA) is available for both DPC++ and OpenMP*
applications.

DPC++ Device Selection in the Host Code
Host code can explicitly select a device type. To do select a device, select a queue and initialize its device
with one of the following:

• default_selector
• cpu_selector
• gpu_selector
• accelerator_selector
If default_selector is used, the kernel runs based on a heuristic that chooses from available compute
devices (all, or a subset based on the value of the SYCL_DEVICE_FILTER environment variable).

If a specific device type (such as cpu_selector or gpu_selector) is used, then it is expected that the
specified device type is available in the platform or included in the filter specified by SYCL_DEVICE_FILTER.
If such a device is not available, then the runtime system throws an exception indicating that the requested
device is not available. This error can be thrown in the situation where an ahead-of-time (AOT) compiled
binary is run in a platform that does not contain the specified device type.

NOTE While DPC++ applications can run on any supported target hardware, tuning is required to
derive the best performance advantage on a given target architecture. For example, code tuned for a
CPU likely will not run as fast on a GPU accelerator without modification.
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SYCL_DEVICE_FILTER is a complex environment variable that allows you to limit the runtimes, compute
device types, and compute device IDs that may be used by the DPC++ runtime to a subset of all available
combinations. The compute device IDs correspond to those returned by the SYCL API, clinfo, or sycl-ls
(with the numbering starting at 0). They have no relation to whether the device with that ID is of a certain
type or supports a specific runtime. Using a programmatic special selector (like gpu_selector) to request a
filtered out device will cause an exception to be thrown. Refer to the environment variable description in
GitHub for details on use and example values: https://github.com/intel/llvm/blob/sycl/sycl/doc/
EnvironmentVariables.md.

The sycl-ls tool enumerates a list of devices available in the system. It is strongly recommended to run
this tool before running any SYCL or DPC++ programs to make sure the system is configured properly. As a
part of enumeration, sycl-ls prints the SYCL_DEVICE_FILTER string as a prefix of each device listing. The
format of the sycl-ls output is [SYCL_DEVICE_FILTER] Platform_name, Device_name,
Device_version [driver_version]. In the following example, the string enclosed in the bracket ([ ]) at
the beginning of each line is the SYCL_DEVICE_FILTER string used to designate the specific device on which
the program will run.

Device Selection Example

$ sycl-ls
[opencl:acc:0] Intel® FPGA Emulation Platform for OpenCL™, Intel® FPGA Emulation Device 1.2 
[2021.12.9.0.24_005321]
[opencl:gpu:1] Intel® OpenCL HD Graphics, Intel® UHD Graphics 630 [0x3e92] 3.0 [21.37.20939]
[opencl:cpu:2] Intel® OpenCL, Intel® Core™ i7-8700 CPU @ 3.20GHz 3.0 [2021.12.9.0.24_005321]
[level_zero:gpu:0] Intel® Level-Zero, Intel® UHD Graphics 630 [0x3e92] 1.1 [1.2.20939]
[host:host:0] SYCL host platform, SYCL host device 1.2 [1.2]

Additional information about device selection is available from the DPC++ Language Guide and API
Reference.

OpenMP* Device Query and Selection in the Host Code
OpenMP provided a set of APIs for programmers to query and set device for running code on the device. Host
code can explicitly select and set a device num. For each offloading region, a programmer can also use a
device clause to specify the target device that is to be used for executing the offloading region.

• int omp_get_num_procs (void) routine returns the number of processors available to the device
• void omp_set_default_device(int device_num) routine controls the default target device
• int omp_get_default_device(void) routine returns the default target device
• int omp_get_num_devices(void) routine returns the number of non-host devices available for

offloading code or data.
• int omp_get_device_num(void) routine returns the device number of the device on which the calling

thread is executing.
• int omp_is_initial_device(int device_num) routine returns true if the current task is executing on

the host device; otherwise, it returns false.
• int omp_get_initial_device(void) routine returns a device number that represents the host device.

A programmer can use the environment variable LIBOMPTARGET_DEVICETYPE = [ CPU | GPU ] to perform
a device type selection. If a specific device type such as CPU or GPU is specified, then it is expected that the
specified device type is available in the platform. If such a device is not available, then the runtime system
throws an error that the requested device type is not available if the environment variable
OMP_TARGET_OFFLOAD=mandatory, otherwise, the execution will have a fallback execution on its initial
device. Additional information about device selection is available from the OpenMP 5.1 specification. Details
about environment variables are available from GitHub: https://github.com/intel/llvm/blob/sycl/sycl/doc/
EnvironmentVariables.md.

See Also
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• Device Selectors for FPGA

SYCL* Thread and Memory Hierarchy

Thread Hierarchy
The SYCL* execution model exposes an abstract view of GPU execution. The SYCL thread hierarchy consists
of a 1-, 2-, or 3-dimensional grid of work-items. These work-items are grouped into equal sized thread
groups called work-groups. Threads in a work-group are further divided into equal sized vector groups called
sub-groups.

To learn more about how this hierarchy works with a GPUor a CPU with Intel® UHD Graphics, see SYCL*
Thread Mapping and GPU Occupancy in the oneAPI GPU Optimization Guide.
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Memory Hierarchy
The General Purpose GPU (GPGPU) compute model consists of a host connected to one or more compute
devices. Each compute device consists of many GPU Compute Engines (CE), also known as Execution Units
(EU) or Xe Vector Engines (XVE). The compute devices may also include caches, shared local memory (SLM),
high-bandwidth memory (HBM), and so on, as shown in the figure below. Applications are then built as a
combination of host software (per the host framework) and kernels submitted by the host to run on the VEs
with a predefined decoupling point.

To learn more about memory hierarchy within the General Purpose GPU (GPGPU) compute model, see 
Execution Model Overview in the oneAPI GPU Optimization Guide.

oneAPI Development Environment Setup
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The Intel® oneAPI tools are available in several convenient forms, as detailed in oneAPI Toolkit Distribution
earlier in this guide. Follow the instructions in the Intel oneAPI Toolkit Installation Guide to obtain and install
the tools.

Install Directories
On a Windows* system, the Intel oneAPI development tools are typically installed in the C:\Program Files
(x86)\Intel\oneAPI\ directory.

On Linux* or macOS* system, the Intel oneAPI development tools are typically installed in the /opt/intel/
oneapi/ directory.

These are the default locations; the precise location can be changed during installation.

Within the oneAPI installation directory are a collection of folders that contain the compilers, libraries,
analyzers, and other tools installed on the development system. The precise list depends on the toolkit(s)
installed and the options selected during installation. Most of the folders within the oneAPI installation
directory have obvious names. For example, the mkl folder contains the Intel® oneAPI Math Kernel Library
(Intel® oneMKL), the ipp folder contains the Intel® Integrated Performance Primitives (Intel® IPP) library, and
so on.

Environment Variables
Some of the tools in the Intel oneAPI toolkits depend on environment variables to:

• Assist the compilation and link process (e.g., PATH, CPATH, INCLUDE, etc.)
• Locate debuggers, analyzers, and local help files (e.g., PATH, MANPATH)
• Identify tool-specific parameters and dynamic (shared) link libraries (e.g., LD_LIBRARY_PATH, CONDA_*,

etc.)

setvars and vars Files
Every installation of the Intel oneAPI toolkits includes a single top-level “setvars” script and multiple tool-
specific “vars” scripts (setvars.sh and vars.sh on Linux and macOS; setvars.bat and vars.bat on
Windows). When executed (sourced), these scripts configure the local environment variables to reflect the
needs of the installed Intel oneAPI development tools.

The following sections provide detailed instructions on how to use the oneAPI setvars and vars scripts to
initialize the oneAPI development environment:

• Use the setvars Script with Windows*
• Use the setvars Script with Linux* or MacOS*

Modulefiles (Linux only)
Users of Environment Modules and Lmod can use the modulefiles included with the oneAPI toolkit installation
to initialize their development environment variables. The oneAPI modulefile scripts are only supported on
Linux and are provided as an alternative to using the setvars and vars scripts referenced above. In general,
users should not mix modulefiles with the setvars environment scripts.

See Use Modulefiles with Linux* for detailed instructions on how to use the oneAPI modulefiles to initialize
the oneAPI development environment.

Use the setvars Script with Windows*
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Most of the oneAPI component tool folders contain an environment script named vars.bat that configures
the environment variables needed by that component to support oneAPI development work. For example, in
a default installation, the Intel® Integrated Performance Primitives (Intel® IPP) vars script on Windows is
located at: C:\Program Files (x86)\Intel\oneAPI\ipp\latest\env\vars.bat. This pattern is shared
by all oneAPI components that include an environment vars setup script.

These component tool vars scripts can be called directly or collectively. To call them collectively, a script
named setvars.bat is provided in the oneAPI installation folder. For example, in a default installation on a
Windows machine: C:\Program Files (x86)\Intel\oneAPI\setvars.bat.

Running the setvars.bat script without any arguments causes it to locate and run all <component>
\latest\env\vars.bat scripts in the installation. Changes made to the environment by these scripts can
be seen by running the Windows set command after running the environment setup scripts.

Visual Studio Code* developers can install a oneAPI environment extension to run the setvars.bat within
Visual Studio Code. Learn more in Using Visual Studio Code with Intel oneAPI Toolkits.

NOTE Changes to your environment made by running the setvars.bat script (or the individual
vars.bat scripts) are not permanent. Those changes only apply to the cmd.exe session in which the
setvars.bat environment script was executed.

Command Line Arguments
The setvars.bat script supports several command-line arguments, which are displayed using the --help
option. For example:

"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" --help
The --config=file argument and the ability to include arguments that will be passed to the vars.bat
scripts that are called by the setvars.bat script can be used to customize the environment setup.

The --config=file argument provides the ability to limit environment initialization to a specific set of
oneAPI components. It also provides a way to initialize the environment for specific component versions. For
example, to limit environment setup to just the Intel® IPP library and the Intel® oneAPI Math Kernel Library
(Intel® oneMKL), pass a config file that tells the setvars.bat script to only call the vars.bat environment
scripts for those two oneAPI components. More details and examples are provided in Use a Config file for
setvars.bat on Windows.

Any extra arguments passed on the setvars.bat command line that are not described in the setvars.bat
help message will be passed to every called vars.bat script. That is, if the setvars.bat script does not
recognize an argument, it assumes the argument is meant for use by one or more component vars scripts
and passes those extra arguments to every component vars.bat script that it calls. The most common extra
arguments are ia32 and intel64, which are used by the Intel compilers and the IPP, MKL, and TBB libraries
to specify the application target architecture.

If more than one version of Microsoft Visual Studio* is installed on your system, you can specify which Visual
Studio environment should be initialized as part of the oneAPI setvars.bat environment initialization by
adding the vs2017, vs2019, or vs2022 argument to the setvars.bat command line. By default, the most
recent version of Visual Studio is located and initialized.

NOTE Support for Microsoft Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

Inspect the individual vars.bat scripts to determine which, if any, command line arguments they accept.
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How to Run

<install-dir>\setvars.bat
To run setvars.bat or a vars.bat script in a PowerShell window, use the following:

cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'

How to Verify
After executing setvars.bat, verify success by searching for the SETVARS_COMPLETED environment
variable. If setvars.bat was successful the SETVARS_COMPLETED environment variable will have a value of
1:

set | find "SETVARS_COMPLETED"
Return value

SETVARS_COMPLETED=1
If the return value is anything other than SETVARS_COMPLETED=1 the test failed and setvars.bat did not
complete properly.

Multiple Runs
Because many of the individual env\vars.bat scripts make significant changes to PATH, CPATH, and other
environment variables, the top-level setvars.bat script will not allow multiple invocations of itself in the
same session. This is done to ensure that your environment variables do not exceed the maximum provided
environment space, especially the %PATH% environment variable. Exceeding the available environment space
results in unpredictable behavior in your terminal session and should be avoided.

This behavior can be overridden by passing setvars.bat the --force flag. In this example, the user tries
to run setvars.bat twice. The second instance is stopped because setvars.bat has already been run.

> <install-dir>\setvars.bat
initializing environment ...
(SNIP: lot of output)
oneAPI environment initialized
> <install-dir>\setvars.bat
.. code-block:: WARNING: setvars.bat has already been run. Skipping re-execution.
   To force a re-execution of setvars.bat, use the '--force' option.
   Using '--force' can result in excessive use of your environment variables.

In the third instance, the user runs <install-dir>\setvars.bat --force and the initialization is
successful.

> <install-dir>\setvars.bat --force
initializing environment ...
(SNIP: lot of output)
oneAPI environment initialized

ONEAPI_ROOT Environment Variable
The ONEAPI_ROOT variable is set by the top-level setvars.bat script when that script is sourced. If there is
already a ONEAPI_ROOT environment variable defined, setvars.bat temporarily overwrites it in the
cmd.exe session in which you ran the setvars.bat script. This variable is primarily used by the oneapi-
cli sample browser and the Microsoft Visual Studio and Visual Studio Code* sample browsers to help them
locate oneAPI tools and components, especially for locating the setvars.bat script if the SETVARS_CONFIG
feature has been enabled. For more information about the SETVARS_CONFIG feature, see Automate the
setvars.bat Script with Microsoft Visual Studio*.
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On Windows systems, the installer adds the ONEAPI_ROOT variable to the environment.

Use a Config file for setvars bat on Windows

The setvars.bat script sets environment variables for use with the oneAPI toolkits by executing each of the
<install-dir>\latest\env\vars.bat scripts found in the respective oneAPI folders. Unless you configure
your Windows system to run the setvars.bat script automatically, it must be executed every time a new
terminal window is opened for command line development, or prior to launching Visual Studio Code, Sublime
Text, or any other C/C++ editor you use. For more information, see Configure Your System.

The procedure below describes how to use a configuration file to manage environment variables.

Versions and Configurations
Some oneAPI tools support installation of multiple versions. For those tools that do support multiple versions,
the directory is organized like this (assuming a default installation and using the compiler as an example):

\Program Files (x86)\Intel\oneAPI\compiler\
|-- 2021.1.1
|-- 2021.2.0
`-- latest -> 2021.2.0

For example:

For all tools, there is a symbolic link named latest that points to the latest installed version of that
component; and the vars.bat script located in the latest\env\ folder is what the setvars.bat executes
by default.

If required, setvars.bat can be customized to point to a specific directory by using a configuration file.

–config Parameter
The top level setvars.bat script accepts a --config parameter that identifies your custom config.txt file.

<install-dir>\setvars.bat --config="path\to\your\config.txt"
The name of your configuration file can have any name you choose. You can create many config files to setup
a variety of development or test environments. For example, you might want to test the latest version of a
library with an older version of a compiler; use a setvars config file to manage such a setup.
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Config File Sample
The examples below show a simple example of the config file:

Load Latest of Everything but…

mkl=1.1
dldt=exclude

Exclude Everything but…

default=exclude
mkl=1.0
ipp=latest

The configuration text file must follow these requirements:

• a newline delimited text file
• each line consists of a single "key=value" pair
• "key" names a component folder in the top-level set of oneAPI directories (the folders found in the

%ONEAPI_ROOT% directory). If a "key" appears more than once in a config file, the last "key" wins and
any prior keys with the same name are ignored.

• “value” names a version directory that is found at the top-level of the component directory. This includes
any symbolic links (such as latest) that might be present at that level in the component directory.

• OR "value" can be "exclude", which means the named key will NOT have its vars.bat script
executed by the setvars.bat script.

The "key=value" pair "default=exclude" is a special case. When included, it will exclude executing ALL
env\vars.bat scripts, except those that are listed in the config file. See the examples below.

Further Customization of Config Files
The config file can be used to exclude specific components, include specific component versions or only
include specific component versions that are named after a "default=exclude" statement.

By default, setvars.bat will process the latest version of each env\vars.bat script.
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The sample below shows two versions of Intel oneMKL installed: 2021.1.1 and 2021.2.0. The latest
shortcut points to the 2021.2.0 folder because it is the latest version installed. By default, setvars.bat will
execute the 2021.2.0 vars.bat script in the mkl folder because that is the folder that latest points to.

Two versions of Intel oneMKL and config files

Specify a Specific Version

To direct setvars.bat to execute the <install-dir>\mkl\2021.1.1\env\vars.bat script, add
mkl=2021.1.1 to your config file.

This instructs setvars.bat to execute the env\vars.bat script located in the 2021.1.1 version folder
inside the mkl directory. For other installed components, setvars.bat will execute the env\vars.bat script
located in the latest version folder.

Exclude Specific Components

To exclude a component, use the following syntax:

<key>=exclude
For example, to exclude Intel IPP, but include the 2021.1.1 version of Intel oneMKL:

mkl=2021.1.1
ipp=exclude

In this example:

• setvars.bat WILL execute the Intel oneMKL 2021.1.1 env\vars.bat script
• setvars.bat WILL NOT execute Intel IPP env\vars.bat script files
• setvars.bat WILL execute the latest version of the remaining env\vars.bat script files

Include Specific Components

To execute a specific list of component env\vars.bat scripts, you must first exclude all env\vars.bat
scripts. Then add back the list of components to be executed by setvars.bat. Use the following syntax to
exclude all component env\vars.bat scripts from being executed:

default=exclude
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For example, to have setvars.bat execute only the Intel oneMKL and Intel IPP component env\vars.bat
scripts, use this config file:

default=exclude
mkl=2021.1.1
ipp=latest

In this example:

• setvars.bat WILL execute the Intel oneMKL 2021.1.1 env\vars.bat script
• setvars.bat WILL execute the latest version of the Intel IPP env\vars.bat script
• setvars.bat WILL NOT execute the env\vars.bat script for any other components

Automate the setvars bat Script with Microsoft Visual Studio*

NOTE Support for Microsoft Visual Studio* 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

The setvars.bat script sets up the environment variables needed to use the oneAPI toolkits. This script
must be run every time a new terminal window is opened for command-line development. The setvars.bat
script can also be run automatically when Microsoft Visual Studio is started. You can configure this feature to
instruct the setvars.bat script to set up a specific set of oneAPI tools by using the SETVARS_CONFIG
environment variable.

SETVARS_CONFIG Environment Variable States
The SETVARS_CONFIG environment variable enables automatic configuration of the oneAPI development
environment when you start your instance of Microsoft Visual Studio. The variable has three conditions or
states:

• Undefined (the SETVARS_CONFIG environment variable does not exist)
• Defined but empty (the value contains nothing or only whitespace)
• Defined and points to a setvars.bat configuration file

If SETVARS_CONFIG is undefined there will be no attempt to automatically run setvars.bat when Visual
Studio is started. This is the default case, since the SETVARS_CONFIG variable is not defined by the oneAPI
installer.

If SETVARS_CONFIG is defined and has no value (or contains only whitespace), the setvars.bat script will
be automatically run when Visual Studio is started. In this case, the setvars.bat script initializes the
environment for all oneAPI tools that are installed on your system. For more information about running the
setvars.bat script, see Build and Run a Sample Project Using the Visual Studio* Command Line.

When SETVARS_CONFIG is defined with the absolute pathname to a setvars configuration file, the
setvars.bat script will be automatically run when Visual Studio is started. In this case, the setvars.bat
script initializes the environment for only those oneAPI tools that are defined in the setvars configuration
file. For more information about how to create a setvars config file, see Using a Config File with setvars.bat.

A setvars configuration file can have any name and can be saved to any location on your hard disk, as long
as that location and the file are accessible and readable by Visual Studio. (A plug-in that was added to Visual
Studio when you installed the oneAPI tools on your Windows system performs the SETVARS_CONFIG actions;
that is why Visual Studio must have access to the location and contents of the setvars configuration file.)

If you leave the setvars config file empty, the setvars.bat script will initialize your environment for all
oneAPI tools that are installed on your system. This is equivalent to defining the SETVARS_CONFIG variable
with an empty string. See Using a Config File with setvars.bat for details regarding what to put inside of your
setvars config file.
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Define the SETVARS_CONFIG Environment Variable
Since the SETVARS_CONFIG environment variable is not automatically defined during installation, you must
add it to your environment before starting Visual Studio (per the rules above). You can define the
SETVARS_CONFIG environment variable using the Windows SETX command or in the Windows GUI tool by
typing “rundll32.exe sysdm.cpl,EditEnvironmentVariables” into the “Win+R” dialog (use “Win+R”
to bring up the dialog).

Use the setvars Script with Linux* or MacOS*

Most of the component tool folders contain an environment script named vars.sh that configures the
environment variables needed by that component to support oneAPI development work. For example, in a
default installation, the Intel® Integrated Performance Primitives (Intel® IPP) vars script on Linux or macOS is
located at: /opt/intel/ipp/latest/env/vars.sh. This pattern is shared by all oneAPI components that
include an environment vars setup script.

These component tool vars scripts can be called directly or collectively. To call them collectively, a script
named setvars.sh is provided in the oneAPI installation folder. For example, in a default installation on a
Linux or macOS machine: /opt/intel/setvars.sh.

Sourcing the setvars.sh script without any arguments causes it to locate and source all <component>/
latest/env/vars.sh scripts in the installation. Changes made to the environment by these scripts can be
seen by running the env command after running the environment setup scripts.

NOTE Changes to your environment made by sourcing the setvars.sh script (or the individual
vars.sh scripts) are not permanent. Those changes only apply to the terminal session in which the
setvars.sh environment script was sourced.

Command Line Arguments
The setvars.sh script supports several command-line arguments, which are displayed using the --help
option. For example:

source /opt/intel/oneapi/setvars.sh --help
The --config=file argument and the ability to include arguments that will be passed to the vars.sh
scripts that are called by the setvars.sh script can be used to customize the environment setup.

The --config=file argument provides the ability to limit environment initialization to a specific set of
oneAPI components. It also provides a way to initialize the environment for specific component versions. For
example, to limit environment setup to just the Intel® IPP library and the Intel® oneAPI Math Kernel Library
(Intel® oneMKL), pass a config file that tells the setvars.sh script to only call the vars.sh environment
scripts for those two oneAPI components. More details and examples are provided in Use a Config file for
setvars.sh on Linux or macOS.

Any extra arguments passed on the setvars.sh command line that are not described in the setvars.sh
help message will be passed to every called vars.sh script. That is, if the setvars.sh script does not
recognize an argument, it assumes the argument is meant for use by one or more component scripts and
passes those extra arguments to every component vars.sh script that it calls. The most common extra
arguments are ia32 and intel64, which are used by the Intel compilers and the IPP, MKL, and TBB libraries
to specify the application target architecture.

Inspect the individual vars.sh scripts to determine which, if any, command line arguments they accept.
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How to Run

source <install-dir>/setvars.sh

NOTE If you are using a non-POSIX shell, such as csh, use the following command:

$ bash -c 'source <install-dir>/setvars.sh ; exec csh'
Alternatively, use the modulefiles scripts to set up your development environment. The modulefiles
scripts work with all Linux shells.

If you wish to fine tune the list of components and the version of those components, use a setvars
config file to set up your development environment.

How to Verify
After sourcing the setvars.sh script, verify success by searching for the SETVARS_COMPLETED environment
variables. If setvars.sh was successful, then the SETVARS_COMPLETED environment variable will have a
value of 1:

env | grep SETVARS_COMPLETED
Return value

SETVARS_COMPLETED=1
If the return value is anything other than SETVARS_COMPLETED=1, then the test failed and setvars.sh did
not complete properly.

Multiple Runs
Because many of the individual env/vars.sh scripts make significant changes to PATH, CPATH, and other
environment variables, the top-level setvars.sh script will not allow multiple invocations of itself in the
same session. This is done to ensure that your environment variables do not become too long due to
redundant path references, especially the $PATH environment variable.

This behavior can be overridden by passing setvars.sh the --force flag. In this example, the user tries to
run setvars.sh twice. The second instance is stopped because setvars.sh has already been run.

> source <install-dir>/setvars.sh
.. code-block:: initializing environment ...
(SNIP: lot of output)
.. code-block:: oneAPI environment initialized ::
> source <install-dir>/setvars.sh
 .. code-block:: WARNING: setvars.sh has already been run. Skipping re-execution.
    To force a re-execution of setvars.sh, use the '--force' option.
    Using '--force' can result in excessive use of your environment variables

In the third instance, the user runs setvars.sh --force and the initialization is successful.

> source <install-dir>/setvars.sh --force
 .. code-block:: initializing environment ...
(SNIP: lot of output)
 .. code-block:: oneAPI environment initialized ::
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ONEAPI_ROOT Environment Variable
The ONEAPI_ROOT variable is set by the top-level setvars.sh script when that script is sourced. If there is
already a ONEAPI_ROOT environment variable defined, setvars.sh temporarily overwrites it in the terminal
session in which you sourced the setvars.sh script. This variable is primarily used by the oneapi-cli
sample browser and the Eclipse* and Visual Studio Code* sample browsers to help them locate oneAPI tools
and components, especially for in locating the setvars.sh script if the SETVARS_CONFIG feature has been
enabled. For more information about the SETVARS_CONFIG feature, see Automate the setvars.sh Script with
Eclipse*.

On Linux and macOS systems, the installer does not add the ONEAPI_ROOT variable to the environment. To
add it to the default environment, define the variable in your local shell initialization file(s) or in the
system’s /etc/environment file.

Use a Config file for setvars sh on Linux or macOS

There are two methods for configuring your environment in Linux*:

• Use a setvars.sh configuration file, as described on this page
• Use modulefiles

The setvars.sh script sets environment variables for use with the oneAPI toolkits by sourcing each of the
<install-dir>/latest/env/vars.sh scripts found in the respective oneAPI folders. Unless you configure
your Linux system to source the setvars.sh script automatically, it must be sourced every time a new
terminal window is opened for command line development, or prior to launching Eclipse* or any other C/C++
IDE or editor you use for C/C++ development. For more information, see Configure Your System.

The procedure below describes how to use a configuration file to manage environment variables.

Versions and Configurations
Some oneAPI tools support installation of multiple versions. For those tools that do support multiple versions,
the directory is organized like this:

intel/oneapi/compiler/
|-- 2021.1.1
|-- 2021.2.0
`-- latest -> 2021.2.0

For example:

Multiple versions and environmental variables

For all tools, there is a symlink named latest that points to the latest installed version of that component;
and the vars.sh script located in the latest/env/ folder is what the setvars.sh sources by default.

If required, setvars.sh can be customized to point to a specific directory by using a configuration file.
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–config Parameter
The top level setvars.sh script accepts a --config parameter that identifies your custom config.txt file.

> source <install-dir>/setvars.sh --config="full/path/to/your/config.txt"
The name of your configuration file can have any name you choose. You can create many config files to setup
a variety of development or test environments. For example, you might want to test the latest version of a
library with an older version of a compiler; use a setvars config file to manage such a setup.

Config File Sample
The examples below show a simple example of the config file:

Load Latest of Everything but…

mkl=1.1
dldt=exclude

Exclude Everything but…

default=exclude
mkl=1.0
ipp=latest

The configuration text file must follow these requirements:

• a newline delimited text file
• each line consists of a single "key=value" pair
• "key" names a component folder in the top-level set of oneAPI directories (the folders found in the

$ONEAPI_ROOT directory). If a "key" appears more than once in a config file, the last "key" wins and
any prior keys with the same name are ignored.

• “value” names a version directory that is found at the top-level of the component directory. This includes
any symlinks (such as latest) that might be present at that level in the component directory.

• OR "value" can be "exclude", which means the named key will NOT have its env/vars.sh script
sourced by the setvars.sh script.

The "key=value" pair "default=exclude" is a special case. When included, it will exclude sourcing ALL
env/vars.sh scripts, except those that are listed in the config file. See the examples below.

Further Customization of Config Files
The config file can be used to exclude specific components, include specific component versions or only
include specific component versions that are named after a "default=exclude" statement.

By default, setvars.sh will process the latest version of each env/vars.sh script.
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The sample below shows two versions of Intel oneMKL installed: 2021.1.1 and 2021.2.0. The latest symlink
points to the 2021.2.0 folder because it is the latest version. By default setvars.sh will source the 2021.2.0
vars.sh script in the mkl folder because that is the folder that latest points to.

Two versions of Intel oneMKL installed

Specify a Specific Version

To direct setvars.sh to source the <install-dir>/mkl/2021.1.1/env/vars.sh script, add
mkl=2021.1.1 to your config file.

This instructs setvars.sh to source on the env/vars.sh script located in the 2021.1.1 version folder
inside the mkl directory. For other installed components, setvars.sh will source the env/vars.sh script
located in the latest version folder.

Exclude Specific Components

To exclude a component, use the following syntax:

<key>=exclude
For example, to exclude Intel IPP, but include the 2021.1.1 version of Intel oneMKL:

mkl=2021.1.1
ipp=exclude

In this example:
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• setvars.sh WILL source the Intel oneMKL 2021.1.1 env/vars.sh script
• setvars.sh WILL NOT source any Intel IPP env/vars.sh script files
• setvars.sh WILL source the latest version of the remaining env/vars.sh script files

Include Specific Components

To source a specific list of component env/vars.sh scripts, you must first exclude all env/vars.sh scripts.
Then add back the list of components to be sourced by setvars.sh. Use the following syntax to exclude all
component env/vars.sh scripts from being sourced:

default=exclude
For example, to have setvars.sh source only the Intel oneMKL and Intel IPP component env/vars.sh
scripts, use this config file:

default=exclude
mkl=2021.1.1
ipp=latest

In this example:

• setvars.sh WILL source the Intel oneMKL 2021.1.1 env/vars.sh script
• setvars.sh WILL source the latest version of the Intel IPP env/vars.sh script
• setvars.sh WILL NOT source the env/vars.sh script for any other components

Automate the setvars sh Script with Eclipse*

The setvars.sh script sets up the environment variables needed to use the oneAPI toolkits. This script must
be run every time a new terminal window is opened for command-line development. The setvars.sh script
can also be run automatically when Eclipse* is started. You can configure this feature to instruct the
setvars.sh script to set up a specific set of oneAPI tools by using the SETVARS_CONFIG environment
variable.

SETVARS_CONFIG Environment Variable States
The SETVARS_CONFIG environment variable enables automatic configuration of the oneAPI development
environment when you start your instance of Eclipse IDE for C/C++ Developers. The variable has three
conditions or states:

• Undefined (the SETVARS_CONFIG environment variable does not exist)
• Defined but empty (the value contains nothing or only whitespace)
• Defined and points to a setvars.sh configuration file

If SETVARS_CONFIG is undefined or if it exists but has no value (or contains only whitespace), the
setvars.sh script will be automatically run when Eclipse is started. In this case, the setvars.sh script
initializes the environment for all oneAPI tools that are installed on your system. For more information about
running the setvars.sh script, see Build and Run a Sample Project Using Eclipse.

When SETVARS_CONFIG is defined with the absolute pathname to a setvars configuration file, the
setvars.sh script will be automatically run when Eclipse is started. In this case, the setvars.sh script
initializes the environment for only those oneAPI tools that are defined in the setvars configuration file. For
more information about how to create a setvars config file, see Use a Config file for setvars.sh on Linux or
macOS.
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NOTE The default SETVARS_CONFIG behavior in Eclipse is different than the behavior described for
Visual Studio on Windows. When starting Eclipse, automatic execution of the setvars.sh script is
always attempted. When starting Visual Studio automatic execution of the setvars.bat script it is
only attempted if the SETVARS_CONFIG environment variable has been defined.

A setvars configuration file can have any name and can be saved to any location on your hard disk, as long
as that location and the file are accessible and readable by Eclipse. (A plug-in that was added to Eclipse when
you installed the oneAPI tools on your LInux system performs the SETVARS_CONFIG actions; that is why
Eclipse must have access to the location and contents of the setvars configuration file.)

If you leave the setvars config file empty, the setvars.sh script will initialize your environment for all
oneAPI tools that are installed on your system. This is equivalent to defining the SETVARS_CONFIG variable
with an empty string. See Use a Config file for setvars.sh on Linux or macOS for details regarding what to
put inside of your setvars config file.

Define the SETVARS_CONFIG Environment Variable
Since the SETVARS_CONFIG environment variable is not automatically defined during installation, you must
add it to your environment before starting Eclipse (per the rules above). There are a variety of places to
define the SETVARS_CONFIG environment variable:

• /etc/environment
• /etc/profile
• ~/.bashrc
• and so on…

The list above shows common places to define environment variables on a Linux system. Ultimately, where
you choose to define the SETVARS_CONFIG environment variable depends on your system and your needs.

Use Modulefiles with Linux*

There are two methods for configuring your environment in Linux*:

• Use modulefiles, as described on this page
• Use a setvars.sh configuration file

Most of the component tool folders contain one or more modulefile scripts that configure the environment
variables needed by that component to support development work. Modulefiles are an alternative to using
the setvars.sh script to set up the development environment. Because modulefiles do not support
arguments, multiple modulefiles are available for oneAPI tools and libraries that support multiple
configurations (such as a 32-bit configuration and a 64-bit configuration).
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NOTE The modulefiles provided with the Intel oneAPI toolkits are compatible with the Tcl Environment
Modules (Tmod) and Lua Environment Modules (Lmod). The following minimum versions are
supported:

• Tmod 3.2.10 (compiler modulefile requires 4.1, see below)
• Tcl version 8.4
• Lmod version 8.2.10

Test which version is installed on your system using the following command:

module --version
Each modulefile automatically verifies the Tcl version on your system when it runs.

If your modulefile version is not supported, a workaround may be possible. See Using Environment
Modules with Intel Development Tools for more details.

As of the oneAPI 2021.4 release you can use the icc modulefile to setup the icc and ifort compilers
if you are using version 3.2.10 of the Tcl Environment Modules. A future oneAPI release will resolve
the support for the compiler modulefile.

The oneAPI modulefile scripts are located in a modulefiles directory inside each component folder (similar to
how the individual vars scripts are located). For example, in a default installation, the ipp modulefiles
script(s) are in the /opt/intel/ipp/latest/modulefiles/ directory.

Due to how oneAPI component folders are organized on the disk, it can be difficult to use the oneAPI
modulefiles directly where they are installed. Therefore, a special modulefiles-setup.sh script is provided
in the oneAPI installation folder to make it easier to work with the oneAPI modulefiles. In a default
installation, that setup script is located here: /opt/intel/oneapi/modulefiles-setup.sh
The modulefiles-setup.sh script locates all modulefile scripts that are part of your oneAPI installation and
organizes them into a single directory of versioned modulefiles scripts.

Each of these versioned modulefiles scripts is a symlink that points to the modulefiles located by the
modulefiles-setup.sh script. Each component folder includes (at minimum) a “latest” version modulefile
that will be selected, by default, when loading a modulefile without specifying a version label. If you use the
--ignore-latest option when running the modulefiles-setup.sh script, the modulefile with the higest
semver version will be loaded if no version is specified by the module_load command.

Creating the modulefiles Directory
Run the modulefiles-setup.sh script.

NOTE By default, the modulefiles-setup.sh script creates a folder named modulefiles in the
oneAPI toolkit installation folder. If your oneAPI installation folder is not writeable, use the --output-
dir=<path-to-folder> option to create the modulefiles folder in a writeable location. Run
modulefiles-setup.sh --help for more information about this and other modulefiles-setup.sh
script options.

Running the modulefiles-setup.sh script creates the modulefiles output folder, which is organized like
the following example (the precise list of modulefiles depends on your installation). In this example there is
one modulefile for configuring the Intel® Advisor environment and two modulefiles for configuring the
compiler environment (the compiler modulefile configures the environment for all Intel compilers). If you
follow the latest symlinks, they point to the highest version modulefile, per semver rules.
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Update your MODULEFILESPATH to include to the modulefiles output folder that was created by the
modulefiles-setup.sh script or run the moduleuse <folder_name> command.

Installing the Tcl Modulefiles Environment onto Your System
The instructions below will help you quickly get started with the Environment Modules utility on Ubuntu*. For
full details regarding installation and configuration of the module utility, see http://modules.sourceforge.net/.

$ sudo apt update
$ sudo apt install tcl
$ sudo apt install environment-modules

Confirm that the local copy of tclsh is new enough (see the beginning of this page for a list of supported
versions):

$ echo 'puts [info patchlevel] ; exit 0' | tclsh
8.6.8

To test the module installation, initialize the module alias.

$ source /usr/share/modules/init/sh
$ module

NOTE Initialization of the Modulefiles environment in POSIX-compatible shells should work with the
source command shown above. Shell-specific init scripts are provided in the /usr/share/modules/
init/ folder. See that folder and the initialization section in man module for more details.
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Source the module alias init script (.../modules/init/sh) in a global or local startup script to ensure the
module command is always available. At this point, the system should be ready to use the module command
as shown in the following section.

Getting Started with the modulefiles-setup.sh Script
The following example assumes you have:

• installed tclsh on to the Linux development system
• installed the Environment Modules utility (i.e., module) onto the system
• sourced the .../modules/init/sh (or equivalent) module init command
• installed the oneAPI toolkits required for your oneAPI development

$ cd <oneapi-root-folder>        # cd to the oneapi_root install directory
$ ./modulefiles-setup.sh         # run the modulefiles setup script
$ module use modulefiles         # use the modulefiles folder created above
$ module avail                   # will show tbb/X.Y, etc.
$ module load tbb                # loads tbb/X.Y module
$ module list                    # should list the tbb/X.Y module you just loaded
$ module unload tbb              # removes tbb/X.Y changes from the environment
$ module list                    # should no longer list the tbb/X.Y env var module

Before the unload step, use the env command to inspect the environment and look for the changes that were
made by the modulefile you loaded. For example, if you loaded the tbb modulefile, the command will
show you some of the env changes made by that modulefile (inspect the modulefile to see all of the
changes it will make):

$ env | grep -i "intel"

NOTE A modulefile is a script, but it does not need to have the ‘x’ (executable) permission set,
because it is loaded and interpreted by the “module” interpreter that is installed and maintained by
the end-user. Installation of the oneAPI toolkits do not include the modulefile interpreter. It must be
installed separately. Likewise, modulefiles do not require that the ‘w’ permission be set, but they
must be readable (ideally, the ‘r’ permission is set for all users).

Versioning
The oneAPI toolkit installer uses version folders to allow oneAPI tools and libraries to exist in a side-by-side
layout. These versioned component folders are used by the modulefiles-setup.sh script to create the
versioned modulefiles. The script organizes the symbolic links it creates in the modulefiles output folder
as <modulefile-name>/version, so that each respective modulefile can be referenced by version when
using the module command.

$ module avail
---------------- modulefiles -----------------
ipp/1.1  ipp/1.2  compiler/1.0  compiler32/1.0

Multiple modulefiles
A tool or library may provide multiple modulefiles within its modulefiles folder. Each becomes a loadable
module. They will be assigned a version per the component folder from which they were extracted.
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Understanding How the modulefiles are Written when using oneAPI
Symbolic links are used by the modulefiles-setup.sh script to gather all the available modulefiles into a
single modulefiles folder. This means that the actual modulefile scripts are not moved or modified. As a
consequence, the ${ModulesCurrentModulefile} variable points to the symlink to each modulefile, not
to the actual modulefile located in the respective installation folders. To determine the full path to the
actual modulefiles, each modulefile starts with a statement like this:

[ file readlink ${ModulesCurrentModulefile} ]
to get a direct reference to the original modulefile in the product install directory. This is done because the
actual install location can be customized and is, therefore, unknown at runtime and must be deduced. For
that reason, the actual modulefile cannot be moved outside of the installed location, otherwise it will not be
able to locate the absolute path to the library or application that it must configure.

For a better understanding, review the modulefiles included with the installation. Most include comments
explaining how they resolve symlink references to a real file, as well as parsing the version number (and
version directory). They also include checks to insure that the installed TCL is an appropriate version level.

Use of the module load Command by modulefiles
Several of the modulefiles use the module load command to ensure that any required dependent
modules are also loaded. There is no attempt to specify the version of those dependent modulefiles. This
means you have the option to load a specific version of a dependent module prior to loading the module that
requires that dependent module. If you do not preload a dependent module, the latest available version is
loaded.

This is by design because it gives you the flexibility to control the environment. For example, you may have
installed an updated version of a library that you want to test against a previous version of the compiler.
Perhaps the updated library has a bug fix and you are not interested in changing the version of any other
libraries in your build. If the dependent modulefiles were hard-coded to require a specific dependent version
of this library, you could not perform such a test.

NOTE If a dependent module load cannot be satisfied, the currently loading module file will be
terminated and no changes will be made to your environment.

Additional Resources
For more information about modulefiles, see:

• http://www.admin-magazine.com/HPC/Articles/Environment-Modules
• https://www.chpc.utah.edu/documentation/software/modules-advanced.php
• https://modules.readthedocs.io/en/latest/
• https://lmod.readthedocs.io/en/latest/

Use CMake with oneAPI Applications

The CMake packages provided with Intel oneAPI products allow a CMake project to make easy use of oneAPI
libraries on Windows*, Linux*, or macOS*. Using the provided packages, the experience should be similar to
how other system libraries integrate with a CMake project. There are dependency and other build variables
provided to CMake project targets as desired.

The following components support CMake:

• Intel® oneAPI DPC++ Compiler - Linux, Windows
• Intel Integrated Performance Primitives (Intel IPP) and Intel Integrated Performance Primitives

Cryptography (Intel IPP Cryptography) - Linux, Windows

  1  Intel® oneAPI Programming Guide

32

http://www.admin-magazine.com/HPC/Articles/Environment-Modules
https://www.chpc.utah.edu/documentation/software/modules-advanced.php
https://modules.readthedocs.io/en/latest/
https://lmod.readthedocs.io/en/latest/


• Intel MPI Library - Linux, Windows
• Intel oneAPI Collective Communications Library (oneCCL) - Linux, Windows
• Intel oneAPI Data Analytics Library (oneDAL) - Linux, Windows
• Intel oneAPI Deep Neural Network Library (oneDNN) - Linux, Windows
• Intel oneAPI DPC++ Library (oneDPL) - Linux, Windows
• Intel oneAPI Math Kernel Library (oneMKL) - Linux, Windows, macOS
• Intel oneAPI Threading Building Blocks (oneTBB) - Linux, Windows, macOS
• Intel oneAPI Video Processing Library (oneVPL) - Linux, Windows

Libraries that provide a CMake configuration can be identified by looking in the following locations:

• On Linux or macOS:

• System: /usr/local/lib/cmake`
• User: ~/lib/cmake`

• On Windows: HKEY_LOCAL_MACHINESoftwareKitwareCMakePackages\`
To use the CMake packages, use the oneAPI libraries as you would other system libraries. For example, using
find_package(tbb) ensures that your application’s CMake package is using the oneTBB package.

Compile and Run oneAPI Programs

This chapter details the oneAPI compilation process across direct programming and API-based programming
covering CPU, GPUs, and FPGAs. Some details about the tools employed at each stage of compilation are
explained.

Single Source Compilation

The oneAPI programming model supports single source compilation. Single source compilation has several
benefits compared to separate host and device code compilation. It should be noted that the oneAPI
programming model also supports separate host and device code compilation as some users may prefer it.
Advantages of the single source compilation model include:

• Usability – programmers need to create fewer files and can define device code right next to the call site in
the host code.

• Extra safety – single source means one compiler can see the boundary code between host and device and
the actual parameters generated by host compiler will match formal parameters of the kernel generated
by the device compiler.

• Optimization - the device compiler can perform additional optimizations by knowing the context from
which a kernel is invoked. For instance, the compiler may propagate some constants or infer pointer
aliasing information across the function call.

Invoke the Compiler

The Intel® oneAPI DPC++/C++ Compiler provides multiple drivers to invoke the complier from the command
line. The examples below show options for C++ and SYCL*. For a full list of driver options, see the Different
Compilers and Drivers table.

For more information on the compiler, see Invoking the Compiler in the Intel® oneAPI DPC++/C++ Compiler
Developer Guide and Reference.

To enable OpenMP* offloading for C++ applications, invoke the compiler with:

• icpx -fiopenmp -fopenmp-targets=<arch> (Linux)
• icx /Qiopenmp /Qopenmp-targets:<arch> (Windows).

To enable OpenMP offloading for SYCL applications, invoke the compiler with:
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• icpx -fsycl -fiopenmp -fopenmp-targets=<arch> (Linux)
• icx-cl -fsycl /Qiopenmp /Qopenmp-targets:<arch> (Windows)

For more information about options, you can go to the option descriptions found in the Compiler Options
section of the Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference.

The compiler driver has different compatibilities on different OS hosts. On Linux, icpx -fsycl provides
GCC*-style command line options. On Windows, icx-cl provides Microsoft Visual C++* compatibility with
Microsoft Visual Studio*.

• It recognizes GCC-style command line options (starting with “-“) and can be useful for projects that share
a build system across multiple operating systems.

• It recognizes Windows command line options (starting with “/”) and can be useful for Microsoft Visual
Studio-based projects.

Standard Intel oneAPI DPC++/C++ Compiler Options

A full list of Intel oneAPI DPC++/C++ Compiler options are available from the Intel oneAPI DPC++/C++
Compiler Developer Guide and Reference.

• The Offload Compilation Options, OpenMP* Options, and Parallel Processing Options section includes
options specific to SYCL* and OpenMP* offload.

• A full list of available options and a brief description of each is available in the Alphabetical List of
Compiler Options.

Example Compilation

oneAPI applications can be directly programmed, API-based, which makes use of available oneAPI libraries,
or a combination of directly programmed and API-based. API-based programming takes advantage of device
offload using library functionality, which can save developers time when wriitng an application. In general it is
easiest to start with API-based programming and use SYCL* or OpenMP* offload features where API-based
programming is insufficient for your needs.

The following sections give examples of API-based code and direct programming using SYCL.

API-based Code
The following code shows usage of an API call (a * x + y) employing the Intel oneAPI Math Kernel Library
function oneapi::mkl::blas::axpy to multiply a times x and add y across vectors of floating point
numbers. It takes advantage of the oneAPI programming model to perform the addition on an accelerator.

#include <vector> // std::vector()
#include <cstdlib> // std::rand()
#include <CL/sycl.hpp>
#include "oneapi/mkl/blas.hpp"

int main(int argc, char* argv[]) {

    double alpha = 2.0;
    int n_elements = 1024;

    int incx = 1;
    std::vector<double> x;
    x.resize(incx * n_elements);
    for (int i=0; i<n_elements; i++)
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        x[i*incx] = 4.0 * double(std::rand()) / RAND_MAX - 2.0;
        // rand value between -2.0 and 2.0

    int incy = 3;
    std::vector<double> y;
    y.resize(incy * n_elements);
    for (int i=0; i<n_elements; i++)
        y[i*incy] = 4.0 * double(std::rand()) / RAND_MAX - 2.0;
        // rand value between -2.0 and 2.0

    cl::sycl::device my_dev;
    try {
        my_dev = cl::sycl::device(cl::sycl::gpu_selector());
    } catch (...) {
        std::cout << "Warning, failed at selecting gpu device. Continuing on default(host) 
device.\n";
    }

    // Catch asynchronous exceptions
    auto exception_handler = [] (cl::sycl::exception_list
        exceptions) {
        for (std::exception_ptr const& e : exceptions) {
            try {
                std::rethrow_exception(e);
             } catch(cl::sycl::exception const& e) {
                std::cout << "Caught asynchronous SYCL exception:\n";
                std::cout << e.what() << std::endl;
            }
        }
    };

    cl::sycl::queue my_queue(my_dev, exception_handler);

    cl::sycl::buffer<double, 1> x_buffer(x.data(), x.size());
    cl::sycl::buffer<double, 1> y_buffer(y.data(), y.size());

    // perform y = alpha*x + y
    try {
        oneapi::mkl::blas::axpy(my_queue, n_elements, alpha, x_buffer,
        incx, y_buffer, incy);
    }

    catch(cl::sycl::exception const& e) {
        std::cout << "\t\tCaught synchronous SYCL exception:\n"
                  << e.what() << std::endl;
    }

    std::cout << "The axpy (y = alpha * x + y) computation is complete!" << std::endl;
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    // print y_buffer
    auto y_accessor = y_buffer.template
      get_access<cl::sycl::access::mode::read>();
    std::cout << std::endl;
    std::cout << "y" << " = [ " << y_accessor[0] << " ]\n";
    std::cout << "    [ " << y_accessor[1*incy] << " ]\n";
    std::cout << "    [ " << "... ]\n";
    std::cout << std::endl;

    return 0;
}

To compile and build the application (saved as axpy.cpp):

1. Ensure that the MKLROOT environment variable is set appropriately (echo ${MKLROOT}). If it is not set
appropriately, source the setvars.sh script or run the setvars.bat script or set the variable to the
folder that contains the lib and include folders.

For more information about the setvars scripts, see oneAPI Development Environment Setup.
2. Build the application using the following command:

On Linux:

icpx -fsycl -I${MKLROOT}/include -c axpy.cpp -o axpy.o
On Windows:

icpx -fsycl -I${MKLROOT}/include /EHsc -c axpy.cpp /Foaxpy.obj
3. Link the application using the following command:

On Linux:

icpx -fsycl axpy.o -fsycl-device-code-split=per_kernel \
"${MKLROOT}/lib/intel64"/libmkl_sycl.a -Wl,-export-dynamic -Wl,--start-group \
"${MKLROOT}/lib/intel64"/libmkl_intel_ilp64.a \
"${MKLROOT}/lib/intel64"/libmkl_sequential.a \
"${MKLROOT}/lib/intel64"/libmkl_core.a -Wl,--end-group -lsycl -lOpenCL \
-lpthread -lm -ldl -o axpy.out

On Windows:

icpx -fsycl axpy.obj -fsycl-device-code-split=per_kernel ^
"${MKLROOT}/lib/intel64"/libmkl_sycl.lib ^
"${MKLROOT}/lib/intel64"/libmkl_intel_ilp64.lib ^
"${MKLROOT}/lib/intel64"/libmkl_sequential.lib ^
"${MKLROOT}/lib/intel64"/libmkl_core.lib ^
sycl.lib OpenCL.lib -o axpy.exe

4. Run the application using the following command:

On Linux:

./axpy.out
On Windows:

axpy.exe

Direct Programming
The vector addition sample code is employed in this example. It takes advantage of the oneAPI programming
model to perform the addition on an accelerator.
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The following command compiles and links the executable.

icpx -fsycl vector_add.cpp
The components and function of the command and options are similar to those discussed in the API-Based
Code section above.

Execution of this command results in the creation of an executable file, which performs the vector addition
when run.

Compilation Flow Overview

When you create a program with offload, the compiler must generate code for both the host and the device.
oneAPI tries to hide this complexity from the developer. The developer simply compiles a SYCL* application
using the DPC++ compiler with icpx -fsycl, and the same compile command generates both host and
device code.

For device code, two options are available: Just-in-Time (JIT) compilation and Ahead-of-Time (AOT)
compilation, with JIT being the default. This section describes how host code is compiled, and the two options
for generating device code. Additional details are available in Chapter 13 of the Data Parallel C++ book.

Traditional Compilation Flow (Host-only Application)
The traditional compilation flow is a standard compilation like the one used for C, C++, or other languages,
used when there is no offload to a device.

The traditional compilation phases are shown in the following diagram:

Traditional compilation phases

1. The front end translates the source into an intermediate representation and then passes that
representation to the back end.

2. The back end translates the intermediate representation to object code and emits an object file
(host.obj on Windows*, host.o on Linux*).
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3. One or more object files are passed to the linker.
4. The linker creates an executable.
5. The application runs.

Compilation Flow for SYCL Offload Code
The compilation flow for SYCL offload code adds steps for device code to the traditional compilation flow, with
JIT and AOT options for device code. In this flow, the developer compiles a SYCL application with icpx -
fsycl, and the output is an executable containing both host and device code.

The basic compilation phases for SYCL offload code are shown in the following diagram:

Basic compilation phases for SYCL offload code

1. The host code is translated to object code by the back end.
2. The device code is translated to either a SPIR-V* or device binary.
3. The linker combines the host object code and the device code (SPIR-V or device binary) into an

executable containing the host binary with the device code embedded in it. This process is known as a
fat binary.

4. At runtime, the operating system starts the host application. If it has offload, the runtime loads the
device code (converting the SPIR-V to device binary if needed).

5. The application runs on the host and a specified device.

JIT Compilation Flow
In the JIT compilation flow, the code for the device is translated to SPIR-V intermediate code by the back-
end, embedded in the fat binary as SPRI-V, and translated from SPIR-V to device code by the runtime. When
the application is run, the runtime determines the available devices and generates the code specific to that
device. This allows for more flexibility in where the application runs and how it performs than the AOT flow,
which must specify a device at compile time. However, performance may be worse because compilation
occurs when the application runs. Larger applications with significant amounts of device code may notice
performance impacts.

Tip The JIT compilation flow is useful when you do not know what the target device will be.

NOTE JIT compilation is not supported for FPGA devices.
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The compilation phases are shown in the following diagram:

JIT compilation phases

1. The host code is translated to object code by the back end.
2. The device code is translated to SPIR-V.
3. The linker combines the host object code and the device SPIR-V into a fat binary containing host

executable code with SPIR-V device code embedded in it.
4. At runtime:

a. The device runtime on the host translates the SPIR-V for the device into device binary code.
b. The device code is loaded onto the device.

5. The application runs on the host and device available at runtime.

AOT Compilation Flow
In the AOT compilation flow, the code for the device is translated to SPIR-V and then device code in the host
back-end and the resulting device code is embedded in the generated fat binary. The AOT flow provides less
flexibility than the JIT flow because the target device must be specified at compilation time. However,
executable start-up time is faster than the JIT flow.

Tip

• The AOT compilation flow is good when you know exactly which device you are targeting.
• The AOT flow is recommended when debugging your application as it speeds up the debugging

cycle.
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The compilation phases are shown in the following diagram:

AOT compilation phases

1. The host code is translated to object code by the back end.
2. The device code is translated to SPIR-V.
3. The SPIR-V for the device is translated to a device code object using the device specified by the user on

the command line.
4. The linker combines the host object code and the device object code into a fat binary containing host

executable code with device executable code embedded in it.
5. At runtime, the device executable code is loaded onto the device.
6. The application runs on a host and specified device.

Fat Binary
A fat binary is generated from the JIT and AOT compilation flows. It is a host binary that includes embedded
device code. The contents of the device code vary based on the compilation flow.

FAT binary

• The host code is an executable in either the ELF (Linux) or PE (Windows) format.
• The device code is a SPIR-V for the JIT flow or an executable for the AOT flow. Executables are in one of

the following formats:

• CPU: ELF (Linux), PE (Windows)
• GPU: ELF (Windows, Linux)
• FPGA: ELF (Linux), PE (Windows)
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CPU Flow

The CPU is typically called the brain of the computer. The CPU consists of complex circuitry/algorithms that
include branch predictors, memory virtualization and instruction scheduling, etc. Given this complexity, it is
designed to handle a wide-range of tasks.

The SYCL* and OpenMP* offload programming model enables implementation of an application on
heterogenous CPU and GPU systems. The term “devices” in SYCL and OpenMP offload can refer to both CPUs
and GPUs.

Modern CPUs have many cores with hyper-threads and high SIMD width, which can be used for parallel
computation. If your workloads have regions that are compute intensive and can be run in parallel, it is a
good idea to offload those regions to a CPU than to a coprocessor, such as a GPU or FPGA. Also, because data
does not need to be offloaded through PCIe (unlike for coprocessors or GPU), latency is reduced with minimal
data transfer overhead.

There are two options for running an application on a CPU: the traditional CPU flow that runs directly on the
CPU or a CPU offload flow that runs on a CPU device. You can use CPU offload with either SYCL or OpenMP
offload applications. Both OpenMP offload and SYCL offload applications use the OpenCL™ runtime and Intel®
oneAPI Threading Building Blocks (Intel® oneTBB) to run on a CPU as a device.

Tip Unsure whether your workload fits best on CPU, GPU, or FPGA? Compare the benefits of CPUs,
GPUs, and FPGAs for different oneAPI compute workloads.

Traditional CPU Flow

The traditional CPU workflow runs on the CPU without a runtime. The compilation flow is a standard
compilation used when there is no offload to a device, like the one used for C, C++, or other languages.

Traditional workloads are compiled and run on host using the Traditional Compilation Flow (Host-only
Application) process described in Compilation Flow Overview.

Example compilation command:

icpx  -g -o matrix_mul_omp src/matrix_mul_omp.cpp

CPU Offload Flow

By default, if you are offloading to a CPU device, it goes through an OpenCL™ runtime, which also uses Intel
oneAPI Threading Building Blocks for parallelism.
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When offloading to a CPU, workgroups map to different logical cores and these workgroups can execute in
parallel. Each work-item in the workgroup can map to a CPU SIMD lane. Work-items (sub-groups) execute
together in a SIMD fashion.

CPU workgroups

To learn more about CPU execution, see Compare Benefits of CPUs, GPUs, and FPGAs for Different oneAPI
Compute Workloads.

Set Up for CPU Offload
1. Make sure you have followed all steps in the oneAPI Development Environment Setup section, including

running the setvars script.
2. Check if you have the required OpenCL runtime associated with the CPU using the sycl-ls command.

For example:

$sycl-ls
CPU : OpenCL 2.1 (Build 0)[ 2020.11.12.0.14_160000 ]
GPU : OpenCL 3.0 NEO [ 21.33.20678 ]
GPU : 1.1[ 1.2.20939 ]

3. Use one of the following code samples to verify that your code is running on the CPU. The code sample
adds scalar to large vectors of integers and verifies the results.

SYCL*

To run on a CPU, SYCL provides built-in device selectors for convenience. They use device_selector as a
base class. cpu_selector selects a CPU device.

Alternatively, you could also use the following environment variable when using default_selector to select
a device according to implementation-defined heuristics.

export SYCL_DEVICE_FILTER=cpu
SYCL code sample:

#include <CL/sycl.hpp>
#include <array>
#include <iostream>
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using namespace sycl;
using namespace std;
constexpr size_t array_size = 10000;
int main(){
constexpr int value = 100000;
try{
        cpu_selector d_selector;
        queue q(d_selector);
        int *sequential = malloc_shared<int>(array_size, q);
        int *parallel = malloc_shared<int>(array_size, q);
        //Sequential iota
        for (size_t i = 0; i < array_size; i++) sequential[i] = value + i;

        //Parallel iota in SYCL
        auto e = q.parallel_for(range{array_size}, [=](auto i) { parallel[i] = value + i; });
        e.wait();
   // Verify two results are equal.
    for (size_t i = 0; i < array_size; i++) {
      if (parallel[i] != sequential[i]) {
        cout << "Failed on device.\n";
        return -1;
      }
    }
    free(sequential, q);
    free(parallel, q);
}catch (std::exception const &e) {
    cout << "An exception is caught while computing on device.\n";
    terminate();
}
 cout << "Successfully completed on device.\n";
  return 0;
}

To compile the code sample, use:

dpcpp simple-iota-dp.cpp -o simple-iota.
Additional commands are available from Example CPU Commands.

Results after compilation:

./simple-iota
Running on device: Intel® Core™ i7-8700 CPU @ 3.20GHz
Successfully completed on device.

OpenMP*

OpenMP code sample:

#include<iostream>
#include<omp.h>
#define N 1024
int main(){
float *a = (float *)malloc(sizeof(float)*N);
for(int i = 0; i < N; i++)
a[i] = i;
#pragma omp target teams distribute parallel for simd map(tofrom: a[:N])
for(int i = 0; i < 1024; i++)
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a[i]++;
std::cout<<a[100]<<"\n";
return 0;
}

Use the following environment variable to compile for running on a CPU:

export LIBOMPTARGET_DEVICETYPE=cpu
To compile the code sample, use:

icpx simple-ompoffload.cpp -fiopenmp -fopenmp-targets=spir64 -o simple-ompoffload
Results after compilation:

./simple-ompoffload
Successfully completed on device

Offload Code to CPU
When offloading your application, it is important to identify the bottlenecks and which code will benefit from
offloading. If you have a code that is compute intensive or a highly data parallel kernel, offloading your code
would be something to look into.

To find opportunities to offload your code, use the Intel Advisor for Offload Modeling.

Debug Offloaded Code
The following list has some basic debugging tips for offloaded code.

• Check host target to verify the correctness of your code.
• Use printf to debug your application. Both SYCL and OpenMP offload support printf in kernel code.
• Use environment variables to control verbose log information.

• For SYCL, the following debug environment variables are recommended. A full list of environment
variables is available from GitHub.

SYCL Recommended Debug Environment Variables

Name Value Description

SYCL_DEVICE_FILTER backend:device_type:devic
e_num

GitHub description

SYCL_PI_TRACE 1|2|-1 1: print out the basic trace log
of the SYCL/DPC++ runtime
plugin

2: print out all API traces of
SYCL/DPC++ runtime plugin

-1: all of “2” including more
debug messages

• For OpenMP, the following debug environment variables are recommended. A full list is available from
the LLVM/OpenMP documentation.

OpenMP Recommended Debug Environment Variables

Name Value Description

LIBOMPTARGET_DEVICETYPE cpu|gpu|host Select
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Name Value Description

LIBOMPTARGET_DEBUG 1 Print out verbose debug
information

LIBOMPTARGET_INFO Values available in LLVM/
OpenMP documentation

Allows the user to request
different types of runtime
information from
libomptarget

• Use Ahead of Time (AOT) to move Just-in-Time (JIT) compilations to AOT compilation issues. For more
information, see Ahead-of-Time Compilation for CPU Architectures.

See Debugging the SYCL and OpenMP Offload Process for more information on debug techniques and
debugging tools available with oneAPI.

Optimize CPU Code
There are many factors that can affect the performance of CPU offload code. The number of work-items,
workgroups, and amount of work done depends on the number of cores in your CPU.

• If the amount of work being done by the core is not compute-intensive, then this could hurt performance.
This is because of the scheduling overhead and thread context switching.

• On a CPU, there is no need for data transfer through PCIe, resulting in lower latency because the offload
region does not have to wait long for the data.

• Based on the nature of your application, thread affinity could affect the performance on CPU. For details,
see Control Binary Execution on Multiple Cores.

• Offloaded code uses JIT compilation by default. Use AOT compilation (offline compilation) instead. With
offline compilation, you could target your code to specific CPU architecture. Refer to Optimization Flags for
CPU Architectures for details.

Additional recommendations are available from Optimize Offload Performance.

Example CPU Commands

The commands below implement the scenario when part of the device code resides in a static library.

NOTE Linking with a dynamic library is not supported.

Produce a fat object with device code:

icpx -fsycl -c static_lib.cpp
Create a fat static library out of it using the ar tool:

ar cr libstlib.a static_lib.o
Compile application sources:

icpx -fsycl -c a.cpp
Link the application with the static library:

icpx -fsycl -foffload-static-lib=libstlib.a a.o -o a.exe

Ahead-of-Time Compilation for CPU Architectures
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In ahead-of-time (AOT) compilation mode, optimization flags can be used to produce code aimed to run
better on a specific CPU architecture.

icpx -fsycl -fsycl-targets=spir64_x86_64  -Xs “-device <CPU optimization flags>” a.cpp b.cpp -o 
app.out

Supported CPU optimization flags are:

-march=<instruction_set_arch> Set target instruction set architecture:
'sse42' for Intel® Streaming SIMD Extensions 4.2
'avx2' for Intel® Advanced Vector Extensions 2
'avx512' for Intel® Advanced Vector Extensions 512

NOTE The set of supported optimization flags may be changed in future releases.

Control Binary Execution on Multiple CPU Cores

Environment Variables
The following environment variables control the placement of SYCL* or OpenMP* threads on multiple CPU
cores during program execution. Use these variables if you are using the OpenCL™ runtime CPU device to
offload to a CPU.

SYCL* or OpenMP* evnironmental variables

Environment Variable Description

DPCPP_CPU_CU_AFFINITY Set thread affinity to CPU. The value and meaning
is the following:

• close - threads are pinned to CPU cores
successively through available cores.

• spread - threads are sread to available cores.
• master - threads are put in the same cores as

master. If DPCPP_CPU_CU_AFFINITY is set,
master thread is pinned as well, otherwise
master thread is not pinned.

This environment variable is similar to the
OMP_PROC_BIND variable used by OpenMP.

Default: Not set

DPCPP_CPU_SCHEDULE Specify the algorithm for scheduling work-groups
by the scheduler. Currently, the SYCL runtime uses
Intel® oneAPI Threading Building Blocks (Intel®
oneTBB) for scheduling. The value selects the
petitioner used by the Intel oneTBB scheduler. The
value and meaning is the following:

• dynamic - Intel oneTBB auto_partitioner. It
performs sufficient splitting to balance load.

• affinity - Intel oneTBB affinity_partitioner. It
improves auto_partitioner’s cache affinity by its
choice of mapping subranges to worker threads
compared to
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Environment Variable Description

• static - Intel oneTBB static_partitioner. It
distributes range iterations among worker
threads as uniformly as possible. Intel oneTBB
partitioner relies grain-size to control chunking.
Grain-size is 1 by default, indicating every work-
group can be executed independently.

Default: Dynamic

DPCPP_CPU_NUM_CUS Set the numbers threads used for kernel execution.

To avoid over subscription, maximum value of
DPCPP_CPU_NUM_CUS should be the number of
hardware threads. If DPCPP_CPU_NUM_CUS is 1,
all the workgroups are executed sequentially by a
single thread and this is useful for debugging.

This environment variable is similar to
OMP_NUM_THREADS variable used by OpenMP.

Default: Not set. Determined by Intel oneTBB.

DPCPP_CPU_PLACES Specify the places that affinities are set. The value
is { sockets | numa_domains | cores | threads }.

This environment variable is similar to the
OMP_PLACES variable used by OpenMP.

If value is numa_domains, Intel oneTBB NUMA API
will be used. This is analogous to
OMP_PLACES=numa_domains in the OpenMP 5.1
Specification. Intel oneTBB task arena is bound to
numa node and SYCL nd range is uniformly
distributed to task arenas.

DPCPP_CPU_PLACES is suggested to be used
together with DPCPP_CPU_CU_AFFINITY.

Default: cores

See the Intel oneAPI DPC++/C++ Compiler Developer Guide and Reference for more information about all
supported environment variables.

Example 1: Hyper-threading Enabled
Assume a machine with 2 sockets, 4 physical cores per socket, and each physical core has 2 hyper threads.

• S<num> denotes the socket number that has 8 cores specified in a list
• T<num> denotes the Intel® oneAPI Threading Building Blocks (Intel® oneTBB) thread number
• “-” means unused core

DPCPP_CPU_NUM_CUS=16
   export DPCPP_CPU_PLACES=sockets
   DPCPP_CPU_CU_AFFINITY=close:    S0:[T0 T1 T2 T3 T4 T5 T6 T7]        S1:[T8 T9 T10 T11 T12 T13 
T14 T15]
   DPCPP_CPU_CU_AFFINITY=spread:   S0:[T0 T2 T4 T6 T8 T10 T12 T14]     S1:[T1 T3 T5 T7 T9 T11 
T13 T15]
   DPCPP_CPU_CU_AFFINITY=master:   S0:[T0 T1 T2 T3 T4 T5 T6 T7]        S1:[T8 T9 T10 T11 T12 T13 
T14 T15]
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   export DPCPP_CPU_PLACES=cores
   DPCPP_CPU_CU_AFFINITY=close :   S0:[T0 T8 T1 T9 T2 T10 T3 T11]     S1:[T4 T12 T5 T13 T6 T14 
T7 T15]
   DPCPP_CPU_CU_AFFINITY=spread:   S0:[T0 T8 T2 T10 T4 T12 T6 T14]    S1:[T1 T9 T3 T11 T5 T13 T7 
T15]
   DPCPP_CPU_CU_AFFINITY=master:   S0:[T0 T1 T2 T3 T4 T5 T6 T7]       S1:[T8 T9 T10 T11 T12 T13 
T14 T15]

   export DPCPP_CPU_PLACES=threads
   DPCPP_CPU_CU_AFFINITY=close:    S0:[T0 T1 T2 T3 T4 T5 T6 T7]       S1:[T8 T9 T10 T11 T12 T13 
T14 T15]
   DPCPP_CPU_CU_AFFINITY=spread:   S0:[T0 T2 T4 T6 T8 T10 T12 T14]    S1:[T1 T3 T5 T7 T9 T11 T13 
T15]
   DPCPP_CPU_CU_AFFINITY=master:   S0:[T0 T1 T2 T3 T4 T5 T6 T7]       S1:[T8 T9 T10 T11 T12 T13 
T14 T15]

export DPCPP_CPU_NUM_CUS=8
   DPCPP_CPU_PLACES=sockets, cores and threads have the same bindings:
   DPCPP_CPU_CU_AFFINITY=close close:    S0:[T0 - T1 - T2 - T3 -]     S1:[T4 - T5 - T6 - T7 -]
   DPCPP_CPU_CU_AFFINITY=close spread:   S0:[T0 - T2 - T4 - T6 -]     S1:[T1 - T3 - T5 - T7 -]
   DPCPP_CPU_CU_AFFINITY=close master:   S0:[T0 T1 T2 T3 T4 T5 T6 T7] S1:[]

Example 2: Hyper-threading Disabled
Assume a machine with 2 sockets, 4 physical cores per socket, and each physical core has 2 hyper threads.

• S<num> denotes the socket number that has 8 cores specified in a list
• T<num> denotes the Intel oneTBB thread number
• “-” means unused core

export DPCPP_CPU_NUM_CUS=8
   DPCPP_CPU_PLACES=sockets, cores and threads have the same bindings:
   DPCPP_CPU_CU_AFFINITY=close:    S0:[T0 T1 T2 T3]     S1:[T4 T5 T6 T7]
   DPCPP_CPU_CU_AFFINITY=spread:   S0:[T0 T2 T4 T6]     S1:[T1 T3 T5 T7]
   DPCPP_CPU_CU_AFFINITY=master:   S0:[T0 T1 T2 T3]     S1:[T4 T5 T6 T7]

export DPCPP_CPU_NUM_CUS=4
   DPCPP_CPU_PLACES=sockets, cores and threads have the same bindings:
   DPCPP_CPU_CU_AFFINITY=close:    S0:[T0  -  T1  -  ]     S1:[T2  -  T3  - ]
   DPCPP_CPU_CU_AFFINITY=spread:   S0:[T0  -  T2  -  ]     S1:[T1  -  T3  - ]
   DPCPP_CPU_CU_AFFINITY=master:   S0:[T0 T1 T2 T3]        S1:[ -   -   -   - ]

GPU Flow

GPUs are special-purpose compute devices that can be used to offload a compute intensive portion of your
application. GPUs usually consists of many smaller cores and are therefore known for massive throughput.
There are some tasks better suited to a CPU and others that may be better suited to a GPU.

Tip Unsure whether your workload fits best on CPU, GPU, or FPGA? Compare the benefits of CPUs,
GPUs, and FPGAs for different oneAPI compute workloads.
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GPU Offload Flow

Offloading a program to a GPU defaults to the level zero runtime. There is also an option to switch to the
OpenCL™ runtime. In SYCL* and OpenMP* offload, each work item is mapped to a SIMD lane. A subgroup
maps to SIMD width formed from work items that execute in parallel and subgroups are mapped to GPU EU
thread. Work-groups, which include work-items that can synchronize and share local data, are assigned for
execution on compute units (that is, streaming multiprocessors or Xe core, also known as sub-slices). Finally,
the entire global NDRange of work-items maps to the entire GPU.

PRG Interface GPU workgroups

To learn more about GPU execution, see Compare Benefits of CPUs, GPUs, and FPGAs for Different oneAPI
Compute Workloads.

Set Up for GPU Offload
1. Make sure you have followed all steps in the oneAPI Development Environment Setup section, including

running the setvars script.
2. Configure your GPU system by installing drivers and add the user to the video group. See the Get

Started Guide for instructions:

• Get Started with Intel oneAPI Base Toolkit for Linux* | Windows* | MacOS*
• Get Started with Intel oneAPI HPC Toolkit for Linux* | Windows* | MacOS*
• Get Started with Intel oneAPI IoT Toolkit for Linux* | Windows*

3. Check if you have a supported GPU and the necessary drivers installed using the sycl-ls command. In
the following example, if you had the OpenCL and Level Zero driver installed you would see two entries
for each runtime associated with the GPU:

CPU : OpenCL 2.1 (Build 0)[ 2020.11.12.0.14_160000 ]
GPU : OpenCL 3.0 NEO [ 21.33.20678 ]
GPU : 1.1[ 1.2.20939 ]
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4. Use one of the following code samples to verify that your code is running on the GPU. The code sample
adds scalar to large vectors of integers and verifies the results.

SYCL

To run on a GPU, SYCL provides built-in device selectors using device_selector as a base class.
gpu_selector selects a GPU device. You can also create your own custom selector. For more information,
see the Choosing Devices section in Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL (book).

SYCL code sample:

#include <CL/sycl.hpp>
#include <array>
#include <iostream>

using namespace sycl;
using namespace std;
constexpr size_t array_size = 10000;
int main(){
constexpr int value = 100000;
try{
        //
// The default device selector will select the most performant device.
        default_selector d_selector;
        queue q(d_selector);

      //Allocating shared memory using USM.
        int *sequential = malloc_shared<int>(array_size, q);
        int *parallel = malloc_shared<int>(array_size, q);
        //Sequential iota
        for (size_t i = 0; i < array_size; i++) sequential[i] = value + i;

        //Parallel iota in SYCL
        auto e = q.parallel_for(range{array_size}, [=](auto i) { parallel[i] = value + i; });
        e.wait();
   // Verify two results are equal.
    for (size_t i = 0; i < array_size; i++) {
      if (parallel[i] != sequential[i]) {
        cout << "Failed on device.\n";
        return -1;
      }
    }
    free(sequential, q);
    free(parallel, q);
}catch (std::exception const &e) {
    cout << "An exception is caught while computing on device.\n";
    terminate();
}
 cout << "Successfully completed on device.\n";
  return 0;
}

To compile the code sample, use:

icpx -fsycl simple-iota-dp.cpp -o simple-iota

  1  Intel® oneAPI Programming Guide

50

https://link.springer.com/book/10.1007%2F978-1-4842-5574-2
https://link.springer.com/book/10.1007%2F978-1-4842-5574-2


Results after compilation:

./simple-iota
Running on device: Intel® UHD Graphics 630 [0x3e92]
Successfully completed on device.

OpenMP*

OpenMP code sample:

#include <stdlib.h>
#include <omp.h>
#include <iostream>
constexpr size_t array_size = 10000;
#pragma omp requires unified_shared_memory
int main(){
constexpr int value = 100000;
// Returns the default target device.
int deviceId = (omp_get_num_devices() > 0) ? omp_get_default_device() : omp_get_initial_device();
int *sequential = (int *)omp_target_alloc_host(array_size, deviceId);
int *parallel = (int *)omp_target_alloc(array_size, deviceId);

        for (size_t i = 0; i < array_size; i++)
                sequential[i] = value + i;

        #pragma omp target parallel for
        for (size_t i = 0; i < array_size; i++)
                parallel[i] = value + i;

        for (size_t i = 0; i < array_size; i++) {
         if (parallel[i] != sequential[i]) {
           std::cout << "Failed on device.\n";
           return -1;
         }
        }

        omp_target_free(sequential, deviceId);
        omp_target_free(parallel, deviceId);

        std::cout << "Successfully completed on device.\n";
         return 0;

}
To compile the code sample, use:

icpx -fsyclsimple-iota-omp.cpp -fiopenmp -fopenmp-targets=spir64 -o simple-iota
Results after compilation:

 ./simple-iota
Successfully completed on device.
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NOTE If you have an offload region present and no accelerator, the kernel falls back to traditional host
compilation (without the OpenCL runtime) unless you are using the environment variable
OMP_TARGET_OFFLOAD=mandatory.

Offload Code to GPU
To decide which GPU hardware and what parts of the code to offload, refer to the GPU optimization workflow
guide.

To find opportunities to offload your code to GPU, use the Intel Advisor for Offload Modeling.

Debug GPU Code
The following list has some basic debugging tips for offloaded code.

• Check CPU or host/target or switch runtime to OpenCL to verify the correctness of code.
• You could use printf to debug your application. Both SYCL and OpenMP offload support printf in kernel

code.
• Use environment variables to control verbose log information.

For SYCL, the following debug environment variables are recommended. A full list is available from GitHub.

Debugging Tips, Offloaded Code

Name Value Description

SYCL_DEVICE_FILTER backend:device_type:device_
num

GitHub description

SYCL_PI_TRACE 1|2|-1 1: print out the basic trace log of
the DPC++ runtime plugin 2:
print out all API traces of DPC++
runtime plugin -1: all of “2”
including more debug messages

ZE_DEBUG Variable defined with any value -
enabled

This environment variable
enables debug output from the
Level Zero backend when used
with the DPC++ runtime. It
reports: * Level Zero APIs called
* Level Zero event information

For OpenMP, the following debug environment variables are recommended. A full list is available from the 
LLVM/OpenMP documentation.

Recommended OpenMP Debug Environment Variables

Name Value Description

LIBOMPTARGET_DEVICETYPE cpu | gpu Select

LIBOMPTARGET_DEBUG 1 Print out verbose debug
information

LIBOMPTARGET_INFO Values available in LLVM/OpenMP
documentation

Allows the user to request
different types of runtime
information from libomptarget

Use Ahead of Time (AOT) to move Just-in-Time (JIT) compilations to AOT compilation issues.
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CL_OUT_OF_RESOURCES Error

The CL_OUT_OF_RESOURCES error can occur when a kernel uses more __private or __local memory
than the emulator supports by default.

When this occurs, you will see an error message similar to this:

$  ./myapp
:
Problem size: c(150,600) = a(150,300) * b(300,600)
terminate called after throwing an instance of 'cl::sycl::runtime_error'
  what():  Native API failed. Native API returns: -5 (CL_OUT_OF_RESOURCES) -5 
(CL_OUT_OF_RESOURCES)
Aborted (core dumped)
$

Or if using onetrace:

$ onetrace -c ./myapp
:
>>>> [6254070891] zeKernelSuggestGroupSize: hKernel = 0x263b7a0 globalSizeX = 163850 globalSizeY 
= 1 globalSizeZ = 1 groupSizeX = 0x7fff94e239f0 groupSizeY = 0x7fff94e239f4 groupSizeZ = 
0x7fff94e239f8
<<<< [6254082074] zeKernelSuggestGroupSize [922 ns] -> 
ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY(0x1879048195)
terminate called after throwing an instance of 'cl::sycl::runtime_error'
  what():  Native API failed. Native API returns: -5 (CL_OUT_OF_RESOURCES) -5 
(CL_OUT_OF_RESOURCES)
Aborted (core dumped)
$

To see how much memory was being copied to shared local memory and the actual hardware limit, set debug
keys:

export PrintDebugMessages=1
export NEOReadDebugKeys=1

This will change the output to:

$ ./myapp
:
Size of SLM (656384) larger than available (131072)
terminate called after throwing an instance of 'cl::sycl::runtime_error'
  what():  Native API failed. Native API returns: -5 (CL_OUT_OF_RESOURCES) -5 
(CL_OUT_OF_RESOURCES)
Aborted (core dumped)
$

Or, if using onetrace:

$ onetrace -c ./myapp
:
>>>> [317651739] zeKernelSuggestGroupSize: hKernel = 0x2175ae0 globalSizeX = 163850 globalSizeY 
= 1 globalSizeZ = 1 groupSizeX = 0x7ffd9caf0950 groupSizeY = 0x7ffd9caf0954 groupSizeZ = 
0x7ffd9caf0958
Size of SLM (656384) larger than available (131072)
<<<< [317672417] zeKernelSuggestGroupSize [10325 ns] -> 
ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY(0x1879048195)
terminate called after throwing an instance of 'cl::sycl::runtime_error'
  what():  Native API failed. Native API returns: -5 (CL_OUT_OF_RESOURCES) -5 
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(CL_OUT_OF_RESOURCES)
Aborted (core dumped)
$

See Debugging the DPC++ and OpenMP Offload Process for more information on debug techniques and
debugging tools available with oneAPI.

Optimize GPU Code
There are multiple ways to optimize offloaded code. The following list provides some starting points. Review
the oneAPI GPU Optimization Guide for additional information.

• Reduce overhead of memory transfers between host and device.
• Have enough work to keep the cores busy and reduce the data transfer overhead cost.
• Use GPU memory hierarchy like GPU caches, shared local memory for faster memory accesses.
• Use AOT compilation (offline compilation) instead of JIT compilation. With offline compilation, you could

target your code to specific GPU architecture. Refer to Offline Compilation for GPU for details.
• The Intel® GPU Occupancy Calculator allows you to compute the occupancy of an Intel® GPU for a given

kernel and work group parameters.

Additional recommendations are available from Optimize Offload Performance.

Example GPU Commands

The examples below illustrate how to create and use static libraries with device code on Linux.

NOTE Linking with a dynamic library is not supported.

Produce a fat object with device code:

icpx -fsycl -c static_lib.cpp
Create a fat static library out of it using the ar tool:

ar cr libstlib.a static_lib.o
Compile application sources:

icpx -fsycl -c a.cpp
Link the application with the static library:

icpx -fsycl -foffload-static-lib=libstlib.a a.o -o a.exe

Ahead-of-Time Compilation for GPU

The following example command produces app.out for a specific GPU target:

For DPC++:

icpx -fsycl-targets=spir64_gen -Xs "-device <device name>" a.cpp b.cpp -o app.out
For OpenMP*offload:

icpx -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend "-device <device name>" a.cpp 
b.cpp -o app.out

A list of allowed values for the device name are available from the Intel® oneAPI DPC++/C++ Compiler
Developer Guide and Reference.
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FPGA Flow

Field-programmable gate arrays (FPGAs) are configurable integrated circuits that you can program to
implement arbitrary circuit topologies. Classified as spatial compute architectures, FPGAs differ significantly
from fixed Instruction Set Architecture (ISA) devices such as CPUs and GPUs. FPGAs offer a different set of
optimization trade-offs from these traditional accelerator devices.

While you can compile SYCL* code for CPU, GPU or FPGA, the compiling process for FPGA development is
somewhat different than that for CPU or GPU development.

The following table summarizes terminologies used in describing the FPGA flow:

FPGA Flow-specific Terminology

Term Definition

Device code SYCL source code that executes on a SYCL device
rather than the host. Device code is specified via
lambda expression, functor, or kernel class.

Host code SYCL source code that is compiled by the host
compiler and executes on the host rather than the
device.

Device image The result of compiling the device code to a binary
(or intermediate) representation. The device image
is combined with the host binary, within a (fat)
object or executable file. See Compilation Flow
Overview.

FPGA emulator image The device image resulting from compiling for the
FPGA emulator. See FPGA Emulator.

FPGA early image The device image resulting from the early image
compilation stage. See FPGA Optimization Report.

FPGA hardware image The device image resulting from the hardware
image compilation stage. See FPGA Optimization
Report and FPGA Hardware.

Tip You can also learn about programming for FPGA devices in detail from the Data Parallel C++ book
available at https://link.springer.com/chapter/10.1007/978-1-4842-5574-2_17.

Why is FPGA Compilation Different?

FPGAs differ from CPUs and GPUs in some ways. A significant difference compared to CPU or GPU is
generating a device binary for FPGA hardware, which is a computationally intensive and time-consuming
process. It is normal for an FPGA compile to take several hours to complete. For this reason, only ahead-of-
time (or offline) kernel compilation mode is supported for FPGA. The long compile time for FPGA hardware
makes just-in-time (or online) compilation impractical.

Longer compile times are detrimental to developer productivity. The Intel® oneAPI DPC++/C++ Compiler
provides several mechanisms that enable you to target FPGA and iterate quickly on your designs. By
circumventing the time-consuming process of full FPGA compilation wherever possible, you can benefit from
the faster compile times that you are familiar with for CPU and GPU development.

Types of SYCL* FPGA Compilation
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SYCL supports accelerators in general. The Intel® oneAPI DPC++/C++ Compiler implements additional FPGA-
specific support to assist FPGA code development. This topic highlights different FPGA compilation flows that
the Intel oneAPI Base Toolkit supports.

The following table summarizes the types of FPGA compilation:

Types of FPGA Compilation

Device Image Type Time to Compile Description

FPGA Emulator Seconds Compiles the FPGA device code
to the CPU. Use the Intel® FPGA
Emulation Platform for OpenCL™
software to verify your SYCL
code’s functional correctness.

Optimization Report Minutes Partially compiles the FPGA
device code for hardware. The
compiler generates an
optimization report that describes
the structures generated on the
FPGA, identifies performance
bottlenecks, and estimates
resource utilization. When your
compilation targets an FPGA
device family or part number, this
stage also give you RTL files for
the IP component in your code.
You can then use Intel® Quartus®
Prime software to integrate your
IP components into a larger
design.

FPGA Simulator Minutes Compiles the FPGA device code
to the CPU. Use the Questa*-
Intel® FPGA Edition simulator to
debug your code.

FPGA Hardware Image Hours When your compilation targets an
FPGA acceleration board, this
stage generates the real FPGA
bitstream to execute on the
target FPGA platform. When your
compilation targets an FPGA
device family or part number, this
stage also gives you RTL files for
the IP component in your code.
You can then use Intel® Quartus®
Prime software to integrate your
IP components into a larger
design.

A typical FPGA development workflow is to iterate in the emulation, optimization report, and simulation
stages, refining your code using the feedback provided by each stage. Intel® recommends relying on
emulation and the FPGA optimization report whenever possible.

For details about how these stages apply when developing IP components, refer to FPGA IP Authoring Flow
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Tip To compile for FPGA emulation or FPGA simulation, generate the FPGA optimization report, you
require only the Intel® oneAPI DPC++/C++ Compiler that is part of the Intel® oneAPI Base Toolkit.
An FPGA hardware compile requires installing the Intel® Quartus® Prime software separately. Targeting
a board also requires that you install the BSP for the board.

For more information, refer to the Intel® oneAPI Toolkits Installation Guide and Intel® FPGA
development flow webpage.

Also, generating RTL code for an IP component requires only the Intel® oneAPI DPC++/C++ Compiler
that is part of the Intel® oneAPI Base Toolkit. However, for simulating or integrating that IP component
into your hardware design requires installing the Intel® Quartus® Prime Pro Edition software.

FPGA Emulator
The FPGA emulator (Intel® FPGA Emulation Platform for OpenCL™ software) is the fastest method to verify the
correctness of your code. It executes the SYCL device code on the CPU. The emulator is similar to the SYCL
host device, but unlike the host device, the FPGA emulator device supports FPGA extensions such as FPGA
pipes and fpga_reg. For more information, refer to Pipes Extension and Kernel Variables topics in the FPGA
Optimization Guide for Intel® oneAPI Toolkits.

The following are some important caveats to remember when using the FPGA emulator:

• Performance is not representative.

Never draw inferences about FPGA performance from the FPGA emulator. The FPGA emulator’s timing
behavior is not correlated to that of the physical FPGA hardware. For example, an optimization that yields
a 100x performance improvement on the FPGA may not impact the emulator performance. The emulator
might show an unrelated increase or decrease.

• Undefined behavior may differ.

If your code produces different results when compiled for the FPGA emulator versus FPGA hardware, your
code most likely exercises undefined behavior. By definition, undefined behavior is not specified by the
language specification and might manifest differently on different targets.

For detailed information about emulation for full-stack acceleration kernels, refer to Emulate Your Kernel.

For information about emulation of IP components, refer to For more details, refer to Emulate and Debug
Your IP Component.

FPGA Optimization Report
A full FPGA compilation occurs in the following stages, and optimization reports are generated after both
stages:

FPGA Optimization Report

Stages Description Optimization Report
Information

FPGA early image (Compilation
takes minutes to complete)

The SYCL device code is
optimized and converted into an
FPGA design specified in the 
Verilog Register-Transfer Level
(RTL) (a low-level, native entry
language for FPGAs). The
intermediate compilation result is
the FPGA early device image that
is not an executable.

Contains important information
about how the compiler has
transformed your SYCL device
code into an FPGA design. The
report includes the following
information:

• Visualizations of structures
generated on the FPGA.
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Stages Description Optimization Report
Information

The optimization report
generated at this stage is static
in nature.

• Performance and expected
performance bottleneck.

• Estimated resource utilization.

For information about the FPGA
optimization report, refer to the 
FPGA Optimization Guide for
Intel® oneAPI Toolkits.

FPGA hardware image
(Compilation takes hours to
complete)

The Verilog RTL specifying the
design’s circuit topology is
mapped onto the FPGA’s primitive
hardware resources by the Intel®
Quartus® Prime pro Edition
Software. The result is an FPGA
hardware binary (also referred to
as a bitstream).

Contains precise information
about resource utilization and
fMAX numbers. For detailed
information about how to analyze
reports, refer to Analyze your
Design section in the FPGA
Optimization Guide for Intel®
oneAPI Toolkits.

For information about the FPGA
hardware image, refer to the 
FPGA Optimization Guide for
Intel® oneAPI Toolkits.

When your compilation targets an FPGA device or part number, this stage gives you RTL files for the IP
component in your code. You can then use Intel® Quartus® Prime software to integrate your IP components
into a larger design.

FPGA Simulator
The simulation flow allows you to use the Questa*-Intel® FPGA Edition simulator software to simulate the
exact behavior of the synthesized kernel. Like emulation, you can run simulation on a system that does not
have a target FPGA board installed. The simulator models a kernel much more accurately than the emulator,
but it is much slower than the emulator.

The simulation flow is cycle-accurate and bit-accurate. It exactly models the behavior of a kernel’s datapath
and the results of operations on floating-point data types. However, simulation cannot accurately model
variable-latency memories or other external interfaces. Intel recommends that you simulate your design with
a small input dataset because simulation is much slower than running on FPGA hardware or emulator.

You can use the simulation flow in conjunction with profiling to collect additional information about your
design. For more information about profiling, refer to Intel® FPGA Dynamic Profiler for DPC++ in the FPGA
Optimization Guide for Intel® oneAPI Toolkits.

NOTE You cannot debug kernel code compiled for simulation using the GNU Project Debugger (GDB)*,
Microsoft* Visual Studio*, or any standard software debugger.

For more information about the simulation flow, refer to one of the following topics:

• Evaluate Your Kernel Through Simulation
• Evaluate Your IP Component Through Simulation
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FPGA Hardware
An FPGA hardware compile requires the Intel® Quartus® Prime software (installed separately). This is a full
compilation stage through to the FPGA hardware image where you can target one of the following:

• Intel® FPGA device family
• Specific Intel® FPGA device part number
• Custom board with a supported BSP
• Intel® Programmable Acceleration Card (PAC) (deprecated)

For more information about the targets, refer to the Intel® oneAPI DPC++/C++ Compiler System
Requirements. For more information about using Intel® PAC or custom boards, refer to the FPGA BSPs and
Boards section and and the Intel® oneAPI Toolkits Installation Guide for Linux* OS Installation Guide.

FPGA Compilation Flags

FPGA compilation flags control the FPGA image type the Intel® oneAPI DPC++/C++ Compiler targets.

The following are examples of Intel® oneAPI DPC++/C++ Compiler commands that target the FPGA image
types:

# FPGA emulator image
icpx -fsycl -fintelfpga fpga_compile.cpp -o fpga_compile.fpga_emu

# FPGA simulator image: FPGA device family
# Note that in this release, you can target Intel Agilex® 7 devices in any of the following 
formats:
# -Xstarget=Agilex  | -Xstarget=Agilex7 | -Xstarget="Agilex 7" | -Xstarget=agilex7 | -
Xstarget="agilex 7" |
# The following command is an example that shows one of the supported formats:
icpx -fsycl -fintelfpga fpga_compile.cpp -Xssimulation -Xstarget=Agilex7 -Xsghdl -o 
fpga_compile.fpga_sim

# FPGA simulator image: FPGA part number
icpx -fsycl -fintelfpga fpga_compile.cpp -Xssimulation -Xstarget=AGFB014R24A3EV -Xsghdl  -o 
fpga_compile.fpga_sim

# FPGA simulator image: explicit board
icpx -fsycl -fintelfpga fpga_compile.cpp -Xssimulation -Xstarget=intel_s10sx_pac:pac_s10 -o 
fpga_compile.fpga_sim

# FPGA early image (with optimization report): FPGA device family
icpx -fsycl -fintelfpga fpga_compile.cpp -Xshardware -fsycl-link=early -Xstarget=Stratix10 -o 
fpga_compile_report.a

# FPGA early image (with optimization report): FPGA part number
icpx -fsycl -fintelfpga fpga_compile.cpp -Xshardware -fsycl-link=early -
Xstarget=1SG280LU3FS0E3VG -o fpga_compile_report.a

# FPGA early image (with optimization report): default board
icpx -fsycl -fintelfpga fpga_compile.cpp -Xshardware -fsycl-link=early -o fpga_compile_report.a

# FPGA early image (with optimization report): explicit board
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icpx -fsycl -fintelfpga fpga_compile.cpp -Xshardware -fsycl-link=early -
Xstarget=intel_s10sx_pac:pac_s10 -o fpga_compile_report.a

# FPGA hardware image: FPGA device family
icpx -fsycl -fintelfpga fpga_compile.cpp -Xshardware -Xstarget=Arria10 -o fpga_compile.fpga

# FPGA hardware image: FPGA part number
icpx -fsycl -fintelfpga fpga_compile.cpp -Xshardware -Xstarget=10AX115S2F45I1SG -o 
fpga_compile.fpga

# FPGA hardware image: default board
icpx -fsycl -fintelfpga fpga_compile.cpp -Xshardware -o fpga_compile.fpga

# FPGA hardware image: explicit board
icpx -fsycl -fintelfpga fpga_compile.cpp -Xshardware -Xstarget=intel_s10sx_pac:pac_s10 -o 
fpga_compile.fpga

NOTE When you specify -o flag, the output directory is named based on what you specify with the -o
flag. For example, if you specify -o fpga_compile.fpga, the output directory would be
fpga_compile.prj. However, when you do not specify the -o flag, the output directory is always
a.prj.

The following table explains the compiler flags used in the above example commands:

FPGA Compilation Flags

Flag Explanation

-fintelfpga Performs ahead-of-time (offline) compilation for
FPGA.

-Xshardware Instructs the compiler to target FPGA hardware. If
you omit this flag, the compiler targets the FPGA
emulator.

NOTE Using the prefix -Xs causes an argument to be
passed to the FPGA backend.

-Xsemulator Generates an emulator device image. This is the
default behavior.

-Xssimulation Generates a simulator device image.

-fsycl-link=early Instructs the compiler to stop after creating the
FPGA early image (and associated optimization
report).

-Xstarget=<FPGA device family>
-Xstarget=<FPGA part number>
-Xstarget=<bsp:variant>

[Optional] Instructs the compiler to target an FPGA
device family, an FPGA part number, or an FPGA
board as follows:
• -Xstarget=<FPGA device family> specifies

the target FPGA device family. Use this target to
facilitate initial development.
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Flag Explanation

For more accurate reports, use the -
Xstarget=<FPGA part number> or -
Xstarget=<bsp:variant> to target specific
FPGA devices or acceleration platforms.

Valid values are CycloneV, Cyclone10GX,
Agilex7, Arria10, and Stratix10.

These values target the following FPGA device
part numbers (OPNs):

• CycloneV: 5CGXFC7C7F23C8
• Cyclone10GX: 10CX220YF780I5G
• Agilex7: AGFB014R24A2E2V
• Arria10: 10AX115U1F45I1SG
• Stratix10: 1SG280LU3F50I2VG

NOTE In this release, you can target an Intel
Agilex® 7 device in any of the following formats:

• -Xstarget=Agilex
• -Xstarget=Agilex7
• -Xstarget="Agilex 7"
• -Xstarget=agilex7
• -Xstarget="agilex 7"

• -Xstarget=<FPGA part number> specifies the
target FPGA part number (sometimes called an
OPN). You can specify any valid Cyclone® V,
Intel® Cyclone® 10 GX, Intel Agilex® 7, Intel®
Arria® 10, or Intel® Stratix® 10 part number.

• -Xstarget=<bsp:variant> specifies the FPGA
board variant and BSP. Refer to the FPGA BSPs
and Boards section for additional details.

If you omit the -Xstarget flag, the compiler
chooses the default FPGA board variant pac_a10
from the intel_a10gx_pac BSP (equivalent to -
Xstarget=intel_a10gx_pac:pac_a10).

Warning The output of an icpx compile command overwrites the output of previous compiles that
used the same output name. Therefore, Intel® recommends using unique output names (specified with
-o). This is especially important for FPGA compilation since a lost hardware image may take hours to
regenerate.

In addition to the compiler flags demonstrated by the commands above, there are flags to control the
verbosity of the icpx command’s output, the number of parallel threads to use during compilation, and so
on. The following section briefly describes those flags.

Other SYCL* FPGA Flags Supported by the Compiler
The Intel® oneAPI DPC++/C++ Compiler offers several options that allow you to customize the kernel
compilation process. The following table summarizes other options supported by the compiler:
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Other Supported FPGA Flags

Option name Description

-fsycl-help=fpga Prints out FPGA-specific options for the icpx
command.

-fsycl-link=early
-fsycl-link=image

• -fsycl-link=early is synonymous with -
fsycl-link. Both instruct the compiler to stop
after creating the FPGA early image (and the
associated optimization report).

• -fsycl-link=image is used in the device link
compilation flow to instruct the compiler to
generate the FPGA hardware image. Refer to the 
Fast Recompile for FPGA section for additional
information.

-reuse-exe=<exe_file> Instructs the compiler to extract the compiled FPGA
hardware or simulation image from the existing
executable if the kernel has not changed and
package it into the new executable, saving the
device or simulation compilation time. This option is
not applicable when compiling for emulation. Refer
to the Fast Recompile for FPGA section for
additional information.

-Xsv FPGA backend generates a verbose output
describing the progress of the compilation.

-Xsghdl[=<depth>] Causes the simulation flow to log signals to
Siemens EDA (formerly Mentor Graphics) Questa*
waveform files.

Use the optional <depth> attribute to specify how
many levels of hierarchy are logged. If you do not
specify a value for the <depth> attribute, a depth
of 1 is used by default.

-Xsparallel=<num_threads> Sets the degree of parallelism used in the FPGA
bitstream compilation.

The <num_threads> value specifies the number of
parallel threads you want to use. The maximum
recommended value is the number of available
cores. Setting this flag is optional. The default
behavior is for the Intel® Quartus® Prime software
to compile in parallel on all available cores.

-Xsseed=<value> Sets the seed used by Intel® Quartus® Prime
software when generating the FPGA bitstream. The
value must be an unsigned integer, and by default,
the value is 1.

-Xsfast-compile Runs FPGA bitstream compilation with reduced
effort. This option allows faster compile time but at
the cost of reduced performance of the compiled
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Option name Description

FPGA hardware image. Use this flag only for faster
development time. It is not intended for
production-quality results.

The -Xsfast-compile flag sets the Intel Quartus
Prime Pro Edition software into the compile mode
that is dominated by the Fast Functional Test.

Warning When compiling your SYCL kernel using the
-Xsfast-compile flag, you might see functional
failures due to timing violations in your design. In
such cases, either avoid using the -Xsfast-
compile flag or try compiling your kernel with
different seeds.

For more information about FPGA optimization flags, refer to the Optimization Flags section in the FPGA
Optimization Guide for Intel® oneAPI Toolkits.

Emulate and Debug Your Design

The Intel FPGA Emulation Platform for OpenCL software (also referred to as the emulator or the FPGA
emulator) is installed as part of the Intel® oneAPI Base Toolkit. It assesses the functionality of your kernel.
The emulator supports 64-bit Windows and Linux operating systems. On Linux systems, the GNU C Library
(glibc) version 2.15 or later is required.

NOTE

• You cannot use the execution time of an emulated design to estimate its execution time on an
FPGA. Furthermore, running an emulated design is not a substitute for natively running a
functionally equivalent C/C++ implementation on an x86-64 host.

• Emulation does not support cross-compilation to ARM® processor. To run emulation on a design that
targets an ARM SoC device, emulate on a non-SoC board (for example, intel_a10gx_pac or
intel_s10sx_pac). When satisfied with the emulation results, you can target your design on an
SoC board for subsequent optimization steps.

• To enable debugging of kernel code, optimizations are disabled by default for the FPGA emulator.
This can lead to sub-optimal execution speed when emulating kernel code. You can pass the -g0
flag to the icpx compile command to disable debugging and enable optimizations. This enables
faster emulator execution.

• When targeting the FPGA emulator device, use the -O2 compiler flag to turn on optimizations and
speed up the emulation. To turn off optimizations (for example, to facilitate debugging), pass -O0.
With Windows Visual C++ debugger, specify /Od.

• For information about debugging with Intel® Distribution for GDB*, refer to the following:

• Debugging with Intel® Distribution for GDB* on Linux* OS Host
• Get Started with Intel® Distribution for GDB* on Linux* OS Host
• Get Started with Intel® Distribution for GDB* on Windows* OS Host

Refer to the following topics for additional information:

• Emulator Environment Variables
• Emulate Pipe Depth
• Emulate Applications with a Pipe That Reads or Writes to an I/O Pipe
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• Compile and Emulate Your Design
• Limitations of the Emulator
• Discrepancies in Hardware and Emulator Results
• Emulator Known Issues

Emulator Environment Variables

The following table lists environment variables that you can use to modify the behavior of the emulator:

Emulator Environment Variables

Environment Variable Description

CL_CONFIG_CPU_EMULATE_DEVICES Controls the number of identical emulator devices
provided by the emulator platform. If not set, a
single emulator device is available. Therefore, set
this variable only if you want to emulate multiple
devices.

DPCPP_CPU_NUM_CUS Indicates a maximum number of threads that the
emulator can use. The default value is 32, and the
maximum value is 255. Each thread can run a
single kernel. If the application requires several
kernels to be executing simultaneously, you must
set the DPCPP_CPU_NUM_CUS environment variable
appropriately to the number of kernels used or a
higher value.

CL_CONFIG_CPU_FORCE_LOCAL_MEM_SIZE Set the amount of available local memory with
units. For example: 8MB, 256KB, or 1024B.

CL_CONFIG_CPU_FORCE_PRIVATE_MEM_SIZE Set the amount of available private memory with
units. For example: 8MB, 256KB, or 1024B.

NOTE On Windows, the FPGA emulator can silently fail
by running out of memory. As a workaround to catch
this error, write your kernel code using the try-catch
syntax.

CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE When you compile your kernel for emulation, the
pipe depth is different from the pipe depth
generated when your kernel is compiled for
hardware. You can change this behavior with the
CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE
environment variable. For details, see Emulate Pipe
Depth.

Emulate Pipe Depth

When you compile your kernel for emulation, the default pipe depth is different from the default pipe depth
generated when your kernel is compiled for hardware. You can change this behavior when you compile your
kernel for emulation with the CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE environment variable.

Important For pipes, you must set the CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE environment
variable before running the host program.

The CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE environment variable accepts the following values:
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CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE values

Environment Variable Description

ignoredepth All pipes are given a pipe depth chosen to provide
the fastest execution time for your kernel
emulation. Any explicitly set pipe depth attribute is
ignored.

default Pipes with an explicit depth attribute have their
specified depth. Pipes without a specified depth are
given a default pipe depth that is chosen to provide
the fastest execution time for your kernel
emulation.

strict All pipe depths in the emulation are given a depth
that matches the depth given for the FPGA
compilation. If the specified depth is not given, the
depth will be 1. This value is used by default if the
CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE
environment variable is not set.

Emulate Applications with a Pipe That Reads or Writes to an I/O Pipe

The Intel® FPGA Emulation Platform for OpenCL™ software emulates kernel-to-kernel pipes. However, it does
not support interacting directly with the hardware I/O pipes on your target board. Nevertheless, you can
emulate the behavior of I/O pipes using the following procedures:

For Input I/O Pipes
1. Store input data to be transferred to the pipe in a file with a name matching the id specialization of the

pipe. Consider the following example:

// Specialize a pipe type
struct read_io_pipe {
  static constexpr unsigned id = 0;
};
using read_iopipe = sycl::ext::intel::kernel_readable_io_pipe<read_io_pipe, unsigned, 4>;

2. Create a file named 0.
3. Store the test input data in the file 0.

For Output I/O Pipes
Output data is automatically written to a file with a name matching the id specialization of the output pipe.

Compile and Emulate Your Design

To compile and emulate your FPGA kernel design, perform the following steps:

1. Modify the host part of your program to declare the
sycl::ext::intel::fpga_emulator_selector_v device selector. Use this selector when
instantiating a device queue for enqueuing your FPGA device kernel. For more information, refer to 
Device Selectors for FPGA.

2. Compile your design by including the -fintelfpga option in your icpx command to generate an
executable.

3. Run the resulting executable:

• For Windows:
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1. Define the number of emulated devices by invoking the following command:

set CL_CONFIG_CPU_EMULATE_DEVICES=<number_of_devices>
2. Run the executable.
3. Invoke the following command to unset the variable:

set CL_CONFIG_CPU_EMULATE_DEVICES=
• For Linux, invoke the following command:

env CL_CONFIG_CPU_EMULATE_DEVICES=<number_of_devices> <executable_filename>
This command specifies the number of identical emulation devices that the emulator must provide.

Tip If you want to use only one emulator device, you need not set the
CL_CONFIG_CPU_EMULATE_DEVICES environment variable.

NOTE

• The emulator is built with GCC 7.4.0 as part of the Intel® oneAPI DPC++/C++ Compiler. When
running the executable for an emulated FPGA device, the version of libstdc++.so must be at
least that of GCC 7.4.0. In other words, the LD_LIBRARY_PATH environment variable must ensure
that the correct version of libstdc++.so is found.

If the correct version of libstdc++.so is not found, the call to clGetPlatformIDs function fails to
load the FPGA emulator platform and returns CL_PLATFORM_NOT_FOUND_KHR (error code -1001).
Depending on which version of libstdc++.so is found, the call to clGetPlatformIDs may
succeed, but a later call to the clCreateContext function may fail with
CL_DEVICE_NOT_AVAILABLE (error code -2).

If the LD_LIBRARY_PATH does not point to a compatible libstdc++.so, use the following syntax
to invoke the host program:

env LD_LIBRARY_PATH=<path to compatible libstdc++.so>:$LD_LIBRARY_PATH <executable> 
[executable arguments]

Limitations of the Emulator

The Intel® FPGA Emulation Platform for OpenCL™ software has the following limitations:

• Concurrent execution

Modeling of concurrent kernel executions has limitations. During execution, the emulator is not
guaranteed to run interacting work items in parallel. Therefore, some concurrent execution behaviors,
such as different kernels accessing global memory without a barrier for synchronization, might generate
inconsistent emulation results between executions.

• Same address space execution

The emulator executes the host runtime and kernels in the same address space. Certain pointer or array
use in your host application might cause the kernel program to fail and vice versa. Example uses include
indexing externally allocated memory and writing to random pointers.

To analyze your program, you may use memory leak detection tools, such as Valgrind. However, the host
might encounter a fatal error caused by out-of-bounds write operations in your kernel and vice versa.

• Conditional pipe operations

Emulation of pipe behavior has limitations, especially for conditional pipe operations where the kernel
does not call the pipe operation in every loop iteration. In these cases, the emulator might execute pipe
operations in a different order than on the hardware.

• GCC version
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You must run the emulator host programs on Linux with a version of libstdc++.so from GCC 7.4.0 or
later. You can achieve this either by installing GCC 7.4.0 or later on your system or setting the
LD_LIBRARY_PATH environment variable such that a compatible libstdc++.so is identified.

Troubleshooting Discrepancies in Hardware and Emulator Results

When you emulate a kernel, your kernel might produce results different from the kernel compiled for
hardware. You can further debug your kernel before you compile for hardware by running your kernel
through simulation.

Warning These discrepancies usually occur when the Intel® FPGA Emulation Platform for OpenCL™ is
unable to model some aspects of the hardware computation accurately or when your program relies on
undefined behavior.

The most common reasons for differences in emulator and hardware results are as follows:

• Your kernel code is using the ivdep attribute. The emulator does not model your kernel when the ivdep
attribute breaks a true dependence. During a full hardware or simulator compilation, you observe this as
an incorrect result.

• Your kernel code relies on uninitialized data. Examples of uninitialized data include uninitialized variables
and uninitialized or partially initialized global buffers, and arrays.

• Your kernel code behavior depends on the precise results of floating-point operations. The emulator uses
floating-point computation hardware of the CPU, whereas the hardware run uses floating-point cores
implemented as FPGA cores.

NOTE The SYCL* standard allows one or more least significant bits of floating-point computations to
differ between platforms while still being considered correct on both such platforms.

• Your kernel code behavior depends on the order of pipe accesses in different kernels. The emulation of
pipe behavior has limitations, especially for conditional pipe operations where the kernel does not call the
pipe operation in every loop iteration. In such cases, the emulator might execute pipe operations in an
order different from that of the hardware. For instance, if you have two kernels connected by pipes, and
each kernel contains a loop containing a read() or write() function that does not happen every loop
iteration (for example, if it is gated by an if-statement), the emulator might interleave the read() or
write() calls differently than the hardware.

• Your kernel or host code is accessing global memory buffers out-of-bounds.

NOTE

• Uninitialized memory read and write behaviors are platform-dependent. Verify the sizes of your
global memory buffers when using all addresses within kernels.

• You can use software memory leak detection tools, such as Valgrind, on the emulated version of
your kernel to analyze memory-related problems. The absence of warnings from such tools does
not mean the absence of issues. It only means that the tool could not detect any problem. In such
a scenario, Intel recommends manual verification of your kernel or host code.

• Your kernel code is accessing local variables out-of-bounds. For example, accessing a local array out-of-
bounds or accessing a variable after it has gone out of scope.
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NOTE In software terms, these issues are stack corruption issues because accessing variables out of
bounds usually affects unrelated variables located close to the variable being accessed on a stack.
Emulated kernels are implemented as regular CPU functions and have an actual stack that can be
corrupted. When targeting hardware, no stack exists. Hence, the stack corruption issues are
guaranteed to manifest differently. When you suspect a stack corruption, use memory leak analyzer
tools, such as Valgrind. However, stack-related issues are usually difficult to identify. Intel recommends
manual verification of your kernel code to debug a stack-related issue.

• Your kernel code uses shifts that are larger than the type being shifted. For example, shifting a 64-bit
integer by 65 bits. According to the SYCL specification version 1.0, the behavior of such shifts is
undefined.

• When you compile your kernel for emulation, the default pipe depth is different from the default pipe
depth generated when your kernel is compiled for hardware. This difference in pipe depths might lead to
scenarios where execution on the hardware hangs while kernel emulation works without any issue. Refer
to Emulate Pipe Depth for information about fixing the pipe depth difference.

• In terms of ordering the printed lines, the output of the cout stream function might be ordered
differently on the emulator and hardware. This is because, in the hardware, cout stream data is stored
in a global memory buffer and flushed from the buffer only when the kernel execution is complete or
when the buffer is full. In the emulator, the cout stream function uses the x86 stdout.

• The hardware and emulator might produce different results if you perform an unaligned load/store
through upcasting of types. A load/store of this type is undefined in the C99 specification.

• When debugging unknown behaviors that differ between emulation and simulation/hardware, Intel
recommends using the -Weverything diagnostic command option for emulation. The -Weverything
option turns on all warnings allowing you to utilize available diagnostics and expose risky coding patterns,
which you might be inadvertently using in your design.

Emulator Known Issues

A few known issues might affect your use of the emulator. Review these issues to avoid possible problems
when using the emulator.

Discrepancy in the Results for Task Sequence Functions
For task sequence functions that have multiple async() calls before the first get() call, the order the get()
calls return results may not be the order in which the async() calls were called. To overcome this issue, use
the simulator to verify that correct results are being returned in this scenario.

Compiler Diagnostics
Some compiler diagnostics are not yet implemented for the emulator.

CL_OUT_OF_RESOURCES Error Returned When Launching a Kernel
This can occur when a kernel uses more __private or __local memory than the emulator supports by
default.

Once you have determined the amount of memory needed, try setting larger values for the
CL_CONFIG_CPU_FORCE_PRIVATE_MEM_SIZE or the CL_CONFIG_CPU_FORCE_LOCAL_MEM_SIZE environment
variable, as described in Emulator Environment Variables.

NOTE On Windows, the FPGA emulator can silently fail by running out of memory. As a workaround to
catch this error, write your kernel code using the try-catch syntax.
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FPGA Runtime Compatibility With Emulation Binaries
The oneAPI FPGA runtime does not support emulation binaries built using an earlier version of oneAPI. You
must recompile emulation binaries with the current oneAPI release.

libstdc++.so and GCC Version
The emulator is built with GCC 7.4.0 as part of the Intel® oneAPI DPC++/C++ Compiler. When running the
executable for an emulated FPGA device, the version of libstdc++.so must be at least that of GCC 7.4.0. In
other words, the LD_LIBRARY_PATH environment variable must ensure that the correct version of libstdc+
+.so is found.

If the correct version of libstdc++.so is not found, the call to clGetPlatformIDs function fails to load the
FPGA emulator platform and returns CL_PLATFORM_NOT_FOUND_KHR (error code -1001). Depending on which
version of libstdc++.so is found, the call to clGetPlatformIDs may succeed, but a later call to the
clCreateContext function may fail with CL_DEVICE_NOT_AVAILABLE (error code -2).

If the LD_LIBRARY_PATH does not point to a compatible libstdc++.so, use the following syntax to invoke
the host program:

env LD_LIBRARY_PATH=<path to compatible libstdc++.so>:$LD_LIBRARY_PATH <executable> [executable 
arguments]

Evaluate Your Kernel Through Simulation

The Questa*-Intel® FPGA Edition and Questa*-Intel® FPGA Starter Edition software assess the functionality of
your kernel.

The simulator flow generates a simulation binary file that runs on the host. The hardware portion of your
code is evaluated in an RTL simulator, and the host portion is executed natively on the processor. This feature
allows you to simulate the functionality of your kernel and iterate on your design without needing to compile
your kernel to hardware and run on the FPGA each time.

NOTE The performance of the simulator is very slow when compared to that of hardware. So, Intel
recommends using a smaller data set for testing.

Use the simulator when you want an insight into the dynamic performance of your kernel and more
information about the functional correctness of your kernel than emulation or the reporting tools provide.

The simulator is cycle accurate and bit-accurate. It has a netlist identical to the generated hardware and can
provide full waveforms for debugging. View the waveforms with Siemens* EDA (formerly Mentor Graphics)
Questa* software.

• Simulation Prerequisites
• Installing the Questa*-Intel FPGA Edition Software
• Set Up the Simulation Environment
• Compile a Kernel for Simulation
• Simulate Your Kernel
• Viewing Simulation Waveforms
• Troubleshoot Simulator Issues

Simulation Prerequisites

To use the FPGA simulation flow, you must download the following prerequisite software:

• Intel Quartus Prime Pro Edition software: Download this package from the FPGA Software Download
Center download page.

• Compatible simulation software (Questa*-Intel® FPGA Edition and Questa*-Intel® FPGA Starter
Edition): Obtain them from the FPGA Software Download Center.

Intel® oneAPI Programming Guide  1  

69

https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html?s=Newest
https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html?s=Newest
https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html?s=Newest


NOTE

• The Questa*-Intel® FPGA Edition requires a license. However, Questa*-Intel® FPGA Starter Edition is
free but requires a zero-cost license. For additional details, refer to the Licensing chapter of the 
Intel FPGA Software Installation and Licensing.

• You can also use your licensed version of Siemens* EDA ModelSim* SE or Siemens* EDA Questa
Advanced Simulator software. For information about all ModelSim* and Questa* software versions
that your Intel® Quartus® Prime Pro Edition software supports, refer to the EDA Interface
Information section of the Intel® Quartus® Prime Pro Edition: <version_number> Software and
Device Support Release Notes.

• On Linux systems, you must install Red Hat* development tools to work with Questa*-Intel® FPGA
Edition and Questa*-Intel® FPGA Starter Edition software.

Installing the Questa*-Intel FPGA Edition Software

For installation instructions, refer to the Questa*-Intel® FPGA Edition Quick-Start: Intel® Quartus® Prime Pro
Edition guide.

NOTE From within the oneAPI environment, you can determine the Intel® Quartus® Prime software
installation location by inspecting the QUARTUS_ROOTDIR_OVERRIDE environment variable.

Set Up the Simulation Environment

You must add directories containing the Intel® Quartus® Prime and Questa* simulation software binaries to
your PATH environment variable.

NOTE Commands listed in this topic assume that you have installed the Questa* simulation software
alongside the Intel® Quartus® Prime Pro Edition software, as mentioned in the Simulation Prerequisites.
If you installed the Questa* simulation software elsewhere, you must modify the PATH environment
variable appropriately.

For Intel® Quartus® Prime Software (Simulation flow only)
For the FPGA simulation flow only, you must explicitly add the Intel® Quartus® Prime software binary
directory to your PATH environment variable using the following command:

• Linux

$ export PATH=$PATH:<quartus_installdir>/quartus/bin
• Windows

set "PATH=%PATH%;<quartus_installdir>\quartus\bin64"
Additionally, you must also set the OCL_ICD_FILENAMES variable to specify the Installable Client Driver
(ICD) to load.

set "OCL_ICD_FILENAMES=%OCL_ICD_FILENAMES%;alteracl_icd.dll"

For Questa*-Intel® FPGA Starter Edition Software
For the free Questa*-Intel® FPGA Starter Edition software, run the following command:

• Linux

$ export PATH=$PATH:<quartus_installdir>/questa_fse/bin

  1  Intel® oneAPI Programming Guide

70

https://www.intel.com/content/www/us/en/docs/programmable/683472/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://www.intel.com/content/www/us/en/docs/programmable/683706/
https://www.intel.com/content/www/us/en/docs/programmable/683706/
https://developers.redhat.com/products/developertoolset/overview
https://www.intel.com/content/www/us/en/docs/programmable/691278/current/prerequisites.html
https://www.intel.com/content/www/us/en/docs/programmable/691278/current/prerequisites.html


• Windows

set "PATH=%PATH%;<quartus_installdir>\questa_fse\win64"

For Questa*-Intel® FPGA Edition Software
For the licensed Questa*-Intel® FPGA Edition software, run the following command:

• Linux

$ export PATH=$PATH:<quartus_installdir>/questa_fe/bin
• Windows

set "PATH=%PATH%;<quartus_installdir>\questa_fe\win64"
You should now be able to successfully compile for simulation.

Compile a Kernel for Simulation

Before performing simulation, you must ensure that you have installed the Intel® Quartus Prime Pro Edition
software on your system. For more information, refer to the Intel® oneAPI Toolkits Installation Guide and 
Intel® FPGA development flow webpage.

To compile a kernel for simulation, include the -Xssimulation option in your icpx command as shown in
the following:

icpx -fsycl -fintelfpga -Xssimulation fpga_compile.cpp
To enable collecting the waveform during the simulation, include the -Xsghdl[=<depth>] option in your
icpx command, where the optional <depth> attribute specifies how many levels of hierarchy are logged. If
you do not specify a value for the <depth> attribute, a depth of 1 is used by default. To log all waveforms,
specify a depth of 0 (-Xsghdl=0).

When simulating on Windows systems, you need the Microsoft linker and additional compilation time
libraries. Verify the following settings:

• The PATH environment variable setting must include the path to the LINK.EXE file in Microsoft Visual
Studio.

• LIB environment variable setting includes the path to the Microsoft compile-time libraries. The compile-
time libraries are available with Microsoft Visual Studio.

Simulate Your Kernel

The simulation runtime creates a simulation device based on the automatically discovered or specified
board_spec.xml/ipinterfaces.xml file. You can apply two simulation environment variables to control
the .xml file searching mechanism.

• CL_CONTEXT_MPSIM_DEVICE_INTELFPGA: When you set this environment variable to 1, the simulation
runtime attempts to automatically search for a board_spec.xml/ipinterfaces.xml file to use, based
on the following rules:

• If there is only one .prj directory in the current working directory, the compiler uses the
board_spec.xml/ipinterfaces.xml file in that directory.

• If there are multiple .prj directories in the current working directory, the compiler uses the
board_spec.xml/ipinterfaces.xml file in the directory with the name matching the current
executable name. When comparing the name, the compiler strips the extensions (.exe, .bin, .elf,
and .out for Linux and .exe for Windows).

NOTE When the automatic search fails, the runtime emits a CL_DEVICE_NOT_AVAILABLE error.
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• INTELFPGA_SIM_DEVICE_SPEC_DIR: Use this environment variable to set the path to the directory
containing the target .xml file when the automatic search mechanism fails or when the automatically
found .xml file is not desired. This environment variable forces the value of the
CL_CONTEXT_MPSIM_DEVICE_INTELFPGA variable to 1 so that you can avoid specifying both variables to
run a design in simulation.

If you want to use the simulation flow and view the waveforms generated during simulation, you must have
either the Siemens EDA* Questa Simulator or ModelSim SE installed and available.

To run your SYCL library through the simulator:

1. Set the CL_CONTEXT_MPSIM_DEVICE_INTELFPGA or INTELFPGA_SIM_DEVICE_SPEC_DIR environment
variable to enable the simulation device:

• Linux

export CL_CONTEXT_MPSIM_DEVICE_INTELFPGA=1
                    or
export INTELFPGA_SIM_DEVICE_SPEC_DIR=<prj dir>

• Windows

set CL_CONTEXT_MPSIM_DEVICE_INTELFPGA=1
                   or
set INTELFPGA_SIM_DEVICE_SPEC_DIR=<prj dir>

NOTE When you set any of the simulation environment variables, only the simulation devices are
available. That is, access to physical boards is disabled. To unset the environment variable, run the
following command:

• Linux

unset CL_CONTEXT_MPSIM_DEVICE_INTELFPGA
               or
unset INTELFPGA_SIM_DEVICE_SPEC_DIR

• Windows

set CL_CONTEXT_MPSIM_DEVICE_INTELFPGA=
              or
set INTELFPGA_SIM_DEVICE_SPEC_DIR=

You might need to set CL_CONTEXT_COMPILER_MODE_INTELFPGA=3 if the host program cannot find the
simulator device.

2. Run your host program. On Linux systems, you can use GDB or Eclipse to debug your host. If
necessary, you can inspect the simulation waveforms for your kernel code to verify the functionality of
the generated hardware.

If you compiled with the -Xsghdl flag, running your compiled program produces a waveform file
(vsim.wlf) that you can view in the Questa*-Intel FPGA Edition software as your host code executes.
The vsim.wlf file appears in the .prj directory.

Viewing Simulation Waveforms

By default, the Intel oneAPI DPC++/C++ Compiler instructs the simulator not to log any signal because
logging signals slows the simulation, and the waveform files can be enormous. However, you can configure
the compiler to save these waveforms for debugging purposes.

To enable signal logging in the simulator, invoke the icpx command with the -Xsghdl option, as follows:

icpx -fsycl -fintelfpga -Xssimulation -Xsghdl[=<depth>] <input files> -o <project_name>
Specify the <depth> attribute to indicate the number of hierarchy levels logged. A depth value of 1 logs only
the top-level signals. A depth of 1 is used as the default if you do not specify the <depth> attribute. To log
all waveforms, specify a depth of 0 (-Xsghdl=0).
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After running the simulation, you can view the generated waveform files by invoking the appropriate script as
follows:

• Linux

bash <project_directory>/view_waveforms.sh
• Windows

<project_directory>\view_waveforms.cmd

NOTE The <project_directory> is commonly <project_name>.prj, where <project_name> is
the name specified with the -o argument to the icpx command.

Troubleshoot Simulator Issues

Review this section to troubleshoot simulator problems you might have when attempting to run a simulation.

Windows Compilation or Run Fails
On Windows, simulation might fail at compilation time or run time if you are running from a directory with a
very long path. Use the -o compiler option to output your compilation results to a shorter path.

A socket=-11 Error Is Logged to transcript.log
If you receive the following error message, you might be mixing resources from multiple simulators, such as
Questa*-Intel FPGA Edition and ModelSim* SE:

Message: "src/hls_cosim_ipc_socket.cpp:202: void IPCSocketMaster::connect():
Assertion `sockfd != -1 && "IPCSocketMaster::connect() call to accept() failed"' failed."

An example of mixing simulator resources is compiling a device with ModelSim* SE and running the host
program in Questa*-Intel FPGA Starter Edition.

Compatibility with Questa*-Intel FPGA Starter Edition Software
Questa*-Intel FPGA Starter Edition software has limitations on design size that prevent it from simulating
large designs. When trying to launch a simulation using Questa*-Intel FPGA Starter Edition software, you
may encounter the following error message:

Error: The simulator's process ended unexpectedly.
Instead, simulate the designs with Questa*-Intel FPGA Edition or ModelSim* SE software.

Environment Variable Not Set
When you forget setting the CL_CONTEXT_MPSIM_DEVICE_INTELFPGA=1 environment variable, you might
encounter an error message.

On Linux

terminate called after throwing an instance of 'sycl::_V1::runtime_error'
what():  No device of requested type available. Please check https://www.intel.com/
content/www/us/en/developer/articles/system-requirements/intel-oneapi-dpcpp-system-
requirements.html -1 (PI_ERROR_DEVICE_NOT_FOUND)
Aborted (core dumped)

On Windows
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The simulator might crash and you might see the following message in the debugger:

Unhandled exception at 0x00007FFD92DFDE4E (ucrtbase.dll) in <your exe>.exe: Fatal program exit 
requested.

To overcome this issue, define the CL_CONTEXT_MPSIM_DEVICE_INTELFPGA=1 environment variable.

Device Selectors for FPGA

Depending on whether you are targeting the FPGA emulator, simulator, or hardware, you must use the
correct SYCL* device selector in the host code. You can use the FPGA hardware device selector for simulation
also. The following host code snippet demonstrates how you can use a selector to specify the target device at
compile time:

// FPGA device selectors are defined in this utility header, along with
// all FPGA extensions such as pipes and fpga_reg
#include <sycl/ext/intel/fpga_extensions.hpp>

int main() {
  // Select either:
  //  - the FPGA emulator device (CPU emulation of the FPGA)
  //  - the FPGA simulator
  //  - the FPGA device (a real FPGA)
  #if FPGA_SIMULATOR
    auto selector = sycl::ext::intel::fpga_simulator_selector_v;
  #elif FPGA_HARDWARE
    auto selector = sycl::ext::intel::fpga_selector_v;
  #else  // #if FPGA_EMULATOR
    auto selector = sycl::ext::intel::fpga_emulator_selector_v;
  #endif
  queue q(selector);
  ...
}

NOTE

• The FPGA emulator and the FPGA are different target devices. Intel® recommends using a
preprocessor define to choose between the emulator and FPGA selectors. This makes it easy to
switch between targets using only command-line flags. For example, you can compile the above
code snippet for the FPGA emulator by passing the flag -DFPGA_EMULATOR to the icpx command.

• Since FPGAs support only the ahead-of-time compilation method, dynamic selectors (such as the
default_selector) are less useful that explicit selectors when targeting FPGAs.

Caution When targeting the FPGA emulator or FPGA hardware, you must pass correct compiler flags
and use the correct device selector in the host code. Otherwise, you might experience runtime
failures. Refer to the fpga_compile tutorial in the Intel® oneAPI Samples Browser to get started with
compiling SYCL code for FPGA.

FPGA IP Authoring Flow

In the FPGA IP Authoring flow, the compiler uses your SYCL* code to generate IP components that you can
integrate into a custom Intel® Quartus® Prime project. Use the IP authoring flow by targeting your
compilation to a supported Intel® FPGA device family or part number instead of a specific acceleration
platform.
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Use this flow to help speed your IP development by letting you compile your SYCL* code to IP components
on different targets that you can deploy into your systems.

For details about getting started with the IP component development flow, refer to Getting Started with
Intel® oneAPI Toolkits and Intel® Quartus® Prime Software.

The typical design flow when you author IP components consists of the following stages:

1. Creating your IP component and testbench.

Write a complete SYCL application that contains both your IP component code and your testbench code.
The SYCL device code (kernel code) corresponds to your IP component, and the SYCL host code serves
as the testbench for the emulation and simulation flows.

For information about writing SYCL code, refer to Data Parallelism in C++ using SYCL*.

Also, refer to Code IP Components in SYCL* for additional information specific to writing IP components
in SYCL*.

2. Verify the functionality of your IP component algorithm and testbench through emulation.

Verify the functionality of your IP component and refine the algorithms in your IP by compiling your
design to an x86-64 executable and running the executable. For details, see Emulate and Debug Your
IP Component.

3. Optimize and refine the FPGA performance of your component.

Optimize the FPGA performance of your component by compiling your design for an FPGA device family
or part number target with the -Xstarget=<FPGA device family> or -Xstarget=<FPGA part
number> compiler option along with -Xssimulation or -Xshardware option and reviewing the FPGA
Optimization Report to see where you can optimize your component. This step generates RTL code for
your component.

For details, refer to Analyze Your Design in the FPGA Optimization Guide for Intel® oneAPI Toolkits.

After completing some initial optimization based on the contents of the FPGA Optimization Report, you
can see where to further refine your component by simulating it.

For details, see Evaluate Your IP Component Through Simulation.
4. Synthesize your component with an FPGA hardware image compilation.

When you use the -Xstarget=<FPGA device family> or -Xstarget=<FPGA part number> compiler
option, the Intel® oneAPI DPC++/C++ Compiler ties the inputs and outputs of your component to
virtual pins and compiles the design to provide a more accurate estimate of your component’s area and
fMAX. The generated output is not deployable to a board because the compilation occurred without a
board support package.

For details, refer to Synthesizing Your Component IP with Intel® Quartus® Prime Software.

Synthesizing your component generates accurate quality-of-results (QoR) metrics like FPGA area
utilization and fMAX.

5. Integrate your IP into a system with Intel® Quartus® Prime or Platform Designer.

For details, refer to Integrating Your IP Into a System.

When you are satisfied with the predicted performance of your component, use Intel® Quartus® Prime
software to synthesize your component. Synthesis also generates accurate area and performance (fMAX)
estimates for your design. However, your design is not expected to cleanly close timing in the Intel® Quartus®
Prime reports.

You can expect timing closure warnings in the Intel® Quartus® Prime logs because the generated project
targets a clock speed of 1000 MHz to achieve the best possible placement for your design. The fMAX value
presented in the FPGA optimization report estimates the maximum clock rate that your component can
cleanly close timing for.

After the Intel® Quartus® Prime compilation is completed, the summary section of the FPGA optimization
report shows the area and performance data for your components.

These estimates are more accurate than estimates generated when you compile your IP component for
simulation only.
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Typically, Intel® Quartus® Prime compilation times can take minutes to hours depending on the size and
complexity of your IP components.

To synthesize your component IP and generate quality of results (QoR) data, instruct the compiler to run the
Intel® Quartus® Prime compilation flow automatically after synthesizing the components. Include the -
Xstarget=<FPGA device family> or -Xstarget=<FPGA part number> options in your icpx command:

• icpx -fsycl -fintelfpga -Xshardware -Xstarget=<FPGA device family>...
• icpx -fsycl -fintelfpga -Xshardware -Xstarget=<FPGA part number>...
The following flowchart shows a coarse-grained progression through the stages of a typical IP component
authoring design flow.

Overview of Procedure for Synthesizing IP for Intel® FPGA Products

• Code IP Components in SYCL*

• Customize RTL Interfaces
• Suggested Coding Styles

• Lambda Coding Style Example
• Functor Coding Style Example

• Memory-Mapped Host Interfaces

• Addresses in Memory-Mapped Host Interfaces
• Host Pipes
• Agent IP Component Kernels

• Example Register Map File
• Streaming IP Component Kernels

• Limitations of Streaming IP Component Kernels
• Kernel Argument Interfaces
• Pipelined Kernels
• Stable Arguments
• IP Component Reset Behavior
• The printf Command

• Emulate and Debug Your IP Component
• Evaluate Your IP Component Through Simulation

• Debug During Verification
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• FPGA IP Component Performance Optimization
• Synthesizing Your Component IP with Intel® Quartus® Prime Software
• Integrating Your IP Into a System

• Adding IP into an Intel® Quartus® Prime Project
• Adding IP into a Platform Designer System

• Encrypt IP Components for Distribution

Code IP Components in SYCL*

When you write IP components in SYCL, consider these additional requirements and techniques.

• Customize RTL Interfaces
• Suggested Coding Styles

• Lambda Coding Style Example
• Functor Coding Style Example

• Memory-Mapped Host Interfaces

• Addresses in Memory-Mapped Host Interfaces
• Host Pipes
• Agent IP Component Kernels

• Example Register Map File
• Streaming IP Component Kernels

• Limitations of Streaming IP Component Kernels
• Kernel Argument Interfaces
• Pipelined Kernels
• Stable Arguments
• IP Component Reset Behavior
• The printf Command

Customize RTL Interfaces

The compiler generates a component interface for integrating your RTL component into a larger system. An
IP component has two basic interface types: the component invocation interface and the data interface.

IPs are generated by default using a control-and-status register (CSR) agent interface for consuming inputs.
The Streaming IP Component Kernels section demonstrates how to use a streaming interface instead.

You can pass data into a kernel using the kernel arguments, host pipes, or through memory (using accessors
or USM). You can pass items by value in the capture list of the lambda expression (often called a lambda) or
by using an accessor or a Unified Shared Memory (USM) pointer to create an Avalon memory mapped host
interface on your IP.

Your IP can produce output only through an accessor, USM pointer, or pipe. The CSR interface cannot capture
output from an IP component generated from the Intel oneAPI DCP++/C++ compiler.

Suggested Coding Styles

For creating your IP, use one of the following recommended general coding styles:

• Lambda Coding Style Example: The lambda coding style is typically used in most full-system SYCL
programs.

• Functor Coding Style Example: You can write your IP component (kernel) code out-of-line from the host
code with the functor coding style.
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Lambda Coding Style Example

 #include <iostream>
 #include <vector>

 // oneAPI headers
 #include <sycl/sycl.hpp>
 #include <sycl/ext/intel/fpga_extensions.hpp>

 using namespace sycl;

 // Forward declare the kernel name in the global scope. This is an FPGA best
 // practice that reduces name mangling in the optimization reports.
 class VectorAddID;

 void VectorAdd(const int *vec_a_in, const int *vec_b_in, int *vec_c_out,
                int len) {
   for (int idx = 0; idx < len; idx++) {
     int a_val = vec_a_in[idx];
     int b_val = vec_b_in[idx];
     int sum = a_val + b_val;
     vec_c_out[idx] = sum;
   }
 }

 constexpr int kVectSize = 256;

 int main() {
   bool passed = true;
   try {
     // Use compile-time macros to select either:
     //  - the FPGA emulator device (CPU emulation of the FPGA)
     //  - the FPGA device (a real FPGA)
     //  - the simulator device
 #if FPGA_SIMULATOR
     auto selector = sycl::ext::intel::fpga_simulator_selector_v;
 #elif FPGA_HARDWARE
     auto selector = sycl::ext::intel::fpga_selector_v;
 #else  // #if FPGA_EMULATOR
     auto selector = sycl::ext::intel::fpga_emulator_selector_v;
 #endif

     // create the device queue
     sycl::queue q(selector);

     // make sure the device supports USM host allocations
     auto device = q.get_device();

     std::cout << "Running on device: "
               << device.get_info<sycl::info::device::name>().c_str()
               << std::endl;

     if (!device.has(sycl::aspect::usm_host_allocations)) {
        std::terminate();
     }

     // declare arrays and fill them
     // allocate in shared memory so the kernel can see them
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     int *vec_a = malloc_shared<int>(kVectSize, q);
     int *vec_b = malloc_shared<int>(kVectSize, q);
     int *vec_c = malloc_shared<int>(kVectSize, q);
     for (int i = 0; i < kVectSize; i++) {
       vec_a[i] = i;
       vec_b[i] = (kVectSize - i);
     }

     std::cout << "add two vectors of size " << kVectSize << std::endl;

     q.single_task<VectorAddID>([=]() {
         VectorAdd(vec_a, vec_b, vec_c, kVectSize);
     })
     .wait();

     // verify that vec_c is correct
     for (int i = 0; i < kVectSize; i++) {
       int expected = vec_a[i] + vec_b[i];
       if (vec_c[i] != expected) {
         std::cout << "idx=" << i << ": result " << vec_c[i] << ", expected ("
                   << expected << ") A=" << vec_a[i] << " + B=" << vec_b[i]
                   << std::endl;
         passed = false;
       }
     }

     std::cout << (passed ? "PASSED" : "FAILED") << std::endl;

     free(vec_a, q);
     free(vec_b, q);
     free(vec_c, q);
   } catch (sycl::exception const &e) {
     // Catches exceptions in the host code.
     std::cerr << "Caught a SYCL host exception:\n" << e.what() << "\n";

     // Most likely the runtime couldn't find FPGA hardware!
     if (e.code().value() == CL_DEVICE_NOT_FOUND) {
       std::cerr << "If you are targeting an FPGA, please ensure that your "
                    "system has a correctly configured FPGA board.\n";
       std::cerr << "Run sys_check in the oneAPI root directory to verify.\n";
       std::cerr << "If you are targeting the FPGA emulator, compile with "
                    "-DFPGA_EMULATOR.\n";
     }
     std::terminate();
   }
   return passed ? EXIT_SUCCESS : EXIT_FAILURE;
 }

Functor Coding Style Example
With this style, you can specify all the interfaces in one location and make a call to your IP component from
your SYCL* host program.

#include <iostream>

// oneAPI headers
#include <sycl/ext/intel/fpga_extensions.hpp>
#include <sycl/sycl.hpp>
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// Forward declare the kernel name in the global scope. This is an FPGA best
// practice that reduces name mangling in the optimization reports.
class VectorAddID;

struct VectorAdd {
  int *const vec_a_in;
  int *const vec_b_in;
  int *const vec_c_out;
  int len;

  void operator()() const {
    for (int idx = 0; idx < len; idx++) {
      int a_val = vec_a_in[idx];
      int b_val = vec_b_in[idx];
      int sum = a_val + b_val;
      vec_c_out[idx] = sum;
    }
  }
};

constexpr int kVectSize = 256;

int main() {
  bool passed = true;
  try {
    // Use compile-time macros to select either:
    //  - the FPGA emulator device (CPU emulation of the FPGA)
    //  - the FPGA device (a real FPGA)
    //  - the simulator device
#if FPGA_SIMULATOR
    auto selector = sycl::ext::intel::fpga_simulator_selector_v;
#elif FPGA_HARDWARE
    auto selector = sycl::ext::intel::fpga_selector_v;
#else  // #if FPGA_EMULATOR
    auto selector = sycl::ext::intel::fpga_emulator_selector_v;
#endif

    // create the device queue
    sycl::queue q(selector);

   // make sure the device supports USM host allocations
    auto device = q.get_device();

    std::cout << "Running on device: "
              << device.get_info<sycl::info::device::name>().c_str()
              << std::endl;

    if (!device.has(sycl::aspect::usm_host_allocations)) {
      std::terminate();
    }

    // declare arrays and fill them
    // allocate in shared memory so the kernel can see them
    int *vec_a = sycl::malloc_shared<int>(kVectSize, q);
    int *vec_b = sycl::malloc_shared<int>(kVectSize, q);
    int *vec_c = sycl::malloc_shared<int>(kVectSize, q);
    for (int i = 0; i < kVectSize; i++) {
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      vec_a[i] = i;
      vec_b[i] = (kVectSize - i);
    }

    std::cout << "add two vectors of size " << kVectSize << std::endl;

    q.single_task<VectorAddID>(VectorAdd{vec_a, vec_b, vec_c, kVectSize})
        .wait();

    // verify that vec_c is correct
    for (int i = 0; i < kVectSize; i++) {
      int expected = vec_a[i] + vec_b[i];
      if (vec_c[i] != expected) {
        std::cout << "idx=" << i << ": result " << vec_c[i] << ", expected ("
                  << expected << ") A=" << vec_a[i] << " + B=" << vec_b[i]
                  << std::endl;
        passed = false;
      }
    }

    std::cout << (passed ? "PASSED" : "FAILED") << std::endl;

    sycl::free(vec_a, q);
    sycl::free(vec_b, q);
    sycl::free(vec_c, q);
  } catch (sycl::exception const &e) {
    // Catches exceptions in the host code.
    std::cerr << "Caught a SYCL host exception:\n" << e.what() << "\n";

    // Most likely the runtime couldn't find FPGA hardware!
    if (e.code().value() == CL_DEVICE_NOT_FOUND) {
      std::cerr << "If you are targeting an FPGA, please ensure that your "
                   "system has a correctly configured FPGA board.\n";
      std::cerr << "Run sys_check in the oneAPI root directory to verify.\n";
      std::cerr << "If you are targeting the FPGA emulator, compile with "
                   "-DFPGA_EMULATOR.\n";
    }
    std::terminate();
  }
  return passed ? EXIT_SUCCESS : EXIT_FAILURE;
}

Memory-Mapped Host Interfaces

Each external memory interface is uniquely identified by a “buffer location” identifier. Buffer location
identifiers can be applied to arguments annotated with the mmhost macros or to accessors. A kernel
argument with a specified buffer location is sometimes referred to as an annotated pointer argument. An
unannotated pointer argument can be any of the of the following items:

• Accessor arguments without a specified buffer location
• Kernel arguments not annotated with any mmhost macro

For each unique buffer location among the annotated pointer arguments of your kernels, the compile infers
one memory-mapped host interface. If you have any unannotated pointer arguments in your kernels, one
additional global memory-mapped interface is inferred (with buffer location 0).

You can attribute a buffer location to a kernel argument in the following ways:

• Memory-Mapped Host Interfaces Using Unified Shared Memory
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USM pointers allow you to customize the memory-mapped host interface.

In most cases, the compiler encodes the virtual address space information automatically. However, in
some cases, you might need to encode it yourself. For details, refer to Memory-Mapped Interface Unified-
Shared-Memory Virtual Address Space.

• Memory-Mapped Host Interfaces Using Accessors

Using accessors allows the runtime and BSP to manage the copying of the memory between the host and
device.

Accessor kernel arguments result in four arguments for each accessor argument.

Addresses in Memory-Mapped Host Interfaces
Memory-mapped (MM) host interfaces issue byte addresses, not word addresses.

For example, if you dereference a pointer to a 4-byte wide datatype, the address issued by the MM host
interface is base address of the pointer plus the array index multiplied by 4.

Assuming a base address of 0x0000 for mm_a, the following code example results in 0x0018 on the interface
because 0x0018 = 0x0006 x 4:

uint32_t value = mm_a[0x0006];
If mm_a has a base address of 0x1000, the resulting address is 0x1018 instead of 0x0018.

If you dereference a pointer to a 1-byte wide datatype, the address issued by the MM Host interface is the
base address of the pointer plus the array index multiplied by 1.

Assuming a base address of 0x0000 for mm_a, the following code example results in 0x0006 on the interface
because 0x0006 = 0x0006 x 1:

uint8_t value = mm_a[0x0006];
If mm_a has a base address of 0x1000, the resulting address is 0x1006 instead of 0x0006.

Memory-Mapped Host Interfaces Using Unified Shared Memory

You can customize memory-mapped interfaces of your IP component if the component uses a unified shared
memory (USM) host pointer to access data.

To customize the interface, use a functor to specify the component and use one of the macros described
here. To use the macros, include the header file sycl/ext/intel/prototype/interfaces.hpp in your
code.

Use the following flag when you compiler your kernel to ensure that the header file is on the include path:

• On Linux: -I/$INTELFPGAOCLSDKROOT/include
• On Windows: -I %INTELFPGAOCLSDKROOT%\include
For memory-mapped host interfaces, the testbench (or host program) must allocate the USM memory using
the sycl::malloc_shared or sycl::malloc_host function that specifies the buffer location as a property.
The function should be passed the buffer location property as an argument if a buffer location has been
specified using the macros on the kernel argument in the functor.

For IP component kernels, allocating and using USM device memory with the sycl::malloc_device API is
not supported.

The following macros create a memory-mapped host interface:

• mmhost() macro
• register_map_mmhost() macro
• conduit_mmhost() macro
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The mmhost() macro (or
no macro specified)

If no macro is specified for the pointer kernel argument or if the mmhost() macro
is specified, the argument inherits the same style of interface as the kernel
invocation interface.

The default for kernel invocation interfaces is a register map-based interface.

To override this argument behavior, use the register_map_mmhost() and
conduit_mmhost() macros.

The macros that control the kernel invocation interface are described in Agent IP
Component Kernels and Streaming IP Component Kernels.

mmhost(
  1,       // buffer location
  28,      // address width
  64,      // data width
  0,       // latency. Setting 0 specifies variable  latency interface
  0,       // read_write_mode, 0: Read/Write, 1:  Read-only, 2: Write-
only
  1,       // maxburst
  0,       // align
  1        // waitrequest, 0: false, 1: true
  ) int *x;

The
register_map_mmhost()
macro

The base pointer is passed in through the register map.

When you use register_map_mmhost() macro, only the address width number
of bits are consumed by the kernel even though a 64-bit wide register is created
to store the address.

register_map_mmhost(
  1,       // buffer location
  28,      // address width
  64,      // data width
  0,       // latency. Setting 0 specifies variable  latency interface
  0,       // read_write_mode, 0: Read/Write, 1:  Read-only, 2: Write-
only
  1,       // maxburst
  0,       // align
  1        // waitrequest, 0: false, 1: true
  ) int *x;

The conduit_mmhost()
macro

The base pointer passed in the through a conduit interface.

When you use the conduit_mmhost(), the port created for the pointer
argument is sized to the address width that is specified for it.

conduit_mmhost(
  1,       // buffer location
  28,      // address width
  64,      // data width
  0,       // latency. Setting 0 specifies variable  latency interface
  0,       // read_write_mode, 0: Read/Write, 1:  Read-only, 2: Write-
only
  1,       // maxburst
  0,       // align
  1        // waitrequest, 0: false, 1: true
 ) int *x;
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As an example, the following kernels have register-map-based argument interfaces:

// This struct defines the IP that will be generated
struct MyIPComponent1{
  // struct members are kernel arguments
  int* a; // no macro specified

  // operator()() defines the device/IP code
  // no macro specified for the operator()()
  void operator()() const { ... }
};

struct MyIPComponent2{
  mmhost(...) int* a;
  ...
  // no kernel invocation macros specified for the operator()()
  void operator()() const { ... }
};

You can customize the following properties:

MM Host Macro Properties :header-rows: 1 :class: longtable

Property Description Default Valid Values

Buffer location A literal that specifies a
unique identifier for an
external memory. It
must be a compile-time
constant value.

Buffer locations must be
sequential integers
starting from 0 unless
there is an unannotated
pointer kernel argument
defined for any kernel.

If there is an
unannotated pointer
kernel argument, then
the buffer location must
start at 1 because 0 is
reserved for the
external memory that is
inferred whenever there
is an unannotated
pointer kernel argument
present.

The total number of
distinct buffer locations
in the entire design
(across all kernels) must
be less than 64.

N/A See description.

Address width Width of the memory-
mapped address bus, in
bits.

41 Integer value in the
range 1–41
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If the address width
exceeds the maximum
valid value, the compile
issues a compile-time
error.

Data width Width of the memory-
mapped data bus, in
bits.

64 8, 16, 32, 64, 128, 256,
512, 1024

Latency The guaranteed latency
from when a read
command exits the
component until the
external memory
returns valid read data.

If this latency is variable
(such as when accessing
DRAM), not known at
compile time, or if you
are accessing a shared
agent interface, set it to
0.

1 Non-negative integer
value

Read/Write Mode The port direction of the
interface.

0 0 (Read/write)

1 (Read-only)

2 (Write-only)

Maxburst The maximum number
of data transfers that
can be associated with a
read or write
transaction.

This value controls the
width of the
burstcount signal.

For fixed latency
interfaces, this value
must be set to 1.

For more details, review
information about burst
signals and the
burstcount signal role
in “Avalon® Memory-
Mapped Interface Signal
Roles” in Avalon®
Interface Specifications.

1 1–1024

Alignment The alignment of the
argument pointer
address in bytes.

1 0, 1, 2, 4, 8, 16, 32, 64,
128
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Important You must
ensure that all the values
that the pointer takes are
divisible by the specified
alignment otherwise
functional failures might
occur.

The alignment setting
allows the compiler to
generate optimized
hardware that can issue
wider loads/stores by
combining multiple
loads/stores. For
example, if you want to
transact four 32-bit
integers, set the data
width to 128 bits and
the alignment to 16
bytes. This means that
up to 16 contiguous
bytes (or four 32-bit
integers) can be loaded
or stored as a coalesced
memory word per clock
cycle.

Specifying an alignment
value of 0 is the same
as specifying an
alignment value of 1.

Waitrequest Directive for adding the
waitrequest signal
that is asserted by the
agent when it is unable
to respond to a read or
write request.

For more information
about the waitrequest
signal, refer to “Avalon®
Memory-Mapped
Interface Signal Roles”
in Avalon® Interface
Specifications.

Important Do not
specify waitrequest to 1
when specifying a fixed
latency interface
(Latency=0).

0 0: Disable waitrequest
signal

1: Enable waitrequest
signal.
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The following code example creates two customized memory-mapped host interfaces. The host program
allocates two USM shared pointers and initializes the memory that they point to with values 5 and 6,
respectively. It enqueues the kernel for execution with these pointers as kernel arguments, checks the
returned data, and then frees the USM allocated memory.

#include <sycl/sycl.hpp>
#include <sycl/ext/intel/fpga_extensions.hpp>
#include <sycl/ext/intel/prototype/interfaces.hpp>

using namespace sycl;
using ext::intel::experimental::property::usm::buffer_location;

constexpr int BL1 = 0;
constexpr int BL2 = 1;

struct MyIP {
  register_map_mmhost(
    BL1,     // buffer location
    28,      // address width
    64,      // data width
    0,       // latency. Setting 0 specifies variable latency interface
    0,       // read_write_mode, 0: Read/Write, 1: Read-only, 2: Write-only
    1,       // maxburst
    0,       // align
    1        // waitrequest, 0: false, 1: true
  ) int *x;
  register_map_mmhost(
    BL2,     // buffer location
    28,      // address width
    64,      // data width
    0,       // latency. Setting 0 specifies variable latency interface
    0,       // read_write_mode, 0: Read/Write, 1: Read-only, 2: Write-only
    1,       // maxburst
    0,       // align
    1        // waitrequest, 0: false, 1: true
  ) int *y;

  register_map_interface
  void operator()() const {
    *x = 5;
    *y = 6;
  }
};

void Test() {

#if FPGA_SIMULATOR
   auto selector = sycl::ext::intel::fpga_simulator_selector_v;
#elif FPGA_HARDWARE
   auto selector = sycl::ext::intel::fpga_selector_v;
#else  // #if FPGA_EMULATOR
   auto selector = sycl::ext::intel::fpga_emulator_selector_v;
#endif

  sycl::queue q(selector);
  int *HostA = malloc_shared<int>(1, q, property_list{buffer_location(BL1)});
  *HostA = 0;
  int *HostB = malloc_shared<int>(1, q, property_list{buffer_location(BL2)});
  *HostB = 0;
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  q.single_task(MyIP{HostA, HostB}).wait();

  if (*HostA == 6 && *HostB == 5) std::cout << "PASSED\n";
  else std::cout << "FAILED\n";

  sycl::free(HostA, q);
  sycl::free(HostB, q);
}

int main() {

  Test();

  if (*HostA == 6 && *HostB == 5) std::cout << "PASSED\n";
  else std::cout << "FAILED\n";

  return 0;
}

Memory-Mapped Interface Unified-Shared-Memory Virtual Address Space

The compiler encodes certain information regarding the virtual address space in the top bits of a 64-bit
pointer address as follows:

Pointer-Address Bit-Range Descriptions

Bit Range Description

40:0 Used for addressing within the memory system

63:41 Stores the virtual address space information that is
derived from the buffer location

In some cases, the compiler cannot determine which buffer location a pointer corresponds to and it creates
logic in the generated RTL that inspects the top bits of the pointer at runtime to detect the buffer location
and route the memory transaction to the correct external memory interface.

You do not need to encode the buffer location information yourself in most cases. Exceptions are outlined in 
Manual Buffer Location Encoding Use Case.

The compiler automatically generates logic to embed this information from the buffer location specified on
the pointer kernel argument in the source file.

Manual Buffer Location Encoding Use Case
If the kernel has at least one kernel argument where the buffer location is specified (annotated argument)
and at least one argument where the buffer location is not specified (unannotated argument), then you must
embed the buffer location information in the top bits of any unannotated kernel arguments.

Consider the following code example:

// This struct defines the IP that will be generated
struct MyIPComponent{
  // struct members are kernel arguments
  int* a; // no buffer location specified
  mmhost(1, ...) int *b; // buffer location 1
  mmhost(2, ...) int *c; // buffer location 2
  mmhost(3, ...) int *d; // buffer location 3

  // operator()() defines the device/IP code
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  void operator()() const {
    *a *= 2;
    *b *= 2;
    *c *= 2;
    *d *= 2;
  }
};

In this example, the compiler does not know what external memory pointer a will point to, so the compiler
creates logic to check the top bits of the pointer to determine, at runtime, which buffer location to access.
Therefore, you must set those top bits for argument a (but not for the other kernel arguments).

In such cases, if the unannotated pointer argument has a conduit interface then the port is 64 bits wide.
And, if the interface is register-map–based, all 64 bits are passed to the kernel.

NOTE
Simulation Exception
When you simulate your kernel in the OneAPI simulation flow, you do not need to write any host code
(even in this use case) to embed information in the pointer bits. The buffer locations are all taken care
of by the runtime stack that allocates the pointers in the host code.

When the compiler can deduce which buffer location that a pointer argument points to (for example, when
there is only one mm_host interface), the compiler embeds the buffer location automatically. Buffer locations
need to be specified manually only when your kernels have a mix of annotated and unannotated kernel
arguments.

The compiler infers one global memory (with inferred buffer location 0) whenever there is any unannotated
pointer kernel argument. In the following code example, because there are only unannotated pointer
arguments, the compiler infers only one global memory and so it can embed the correct information in the
top bits of the pointer kernel arguments.

// This struct defines the IP that will be generated
struct MyIPComponent{
    // struct members are kernel arguments
    int* a; // no buffer location specified
    int* b; // no buffer location specified
    // no other annotated kernel argument is present

    // operator()() defines the device/IP code
    void operator()() const {
        *a = ...
        *b = ...
    }
};

Determining Virtual Address Space Information
If you need to embed the virtual address space information in the top bits of the pointer kernel arguments
because the compiler cannot do so, get the information to embed from the HTML reports:

1. If you have not already done so, compile your kernel to obtain the HTML reports
2. Open the HTML reports.
3. Go to Views > System Viewer
4. In the left pane, expand System and then expand Global memory

Under Global memory, you see entries for all external memories for your kernel.
5. Click on a memory to display that memory in the System Viewer pane.
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6. In the System Viewer pane, find the box that represents the memory and click the node inside the
box.

This node represents the “interface” of that global memory.
7. In the Details pane, find the Start Address of the memory.

The top bits of your unannotated pointer argument must match the top bits of this start address if you
want the pointer to access this buffer location.

The following screen capture shows an example of determining the top bit of the start address needed to
address a buffer location 1.

Memory-Mapped Host Interfaces Using Accessors

The following example shows how to create multiple memory-mapped (mm_host) interfaces using the
buffer_location property in SYCL*:

#include <sycl/sycl.hpp>
#include <iostream>
#include <sycl/ext/intel/fpga_extensions.hpp>
#include <vector>
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using namespace sycl;

// Forward declare the kernel name in the global scope.
// This is an FPGA best practice that reduces name mangling in the
// optimization reports.
class SimpleVAdd;

// The members of the functor serve as inputs and outputs to your IP.
// The code inside the operator()() function describes your IP.
template <class AccA, class AccB, class AccC>
struct SimpleVAddKernel {
    AccA A;
    AccB B;
    AccC C;
    int count;

    void operator()() const {
        for (int i = 0; i < count; i++) {
            C[i] = A[i] + B[i];
        }
    }
};

constexpr int VECT_SIZE = 4;

int main() {

  #if FPGA_SIMULATOR
    auto selector = sycl::ext::intel::fpga_simulator_selector_v;
  #elif FPGA_HARDWARE
    auto selector = sycl::ext::intel::fpga_selector_v;
  #else  // #if FPGA_EMULATOR
    auto selector = sycl::ext::intel::fpga_emulator_selector_v;
  #endif

    queue q(selector);

    int count = VECT_SIZE; // pass array size by value

    // declare arrays and fill them
    std::vector<int> VA;
    std::vector<int> VB;
    std::vector<int> VC(count);
    for (int i = 0; i < count; i++) {
        VA.push_back(i);
        VB.push_back(count - i);
    }

    std::cout << "add two vectors of size " << count << std::endl;

    buffer bufferA{VA};
    buffer bufferB{VB};
    buffer bufferC{VC};

    q.submit([&](handler &h) {
        accessor accessorA{bufferA, h, read_only};
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        accessor accessorB{bufferB, h, read_only};
        accessor accessorC{bufferC, h, read_write, no_init};

        h.single_task<SimpleVAdd>(SimpleVAddKernel<decltype(accessorA), decltype(accessorB), 
decltype(accessorC)>{accessorA, accessorB, accessorC, count});
    });

    // verify that VC is correct
    bool passed = true;
    for (int i = 0; i < count; i++) {
        int expected = VA[i] + VB[i];
        std::cout << "idx=" << i << ": result " << VC[i] << ", expected (" << expected << ") 
VA=" << VA[i] << " + VB=" << VB[i] << std::endl;
        if (VC[i] != expected) {
            passed = false;
        }
    }

    std::cout << (passed ? "PASSED" : "FAILED") << std::endl;
    return passed ? EXIT_SUCCESS : EXIT_FAILURE;
}

Host Pipes

Pipes are a first-in first-out (FIFO) buffer construct that provide links between elements of a design. Pipes
that connect a host and a device are referred to as host pipes. Host pipe support is enabled by including the
following include statement in your design:

#include <sycl/ext/intel/experimental/pipes.hpp>
For information about declaring and using host pipes, refer to Host Pipes in FPGA Optimization Guide for
Intel® oneAPI Toolkits.

Important For multiarchitecture binary kernels (sometimes referred to as “fat binaries” or “full
stack”), the number of non-CSR host pipes in your design is limited by your BSP.

Agent IP Component Kernels

SYCL* kernels generate an interface that can control the kernel and pass in the kernel arguments to the IP
component.

By default, the Intel® oneAPI DPC++/C++ Compiler generates an Avalon agent interface to control the kernel
and pass in the kernel arguments. The compiler also generates a header file that provides the addresses of
various registers in the agent memory map. A top-level header named register_map_offsets.hpp is
created for each device image that you can include if you are interfacing with the SYCL* device image.

An additional header is generated for each of your kernels within the .prj directory. The
register_map_offsets.hpp header file includes these files, but contain the addresses and offsets for each
of the kernels.

Example Register Map File

/* Status register contains all the control bits to control kernel execution */
/*****************************************************************************/
/* Memory Map Summary                                                        */
/*****************************************************************************/
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/*
Address | Access | Register     | Argument              | Description
--------|--------|--------------|-----------------------|-------------------------------
    0x0 |    R/W |   reg0[63:0] |          Status[63:0] |   * Read/Write the status bits
        |        |              |                       |       that are described below
--------|--------|--------------|-----------------------|-------------------------------
    0x8 |    R/W |   reg1[31:0] |           Start[31:0] |        * Write 1 to initiate a
        |        |              |                       |                   kernel start
--------|--------|--------------|-----------------------|-------------------------------
   0x30 |      R |   reg6[31:0] |   FinishCounter[31:0] | * Read to get number of kernel
        |        |  reg6[63:32] |   FinishCounter[31:0] |       finishes, note that this
        |        |              |                       |    register will clear on read
--------|--------|--------------|-----------------------|-------------------------------
   0x80 |    W   |  reg16[63:0] |     arg_input_a[63:0] |
--------|--------|--------------|-----------------------|-------------------------------
   0x88 |    R/W |  reg17[63:0] |     arg_input_b[63:0] |
--------|--------|--------------|-----------------------|-------------------------------
   0x90 |    R/W |  reg18[63:0] |     arg_input_c[63:0] |
--------|--------|--------------|-----------------------|-------------------------------
   0x98 |    R/W |  reg19[31:0] |           arg_n[31:0] |
*/

/**************************************************************************/
/* Register Address Macros                                                */
/**************************************************************************/

/* Status Register Bit Offsets (Bits) */
/* Note: Bits In Status Registers Are Marked As Read-Only or Read-Write
   Please Do Not Write To Read-Only Bits */
#define KERNEL_REGISTER_MAP_DONE_OFFSET (1) // Read-only
#define KERNEL_REGISTER_MAP_BUSY_OFFSET (2) // Read-only
#define KERNEL_REGISTER_MAP_STALLED_OFFSET (3) // Read-only
#define KERNEL_REGISTER_MAP_UNSTALL_OFFSET (4) // Read-write
#define KERNEL_REGISTER_MAP_VALID_IN_OFFSET (14) // Read-only
#define KERNEL_REGISTER_MAP_STARTED_OFFSET (15) // Read-only

/* Status Register Bit Masks (Bits) */
#define KERNEL_REGISTER_MAP_DONE_MASK (0x2)
#define KERNEL_REGISTER_MAP_BUSY_MASK (0x4)
#define KERNEL_REGISTER_MAP_STALLED_MASK (0x8)
#define KERNEL_REGISTER_MAP_UNSTALL_MASK (0x10)
#define KERNEL_REGISTER_MAP_VALID_IN_MASK (0x4000)
#define KERNEL_REGISTER_MAP_STARTED_MASK (0x8000)

While the default option for kernels are agent kernels, there is a register_map_interface macro to mark a
function as an agent kernel. This is shown in the following example:

#include <sycl/ext/intel/prototype/interfaces.hpp>
using namespace sycl;

struct MyIP {
  int *input_a, *input_b, *input_c;
  int n;

  register_map_interface void operator()() const {
    for (int i = 0; i < n; i++) {
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      input_c[i] = input_a[i] + input_b[i];
    }
  }
};

Streaming IP Component Kernels

You can also choose to have the Intel® oneAPI DPC++/C++ Compiler implement the IP component invocation
interface with a “ready-valid” handshake, like in an Avalon Streaming (ST) interface.

To have the compiler implement the IP component invocation interface with a “ready-valid” handshake:

1. Implement the IP kernel as a functor.
2. Include the following header file:

sycl/ext/intel/prototype/interfaces.hpp
3. Add one of the following options to the compiler command (icpx -fsycl):

• Linux: -I/$INTELFPGAOCLSDKROOT/include
• Windows: /I %INTELFPGAOCLSDKROOT%\include

4. Add the streaming_interface macro to the functor operator().

The following code shows an example of implementing a streaming interface:

#include <sycl/ext/intel/prototype/interfaces.hpp>
using namespace sycl;

struct MyIP {
  int *input_a, *input_b, *input_c;
  int n;
  MyIP(int *a, int *b, int *c, int N_)
      : input_a(a), input_b(b), input_c(c), n(N_) {}
  streaming_interface void operator()() const {
    for (int i = 0; i < n; i++) {
      input_c[i] = input_a[i] + input_b[i];
    }
  }
};

The resulting IP component kernel is invoked with a “ready-valid” handshake. Compiling the example code
generates the start signal, the done signal, the ready_in signal, and ready_out signals as conduits. The
compilation of the example code also generates conduits for the base addresses of the three pointers as well
the value of N.

The streaming handshaking follows the Avalon Streaming (ST) protocol. The IP kernel consumes the
arguments on the clock cycle that the start and ready_out signals are asserted. The IP component kernel
invocation is finished on the clock cycle that the done and ready_in signals are asserted.

Limitations of Streaming IP Component Kernels
The following actions are not supported when using a streaming IP component kernel:

• Using streaming kernels as SYCL NDRange kernels.
• Profiling of streaming kernels.
• Using agent kernel arguments in streaming kernels.

Kernel Argument Interfaces
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By default, the kernel arguments are passed to your component through the same interface as the start
signal (that is, either through the IP component CSR or through inputs synchronized to a ready/valid
handshake). However, you can override this behavior. For example, you can select a register-mapped
invocation interface with arguments passed through conduits, or you can select a streaming invocation
interface with arguments passed through the register map.

The following code snippet demonstrates how to place the invocation interface in the CSR, and pass kernel
arguments through conduit interfaces:

#include <sycl/ext/intel/prototype/interfaces.hpp>
using namespace sycl;

struct MyIP {
  conduit int *input_a, *input_b, *input_c;
  conduit int n;
  register_map_interface void operator()() const {
    for (int i = 0; i < n; i++) {
      input_c[i] = input_a[i] + input_b[i];
    }
  }
};

The following code snippet demonstrates how to configure the kernel with a handshake invocation interface,
and pass kernel arguments through the CSR:

#include <sycl/ext/intel/prototype/interfaces.hpp>
using namespace sycl;

struct MyIP {
  register_map int *input_a, *input_b, *input_c;
  register_map int n;
  streaming_interface void operator()() const {
    for (int i = 0; i < n; i++) {
      input_c[i] = input_a[i] + input_b[i];
    }
  }
};

Pipelined Kernels

By default, SYCL* task kernels are not pipelined. You must wait for the previous invocation to finish before
invoking the kernel again.

However, streaming kernels can be optionally pipelined by using the streaming_pipelined_interface
macro, as shown in the following example:

struct MyIP {
  conduit int *input;
  MyIP(int *inp_a_) : input(inp_a_) {}
  streaming_pipelined_interface void operator()() const {
    int temp = *input;
    *input = something_complicated(temp);
  }
};
/* To exercise the pipelined nature of the kernel in simulation,
   you must queue up multiple instances of the functions before you
   call the wait() function. The following code example shows how to
   exercise a pipelined kernel: */
for (int i = 0; i < kN; i++) {
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  q.single_task(MyIP{&input_array[i]});
}
q.wait();

Stable Arguments

By default, the Intel® oneAPI DPC++/C++ Compiler assumes that the values of kernel arguments change
during kernel executions.

For pipelined kernels, you can mark a kernel argument as stable if the kernel and kernel argument satisfy the
following conditions:

• The kernel argument does not change during the execution of any invocation of this kernel.
• The kernel is not launched with a different kernel argument value when a different invocation of this

kernel is still running.

Declare a streaming (conduit) kernel argument to be stable with the stable_conduit attribute.

Changing the value of a stable kernel argument results in undefined behavior.

You might save some FPGA area in your kernel design when you declare a streaming (conduit) kernel
argument as stable.

If all the kernel arguments do not change while the kernel is executing, you can include the -Xsno-
hardware-kernel-invocation-queue option in your icpx command.

Changing the value of a kernel argument on a kernel compiled with the -Xsno-hardware-kernel-
invocation-queue option results in undefined behavior.

IP Component Reset Behavior

For your IP component, the reset assertion can be asynchronous but the reset deassertion must be
synchronous.

The reset assertion and deassertion behavior can be generated from an asynchronous reset input by using
reset synchronization. Add reset synchronization to your component with Platform Designer when you
integrate your IP into a system.

For information about integrating your IP into a system, refer to Integrating Your IP Into a System.

For an example of adding reset synchronization, refer to the Platform Designer Sample example design.

Synchronizers are implemented to minimize synchronization failures due to metastability in asynchronous
signal transfers. For more information about metastability, refer to “Managing Metastability with the Intel
Quartus Prime Software” in Intel Quartus Prime Pro Edition User Guide: Design Recommendations.
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When the reset is asserted, the component holds its busy signal high and its done signal low. After the reset
is deasserted, the component holds its busy signal high until the component is ready to accept the next
invocation. All component interfaces (agents, hosts, and streams) are ready only after the component busy
signal is low.

Example Waveform Showing IP Component Reset Behavior

The printf Command

The sycl::oneapi::experimental::printf() function is currently not supported in IP components.

Emulate and Debug Your IP Component

Verify the functionality of your design by compiling your component and testbench to an x86-64 FPGA
emulation executable that you can debug with a oneAPI debugger. This process is sometimes referred to as
debugging through emulation.

Compiling your design to an x86-64 executable is faster than generating and simulating RTL. Shorter
compilation time allows you to debug and refine your component quickly before verifying how your
component is implemented in hardware.

No additional software is required to emulate your IP component, and no modifications to your host code are
required.

For details, refer to Emulate and Debug Your Design.

Evaluate Your IP Component Through Simulation

When you compile your component to an Intel® FPGA device family or part number with the -Xstarget
compiler option, the Intel oneAPI DPC++/C++ Compiler links your design C++ testbench with an RTL-
compiled version of your component that runs in an RTL simulator.

Use Siemens® EDA Questa® software to perform the simulation. You must have Questa® simulation software
installed when authoring IP components with the Intel oneAPI Base Toolkit.

Verifying the functionality of your design in this way is sometimes called debugging through simulation.

To verify the design functionality from your design simulation, use the following debugging techniques:
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• Run the executable that the compiler generates by targeting the FPGA device.
• Write variable values to output pipes or mm_host interfaces at certain points in your code.
• Review the waveforms generated when running your design.

The compiler does not log signals by default when you compile your design. To enable signal logging in
simulation, refer to Debug During Verification.

For more information about simulation, refer to Evaluate Your Kernel Through Simulation.

• Debug During Verification

Debug During Verification

By default, the compiler instructs the simulator not to log any signals because logging signals slows the
simulation, and waveform files can be extremely large. However, you can configure the compiler to save
these waveforms for debugging purposes.

To enable signal logging in the simulator, invoke the icpx -fsycl command with the -Xsghdl option
command as follows:

icpx -fsycl -fintelfpga -Xssimulation -Xstarget=<family_or_part_number> -Xsghdl <input files>

NOTE After you compile your component and testbench with the -Xsghdl option, run the resulting
executable to run the simulation and generate the waveform.

When the simulation finishes, open the vsim.wlf file inside the current directory to view the waveform.

To view the waveform after the simulation finishes:

1. In the Questa® simulator, open the vsim.wlf file inside the <project name>.prj directory.
2. Right-click the <IP_component_name>_inst block and select Add Wave.

You can now view the top-level component signals: start, done, ready_in, ready_out, parameters, and
outputs. Use the waveform to see how the component interacts with its interfaces.

Tip When you view the simulation waveform in the Questa® simulator, the simulation clock period is
set to a default value of 1000 picoseconds (ps). To synchronize the Time axis to show one cycle per
tick mark, change the time resolution from picoseconds (ps) to nanoseconds (ns):

1. Right-click the timeline and select Grid, Timeline & Cursor Control.
2. Under Timeline Configuration, set the Time units to ns.

FPGA IP Component Performance Optimization

The Intel® oneAPI DPC++/C++ Compiler provides tools that you can use to find areas for improvement and a
variety of flags, attributes, and extensions to control design and compiler behavior.

For more information
about optimizing your
design, refer to the

FPGA Optimization Guide for Intel® oneAPI Toolkits.

Synthesizing Your Component IP with Intel® Quartus® Prime Software

When you are satisfied with the predicted performance of your component, use Intel® Quartus® Prime
software to synthesize your component. Synthesis also generates accurate area and performance (fMAX)
estimates for your design. However, your design is not expected to cleanly close timing in the Intel® Quartus®
Prime reports.
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You can expect to see timing closure warnings in the Intel® Quartus® Prime logs because the generated
project targets a clock speed of 1000 MHz to achieve the best possible placement for your design. The fMAX
value presented in the FPGA optimization report estimates the maximum clock rate your component can
cleanly close timing for.

After the Intel® Quartus® Prime compilation is completed, the summary section of the FPGA optimization
report shows the area and performance data for your components. These estimates are more accurate than
estimates generated when you compile your IP component for simulation only.

Typically, Intel® Quartus® Prime compilation times can take minutes to hours, depending on the size and
complexity of your IP components.

To synthesize your component IP and generate quality of results (QoR) data, instruct the compiler to run the
Intel® Quartus® Prime compilation flow automatically after synthesizing the components. Include the –
Xshardware option in your icpx -fsycl command:

icpx -fsycl -fintelfpga -Xshardware -Xstarget="<FPGA device family or part number>"...

Integrating Your IP Into a System

To integrate your IP component into a system with the Intel® Quartus® Prime software, you must be familiar
with Intel® Quartus® Prime software, including Platform Designer.

The Intel® oneAPI DPC++/C++ Compiler generates a project directory (<result>.prj/) and a set of IP files
per IP component (a set of kernels that are part of the same system). You can control this with the -fsycl-
device-code-split=<off|per_source|per_kernel> option.

The <result>.prj/ directory generated by the compiler contains all the files that you need to include your
IP component in an Intel® Quartus® Prime project, including the following files:

• <project_name>_di.ip
An ip format file that you can add to your Intel Quartus Prime projects.

• <project_name>_di_hw.tcl
A script that describes your IP component interfaces for Platform Designer.

• <project_name>_di_inst.v
An example of how to instantiate the IP into other Verilog modules.

• Adding IP into an Intel® Quartus® Prime Project
• Adding IP into a Platform Designer System

Adding IP into an Intel® Quartus® Prime Project

To use the IP component generated by the Intel® oneAPI DPC++/C++ compiler in an Intel® Quartus® Prime
project, you must first add the .ip file to the project.

The .ip file contains information to add to all the necessary HDL files for the component. It also applies to
any component-specific Intel® Quartus® Prime Settings File (.qsf) settings that are necessary for IP
synthesis.

Follow these steps:

1. Create an Intel Quartus Prime Pro Edition project.
2. Open the Platform Designer and select your IP from the oneAPI folder.

For your IP to be in the oneAPI folder, either create the project in the same directory that contains the
generated IP project or add the file path.

3. Create the rest of your Intel Quartus Prime software project.

For an example of how to instantiate the IP component top-level module, examine the <result>.prj/
<project_name>_di_inst.v file.
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Adding IP into a Platform Designer System

To use the IP component generated by the Intel® oneAPI DPC++/C++ compiler in a Platform Designer
system, you must first add the directory to the IP search path or the IP Catalog.

In Platform Designer, if your IP component does not appear in the IP Catalog, perform the following tasks:

1. In the Intel® Quartus® Prime software, click Tools > Options.
2. In the Options dialog box, under Category, expand IP Settings and click IP Catalog Search

Locations.
3. In the IP Catalog Search Locations dialog box, add the path to the directory that contains the

_hw.tcl file to IP Search Paths as <result>.prj/<project_name>.
4. In the IP Catalog, add your IP to the Platform Designer system by selecting it from the oneAPI project

directory.

For more information about Platform Designer, refer to Creating a System with Platform Designer in Intel®
Quartus® Prime Pro Edition User Guide: Platform Designer.

For an example of adding an IP component into a system with Platform Designer, see the Platform Designer
Sample tutorial.

Encrypt IP Components for Distribution

If you are a member of the Intel® FPGA Design Solutions Network, you have access to tools to encrypt your
IP design files and generate a license for it. Your IP users can use the encrypted IP only in ways specified by
the generated license.

This license is compatible with the FlexLM licensing technology used by Intel® Quartus® Prime software.

If you have the Intel-provided IP encryption and licensing infrastructure installed, you can also generate
encrypted IP with the Intel® oneAPI DCP++/C++ Compiler.

Your encrypted IP can then be used by your customers in Intel® Quartus® Prime software, licensed by the file
that your users added to their Intel® Quartus® Prime license search path. For more details, refer to the
documentation that Intel provided you when you joined the Intel® FPGA Design Solutions Network.

If you want to support simulation with your encrypted IP, you must create a separately-encrypted version of
your IP for simulation. For simulation, an IEEE 1735 compliant encryption scheme is used.

To generate encrypted IP for use in Intel® Quartus® Prime software, use the following command:

icpx -fsycl -fintelfpga -Xshardware -Xstarget=<FPGA device or part number> -Xsencryption-
key=<key> -Xsencryption-id=<product_id> -Xsencryption-release-date=<yyyy.mm>

Important Before you run this command, you must create a license file for the IP and add the license
file to your $LM_LICENSE_FILE environment variable.

To generate encrypted IP for use in simulation, use the following command:

icpx -fsycl -fintelfpga -Xssimulation -Xstarget=<FPGA device or part number> -DFPGA_SIMULATOR -I/
$INTELFPGAOCLSDKROOT/include -Xsencryption-key=<key> -Xsencryption-id=<product_id> -Xsencryption-
release-date=<yyyy.mm>

FPGA Compilation Flags for IP Encryption

Option name Description

-Xsencryptionkey Specifies the encryption key used to encrypt the
source file.

The key must be a 48-digit hexadecimal value.

-Xsencryption-id Specifies the product ID for the IP.
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Option name Description

This ID must be a 4-digit hexadecimal value.

-Xsencryption-release-date Sets the release date in the format yyyy.mm.

-Xsno-encryption If you have created an alias to your icpx -fsycl
command that encrypts your IP, use this option on
your alias command to temporarily disable
encryption.

Fast Recompile for FPGA

The Intel® oneAPI DPC++/C++ Compiler supports only the ahead-of-time (AoT) compilation for FPGA
hardware and simulation, which means that an FPGA device image is generated at compile time. The FPGA
device image generation process can take hours to complete. If you make a change exclusive to the host
code, then recompile only your host code by reusing the existing FPGA device image and circumventing the
time-consuming device compilation process. Compiling for the simulator is much faster, but you can save
time by using the -reuse-exe flag.

The Intel® oneAPI DPC++/C++ Compiler provides the following mechanisms to separate device code and
host code compilation:

• Passing the -reuse-exe=<exe_name> flag to instruct the compiler to attempt to reuse the existing FPGA
device image.

• Separating the host and device code into separate files. When a code change applies only to host-only
files, the FPGA device image is not regenerated.

• Separating the device code using the compiler option -fsycl-device-code-split.

The following sections explain these these mechanisms in detail.

Using the -reuse-exe Flag
If the device code and options affecting the device have not changed since the previous compilation, passing
the -reuse-exe=<exe_name> flag instructs the compiler to extract the compiled FPGA hardware or
simulation image from the existing executable and package it into the new executable, saving the device
compilation time.

Sample use:

# Initial compilation
icpx -fsycl -fintelfpga -Xshardware <files.cpp> -o out.fpga

The initial compilation generates an FPGA device image, which takes several hours. Suppose you now make
some changes to the host code.

# Subsequent recompilation
icpx -fsycl <files.cpp> -o out.fpga -reuse-exe=out.fpga -Xshardware -fintelfpga

One of the following actions are taken by the command:

• If the out.fpga file does not exist, the -reuse-exe flag is ignored, and the FPGA device image is
regenerated. This is always the case the first time you compile a project.

• If the out.fpga file is found, the compiler verifies no change that affects the FPGA device code is made
since the last compilation. If no change is detected in the device code, the compiler then reuses the
existing FPGA device image and recompiles only the host code. The recompilation process takes a few
minutes to complete.

• If the out.fpga file is found, but the compiler cannot prove that the FPGA device code will yield a result
identical to the last compilation, a warning is printed, and the FPGA device code is fully recompiled. Since
the compiler checks must be conservative, spurious recompilations can sometimes occur when using the -
reuse-exe flag.
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Using the Device Link Method
Suppose the program is separated into two files, main.cpp and kernel.cpp, where only the kernel.cpp
file contains the device code.

In the normal compilation process, FPGA device image generation happens at link time.

# normal compile command
icpx -fsycl -fintelfpga -Xshardware main.cpp kernel.cpp -o link.fpga

As a result, any change to either the main.cpp or kernel.cpp triggers the regeneration of an FPGA hardware
image.

The following graph depicts this compilation process:

Compilation Process

If you want to iterate on the host code and avoid a long compile time for your FPGA device, consider using a
device link to separate the device and host compilation:

# device link command
icpx -fsycl -fintelfpga -fsycl-link=image <input files> [options]

The compilation is a three-step process as listed in the following:

1. Compile the device code.

icpx -fsycl -fintelfpga -Xshardware -fsycl-link=image kernel.cpp -o dev_image.a
Input files must include all files that contain the device code. This step might take several hours to
complete.

2. Compile the host code.

icpx -fsycl -fintelfpga main.cpp -c -o host.o
Input files should include all source files that contain only the host code. These files must not contain
any source code that executes on the device but may contain setup and tear-down code, for example,
parsing command-line options and reporting results. This step takes seconds to complete.

3. Create the device link.

icpx -fsycl -fintelfpga host.o dev_image.a -o fast_recompile.fpga
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This step takes seconds to complete. The input should include one or more host object files (.o) and
exactly one device image file (.a). When linking a static library (.a file), always include the static
library after its use. Otherwise, the library’s functions are discarded. For additional information about
static library linking, refer to Library order in static linking.

NOTE You only need to perform steps 2 and 3 when modifying host-only files.

The following diagram illustrates the device link process:

FPGA Device Link Process

Refer to the fast_recompile tutorial in the Intel® oneAPI Samples Browser for an example using the device
link method.

Using the -fsycl-device-code-split[=value] Option
The -fsycl-device-code-split[=value] option informs the compiler how to separate your design into
device code modules. This option supports the following modes:

• auto: This is the default mode and the same as the -fsycl-device-code-split option without any
value. The compiler uses a heuristic to select the best way of splitting device code.

• off: Creates a single module for all kernels.
• per_kernel: Creates a separate device code module for each kernel. Each device code module contains a

kernel and dependencies, such as called functions and user variables.
• per_source: Creates a separate device code module for each source (translation unit). Each device code

module contains a bunch of kernels grouped on a per-source basis and all their dependencies, such as all
used variables and called functions, including the SYCL_EXTERNAL macro-marked functions from other
translation units.
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Attention For FPGA, each split must not share device resources, such as memory, across it.
Furthermore, kernel pipes must have their source and sink within the same split.

For additional information about this option, refer to the fsycl-device-code-split topic in Intel® oneAPI DPC+
+/C++ Compiler Developer Guide and Reference.

Which Mechanism to Use?
Of the mechanisms described above, the -reuse-exe flag mechanism is easier to use than the device link
mechanism. The flag also allows you to keep your host and device code as a single source, which is preferred
for small programs. For larger and more complex projects, the device link method gives you more control
over the compiler’s behavior.

However, there are some drawbacks of the -reuse-exe flag when compared to compiling separate files.
Consider the following when using the -reuse-exe flag:

• The compiler must spend time partially recompiling and then analyzing the device code to ensure that it is
unchanged. This takes several minutes for larger designs. Compiling separate files does not incur this
extra time.

• You might occasionally encounter a false positive where the compiler incorrectly believes it must
recompile your device code. In a single source file, the device and host code are coupled, so certain
changes to the host code can change the compiler’s view of the device code. The compiler always behaves
conservatively and triggers a full recompilation if it cannot prove that reusing the previous FPGA binary is
safe. Compiling separate files eliminates this possibility.

Generate Multiple FPGA Images (Linux only)

Use this feature of the Intel® oneAPI DPC++/C++ Compiler when you want to split your FPGA compilation
into different FPGA images. This feature is particularly useful when your design does not fit on a single FPGA.
You can use it to split your very large design into multiple smaller images, which you can use to partially
reconfigure your FPGA device.

You can split your design using one of the following approaches, each giving you different benefits:

• Dynamic Linking Flow
• Dynamic Loading Flow

Between the two flows, dynamic linking is easier to implement than dynamic loading. However, dynamic
linking can require more memory on the host device as all of the device images must be loaded into memory.
Dynamic loading addresses these limitations but introduces the need for some extra source-level changes.
The following comparison table highlights the differences between the flows:

Dynamic Linking vs. Dynamic Loading Flow

Dynamic Linking Dynamic Loading

Can dynamically change FPGA
Image at runtime?

Yes Yes

Defining the type and number
of FPGA images

At compile time At runtime

Host-program memory
footprint

All FPGA images are stored in
memory at runtime.

Only explicitly loaded FPGA
images are stored in memory.

Calling host code Call function in the dynamic
library directly.

Explicitly load the dynamic library
and functions to call.
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Dynamic Linking Flow
This flow allows you to split your design into different source files and map them into a separate FPGA image.
Intel® recommends this flow for designs with a small number of FPGA images.

To use this flow, perform the following steps:

1. Split your source code such that for each FPGA image you want, you create a separate .cpp file that
submits various kernels. Separate the host code into one or more .cpp files that can then interface
with functions in the kernel files.

Consider that you now have the following three files:

• main.cpp containing your host code. For example:

// main.cpp
int main() {
  queue queueA;
  add(queueA);
  mul(queueA);
}

• vector_add.cpp containing a function that submits the vector_add kernel. For example:

// vector_add.cpp
extern "C"{
  void add(queue queueA) {
    queue.submit(
      // Kernel Code
    );
  }
}

• vector_mul.cpp containing a function that submits the vector_mul kernel. For example:

// vector_mul.cpp
extern "C"{
  void mul(queue queueA) {
    queue.submit(
      // Kernel Code
    );
  }
}

2. Compile the source files using the following commands:

icpx -fsycl -fPIC -fintelfpga -c vector_add.cpp -o vector_add.o
icpx -fsycl -fPIC -fintelfpga -c vector_mul.cpp -o vector_mul.o

// FPGA image compiles take a long time to complete
icpx -fsycl -fPIC -shared -fintelfpga vector_add.o -o vector_add.so -Xshardware -Xstarget=pac_a10
icpx -fsycl -fPIC -shared -fintelfpga vector_mul.o -o vector_mul.so -Xshardware -Xstarget=pac_a10

// Final link step
icpx -fsycl -o main.exe main.cpp vector_add.so vector_mul.so

With this flow, the long FPGA compile steps are split into separate commands that you can potentially run on
different systems or only when you change the files.
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Dynamic Loading Flow
Use this flow to avoid loading all of the different FPGA images into memory at once. Similar to dynamic
linking flow, this flow also requires you to split your code. However, for this flow, you must load the .so
(shared object) files in the host program. The advantage of this flow is that you can load large FPGA image
files dynamically as necessary instead of linking all image files at compile time.

To use this flow, perform the following steps:

1. Split your source code in the same manner as done in step 1 of the dynamic linking flow.
2. Modify the main.cpp file to appear as follows:

// main.cpp
#include <dlfcn.h>

int main() {
  queue queueA;
  bool runAdd, runMul;
  // Assuming runAdd and runMul are set dynamically at runtime
  if (runAdd) {
    auto add_lib = dlopen("./vector_add.so", RTLD_NOW);
    auto add = (void (*)(queue))dlsym(add_lib, "add");
    add(queueA);
  }
  if (runMul) {
    auto mul_lib = dlopen("./vector_mul.so", RTLD_NOW);
    auto mul = (void (*)(queue))dlsym(mul_lib, "mul");
    mul(queueA);
  }
}

3. Compile the source files using the following commands:

NOTE You do not have to link the .so files at compile time since they are loaded dynamically at
runtime.

icpx -fsycl -fPIC -fintelfpga -c vector_add.cpp -o vector_add.o
icpx -fsycl -fPIC -fintelfpga -c vector_mul.cpp -o vector_mul.o

// FPGA Image compiles take a long time to complete
icpx -fsycl -fPIC -shared -fintelfpga vector_add.o -o vector_add.so -Xshardware -Xstarget=pac_a10
icpx -fsycl -fPIC -shared -fintelfpga vector_mul.o -o vector_mul.so -Xshardware -Xstarget=pac_a10

icpx -fsycl -o main.exe main.cpp
// Before running the design, add the path containing the .so files to LD_LIBRARY_PATH
// e.g., export LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH

With this approach, you can arbitrarily load many .so files at runtime. This is useful when you have a large
library of FPGA images, and you want to select a subset of files from it.

FPGA BSPs and Boards

As mentioned earlier in Types of FPGA Compilation, generating an FPGA hardware image requires Intel®
Quartus® Prime software, to map your design from RTL to the FPGA’s primitive hardware resources. For BSPs
necessary to compile to FPGA hardware, refer to the Intel® FPGA development flow webpage.
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What is a Board?
Like a GPU, an FPGA is an integrated circuit that must be mounted onto a card or a board to interface with a
server or a desktop computer. In addition to the FPGA, the board provides memory, power, and thermal
management, and physical interfaces to allow the FPGA to communicate with other devices.

What is a BSP?
A BSP consists of software layers and an FPGA hardware scaffold design that makes it possible to target the
FPGA through the Intel® oneAPI DPC++/C++ Compiler. The FPGA design generated by the compiler is
stitched into the framework provided by the BSP.

What is Board Variant?
A BSP can provide multiple board variants that support different functionality. For example, the
intel_s10sx_pac BSP contains two variants that differ in their support for Unified Shared Memory (USM).
For additional information about USM, refer to the Unified Shared Memory and USM Interfaces topics in the
SYCL Reference Documentation.

NOTE A board can be supported by more than one BSP and a BSP might support more than one board
variant.

The Intel® FPGA Add-On for oneAPI Base Toolkit provides BSPs for two boards and board variants provided by
these BSPs can be selected using the following flags in your icpx -fsycl command:

Flags in dpcpp command

Board BSP Flag USM Support

Intel® Programmable
Acceleration Card (PAC)
with Intel® Arria® 10 GX
FPGA

intel_a10gx_pac -
Xstarget=intel_a10g
x_pac:pac_a10

Explicit USM

Intel® FPGA
Programmable
Acceleration Card (PAC)
D5005 (previously
known as Intel® PAC
with Intel® Stratix® 10
SX FPGA)

intel_s10sx_pac -
Xstarget=intel_s10s
x_pac:pac_s10

Explicit USM

Intel® FPGA
Programmable
Acceleration Card (PAC)
D5005 (previously
known as Intel® PAC
with Intel® Stratix® 10
SX FPGA)

intel_s10sx_pac -
Xstarget=intel_s10s
x_pac:pac_s10_usm

Explicit USM

Restricted USM
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NOTE

• The (part of the Intel® oneAPI Base Toolkit) provides partial BSPs sufficient for generating the FPGA
early image and optimization report. In contrast, the Intel® FPGA Add-On for oneAPI Base Toolkit
provides full BSPs, which are necessary for generating the FPGA hardware image.

• When running an executable on an FPGA board, you must ensure that you have initialized the FPGA
board for the board variant that the executable is targeting. For information about initializing an
FPGA board, refer to FPGA Board Initialization.

• For information about FPGA optimizations possible with Restricted USM, refer to Prepinning and 
Zero-Copy Memory Access topics in the FPGA Optimization Guide for Intel® oneAPI Toolkits.

FPGA Board Initialization

Before you run an executable containing an FPGA hardware image, you must initialize the FPGA board using
the following command:

aocl initialize <board id> <board variant>
where:

FPGA Board initialization parameters

Parameter Description

<board_id> Board ID obtained from the aocl diagnose
command. For example, acl0, acl1, and so on.

<board variant> Name of the board variant as specified by the -
Xstarget flag the executable was compiled with.
For example, pac_s10_usm.

For example, consider that you have a single Intel® Programmable Acceleration Card (PAC) D5005
(previously known as Intel® Programmable Acceleration Card (PAC) with Intel® Stratix® 10 SX) on your
system, and you compile the executable using the following compiler command:

icpx -fsycl -fintelfpga -Xshardware -Xstarget=intel_s10sx_pac:pac_s10_usm kernel.cpp
In this case, you must initialize the board using the following command:

aocl initialize acl0 pac_s10_usm
Once this is complete, you can run the executable without initializing the board again, unless you are doing
one of the following:

• Running a SYCL*-compiled workload for the first time after power cycling the host.
• Running a SYCL-compiled workload after running a non-SYCL workload on the FPGA.
• Running a SYCL compiled workload compiled with a different board variant in -Xstarget flag.

Obtain FPGA Hardware Image Information

The aocl binedit utility allows you to extract the following useful information about the compiled binary:

• Compilation environment details, such as: * Compiler version * Compile command used * Intel® Quartus®
Prime software version

• board_spec.xml from the BSP used for compiling
• Kernel fMAX (Quartus-compiled fMAX)
• BSP and board used for compiling
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Syntax
Use the aocl binedit utility with the following command:

aocl binedit <oneapi_binary> <list/get/print/exists> [<section_name> [output_file]]
The following are the list of available actions:

• list : Lists all available <section_name> in the given binary.
• print : Writes contents of the existing named section to the standard output stream for each package file

in the binary.
• get : Writes contents of the existing named section to the output file.
• exists : Verifies if the section exists in the package files in the binary. The non-zero exit code indicates

the section does not exist.

For example, if you have a binary compiled in the simulator flow, then the following command outputs
SimulatorDevice:

aocl binedit <oneapi_binary> print .acl.board
You can also identify the BSP versions using the following command:

aocl binedit <oneapi_binary> print .acl.board_package

Targeting Multiple Homogeneous FPGA Devices

The Intel® oneAPI DPC++/C++ Compiler supports targeting multiple homogeneous FPGA devices from a
single host CPU. This allows to improve your design’s throughput by parallelizing the execution of your
program on multiple FPGAs.

Intel® recommends creating a single context with multiple device queues because, with multi-context, buffers
at OpenCL layer must be copied between contexts, which introduces overhead and impacts overall
performance. However, you can use multi-context if your design is simple and the overhead does not affect
the overall performance.

Follow one of the following methods to target multiple FPGA devices:

Create a Single Context with Multiple Device Queues
Perform the following steps to target multiple FPGA devices with a single context:

1. Create a single SYCL* context to encapsulate a collection of FPGA devices of the same platform.

context ctxt(deviceList, &m_exception_handler);
2. Create a SYCL queue for each FPGA device.

std::vector<queue> queueList;
for (unsigned int i = 0; i < ctxt.get_devices().size(); i++) {
  queue newQueue(ctxt, ctxt.get_devices()[i], &m_exception_handler);
  queueList.push_back(newQueue);
}

3. Submit either the same or different device codes to all available FPGA devices. If you want to target a
subset of all available devices, then you must first perform device selection to filter out unwanted
devices.

for (unsigned int i = 0; i < queueList.size(); i++) {
  queueList[i].submit([&](handler& cgh) {...});
}

Create a Context For Each Device Queue (Multi-Context)
Perform the following steps to target multiple FPGA devices with multiple contexts:
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1. Obtain a list of all available FPGA devices. Optionally, you can select a device based on the device
member or device property. For device properties such as device name, use the member function
get_info()const with the desired device property.

std::vector<device> deviceList = device::get_devices();
2. Create a SYCL queue for each FPGA device.

std::vector<queue> queueList;
for (unsigned int i = 0; i < deviceList.size(); i++) {
  queue newQueue(deviceList[i], &m_exception_handler);
  queueList.push_back(newQueue);
}

3. Submit either the same or different device codes to all available FPGA devices. If you want to target a
subset of all available devices, then you must first perform device selection to filter out unwanted
devices.

for (unsigned int i = 0; i < queueList.size(); i++) {
  queueList[i].submit([&](handler& cgh) {...});
}

Limitations
Consider the following limitations when targeting multiple FPGA devices:

• All FPGA devices use the same FPGA bitstream.
• All FPGA devices used must be of the same FPGA card (same -Xstarget target)

Targeting Multiple Platforms

To compile a design that targets multiple target device types (using different device selectors), you can run
the following commands:

Emulation Compile
For compiling your SYCL* code for the FPGA emulator target, execute the following commands:

# For Linux:
icpx -fsycl jit_kernel.cpp -c -o jit_kernel.o

icpx -fsycl -fintelfpga -fsycl-link=image fpga_kernel.cpp -o fpga_kernel.a

icpx -fsycl -fintelfpga main.cpp jit_kernel.o fpga_kernel.a
# For Windows:
icx-cl -fsycl jit_kernel.cpp -c -o jit_kernel.o

icx-cl -fsycl -fintelfpga -fsycl-link=image fpga_kernel.cpp -o fpga_kernel.lib

icx-cl -fsycl -fintelfpga main.cpp jit_kernel.o fpga_kernel.lib
The design uses libraries and includes an FPGA kernel (AOT flow) and a CPU kernel (JIT flow).

Specifically, there should be a main function residing in the main.cpp file and two kernels for both CPU
(jit_kernel.cpp) and FPGA (fpga_kernel.cpp).
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Sample jit_kernel.cpp file:

sycl::cpu_selector device_selector;
queue deviceQueue(device_selector);
deviceQueue.submit([&](handler &cgh) {
  // CPU Kernel function
});

Sample fpga_kernel.cpp file:

#if FPGA_SIMULATOR
  auto selector = sycl::ext::intel::fpga_simulator_selector_v;
#elif FPGA_HARDWARE
  auto selector = sycl::ext::intel::fpga_selector_v;
#else  // #if FPGA_EMULATOR
  auto selector = sycl::ext::intel::fpga_emulator_selector_v;
#endif
queue deviceQueue(device_selector);
deviceQueue.submit([&](handler &cgh) {
  // FPGA Kernel Function
});

FPGA Hardware Compile
To compile for the FPGA hardware target, add the -Xshardware flag and remove the -DFPGA_EMULATOR flag,
as follows:

# For Linux:
icpx -fsycl jit_kernel.cpp -c -o jit_kernel.o

//Hardware compilation command. Takes a long time to complete.
icpx -fsycl -fintelfpga -fsycl-link=image -Xshardware fpga_kernel.cpp -o fpga_kernel.a

icpx -fsycl -fintelfpga main.cpp jit_kernel.o fpga_kernel.a
# For Windows:
icx-cl -fsycl jit_kernel.cpp -c -o jit_kernel.o

//Hardware compilation command. Takes a long time to complete.
icx-cl -fsycl -fintelfpga -fsycl-link=image -Xshardware fpga_kernel.cpp -o fpga_kernel.lib

icx-cl -fsycl -fintelfpga main.cpp jit_kernel.o fpga_kernel.lib

FPGA-CPU Interaction

One of the main influences on the overall performance of an FPGA design is how kernels executing on the
FPGA interact with the host on the CPU.
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Host and Kernel Interaction
FPGA devices typically communicate with the host (CPU) via PCIe.

FPGA Device Communication with the Host

This is an important factor influencing the performance of SYCL* programs targeting FPGAs. Furthermore,
the first time you run a particular SYCL program, you must configure the FPGA with its hardware bitstream,
and this may require several seconds.

Data Transfer
Typically, the FPGA board has its own private Double Data Rate (DDR) memory on which it primarily
operates. The CPU must bulk transfer or direct memory access (DMA) all data that the kernel needs to access
into the FPGA’s local DDR memory. After the kernel completes its operations, results must be transferred
over DMA back to the CPU. The transfer speed is bound by the PCIe link itself and the efficiency of the DMA
solution. For example, the Intel® PAC with Intel® Arria® 10 GX FPGA has a PCIe Gen 3 x 8 link, and transfers
are typically limited to 6-7 GB/s.

The following are the techniques to manage these data transfer times:

• SYCL allows buffers to be tagged as read-only or write-only, which eliminates some unnecessary
transfers.

• Improve the overall system efficiency by maximizing the number of concurrent operations. Since PCIe
supports simultaneous transfers in opposite directions and PCIe transfers do not interfere with kernel
execution, you can apply techniques such as double buffering. Refer to the Double Buffering Host Utilizing
Kernel Invocation Queue topic in the FPGA Optimization Guide for Intel® oneAPI Toolkits and the 
double_buffering tutorial for additional information about these techniques.

• Improve data transfer throughput by prepinning system memory on board variants that support
Restricted USM. Refer to the Prepinning topic in the FPGA Optimization Guide for Intel® oneAPI Toolkits for
additional information.

Configuration Time
You must program the hardware bitstream on the FPGA device in a process called configuration.
Configuration is a lengthy operation requiring several seconds of communication with the FPGA device. The
SYCL runtime manages configuration for you automatically. The runtime decides when the configuration
occurs. For example, the configuration might be triggered when a kernel is first launched, but subsequent
launches of the same kernel may not trigger configuration since the bitstream has not changed. Therefore,
during development, Intel® recommends to time the execution of the kernel after the FPGA has been
configured, for example, by performing a warm-up execution of the kernel before timing kernel execution.
You must remove this warm-up execution in the production code.

Multiple Kernel Invocations
If a SYCL program submits the same kernel to a SYCL queue multiple times (for example, by calling
single_task within a loop), only one kernel invocation is active at a time. Each subsequent invocation of
the kernel waits for the previous run of the kernel to complete.
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FPGA Performance Optimization

The preceding FPGA flow covered the basics of compiling for FPGA, but there is still much to learn about
improving the performance of your designs. The Intel® oneAPI DPC++/C++ Compiler provides tools that you
can use to find areas for improvement and a variety of flags, attributes, and extensions to control design and
compiler behavior. You can find this information in the FPGA Optimization Guide for Intel® oneAPI Toolkits,
which should be your main reference if you want to understand how to optimize your design.

Use of RTL Libraries for FPGA

An RTL library is a file that contains one or more functions. You can create an RTL library file using register
transfer level (RTL) code. You can then include this library file and use the functions inside your SYCL*
kernels.

To generate libraries that you can use with SYCL, you need to create the following files:

Generating RTL Libraries for Use with SYCL for FPGA

File or Component Description

RTL Library Files

RTL source files Verilog, System Verilog, or VHDL files that define
the RTL component.

Additional files such as Intel® Quartus® Prime IP File
(.qip), Synopsys Design Constraints File (.sdc),
and Tcl Script File (.tcl) are not allowed. For
information about the file syntax, see Object
Manifest File Syntax of an RTL Library.

eXtensible Markup Language File (.xml) Describes the properties of the RTL component. The
Intel® oneAPI DPC++/C++ Compiler uses these
properties to integrate the RTL component into the
SYCL pipeline. For information about the XML
attributes, see XML Elements for ATTRIBUTES.

Header file (.hpp) A header file containing valid SYCL kernel language
and declares the signatures of functions
implemented by the RTL component.
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File or Component Description

Emulation model file (SYCL-based) Provides a C++ model for the RTL component that
is used only for emulation. Full hardware
compilations use the RTL source files.

SYCL Functions

SYCL source files (.cpp) Contains definitions of the SYCL functions. These
functions are used during emulation and full
hardware compilations.

Header file (.hpp) A header file describing the functions to be called
from SYCL in the SYCL syntax.

The format of the library files is determined by which operating system you compile your source code on,
with additional sections that carry additional library information.

• On Linux* platforms, a library is a .a archive file that contains .o object files.
• On Windows* platforms, a library is a .lib archive file that contains .obj object files.

You can call the functions in the library from your kernel without the need to know the hardware design or
the implementation details of the underlying functions in the library. Add the library to the icpx command
line when you compile your kernel.

Creating a library is a two-step process:

1. Each object file is created from an input source file using the fpga_crossgen command.

• An object file is effectively an intermediate representation of your source code with both a CPU
representation and an FPGA representation of your code.

• An object can be targeted for use with only one Intel® high-level design product. If you want to
target more than one high-level design product, you must generate a separate object for each target
product.

2. Object files are combined into a library file using the fpga_libtool command. Objects created from
different types of source code can be combined into a library, provided all objects target the same high-
level design product.

A library is automatically assigned a toolchain version number and can be used only with the targeted
high-level design product with the same version number.

Library Toolchain Creation Process

Create Library Objects From Source Code
You can create a library from object files from your source code. A SYCL-based object file includes code for
CPU and hardware execution of CPU capturing for use in host and emulation of the kernel.
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Create an Object File From Source Code
Use the fpga_crossgen command to create library objects from your source code. An object created from
your source code contains information required both for emulating the functions in the object and
synthesizing the hardware for the object functions.

The fpga_crossgen command creates one object file from one input source file. The object created can be
used only in libraries that target the same high-level design tool. Also, objects are versioned. Each object is
assigned a compiler version number and be used only with high-level design tools with the same version
number.

Create a library object using the following command:

fpga_crossgen <rtl_spec>.xml --emulation_model <emulation_model>.cpp --target sycl -o 
<object_file>

The following table describes the parameters:

FPGA crossgen parameters

Parameter Description

<rtl_spec> An XML file name that specifies the details about
your RTL library.

--target Targets an Intel® high-level design tool sycl for the
library. The objects are combined as object files
into a SYCL library archive file using the
fpga_libtool.

-o Optional flag. This option helps you specify an
object file name. If you do not specify this option,
the object file name defaults to be the same name
as the source code file name but with an object file
suffix (.o or .obj).

Example command:

fpga_crossgen lib_rtl_spec.xml --emulation_model lib_rtl_model.cpp --source sycl --target sycl -
o lib_rtl.o

Packaging Object Files into a Library File
Gather the object files into a library file so that others can incorporate the library into their projects and call
the functions that are contained in the objects in the library. To package object files into a library, use the
fpga_libtool command.

Before you package object files into a library, ensure that you have the path information for all of the object
files that you want to include in the library.

All objects you want to package into a library must have the same version number. The fpga_libtool
command creates libraries encapsulated in operating-system-specific archive files (.a on Linux* and .lib on
Windows*). You cannot use libraries created on one operating system with an Intel® high-level design
product running on a different operating system.

Create a library file using the following command:

fpga_libtool file1 file2 ... fileN --target sycl --create <library_name>
The command parameters are defined as follows:
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Library File Command Parameters

Parameter Description

file1 file2 ... fileN You can specify one or more object files to include
in the library.

--target sycl Target this library for kernels developed. When you
mention the sycl option, --target prepares the
library for use with the Intel® oneAPI DPC++/C++
Compiler.

--create <library_name> Allows you to specify the name of the library
archive file. Specify the file extension of the library
file as .a for Linux-platform libraries.

Example command:

fpga_libtool lib_rtl.o  --target sycl --create lib.a
where, the command packages objects created from RTL source code into a SYCL library called lib.a.

NOTE For additional information, refer to the FPGA tutorial sample “Use Library” listed in the Intel®
oneAPI Samples Browser on Linux* or Windows*, or access the code sample on Github.

Using Static Libraries
You can include static libraries in your compiler command along with your source files, as shown in the
following command:

icpx -fsycl -fintelfpga main.cpp lib.a

NOTE For the functions you implemented in RTL to be usable, you must declare them in your source
code so that the compiler can dynamically link the functions. For example:

SYCL_EXTERNAL extern "C" void foo()

Object Manifest File Syntax of an RTL Library

This section provides the syntax of a simple object manifest file for an RTL library that implements double-
precision square root function. The RTL library is implemented in VHDL with a Verilog wrapper.

The following object manifest file is for an RTL library named my_fp_sqrt_double (line 2) that implements a
SYCL helper function named my_sqrtfd (line 2):

 <RTL_SPEC>
   <FUNCTION name="my_sqrtfd" module="my_fp_sqrt_double">
     <ATTRIBUTES>
       <IS_STALL_FREE value="yes"/>
       <IS_FIXED_LATENCY value="yes"/>
       <EXPECTED_LATENCY value="31"/>
       <CAPACITY value="1"/>
       <HAS_SIDE_EFFECTS value="no"/>
       <ALLOW_MERGING value="yes"/>
    </ATTRIBUTES>
    <INTERFACE>
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      <AVALON port="clock" type="clock"/>
      <AVALON port="resetn" type="resetn"/>
      <AVALON port="ivalid" type="ivalid"/>
      <AVALON port="iready" type="iready"/>
      <AVALON port="ovalid" type="ovalid"/>
      <AVALON port="oready" type="oready"/>
      <INPUT port="datain" width="64"/>
      <OUTPUT port="dataout" width="64"/>
    </INTERFACE>
    <C_MODEL>
      <FILE name="c_model.cl" />
    </C_MODEL>
    <REQUIREMENTS>
      <FILE name="my_fp_sqrt_double_s5.v" />
      <FILE name="fp_sqrt_double_s5.vhd" />
    </REQUIREMENTS>
    <RESOURCES>
      <ALUTS value="2057"/>
      <FFS value="3098"/>
      <RAMS value="15"/>
      <MLABS value="43"/>
      <DSPS value="1.5"/>
    </RESOURCES>
  </FUNCTION>
</RTL_SPEC>

Elements and Attributes in the Object Manifest File

XML Element Description

RTL_SPEC Top-level element in the object manifest file. There
can only be one such top-level element in the file.
In the above example, the name RTL_SPEC is
historic and carries no file-specific meaning.

FUNCTION Element that defines the SYCL function that the RTL
library implements. The name attribute within the
FUNCTION element specifies the function’s name.

You can have multiple FUNCTION elements, each
declaring a different function that you can call from
the SYCL kernel. The same RTL library can
implement multiple functions by specifying different
parameters.

ATTRIBUTES Element containing other XML elements that
describe various characteristics (for example,
latency) of the RTL library. The example RTL library
takes one PARAMETER setting named WIDTH, which
has a value of 32. Refer to XML Elements for
ATTRIBUTES section below for more details about
other ATTRIBUTES-specific elements.

NOTE If you create multiple SYCL helper functions for
different libraries, or use the same RTL library with
different PARAMETER settings, you must create a
separate FUNCTION element for each function.
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XML Element Description

INTERFACE Element containing other XML elements that
describe the RTL library’s interface. The example
object manifest file shows the Avalon® streaming
interface signals that every RTL library must
provide (that is, clock, resetn, ivalid, iready,
ovalid, and oready). The resetn signal is active
low. Its synchronicity depends on the target device:
• Intel® Arria® 10, Cyclone® V, Intel® Cyclone®

10 GX, and Cyclone® 10 LP: The resetn
signal is asynchronous to the clock signal.

• Intel® Stratix® 10 and Intel Agilex® 7: The
resetn signal is synchronous to the clock
signal. For more information about reset signal
timing, see Intel® Stratix® 10 and Intel Agilex® 7
Design-Specific Reset Requirements for Stall-
Free and Stallable RTL Libraries.

NOTE The signal names must match the ones
specified in the .xml file. An error occurs during
library creation if a signal name is inconsistent.

C_MODEL Element specifying one or more files that
implement SYCL model for the function. The model
is used only during emulation. However, the
C_MODEL element and the associated file(s) must
be present when you create the library file.

REQUIREMENTS Element specifying one or more RTL resource files
(that is, .v, .sv, .vhd, .hex, and .mif). The
specified paths to these files are relative to the
location of the object manifest file. Each RTL
resource file becomes part of the associated
Platform Designer component that corresponds to
the entire SYCL system.

NOTE The SYCL library feature does not support .qip
files. The Intel® oneAPI DPC++/C++ Compiler error
occurs if you compile a SYCL kernel while using a
library that includes an unsupported resource file type.

RESOURCES Optional element specifying the FPGA resources
that the RTL library uses. If you do not specify this
element, the FPGA resources that the RTL library
uses defaults to zero.

XML Elements for ATTRIBUTES
In the object manifest file of the RTL library, there are XML elements under ATTRIBUTES that you can specify
to set the library’s characteristics.
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Attention Except for IS_STALL_FREE and EXPECTED_LATENCY, all elements have safe values. If you
are unsure which value you should specify for an attribute, set it to the safe value. Compiling your
kernel with a library that uses safe values results in functional hardware. However, the hardware might
be larger than the actual size.

XML Elements Associated with the ATTRIBUTES Element in the Object Manifest File of an RTL
Library

XML Element Description

IS_STALL_FREE Instructs the compiler properly handle all stall and
valid signals. In this case, the compiler can save
some area by not generating stall logic around your
RTL libarary.

Set IS_STALL_FREE to "yes" to indicate that the
library neither generates stalls internally nor can it
properly handle incoming stalls. The library simply
ignores its stall input. If you set IS_STALL_FREE to
"no", the library must properly handle all stall and
valid signals.

NOTE If you set IS_STALL_FREE to "yes", you
must also set IS_FIXED_LATENCY to "yes". Also,
if the RTL library has an internal state, it must
properly handle ivalid=0 inputs. An incorrect
IS_STALL_FREE setting leads to incorrect results in
hardware.

IS_FIXED_LATENCY Indicates whether the RTL library has a fixed
latency.

Set IS_FIXED_LATENCY to "yes" if the RTL library
always takes a known number of clock cycles to
compute its output. The value you assign to the
EXPECTED_LATENCY element specifies the number
of clock cycles.

The safe value for IS_FIXED_LATENCY is "no".
When you set IS_FIXED_LATENCY="no", the
EXPECTED_LATENCY value must be at least 1.

NOTE For a given library, you may set
IS_FIXED_LATENCY to "yes" and
IS_STALL_FREE to "no". Such a library produces
its output in a fixed number of clock cycles and
handles stall signals properly.

EXPECTED_LATENCY Specifies the expected latency of the RTL library.
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XML Element Description

If you set IS_FIXED_LATENCY to "yes", the
EXPECTED_LATENCY value indicates the number of
pipeline stages inside the library. In this case, you
must set this value to be the exact latency of the
library. Otherwise, the compiler generates incorrect
hardware.

For a library with variable latency, the compiler
balances the pipeline around this library to the
EXPECTED_LATENCY value that you specify. For
libraries that can stall and require use of signals
such as iready, set the EXPECTED_LATENCY value
to at least 1. The specified value and the actual
latency might differ, which might affect the number
of stalls inside the pipeline. However, the resulting
hardware is correct.

CAPACITY Specifies the number of multiple inputs that the
library can process simultaneously. You must
specify a value for CAPACITY if you also set
IS_STALL_FREE="no" and
IS_FIXED_LATENCY="no". Otherwise, you do not
need to specify a value for CAPACITY.

If CAPACITY is strictly less than
EXPECTED_LATENCY, the compiler automatically
inserts capacity-balancing FIFO buffers after this
library when necessary.

The safe value for CAPACITY is 1.

HAS_SIDE_EFFECTS Indicates whether the RTL library has side effects.
Libraries that have internal states or communicate
with external memories are examples of libraries
with side effects.

Set HAS_SIDE_EFFECTS to "yes" to indicate that
the library has side effects. Specifying
HAS_SIDE_EFFECTS to "yes" ensures that
optimization efforts do not remove calls to libraries
with side effects.

Stall-free libraries with side effects (that is,
IS_STALL_FREE="yes" and
HAS_SIDE_EFFECTS="yes") must properly handle
ivalid=0 input cases because the library might
receive invalid data occasionally.

The safe value for HAS_SIDE_EFFECTS is "yes".

ALLOW_MERGING Instructs the compiler to merge multiple instances
of the RTL library. Set ALLOW_MERGING to "yes" to
allow merging of multiple instances of the library.
Intel® recommends setting ALLOW_MERGING to
"yes".
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The safe value for ALLOW_MERGING is "no".

NOTE Marking the library with
HAS_SIDE_EFFECTS="yes" does not prevent
merging.

PARAMETER Specifies the value of an RTL library parameter.

PARAMETER attributes:

• name: Specifies the name of the RTL library
parameter.

• value: Specifies a decimal numeric value for the
parameter.

• type: Specifies a system parameter the value of
which is used as the RTL library parameter
value. You can use the bspaddresswidth
parameter that specifies the Avalon® memory
bus width required to address the memory
range configured for SYCL global memory in the
board support package.

NOTE You can specify the value for an RTL library
parameter using either a value or a type attribute.

XML Elements for INTERFACE
In the object manifest file of the RTL library within a SYCL library, there are XML elements under INTERFACE
that you can define to specify aspects of the RTL library’s interface (for example, Avalon® streaming
interface).

Mandatory XML Elements Associated with the INTERFACE Element in the Object Manifest File of an
RTL Library

XML Element Description

INPUT Specifies the RTL library input parameter.

INPUT attributes:

• port: Specifies the RTL library port name.
• width: Specifies the port width in bits.

The input parameters are concatenated to form the
input stream.

NOTE Aggregate data structures, such as structs and
arrays, are not supported as input parameters.

OUTPUT Specifies the RTL library output parameter.
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OUTPUT attributes:

• port: Specifies the port name of the RTL library.
• width: Specifies the port width in bits.

The return value from the input stream is sent out
via the output parameter on the output stream.

NOTE Aggregate data structures, such as structs and
arrays, are not supported as input parameters.

XML Elements for RESOURCES
In the object manifest file of the RTL library within a SYCL library, there are optional elements under
RESOURCES that you can define to specify the FPGA resource utilization of the library. If you do not specify a
particular element, it has a default value of zero.

Additional XML Elements to Support External Memory Access

XML Element Description

ALUTS Specifies the number of combinational adaptive
look-up tables (ALUTs) that the library uses.

FFS Specifies the number of dedicated logic registers
that the library uses.

RAMS Specifies the number of block RAMs that the library
uses.

DSPS Specifies the number of digital signal processing
(DSP) blocks that the library uses.

MLABS Specifies the number of memory logic arrays
(MLABs) that the library uses. This value is equal to
the number of adaptive logic modules (ALMs) that
is used for memory divided by 10 because each
MLAB consumes 10 ALMs.

Restrictions and Limitations in RTL Support

When creating your RTL module for use inside SYCL kernels, ensure that the RTL module operates within the
following restrictions:

• An RTL module must use a single input Avalon® streaming interface. A single pair of ready and valid logic
must control all the inputs. You have the option to provide the necessary Avalon® streaming interface
ports but declare the RTL module as stall-free. In this case, you do not have to implement proper stall
behavior because the Intel® oneAPI DPC++/C++ Compiler creates a wrapper for your module. Refer to 
Object Manifest File Syntax of an RTL Module for additional information.

NOTE You must handle ivalid signals properly if your RTL module has an internal state. Refer to 
Stall-Free RTL for more information.

• The RTL module must work correctly regardless of the kernel clock frequency.
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• RTL modules cannot connect to external I/O signals. All input and output signals must come from a SYCL
kernel.

• An RTL module must have a clock port, a resetn port, and Avalon® streaming interface input and output
ports (that is, ivalid, ovalid, iready, oready). Name the ports as specified here.

• RTL modules cannot act as stand-alone SYCL kernels. RTL modules can only be helper functions and be
integrated into a SYCL kernel during kernel compilation.

• Every function call corresponding to RTL module instantiation is independent of other instantiations. There
is no hardware sharing.

• Do not incorporate kernel code into a SYCL library file. Incorporating kernel code into the library file
causes the offline compiler to issue an error message. You may incorporate helper functions into the
library file.

• An RTL component must receive all its inputs at the same time. A single ivalid input signifies that all
inputs contain valid data.

• You can only set RTL module parameters in the <RTL module description file name>.xml
specification file and not in the SYCL kernel source file. To use the same RTL module with multiple
parameters, create a separate FUNCTION tag for each parameter combination.

• You can only pass data inputs to an RTL module by value via the SYCL kernel code. Do not pass data
inputs to an RTL module via pass-by-reference, structs, or channels. In the case of channel data, pass the
extracted scalar data.

NOTE Passing data inputs to an RTL module via pass-by-reference or structs causes a fatal error in
the offline compiler.

• The debugger (for example, GDB for Linux) cannot step into a library function during emulation if the
library is built without the debug information. However, irrespective of whether the library is built with or
without the debug data, optimization and area reports are not mapped to the individual code line numbers
inside a library.

• Names of RTL module source files cannot conflict with the file names of Intel® oneAPI DPC++/C++
Compiler IP. Both the RTL module source files and the compiler IP files are stored in the <kernel file
name>/system/synthesis/submodules directory. Naming conflicts cause existing compiler IP files in the
directory to be overwritten by the RTL module source files.

• The compiler does not support .qip files. You must manually parse nested .qip files to create a flat list of
RTL files.

Tip It is challenging to debug an RTL module that works correctly on its own but works incorrectly as
part of a SYCL kernel. Double-check all parameters under the ATTRIBUTES element in the <RTL
object manifest file name>.xml file.

• All compiler area estimation tools assume that the RTL module area is 0. The compiler does not currently
support specifying an area model for RTL modules.

Intel® Stratix® 10 and Intel Agilex® 7 Design-Specific Reset Requirements for Stall-Free and Stallable RTL
Libraries

When creating an RTL library for Intel® Stratix® 10 SYCL and and Intel Agilex® 7 designs, ensure that the
library satisfies specific logic reset requirements.

Reset Requirements for Stall-Free RTL Libraries
A stall-free RTL library is a fixed-latency library for which the Intel® oneAPI DPC++/C++ Compiler can
optimize away stall logic. It accepts valid data, and does not have a ready_in signal at the end.

• When creating a stall-free RTL library for an Intel® Stratix® 10 design, use synchronous clear signals only.
• After deassertion of the reset signal to the stall-free RTL library, the library must be operational within

15 clock cycles. If the reset signal is pipelined within the library, this requirement limits the reset
pipelining to no more than 15 stages.
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Reset Requirements for Stallable RTL Libraries
A stallable RTL library has a variable latency, and it relies on backpressured input and output interfaces to
function correctly.

• When creating a stallable RTL library for an Intel® Stratix® 10 and and Intel Agilex® 7 designs, use
synchronous clear signals only.

• After assertion of the reset signal to the stallable RTL library, the library must deassert its oready and
ovalid interface signals within 40 clock cycles.

• After deassertion of the reset signal to the stallable RTL library, the library must be fully operational within
40 clock cycles. The library signals its readiness by asserting the oready interface signal.

Use SYCL Shared Library With Third-Party Applications

Use the Intel® oneAPI DPC++/C++ Compiler to compile your SYCL code to a C-standard shared library (.so
file on Linux and .dll file on Windows). You can then call this library from other third-party code to access a
broad base of accelerated functions from your preferred programming language.

SYCL Functions Packaged into a Shared Library File For Use in Third-party Applications

To use a shared library with a third-party application, perform these steps:

1. Define the Shared Library Interface
2. Generate the Library File in Linux or Windows
3. Use the Shared Library

Define the Shared Library Interface
Intel® recommends defining an interface between the C-standard shared library and your SYCL code. The
interface must include functions you want to export and how those functions interface with your SYCL code.
Prefix the functions that you want to include in the shared library with extern "C".

NOTE If you do not prefix with extern "C", then the functions appear with mangled names in the
shared library.

Consider the following example code of the vector_add function:

extern "C" int vector_add(int *a, int *b, int **c, size_t vector_len) {
  // Create device selector for the device of your interest.
  #if FPGA_EMULATOR
    // Intel extension: FPGA emulator selector on systems without FPGA card.
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    auto selector = sycl::ext::intel::fpga_emulator_selector_v;
  #elif FPGA_SIMULATOR
    // Intel extension: FPGA simulator selector on systems without FPGA card.
    auto selector = sycl::ext::intel::fpga_simulator_selector_v;
  #elif FPGA_HARDWARE
    // Intel extension: FPGA selector on systems with FPGA card.
    auto selector = sycl::ext::intel::fpga_selector_v;
  #else
    // The default device selector will select the most performant device.
    auto selector = default_selector_v;
  #endif

  try {
    queue q(d_selector, exception_handler);
    // SYCL code interface:
    // Vector addition in SYCL
    VectorAddKernel(q, a, b, c, vector_len);
  } catch (exception const &e) {
      std::cout << "An exception is caught for vector add.\n";
      return -1;
  }
  return 0;
}

Generate the Shared Library File in Linux
If you are using a Linux system, then perform these steps to generate the shared library file:

1. Compile the device code separately.

icpx -fsycl -fPIC –fintelfpga –fsycl-link=image [kernel src files] –o <hw image name> -Xshardware
Where:

• fPIC: Determines whether the compiler generates position-independent code for the host portion of
the device image. Option -fPIC specifies full symbol preemption. Global symbol definitions and
global symbol references get default (preemptable) visibility unless explicitly specified otherwise.
You must use this option when building shared objects. You can also specify this option as -fpic.

NOTEPIC is required so that pointers in the shared library reference global addresses and not local
addresses.

• fintelfpga: Targets FPGA devices.
• fsycl-link=image: Informs the Intel® oneAPI DPC++/C++ Compiler to partially link device

binaries for use with FPGA.
• Xshardware: Compiles for hardware instead of the emulator.

2. Compile the host code separately.

icpx -fsycl –fPIC –fintelfpga <host src files> -o <host image name> -c -DFPGA=1
Where:

• DFPGA=1: Sets a compiler macro, FPGA, equal to 1. It is used in the device selector to change
between target devices (requires corresponding host code to support this). This is optional as you
can also set your device selector to FPGA. For more information, refer to Device Selectors for FPGA.

3. Link the host and device images and create the binary.

icpx -fsycl –fPIC –fintelfpga –shared <host image name> <hw image name> -o lib<library name>.so
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Where:

• shared: Outputs a shared library (.so file).
• Output file name: Prefix with lib for the GCC type of compilers. For additional information, see 

Shared libraries with GCC on Linux. For example:

gcc -Wall -fPIC -L. -o out.a -l<library name>.so

NOTE Instead of the above multi-step process, you can also perform a single-step compilation to
generate the shared library. However, you must perform a full compile if you want to build the
executable for testing purposes (for example, a.out) or if you make changes in the SYCL code or C
interface.

Generate the Shared Library File in Windows
If you are using a Windows system, then perform these steps to generate the library file:

NOTE

• Intel® recommends creating a new configuration in the same project properties. If you want to build
the application, you can avoid changing the configuration type for your project.

• Creating a Windows library with the default Intel® oneAPI Base Toolkit and Intel® Programmable
Acceleration Card (PAC) with Intel® Arria® 10 GX FPGA or Intel® FPGA PAC D5005 (previously known
as Intel® PAC with Intel® Stratix® 10 SX FPGA) are supported only for FPGA emulation. For custom
platforms, contact your board vendor for Windows support for FPGA hardware compiles.

1. In Microsoft Visual Studio*, navigate to Project > Properties. The Property Pages dialog is
displayed for your project.
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2. Under the Configuration Properties > General > Project Defaults > Configuration Type option,
select Dynamic Library (``.dll``) from the drop-down list.

Project Properties Dialog

3. Click OK to close the dialog.

The project automatically builds to create a dynamic library (.dll)

Use the Shared Library
These steps may vary depending on the language or compiler you decide to use. Consult the specifications
for your desired language for more details. See Shared libraries with GCC on Linux for an example.

Generally, follow these steps to use the shared library:

1. Use the shared library function call in your third-party host code.
2. Link your host code with the shared library during the compilation.
3. Ensure that the library file is discoverable. For example:

export LD_LIBRARY_PATH=<lib file location>:$LD_LIBRARY_PATH

Intel® oneAPI Programming Guide  1  

127

https://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html


The following is an example illustration of using the shared library:

Example Use of the Shared Library

FPGA Workflows in IDEs

The oneAPI tools integrate with third-party integrated development environments (IDEs) on Linux (Eclipse*)
and Windows (Visual Studio*) to provide a seamless GUI experience for software development. See FPGA
Workflows on Third-Party IDEs for Intel® oneAPI Toolkits for more details.

For FPGA development with Visual Studio Code on Linux*, refer to FPGA Development for Intel® oneAPI
Toolkits with Visual Studio Code on Linux.

API-based Programming

Several libraries are available with oneAPI toolkits that can simplify the programming process by providing
specialized APIs for use in optimized applications. This chapter provides basic details about the libraries,
including code samples, to help guide the decision on which library is most useful in certain use cases.
Detailed information about each library, including more about the available APIs, is available in the main
documentation for that library.
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oneAPI Toolkit Libraries

Library Usage

Intel oneAPI DPC++ Library Use this library for high performance parallel
applications.

Intel oneAPI Math Kernel Library Use this library to include highly optimized and
extensively parallelized math routines in an
application.

Intel oneAPI Threading Building Blocks Use this library to combine TBB-based parallelism
on multicore CPUs and SYCL* device-accelerated
parallelism in an application.

Intel oneAPI Data Analytics Library Use this library to speed up big data analysis
applications and distributed computation.

Intel oneAPI Collective Communications Library Use this library for applications that focus on Deep
Learning and Machine Learning workloads.

Intel oneAPI Deep Neural Network Library Use this library for deep learning applications that
use neural networks optimized for Intel Architecture
Processors and Intel Processor Graphics.

Intel oneAPI Video Processing Library Use this library to accelerate video processing in an
application.

Intel oneAPI DPC++ Library (oneDPL)

The Intel® oneAPI DPC++ Library (oneDPL) aims to work with the Intel® oneAPI DPC++/C++ Compiler to
provide high-productivity APIs to developers, which can minimize SYCL* programming efforts across devices
for high performance parallel applications.

oneDPL consists of the following components:

• Parallel STL:

• Parallel STL Usage Instructions
• Macros

• An additional set of library classes and functions (referred to throughout this document as Extension
API):

• Parallel Algorithms
• Iterators
• Function Object Classes
• Range-Based API

• Tested Standard C++ APIs
• Random Number Generator

oneDPL Library Usage

Install the Intel® oneAPI Base Toolkit to use oneDPL.

To use Parallel STL or the Extension API, include the corresponding header files in your source code. All
oneDPL header files are in the oneapi/dpl directory. Use #include <oneapi/dpl/...> to include them.
oneDPL uses the namespace oneapi::dpl for the most of its classes and functions.

To use tested C++ standard APIs, you need to include the corresponding C++ standard header files and use
the std namespace.
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oneDPL Code Sample

oneDPL sample code is available from the oneAPI GitHub repository https://github.com/oneapi-src/oneAPI-
samples/tree/master/Libraries/oneDPL. Each sample includes a readme with build instructions.

Intel oneAPI Math Kernel Library (oneMKL)

The Intel® oneAPI Math Kernel Library (oneMKL) is a computing math library of highly optimized and
extensively parallelized routines for applications that require maximum performance. oneMKL contains the
high-performance optimizations from the full Intel® Math Kernel Library for CPU architectures (with C/Fortran
programming language interfaces) and adds to them a set of SYCL* interfaces for achieving performance on
various CPU architectures and Intel Graphics Technology for certain key functionalities. oneMKL provides
BLAS and LAPACK linear algebra routines, fast Fourier transforms, vectorized math functions, random
number generation functions, and other functionality.

You can use OpenMP* offload to run standard oneMKL computations on Intel GPUs. Refer to OpenMP* offload
for C interfaces and OpenMP* offload for Fortran interfaces for more information.

The new SYCL interfaces with optimizations for CPU and GPU architectures have been added for key
functionality in the following major areas of computation:

• BLAS and LAPACK dense linear algebra routines
• Sparse BLAS sparse linear algebra routines
• Random number generators (RNG)
• Vector Mathematics (VM) routines for optimized mathematical operations on vectors
• Fast Fourier Transforms (FFTs)

For the complete list of features, documentation, code samples, and downloads, visit the official Intel oneAPI
Math Kernel Library website. If you plan to use oneMKL as part of the oneAPI Base Toolkit, consider that 
priority support is available as a paid option. For Intel community-support, visit the oneMKL forum. For the
open-source oneMKL Interfaces project, visit the oneMKL GitHub* page.

The table below describes the difference in these oneMKL sites:

oneAPI Specification for oneMKL Defines the DPC++ interfaces for performance
math library functions. The oneMKL specification
can evolve faster and more frequently than
implementations of the specification.

oneAPI Math Kernel Library (oneMKL) Interfaces
Project

An open source implementation of the specification.
The project goal is to demonstrate how the DPC++
interfaces documented in the oneMKL specification
can be implemented for any math library and work
for any target hardware. While the implementation
provided here may not yet be the full
implementation of the specification, the goal is to
build it out over time. We encourage the
community to contribute to this project and help to
extend support to multiple hardware targets and
other math libraries.

Intel(R) oneAPI Math Kernel Library (oneMKL)
Product

The Intel product implementation of the
specification (with DPC++ interfaces) as well as
similar functionality with C and Fortran interfaces,
and is provided as part of Intel® oneAPI Base
Toolkit. It is highly optimized for Intel CPU and Intel
GPU hardware.
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oneMKL Usage

When using the SYCL* interfaces, there are a few changes to consider:

• oneMKL has a dependency on the Intel oneAPI DPC++/C++ Compiler and Intel oneAPI DPC++ Library.
Applications must be built with the Intel oneAPI DPC++/C++ Compiler, the SYCL headers made available,
and the application linked with oneMKL using the DPC++ linker.

• SYCL interfaces in oneMKL use device-accessible Unified Shared Memory (USM) pointers for input data
(vectors, matrices, etc.).

• Many SYCL interfaces in oneMKL also support the use of sycl::buffer objects in place of the device-
accessible USM pointers for input data.

• SYCL interfaces in oneMKL are overloaded based on the floating point types. For example, there are
several general matrix multiply APIs, accepting single precision real arguments (float), double precision
real arguments (double), half precision real arguments (half), and complex arguments of different
precision using the standard library types std::complex<float>, std::complex<double>.

• A two-level namespace structure for oneMKL is added for SYCL interfaces:

oneMKL Two-level Namespaces

Namespace Description

oneapi::mkl Contains common elements between various
domains in oneMKL

oneapi::mkl::blas Contains dense vector-vector, matrix-vector, and
matrix-matrix low level operations

oneapi::mkl::lapack Contains higher-level dense matrix operations like
matrix factorizations and eigensolvers

oneapi::mkl::rng Contains random number generators for various
probability density functions

oneapi::mkl::stats Contains basic statistical estimates for single and
double precision multi-dimensional datasets

oneapi::mkl::vm Contains vector math routines

oneapi::mkl::dft Contains fast fourier transform operations

oneapi::mkl::sparse Contains sparse matrix operations like sparse
matrix-vector multiplication and sparse triangular
solver

oneMKL Code Sample

To demonstrate a typical workflow for the oneMKL with SYCL* interfaces, the following example source code
snippets perform a double precision matrix-matrix multiplication on a GPU device.

NOTE The following code example requires additional code to compile and run, as indicated by the
inline comments.

// Standard SYCL header
#include <CL/sycl.hpp>
// STL classes
#include <exception>
#include <iostream>
// Declarations for Intel oneAPI Math Kernel Library SYCL/DPC++ APIs
#include "oneapi/mkl.hpp"
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int main(int argc, char *argv[]) {
    //
    // User obtains data here for A, B, C matrices, along with setting m, n, k, ldA, ldB, ldC.
    //
    // For this example, A, B and C should be initially stored in a std::vector,
    //   or a similar container having data() and size() member functions.
    //

    // Create GPU device
    sycl::device my_device;
    try {
        my_device = sycl::device(sycl::gpu_selector());
    }
    catch (...) {
        std::cout << "Warning: GPU device not found! Using default device instead." << std::endl;
    }
    // Create asynchronous exceptions handler to be attached to queue.
    // Not required; can provide helpful information in case the system isn’t correctly 
configured.
    auto my_exception_handler = [](sycl::exception_list exceptions) {
        for (std::exception_ptr const& e : exceptions) {
            try {
                std::rethrow_exception(e);
            }
            catch (sycl::exception const& e) {
                std::cout << "Caught asynchronous SYCL exception:\n"
                    << e.what() << std::endl;
            }
            catch (std::exception const& e) {
                std::cout << "Caught asynchronous STL exception:\n"
                    << e.what() << std::endl;
            }
        }
    };
    // create execution queue on my gpu device with exception handler attached
    sycl::queue my_queue(my_device, my_exception_handler);
    // create sycl buffers of matrix data for offloading between device and host
    sycl::buffer<double, 1> A_buffer(A.data(), A.size());
    sycl::buffer<double, 1> B_buffer(B.data(), B.size());
    sycl::buffer<double, 1> C_buffer(C.data(), C.size());
    // add oneapi::mkl::blas::gemm to execution queue and catch any synchronous exceptions
    try {
        using oneapi::mkl::blas::gemm;
        using oneapi::mkl::transpose;
        gemm(my_queue, transpose::nontrans, transpose::nontrans, m, n, k, alpha, A_buffer, ldA, 
B_buffer,
           ldB, beta, C_buffer, ldC);
    }
    catch (sycl::exception const& e) {
        std::cout << "\t\tCaught synchronous SYCL exception during GEMM:\n"
            << e.what() << std::endl;
    }
    catch (std::exception const& e) {
        std::cout << "\t\tCaught synchronous STL exception during GEMM:\n"
            << e.what() << std::endl;
    }
    // ensure any asynchronous exceptions caught are handled before proceeding
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    my_queue.wait_and_throw();
    //
    // post process results
    //
    // Access data from C buffer and print out part of C matrix
    auto C_accessor = C_buffer.template get_access<sycl::access::mode::read>();
    std::cout << "\t" << C << " = [ " << C_accessor[0] << ", "
        << C_accessor[1] << ", ... ]\n";
    std::cout << "\t    [ " << C_accessor[1 * ldC + 0] << ", "
        << C_accessor[1 * ldC + 1] << ",  ... ]\n";
    std::cout << "\t    [ " << "... ]\n";
    std::cout << std::endl;

    return 0;
}

Consider that (double precision valued) matrices A(of size m-by-k), B( of size k-by-n) and C(of size m-by-n)
are stored in some arrays on the host machine with leading dimensions ldA, ldB, and ldC, respectively. Given
scalars (double precision) alpha and beta, compute the matrix-matrix multiplication (mkl::blas::gemm):

C = alpha * A * B + beta * C

Include the standard SYCL headers and the oneMKL SYCL/DPC++ specific header that declares the desired
mkl::blas::gemm API:

// Standard SYCL header
#include <CL/sycl.hpp>
// STL classes
#include <exception>
#include <iostream>
// Declarations for Intel oneAPI Math Kernel Library SYCL/DPC++ APIs
#include "oneapi/mkl.hpp"

Next, load or instantiate the matrix data on the host machine as usual and then create the GPU device,
create an asynchronous exception handler, and finally create the queue on the device with that exception
handler. Exceptions that occur on the host can be caught using standard C++ exception handling
mechanisms; however, exceptions that occur on a device are considered asynchronous errors and stored in
an exception list to be processed later by this user-provided exception handler.

// Create GPU device
sycl::device my_device;
try {
    my_device = sycl::device(sycl::gpu_selector());
}
catch (...) {
    std::cout << "Warning: GPU device not found! Using default device instead." << std::endl;
}
// Create asynchronous exceptions handler to be attached to queue.
// Not required; can provide helpful information in case the system isn’t correctly configured.
auto my_exception_handler = [](sycl::exception_list exceptions) {
    for (std::exception_ptr const& e : exceptions) {
        try {
            std::rethrow_exception(e);
        }
        catch (sycl::exception const& e) {
            std::cout << "Caught asynchronous SYCL exception:\n"
                << e.what() << std::endl;
        }
        catch (std::exception const& e) {
            std::cout << "Caught asynchronous STL exception:\n"
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                << e.what() << std::endl;
        }
    }
};

The matrix data is now loaded into the SYCL buffers, which enables offloading to desired devices and then
back to host when complete. Finally, the mkl::blas::gemm API is called with all the buffers, sizes, and
transpose operations, which will enqueue the matrix multiply kernel and data onto the desired queue.

// create execution queue on my gpu device with exception handler attached
sycl::queue my_queue(my_device, my_exception_handler);
// create sycl buffers of matrix data for offloading between device and host
sycl::buffer<double, 1> A_buffer(A.data(), A.size());
sycl::buffer<double, 1> B_buffer(B.data(), B.size());
sycl::buffer<double, 1> C_buffer(C.data(), C.size());
// add oneapi::mkl::blas::gemm to execution queue and catch any synchronous exceptions
try {
    using oneapi::mkl::blas::gemm;
    using oneapi::mkl::transpose;
    gemm(my_queue, transpose::nontrans, transpose::nontrans, m, n, k, alpha, A_buffer, ldA, 
B_buffer,
       ldB, beta, C_buffer, ldC);
}
catch (sycl::exception const& e) {
    std::cout << "\t\tCaught synchronous SYCL exception during GEMM:\n"
        << e.what() << std::endl;
}
catch (std::exception const& e) {
    std::cout << "\t\tCaught synchronous STL exception during GEMM:\n"
        << e.what() << std::endl;
}

At some time after the gemm kernel has been enqueued, it will be executed. The queue is asked to wait for all
kernels to execute and then pass any caught asynchronous exceptions to the exception handler to be thrown.
The runtime will handle transfer of the buffer’s data between host and GPU device and back. By the time an
accessor is created for the C_buffer, the buffer data will have been silently transferred back to the host
machine if necessary. In this case, the accessor is used to print out a 2x2 submatrix of C_buffer.

// Access data from C buffer and print out part of C matrix
auto C_accessor = C_buffer.template get_access<sycl::access::mode::read>();
std::cout << "\t" << C << " = [ " << C_accessor[0] << ", "
    << C_accessor[1] << ", ... ]\n";
std::cout << "\t    [ " << C_accessor[1 * ldC + 0] << ", "
    << C_accessor[1 * ldC + 1] << ",  ... ]\n";
std::cout << "\t    [ " << "... ]\n";
std::cout << std::endl;

return 0;
Note that the resulting data is still in the C_buffer object and, unless it is explicitly copied elsewhere (like
back to the original C container), it will only remain available through accessors until the C_buffer is out of
scope.

Intel oneAPI Threading Building Blocks (oneTBB)

Intel® oneAPI Threading Building Blocks (oneTBB) is a widely used C++ library for task-based, shared
memory parallel programming on the host. The library provides features for parallel programming on CPUs
beyond those currently available in SYCL* and ISO C++, including:
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• Generic parallel algorithms
• Concurrent containers
• A scalable memory allocator
• Work-stealing task scheduler
• Low-level synchronization primitives

oneTBB is compiler-independent and is available on a variety of processors and operating systems. It is used
by other oneAPI libraries (Intel oneAPI Math Kernel Library, Intel oneAPI Deep Neural Network Library, etc.)
to express multithreading parallelism for CPUs.

For the complete list of features, documentation, code samples, and downloads, visit the official Intel oneAPI
Threading Building Blocks Library website. If you plan to use oneTBB as part of the oneAPI Base Toolkit,
consider that priority support is available as a paid option. For Intel community-support, visit the oneTBB
forum. For the community-supported open-source version, visit the oneTBB GitHub* page.

oneTBB Usage

oneTBB can be used with the Intel oneAPI DPC++/C++ Compiler in the same way as with any other C++
compiler. For more details, see the oneTBB documentation.

Currently, oneTBB does not directly use any accelerators. However, it can be combined with SYCL*, OpenMP*
offload, and other oneAPI libraries to build a program that efficiently uses all available hardware resources.

oneTBB Code Sample

Two basic oneTBB code samples are available within the oneAPI GitHub repository https://github.com/
oneapi-src/oneAPI-samples/tree/master/Libraries/oneTBB. Both samples are prepared for CPU and GPU.

• tbb-async-sycl: illustrates how computational kernel can be split for execution between CPU and GPU
using oneTBB Flow Graph asynchronous node and functional node. The Flow Graph asynchronous node
uses SYCL* to implement calculations on GPU while the functional node does CPU part of calculations.

• tbb-task-sycl: illustrates how two oneTBB tasks can execute similar computational kernels with one
task executing SYCL code and another one the oneTBB code.

• tbb-resumable-tasks-sycl: illustrates how a computational kernel can be split for execution between a
CPU and GPU using oneTBB resumable task and parallel_for. The resumable task uses SYCL to implement
calculations on GPU while parallel_for does the CPU portion of calculations.

Intel oneAPI Data Analytics Library (oneDAL)

Intel® oneAPI Data Analytics Library (oneDAL) is a library that helps speed up big data analysis by providing
highly optimized algorithmic building blocks for all stages of data analytics (preprocessing, transformation,
analysis, modeling, validation, and decision making) in batch, online, and distributed processing modes of
computation.

The library optimizes data ingestion along with algorithmic computation to increase throughput and
scalability. It includes C++ and Java* APIs and connectors to popular data sources such as Spark* and
Hadoop*. Python* wrappers for oneDAL are part of Intel Distribution for Python.

In addition to classic features, oneDAL provides DPC++ SYCL API extensions to the traditional C++ interface
and enables GPU usage for some algorithms.

The library is particularly useful for distributed computation. It provides a full set of building blocks for
distributed algorithms that are independent from any communication layer. This allows users to construct fast
and scalable distributed applications using user-preferable communication means.

For the complete list of features, documentation, code samples, and downloads, visit the official Intel oneAPI
Data Analytics Library website. If you plan to use oneDAL as part of the oneAPI Base Toolkit, consider that 
priority support is available as a paid option. For Intel community-support, visit the oneDAL forum. For the
community-supported open-source version, visit the oneDAL GitHub* page.
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oneDAL Usage

Information about dependencies needed to build and link your application with oneDAL are available from the 
oneDAL System Requirements.

A oneDAL-based application can seamlessly execute algorithms on CPU or GPU by picking the proper device
selector. New capabilities also allow:

• extracting SYCL* buffers from numeric tables and pass them to a custom kernel
• creating numeric tables from SYCL buffers

Algorithms are optimized to reuse SYCL buffers to keep GPU data and remove overload from repeatedly
copying data between GPU and CPU.

oneDAL Code Sample

oneDAL code samples are available from the oneDAL GitHub. The following code sample is a recommended
starting point: https://github.com/oneapi-src/oneDAL/tree/master/examples/oneapi/dpc/source/svm

Intel oneAPI Collective Communications Library (oneCCL)

Intel® oneAPI Collective Communications Library (oneCCL) is a scalable and high-performance
communication library for Deep Learning (DL) and Machine Learning (ML) workloads. It develops the ideas
that originated in Intel® Machine Learning Scaling Library and expands the design and API to encompass new
features and use cases.

oneCCL features include:

• Built on top of lower-level communication middleware – MPI and libfabrics
• Optimized to drive scalability of communication patterns by enabling the productive trade-off of compute

for communication performance
• Enables a set of DL-specific optimizations, such as prioritization, persistent operations, out of order

execution, etc.
• DPC++-aware API to run across various hardware targets, such as CPUs and GPUs
• Works across various interconnects: Intel® Omni-Path Architecture (Intel® OPA), InfiniBand*, and Ethernet

For the complete list of features, documentation, code samples, and downloads, visit the official Intel oneAPI
Collective Communications Library website. If you plan to use oneCCL as part of the oneAPI Base Toolkit,
consider that premium support is available as a paid option. For the community-supported open-source
version, visit the oneCCL GitHub* page.

oneCCL Usage

Refer to the Intel oneAPI Collective Communications Library System Requirements for a full list of hardware
and software dependencies, such as MPI and Intel oneAPI DPC++/C++ Compiler.

SYCL*-aware API is an optional feature of oneCCL. There is a choice between CPU and SYCL back ends when
creating the oneCCL stream object.

• For CPU backend: Specify ccl_stream_host as the first argument.
• For SYCL backend: Specify ccl_stream_cpu or ccl_stream_gpu depending on the device type.
• For collective operations that operate on the SYCL stream:

• For C API, oneCCL expects communication buffers to be sycl::buffer objects casted to void*.
• For C++ API, oneCCL expects communication buffers to be passed by reference.

Additional usage details are available from https://oneapi-src.github.io/oneCCL/.
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oneCCL Code Sample

oneCCL code samples are available from the oneAPI GitHub repository https://github.com/oneapi-src/
oneAPI-samples/tree/master/Libraries/oneCCL.

A Getting Started sample with instructions to build and run the code is available from within the same GitHub
repository.

Intel oneAPI Deep Neural Network Library (oneDNN)

Intel® oneAPI Deep Neural Network Library (oneDNN) is an open-source performance library for deep
learning applications. The library includes basic building blocks for neural networks optimized for Intel
Architecture Processors and Intel Processor Graphics. oneDNN is intended for deep learning applications and
framework developers interested in improving application performance on Intel Architecture Processors and
Intel Processor Graphics. Deep learning practitioners should use one of the applications enabled with
oneDNN.

oneDNN is distributed as part of Intel® oneAPI DL Framework Developer Toolkit, the Intel oneAPI Base
Toolkit, and is available via apt and yum channels.

oneDNN continues to support features currently available with DNNL, including C and C++ interfaces,
OpenMP*, Intel oneAPI Threading Building Blocks, and OpenCL™ runtimes. oneDNN introduces SYCL*/DPC++
API and runtime support for the oneAPI programming model.

For the complete list of features, documentation, code samples, and downloads, visit the official Intel oneAPI
Deep Neural Network Library website. If you plan to use oneDNN as part of the oneAPI Base Toolkit, consider
that premium support is available as a paid option. For the community-supported open-source version, visit
the oneDNN GitHub* page.

oneDNN Usage

oneDNN supports systems based on Intel 64 architecture or compatible processors. A full list of supported
CPU and graphics hardware is available from the Intel oneAPI Deep Neural Network Library System
Requirements.

oneDNN detects the instruction set architecture (ISA) in the runtime and uses online generation to deploy
the code optimized for the latest supported ISA.

Several packages are available for each operating system to ensure interoperability with CPU or GPU runtime
libraries used by the application.

Package Availability by Operating System

Configuration Dependency

cpu_dpcpp_gpu_dpcpp DPC++ runtime

cpu_iomp Intel OpenMP* runtime

cpu_gomp GNU* OpenMP runtime

cpu_vcomp Microsoft* Visual C++ OpenMP runtime

cpu_tbb Intel oneAPI Threading Building Blocks

The packages do not include library dependencies and these need to be resolved in the application at build
time with oneAPI toolkits or third-party tools.

When used in the SYCL* environment, oneDNN relies on the DPC++ SYCL runtime to interact with CPU or
GPU hardware. oneDNN may be used with other code that uses SYCL. To do this, oneDNN provides API
extensions to interoperate with underlying SYCL objects.
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One of the possible scenarios is executing a SYCL kernel for a custom operation not provided by oneDNN. In
this case, oneDNN provides all necessary APIs to seamlessly submit a kernel, sharing the execution context
with oneDNN: using the same device and queue.

The interoperability API is provided for two scenarios:

• Construction of oneDNN objects based on existing SYCL objects
• Accessing SYCL objects for existing oneDNN objects

The mapping between oneDNN and SYCL objects is summarized in the tables below.

oneDNN and SYCL Object Mapping 1

oneDNN Objects SYCL Objects

Engine cl::sycl::device and cl::sycl::context

Stream cl::sycl::queue

Memory cl::sycl::buffer<uint8_t, 1> or Unified Shared
Memory (USM) pointer

NOTE Internally, library memory objects use 1D uint8_t SYCL buffers, however SYCL buffers of a
different type can be used to initialize and access memory. In this case, buffers will be reinterpreted to
the underlying type cl::sycl::buffer<uint8_t, 1>.

oneDNN and SYCL Object Mapping 2

oneDNN Object Constructing from SYCL Object

Engine dnnl::sycl_interop::make_engine(sycl_dev,
sycl_ctx)

Stream dnnl::sycl_interop::make_stream(engine,
sycl_queue)

Memory USM based: dnnl::memory(memory_desc,
engine, usm_ptr)
Buffer based:
dnnl::sycl_interop::make_memory(memory_de
sc, engine, sycl_buf)

oneDNN and SYCL Object Mapping 3

oneDNN Object Extracting SYCL Object

Engine dnnl::sycl_interop::get_device(engine)
dnnl::sycl_interop::get_context(engine)

Stream dnnl::sycl_interop::get_queue(stream)

Memory USM pointer:
dnnl::memory::get_data_handle()
Buffer:
dnnl::sycl_interop::get_buffer(memory)
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NOTE

• Building applications with oneDNN requires a compiler. The Intel oneAPI DPC++/C++ Compiler is
available as part of the Intel oneAPI Base Toolkit.

• You must include dnnl_sycl.hpp to enable the SYCL-interop API.
• Because OpenMP does not rely on the passing of runtime objects, it does not require an

interoperability API to work with oneDNN.

oneDNN Code Sample

oneDNN sample code is available from the Intel oneAPI Base Toolkit GitHub repository https://github.com/
oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN. The Getting Started sample is targeted to new
users and includes a readme file with example build and run commands.

Intel oneAPI Video Processing Library (oneVPL)

Intel® oneAPI Video Processing Library (oneVPL) is a programming interface for video decoding, encoding,
and processing to build portable media pipelines on CPUs, GPUs, and other accelerators. The oneVPL API is
used to develop quality, performant video applications that can leverage Intel® hardware accelerators. It
provides device discovery and selection in media centric and video analytics workloads, and API primitives for
zero-copy buffer sharing. oneVPL is backward compatible with Intel® Media SDK and cross-architecture
compatible to ensure optimal execution on current and next generation hardware without source code
changes.

oneVPL is an open specification API.

For the complete list of features, documentation, code samples, and downloads, visit the official Intel oneAPI
Video Processing Library website. If you plan to use oneVPL as part of the oneAPI Base Toolkit, consider that 
priority support is available as a paid option. For Intel community-support, visit the oneVPL forum. For the
community-supported open-source version, visit the oneVPL GitHub* page.

oneVPL Usage

Applications can use oneVPL to program video decoding, encoding, and image processing components.
oneVPL provides a default CPU implementation that can be used as a reference design before using other
accelerators.

oneVPL applications follow a basic sequence in the programming model:

1. The oneVPL dispatcher automatically finds all available accelerators during runtime.
2. Dispatcher uses the selected accelerator context to initialize a session.
3. oneVPL configures the video component at the start of the session.
4. oneVPL processing loop is launched. The processing loop handles work asynchronously.
5. If the application chooses to let oneVPL manage working memory, then memory allocation will be

implicitly managed by the video calls in the processing loop.
6. After work is done, oneVPL uses a clear call to clean up all resources.

The oneVPL API is defined using a classic C style interface and is compatible with C++ and SYCL*.

oneVPL Code Sample

oneVPL provides rich code samples to show how to use the oneVPL API. The code samples are included in the
release package and are also available from the oneAPI-samples repository on GitHub*.

For example, the hello-decode sample shows a simple decode operation of HEVC input streams and
demonstrates the basic steps in the oneVPL programming model.
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The sample can be broken down into the following key steps in the code:

NOTE The snippets below may not reflect the latest version of the sample. Refer to the release
package or sample repository for the latest version of this example.

1. Initialize oneVPL session with dispatcher:

mfxLoader loader = NULL;
mfxConfig cfg = NULL;

loader = MFXLoad();

cfg = MFXCreateConfig(loader);
ImplValue.Type = MFX_VARIANT_TYPE_U32;
ImplValue.Data.U32 = MFX_CODEC_HEVC;
sts = MFXSetConfigFilterProperty(cfg, 
(mfxU8*)"mfxImplDescription.mfxDecoderDescription.decoder.CodecID", ImplValue);

sts = MFXCreateSession(loader, 0, &session);
Here, MFXCreateConfig() creates the dispatcher internal configuration. Once the dispatcher is
configured, the application uses MFXSetConfigFilterProperty() to set its requirements including
codec ID and accelerator preference. After the application sets the desired requirements, the session is
created.

2. Start the decoding loop:

while(is_stillgoing) {
    sts = MFXVideoDECODE_DecodeFrameAsync(session,
              (isdraining) ? NULL : &bitstream,
              NULL,
              &pmfxOutSurface,
              &syncp);
......
}

After preparing the input stream, the stream has the required context and the decoding loop is started
immediately.

MFXVideoDECODE_DecodeFrameAsync() takes the bit stream as the second parameter. When the bit
stream becomes NULL, oneVPL drains the remaining frames from the input and completes the
operation. The third parameter is the working memory; the NULL input shown in the example means
the application wants oneVPL to manage working memory.

3. Evaluate results of a decoding call:

while(is_stillgoing) {
    sts = MFXVideoDECODE_DecodeFrameAsync(...);

    switch(sts) {
        case MFX_ERR_MORE_DATA:
            ......
                ReadEncodedStream(bitstream, codec_id, source);
                ......
            }
            break;
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        case MFX_ERR_NONE:
            do {
                sts = pmfxOutSurface->FrameInterface->Synchronize(pmfxOutSurface, 
WAIT_100_MILLSECONDS);
                if( MFX_ERR_NONE == sts ) {
                    sts = pmfxOutSurface->FrameInterface->Map(pmfxOutSurface, MFX_MAP_READ);

                    WriteRawFrame(pmfxOutSurface, sink);

                    sts = pmfxOutSurface->FrameInterface->Unmap(pmfxOutSurface);

                    sts = pmfxOutSurface->FrameInterface->Release(pmfxOutSurface);

                    framenum++;
                }
            } while( sts == MFX_WRN_IN_EXECUTION );
            break;

        default:
            break;
    }

For each MFXVideoDECODE_DecodeFrameAsync() call, the application continues to read the input bit
stream until oneVPL completes a new frame with MFX_ERR_NONE, indicating the function successfully
completed its operation. For each new frame, the application waits until the output memory (surface)
is ready and then outputs and releases the output frame.

The Map() call is used to map the memory from the discrete graphic memory space to the host
memory space.

4. Exit and do cleanup:

MFXUnload(loader);
free(bitstream.Data);
    fclose(sink);
    fclose(source);

Finally, MFXUnload() is called to reclaim the resources from oneVPL. This is the only call that the
application must execute to reclaim the oneVPL library resources.

NOTE This example explains the key steps in the oneVPL programming model. It does not explain
utility functions for input and output.

Other Libraries

Other libraries are included in various oneAPI toolkits. For more information about each of the libraries listed,
consult the official documentation for that library.

• Intel® Integrated Performance Primitives (IPP)
• Intel® MPI Library
• Intel® Open Volume Kernel Library
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Software Development Process

The software development process using the oneAPI programming model is based upon standard
development processes. Since the programming model pertains to employing an accelerator to improve
performance, this chapter details steps specific to that activity. These include:

• The performance tuning cycle
• Debugging of code
• Migrating code that targets other accelerators
• Composability of code

Migrating Code to SYCL* and DPC++

Code written in other programming languages, such as C++ or OpenCL™, can be migrated to SYCL code for
compilation with the DPC++ compiler for use on multiple devices. The steps used to complete the migration
vary based on the original language.

Migrating from C++ to SYCL*

SYCL is a single-source style programming model based on C++. It builds on features of C++17 and C++20
to offer an open, multivendor, multiarchitecture solution for heterogeneous programming.

The DPC++ compiler project is bringing SYCL* to an LLVM C++ compiler, with high performance
implementations for multiple vendors and architectures.

When accelerating an existing C++ application, SYCL provides seamless integration as most of the C++ code
remains intact. Refer to sections within oneAPI Programming Model for SYCL constructs to enable device side
compilation.

Migrating from CUDA* to SYCL* for the DPC++ Compiler

The Intel® DPC++ Compatibility Tool is part of the Intel® oneAPI Base Toolkit. The goal of this tool is to assist
in the migration of an existing program that is written in NVIDIA* CUDA* to a program written in SYCL* and
compiled with the DPC++ compiler. This tool generates SYCL code as much as it can. However, it will not
migrate all code and manual changes may be required. The tool provides help with IDE plug-ins, a user
guide, and embedded comments in the code to complete the migration to be compiled with DPC++. After
completing any manual changes, use a DPC++ compiler to create executables.

Migrating CUDA to SYCL Using the DPC++ Compatibility Tool
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• Additional details, including examples of migrated code and download instructions for the tool, are
available from the Intel® DPC++ Compatibility Tool website.

• Full usage information is available from the Intel® DPC++ Compatibility Tool User Guide

Migrating from OpenCL Code to SYCL*

The SYCL runtime for the DPC++ project uses OpenCL and other means to enact the parallelism. SYCL
typically requires fewer lines of code to implement kernels and also fewer calls to essential API functions and
methods. It enables creation of OpenCL programs by embedding the device source code in line with the host
source code.

OpenCL application developers are keenly aware of the somewhat verbose setup code that goes with
offloading kernels on devices. Using SYCL, it is possible to develop a clean, modern C++ based application
without most of the setup associated with OpenCL C code. This reduces the learning effort and allows for
focus on parallelization techniques.

However, OpenCL application features can continue to be used via the SYCL API. The updated code can use
as much or as little of the SYCL interface as desired.

Migrating Between CPU, GPU, and FPGA

Programming with SYCL* and using the DPC++ compiler, a platform consists of a host device connected to
zero or more devices, such as CPU, GPU, FPGA, or other kinds of accelerators and processors.

When a platform has multiple devices, design the application to offload some or most of the work to the
devices. There are different ways to distribute work across devices in the oneAPI programming model:

1. Initialize device selector – SYCL provides a set of classes called selectors that allow manual selection of
devices in the platform or let oneAPI runtime heuristics choose a default device based on the compute
power available on the devices.

2. Splitting datasets – With a highly parallel application with no data dependency, explicitly divide the
datasets to employ different devices. The following code sample is an example of dispatching workloads
across multiple devices. Use icpx -fsycl snippet.cpp to compile the code.

int main() {
   int data[1024];
   for (int i = 0; i < 1024; i++)
       data[i] = i;
       try {
           cpu_selector cpuSelector;
           queue cpuQueue(cpuSelector);
           gpu_selector gpuSelector;
           queue gpuQueue(gpuSelector);
           buffer<int, 1> buf(data, range<1>(1024));
           cpuQueue.submit([&](handler& cgh) {
               auto ptr =
               buf.get_access<access::mode::read_write>(cgh);
               cgh.parallel_for<class divide>(range<1>(512),
                   [=](id<1> index) {
                   ptr[index] -= 1;
               });
           });
           gpuQueue.submit([&](handler& cgh1) {
               auto ptr =
               buf.get_access<access::mode::read_write>(cgh1);
               cgh1.parallel_for<class offset1>(range<1>(1024),
                   id<1>(512), [=](id<1> index) {
                       ptr[index] += 1;
               });
           });
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           cpuQueue.wait();
           gpuQueue.wait();
      }
      catch (exception const& e) {
          std::cout <<
          "SYCL exception caught: " << e.what() << '\n';
          return 2;
      }
      return 0;
}

3. Target multiple kernels across devices – If the application has scope for parallelization on multiple
independent kernels, employ different queues to target devices. The list of SYCL supported platforms
can be obtained with the list of devices for each platform by calling get_platforms() and
platform.get_devices() respectively. Once all the devices are identified, construct a queue per
device and dispatch different kernels to different queues. The following code sample represents
dispatching a kernel on multiple SYCL devices.

#include <stdio.h>
#include <vector>
#include <CL/sycl.hpp>
using namespace cl::sycl;
using namespace std;
int main()
{
       size_t N = 1024;
       vector<float> a(N, 10.0);
       vector<float> b(N, 10.0);
       vector<float> c_add(N, 0.0);
       vector<float> c_mul(N, 0.0);
   {
       buffer<float, 1> abuffer(a.data(), range<1>(N),
         { property::buffer::use_host_ptr() });
       buffer<float, 1> bbuffer(b.data(), range<1>(N),
         { property::buffer::use_host_ptr() });
       buffer<float, 1> c_addbuffer(c_add.data(), range<1>(N),
        { property::buffer::use_host_ptr() });
       buffer<float, 1> c_mulbuffer(c_mul.data(), range<1>(N),
         { property::buffer::use_host_ptr() });
    try {
             gpu_selector gpuSelector;
             auto queue = cl::sycl::queue(gpuSelector);
             queue.submit([&](cl::sycl::handler& cgh) {
                    auto a_acc = abuffer.template
                      get_access<access::mode::read>(cgh);
                    auto b_acc = bbuffer.template
                      get_access<access::mode::read>(cgh);
                    auto c_acc_add = c_addbuffer.template
                      get_access<access::mode::write>(cgh);
                    cgh.parallel_for<class VectorAdd>
                     (range<1>(N), [=](id<1> it) {
                         //int i = it.get_global();
                             c_acc_add[it] = a_acc[it] + b_acc[it];
                                  });
                           });
             cpu_selector cpuSelector;
             auto queue1 = cl::sycl::queue(cpuSelector);
             queue1.submit([&](cl::sycl::handler& cgh) {
                    auto a_acc = abuffer.template
                        get_access<access::mode::read>(cgh);
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                    auto b_acc = bbuffer.template
                        get_access<access::mode::read>(cgh);
                    auto c_acc_mul = c_mulbuffer.template
                        get_access<access::mode::write>(cgh);
                    cgh.parallel_for<class VectorMul>
                     (range<1>(N), [=](id<1> it) {
                          c_acc_mul[it] = a_acc[it] * b_acc[it];
                                  });
                           });
              }
              catch (cl::sycl::exception e) {
/* In the case of an exception being throw, print the
error message and
                     * return 1. */
                     std::cout << e.what();
                     return 1;
              }
       }
       for (int i = 0; i < 8; i++) {
              std::cout << c_add[i] << std::endl;
              std::cout << c_mul[i] << std::endl;
       }
       return 0;
}

Composability

The oneAPI programming model enables an ecosystem with support for the entire development toolchain. It
includes compilers and libraries, debuggers, and analysis tools to support multiple accelerators like CPU,
GPUs, FPGA, and more.

C/C++ OpenMP* and SYCL* Composability

The oneAPI programming model provides a unified compiler based on LLVM/Clang with support for OpenMP*
offload. This allows seamless integration that allows the use of OpenMP constructs to either parallelize host
side applications or offload to a target device. Both the Intel® oneAPI DPC++/C++ Compiler, available with
the Intel® oneAPI Base Toolkit, and Intel® C++ Compiler Classic, available with the Intel® oneAPI HPC Toolkit
or the Intel® oneAPI IoT Toolkit, support OpenMP and SYCL composability with a set of restrictions. A single
application can offload execution to available devices using OpenMP target regions or SYCL constructs in
different parts of the code, such as different functions or code segments.

OpenMP and SYCL offloading constructs may be used in separate files, in the same file, or in the same
function with some restrictions. OpenMP and SYCL offloading code can be bundled together in executable
files, in static libraries, in dynamic libraries, or in various combinations.

NOTE The SYCL runtime for DPC++ uses the TBB runtime when executing device code on the CPU;
hence, using both OpenMP and SYCL a CPU can lead to oversubscribing of threads. Performance
analysis of workloads executing on the system could help determine if this is occurring.

Restrictions
There are some restrictions to be considered when mixing OpenMP and SYCL constructs in the same
application.
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• OpenMP directives cannot be used inside SYCL kernels that run in the device. Similarly, SYCL code cannot
be used inside the OpenMP target regions. However, it is possible to use SYCL constructs within the
OpenMP code that runs on the host CPU.

• OpenMP and SYCL device parts of the program cannot have cross dependencies. For example, a function
defined in the SYCL part of the device code cannot be called from the OpenMP code that runs on the
device and vice versa. OpenMP and SYCL device parts are linked independently and they form separate
binaries that become a part of the resulting fat binary that is generated by the compiler.

• The direct interaction between OpenMP and SYCL runtime libraries are not supported at this time. For
example, a device memory object created by OpenMP API is not accessible by SYCL code. That is, using
the device memory object created by OpenMP in SYCL code results unspecified execution behavior.

Example
The following code snippet uses SYCL and OpenMP offloading constructs in the same application.

#include <CL/sycl.hpp>
#include <array>
#include <iostream>

float computePi(unsigned N) {
  float Pi;
#pragma omp target map(from : Pi)
#pragma omp parallel for reduction(+ : Pi)
  for (unsigned I = 0; I < N; ++I) {
    float T = (I + 0.5f) / N;
    Pi += 4.0f / (1.0 + T * T);
  }
  return Pi / N;
}

void iota(float *A, unsigned N) {
  cl::sycl::range<1> R(N);
  cl::sycl::buffer<float, 1> AB(A, R);
  cl::sycl::queue().submit([&](cl::sycl::handler &cgh) {
    auto AA = AB.template get_access<cl::sycl::access::mode::write>(cgh);
    cgh.parallel_for<class Iota>(R, [=](cl::sycl::id<1> I) {
      AA[I] = I;
    });
  });
}

int main() {
  std::array<float, 1024u> Vec;
  float Pi;

#pragma omp parallel sections
  {
#pragma omp section
    iota(Vec.data(), Vec.size());
#pragma omp section
    Pi = computePi(8192u);
  }
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  std::cout << "Vec[512] = " << Vec[512] << std::endl;
  std::cout << "Pi = " << Pi << std::endl;
  return 0;
}

The following command is used to compile the example code: icpx -fsycl -fiopenmp -fopenmp-
targets=spir64 offloadOmp_dpcpp.cpp
where

• -fsycl option enables SYCL
• -fiopenmp -fopenmp-targets=spir64 option enables OpenMP* offload

The following shows the program output from the example code.

./a.out
Vec[512] = 512
Pi = 3.14159

NOTE If the code does not contain OpenMP offload, but only normal OpenMP code, use the following
command, which omits -fopenmp-targets: icpx -fsycl -fiopenmp omp_dpcpp.cpp

OpenCL™ Code Interoperability

The oneAPI programming model enables developers to continue using all OpenCL code features via different
parts of the SYCL* API. The OpenCL code interoperability mode provided by SYCL helps reuse the existing
OpenCL code while keeping the advantages of higher programming model interfaces provided by SYCL. There
are 2 main parts in the interoperability mode:

1. To create SYCL objects from OpenCL code objects. For example, a SYCL buffer can be constructed from
an OpenCL cl_mem or SYCL queue from a cl_command_queue.

2. To get OpenCL code objects from SYCL objects. For example, launching an OpenCL kernel that uses an
implicit cl_mem associated to a SYCL accessor.

Debugging the DPC++ and OpenMP* Offload Process

When writing, debugging, and optimizing code for a host platform, the process of improving your code is
simple: deal with language errors when you build, catch and root-cause crashes/incorrect results during
execution with a debugger, then identify and fix performance issues using a profiling tool.

Improving code can become considerably more complicated in applications where part of the execution is
offloaded to another device using either DPC++ or OpenMP* offload.

• Incorrect use of the DPC++ or OpenMP* offload languages may not be exposed until after just-in-time
compilation occurs. These issues can be exposed earlier with ahead-of-time (AOT) compilation.

• Crashes due to logic errors may arise as unexpected behavior on the host, on the offload device, or in the
software stack that ties the various computing devices together. To root cause these issues, you need to:

• Debug what is happening in your code on the host using a standard debugger, such as Intel
Distribution for GDB*.

• Debug problems on the offload device using a device-specific debugger. Note, however, that the device
may have a different architecture, conventions for representing compute threads, or assembly than the
host.

• To debug problems that show up in the intermediate software stack only when kernels and data are
being exchanged with the device, you need to monitor the communication between device and host
and any errors that are reported during the process.
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• Besides the usual performance issues that can occur on the host and offload devices, the patterns by
which the host and offload device work together can have a profound impact on application performance.
This is another case where you need to monitor the communications between the host and offload device.

This section discusses the various debugging and performance analysis tools and techniques available to you
for the entire lifecycle of the offload program.

To troubleshoot your applications that use OpenMP* or the SYCL* API with extensions to offload resources,
see the Troubleshoot Highly Parallel Applications tutorial.

oneAPI Debug Tools for SYCL* and OpenMP* Development

The following tools are available to help with debugging the SYCL* and OpenMP* offload process.

Tools to debug SYCL* and OpenMP* offload process

Tool When to Use

Environment variables Environment variables allow you to gather diagnostic information from
the OpenMP and SYCL runtimes at program execution with no
modifications to your program.

The onetrace tool from
Profiling Tools Interfaces for
GPU (PTI for GPU)

When using the oneAPI Level Zero and OpenCL™ backends for SYCL and
OpenMP Offload, this tool can be used to debug backend errors and for
performance profiling on both the host and device.

Learn more: • Onetrace tool GitHub
• PTI for GPU GitHub

Intercept Layer for OpenCL™
Applications

When using the OpenCL™ backend for SYCL and OpenMP Offload, this
library can be used to debug backend errors and for performance profiling
on both the host and device (has wider functionality comparing with
onetrace).

Intel® Distribution for GDB* Used for source-level debugging of the application, typically to inspect
logical bugs, on the host and any devices you are using (CPU, GPU, FPGA
emulation).

Intel® Inspector This tool helps to locate and debug memory and threading problems,
including those that can cause offloading to fail.

NOTE Intel Inspector is included in the Intel oneAPI HPC Toolkit or the Intel
oneAPI IoT Toolkit.

In-application debugging In addition to these tools and runtime based approaches, the developer
can locate problems using other approaches. For example:
• Comparing kernel output to expected output
• Sending intermediate results back by variables they create for

debugging purposes
• Printing results from within kernels

NOTE Both SYCL and OpenMP allow printing to stdout from within an offload
region - be sure to note which SIMD lane or thread is providing the output.

SYCL Exception Handler Some DPC++ programming errors are returned as exceptions by the
SYCL runtime during program execution. They can help you diagnose
errors in your code that are flagged at runtime. For more details and
examples, refer to <link> Using SYCL Exceptions </link>. For Samples
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Tool When to Use

that demonstrate SYCL Exceptions, refer to: * Guided Matrix
Multiplication Exception * Guided Matrix Multiplication Invalid Contexts *
Guided Matrix Multiplication Race Condition

Intel® Advisor Use to ensure Fortran, C, C++, OpenCL™, and SYCL applications realize
full performance potential on modern processors.

Intel® VTune TM Profiler Use to gather performance data either on the native system or on a
remote system.

Debug Environment Variables
Both the OpenMP* and SYCL offload runtimes, as well as Level Zero, OpenCL, and the Shader Compiler,
provide environment variables that help you understand the communication between the host and offload
device. The variables also allow you to discover or control the runtime chosen for offload computations.

OpenMP* Offload Environment Variables

There are several environment variables that you can use to understand how OpenMP Offload works and
control which backend it uses.

NOTE OpenMP is not supported for FPGA devices.

OpenMP* Offload Environment Variables

Environment Variable Description

LIBOMPTARGET_DEBUG=<Num> Controls whether or not debugging information will
be displayed. See details in Runtimes This
environment variable enables debug output from
the OpenMP Offload runtime. It reports:

• The available runtimes detected and used (1,2)
• When the chosen runtime is started and stopped

(1,2)
• Details on the offload device used (1,2)
• Support libraries loaded (1,2)
• Size and address of all memory allocations and

deallocations (1,2)
• Information on every data copy to and from the

device, or device mapping in the case of unified
shared memory (1,2)

• When each kernel is launched and details on the
launch (arguments, SIMD width, group
information, etc.) (1,2)

• Which Level Zero/OpenCL API functions are
invoked (function name, arguments/parameters)
(2)

Values:

<Num>=0: Disabled

Intel® oneAPI Programming Guide  1  

149

https://openmp.llvm.org/design/Runtimes.html


Environment Variable Description

<Num>=1: Displays basic debug information from
the plugin actions such as device detection, kernel
compilation, memory copy operations, kernel
invocations, and other plugin-dependent actions.

<Num>=2: Additionally displays which GPU runtime
API functions are invoked with which arguments/
parameters.

Default: 0

LIBOMPTARGET_INFO=<Num> This variable controls whether basic offloading
information will be displayed from the offload
runtime. Allows the user to request different types
of runtime information from libomptarget. See
details in Runtimes

• Prints all data arguments upon entering an
OpenMP device kernel (1)

• Indicates when a mapped address already exists
in the device mapping table (2)

• Dumps the contents of the device pointer map if
target offloading fails (4)

• Indicates when an entry is changed in the device
mapping table (8)

• Indicates when data is copied to and from the
device (32)

Values: (0, 1, 2, 4, 8, 32)

Default: 0

LIBOMPTARGET_PLUGIN_PROFILE=<Enable>[,<Un
it>]

This variable enables the display of performance
data for offloaded OpenMP code. It displays:

• Total data transfer times (read and write)
• Data allocation times
• Module build times (just-in-time compile)
• The execution time of each kernel.

Values:

• F - disabled
• T - enabled with timings in milliseconds
• T,usec - enabled with timings in microseconds

Default: F
Example: export
LIBOMPTARGET_PLUGIN_PROFILE=T,usec
<Enable> := 1 | T
<Unit>   := usec | unit_usec
Enables basic plugin profiling and displays the
result when program finishes. Microsecond is the
default unit if <Unit> is not specified.
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Environment Variable Description

LIBOMPTARGET_PLUGIN=<Name> This environment variable allows you to choose the
backend used for OpenMP offload execution.

NOTE The Level Zero backend is only supported for
GPU devices.

<Name> := LEVEL0 | OPENCL | CUDA | X86_64 | 
NIOS2 |
          level0 | opencl | cuda | x86_64 | 
nios2 |
Designates offload plugin name to use. Offload
runtime does not try to load other RTLs if this
option is used.

Values:

• LEVEL0 or LEVEL_ZERO - uses the Level Zero
backend

• OPENCL - uses the OpenCL™ backend

Default:

• For GPU offload devices: LEVEL0
• For CPU or FPGA offload devices: OPENCL

LIBOMPTARGET_PROFILE=<FileName> Allows libomptarget to generate time profile output
similar to Clang’s -ftime-trace option. See details
in Runtimes

LIBOMPTARGET_DEVICES=<DeviceKind> <DeviceKind> := DEVICE | SUBDEVICE | 
SUBSUBDEVICE | ALL |
                device | subdevice | 
subsubdevice | all
Controls how subdevices are exposed to users.

DEVICE/device: Only top-level devices are
reported as OpenMP devices, and subdevice
clause is supported.

SUBDEVICE/subdevice: Only 1st-level subdevices
are reported as OpenMP devices, and subdevice
clause is ignored.

SUBSUBDEVICE/subsubdevice: Only 2nd-level
subdevices are reported as OpenMP devices, and
subdevice clause is ignored. On Intel GPU using
Level Zero backend, limiting the subsubdevice to
a single compute slice within a tile also requires
setting additional GPU compute runtime
environment variable
CFESingleSliceDispatchCCSMode=1.
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Environment Variable Description

ALL/all: All top-level devices and their subdevices
are reported as OpenMP devices, and subdevice
clause is ignored. This is not supported on Intel
GPU and is being deprecated.

Default: Equivalent to <DeviceKind>=device

LIBOMPTARGET_LEVEL0_MEMORY_POOL=<Option
>

<Option>       := 0 | <PoolInfoList>
<PoolInfoList> := <PoolInfo>[,<PoolInfoList>]
<PoolInfo>     := 
<MemType>[,<AllocMax>[,<Capacity>[,<PoolSize>]
]]
<MemType>      := all | device | host | shared
<AllocMax>     := positive integer or empty, 
max allocation size in MB
<Capacity>     := positive integer or empty, 
number of allocations from a
                  single block
<PoolSize>     := positive integer or empty, 
max pool size in MB
Controls how reusable memory pool is configured.
Pool is a list of memory blocks that can serve at
least <Capacity> allocations of up to <AllocMax>
size from a single block, with total size not
exceeding <PoolSize>.

Default: Equivalent to
<Option>=device,1,4,256,host,1,4,256,shar
ed,8,4,256

LIBOMPTARGET_LEVEL0_STAGING_BUFFER_SIZE=
<Num>

Sets the staging buffer size to <Num> KB. Staging
buffer is used in copy operations between host and
device as a temporary storage for two-step copy
operation. The buffer is only used for discrete
devices.

Default: 16

LIBOMPTARGET_LEVEL_ZERO_COMMAND_BATCH=
<Value>

<Value> := <Type>[,<Count>]
<Type>  := none | NONE | copy | COPY | 
compute | COMPUTE
<Count> := maximum number of commands to batch
Enables command batching for a target region.

<Type>=none|NONE: Disables command batching.
<Type>=copy|COPY: Enables command batching
for a target region for data transfer.
<Type>=compute|COMPUTE: Enables command
batching for a target region for data transfer and
compute, disabling use of copy engine.

If <Type> is either copy or compute (enabled) and
<Count> is not specified, batching is performed for
all eligible commands for the target region.
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Environment Variable Description

Default: <Type>=none (Disabled)

LIBOMPTARGET_LEVEL_ZERO_USE_IMMEDIATE_CO
MMAND_LIST=<Bool>

<Bool> := 1 | T | t | 0 | F | f
Enables/disables using immediate command list for
kernel submission.

Default: Disabled

OMP_TARGET_OFFLOAD=MANDATORY This is defined by the OpenMP Standard : https://
www.openmp.org/spec-html/5.1/
openmpse74.html#x340-5150006.17

SYCL* and DPC++ Environment Variables

The DPC++ compiler supports all standard SYCL environment variables. The full list is available from GitHub.
Of interest for debugging are the following SYCL environment variables, plus an additional Level Zero
environment variable.

SYCL* and DPC++ Environment Variables

Environment Variable Description

SYCL_DEVICE_FILTER This complex environment variable allows you to
limit the runtimes, compute device types, and
compute device IDs used by the runtime to a
subset of all available combinations.

The compute device IDs correspond to those
returned by the SYCL API, clinfo, or sycl-ls
(with the numbering starting at 0) and have no
relation to whether the device with that ID is of a
certain type or supports a specific runtime. Using a
programmatic special selector (like gpu_selector)
to request a device filtered out by
SYCL_DEVICE_FILTER will cause an exception to be
thrown.

Refer to the Environment Variables descriptions in
GitHub for additional details: https://github.com/
intel/llvm/blob/sycl/sycl/doc/
EnvironmentVariables.md

Example values include:

• opencl:cpu - use only the OpenCL™ runtime on
all available CPU devices

• opencl:gpu - use only the OpenCL runtime on
all available GPU devices

• opencl:gpu:2 - use only the OpenCL runtime
on only the third device, which also has to be a
GPU

• level_zero:gpu:1 - use only the Level Zero
runtime on only the second device, which also
has to be a GPU
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Environment Variable Description

• opencl:cpu,level_zero - use only the
OpenCL runtime on the CPU device, or the Level
Zero runtime on any supported compute device

Default: use all available runtimes and devices

ONEAPI_DEVICE_SELECTOR This device selection environment variable can be
used to limit the choice of devices available when
the SYCL-using application is run. Useful for limiting
devices to a certain type (like GPUs or accelerators)
or backends (like Level Zero or OpenCL). This
device selection mechanism is replacing
SYCL_DEVICE_FILTER . The
ONEAPI_DEVICE_SELECTOR syntax is shared with
OpenMP and also allows devices to be chosen. See 
oneAPI DPC++ Compiler documentation for a full
description.

SYCL_PI_TRACE This environment variable enables debug output
from the runtime.

Values:

• 1 - report SYCL plugins and devices discovered
and used

• 2 - report SYCL API calls made, including
arguments and result values

• -1 - provides all available tracing

Default:disabled

ZE_DEBUG This environment variable enables debug output
from the Level Zero backend when used with the
runtime. It reports:

• Level Zero APIs called
• Level Zero event information

Value: variable defined with any value - enabled

Default: disabled

Environment Variables that Produce Diagnostic Information for Support

The Level Zero backend provides a few environment variables that can be used to control behavior and aid in
diagnosis.

• Level Zero Specification, core programming guide: https://spec.oneapi.com/level-zero/latest/core/
PROG.html#environment-variables

• Level Zero Specification, tool programming guide: https://spec.oneapi.com/level-zero/latest/tools/
PROG.html#environment-variables

An additional source of debug information comes from the Intel® Graphics Compiler, which is called by the
Level Zero or OpenCL backends (used by both the OpenMP Offload and SYCL/DPC++ Runtimes) at runtime
or during Ahead-of-Time (AOT) compilation. Intel Graphics Compiler creates the appropriate executable code
for the target offload device. The full list of these environment variables can be found at https://github.com/
intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md. The two that are most
often needed to debug performance issues are:
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• IGC_ShaderDumpEnable=1 (default=0) causes all LLVM, assembly, and ISA code generated by the
Intel® Graphics Compiler to be written to /tmp/IntelIGC/<application_name>

• IGC_DumpToCurrentDir=1 (default=0) writes all the files created by IGC_ShaderDumpEnable to your
current directory instead of /tmp/IntelIGC/<application_name>. Since this is potentially a lot of files,
it is recommended to create a temporary directory just for the purpose of holding these files.

If you have a performance issue with your OpenMP offload or SYCL offload application that arises between
different versions of Intel® oneAPI, when using different compiler options, when using the debugger, and so
on, then you may be asked to enable IGC_ShaderDumpEnable and provide the resulting files. For more
information on compatibility, see oneAPI Library Compatibility.

Offload Intercept Tools
In addition to debuggers and diagnostics built into the offload software itself, it can be quite useful to monitor
offload API calls and the data sent through the offload pipeline. For Level Zero, if your application is run as an
argument to the onetrace and ze_tracer tools, they will intercept and report on various aspects of Level Zero
made by your application. For OpenCL™, you can add a library to LD_LIBRARY_PATH that will intercept and
report on all OpenCL calls, and then use environment variables to control what diagnostic information to
report to a file. You can also use onetrace or cl_tracer to report on various aspects of OpenCL API calls made
by your application. Once again, your application is run as an argument to the onetrace or cl_tracer tool.

Intercept Layer for OpenCL™ Applications

This library collects debugging and performance data when OpenCL is used as the backend to your SYCL or
OpenMP offload program. When OpenCL is used as the backend to your SYCL or OpenMP offload program,
this tool can help you detect buffer overwrites, memory leaks, mismatched pointers, and can provide more
detailed information about runtime error messages (allowing you to diagnose these issues when either CPU,
FPGA, or GPU devices are used for computation). Note that you will get nothing useful if you use ze_tracer on
a program that uses the OpenCL backend, or the Intercept Layer for OpenCL Applications library and
cl_tracer on a program that uses the Level Zero backend.

Additional resources:

• Extensive information on building and using the Intercept Layer for OpenCL Applications is available from 
https://github.com/intel/opencl-intercept-layer.

NOTE For best results, run cmake with the following flags: -DENABLE_CLIPROF=TRUE -
DENABLE_CLILOADER=TRUE

• Information about a similar tool (CLIntercept) is available from https://github.com/gmeeker/clintercept
and https://sourceforge.net/p/clintercept/wiki/Home/.

• Information on the controls for the Intercept Layer for OpenCL Applications can be found at https://
github.com/intel/opencl-intercept-layer/blob/master/docs/controls.md.

• Information about optimizing for GPUs is available from the Intel oneAPI GPU Optimization Guide.

Profiling Tools Interfaces for GPU (onetrace, cl_tracer, and ze_trace)

Like the Intercept Layer for OpenCL™ Applications, these tools collect debugging and performance data from
applications that use the OpenCL and Level Zero offload backends for offload via OpenMP* or SYCL. Note that
Level Zero can only be used as the backend for computations that happen on the GPU (there is no Level Zero
backend for the CPU or FPGA at this time). The onetrace tool is part of the Profiling Tools Interfaces for GPU
(PTI for GPU) project, found at https://github.com/intel/pti-gpu. This project also contains the ze_tracer and
cl_tracer tools, which trace just activity from the Level Zero or OpenCL offload backends respectively. The
ze_tracer and cl_tracer tools will produce no output if they are used with the application using the other
backend, while onetrace will provide output no matter which offload backend you use.
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The onetrace tool is distributed as source. Instructions for how to build the tool are available from https://
github.com/intel/pti-gpu/tree/master/tools/onetrace. The tool provides the following features:

• Call logging: This mode allows you to trace all standard Level Zero (L0) and OpenCL™ API calls along with
their arguments and return values annotated with time stamps. Among other things, this can give you
supplemental information on any failures that occur when a host program tries to make use of an
attached compute device.

• Host and device timing: These provide the duration of all API calls, the duration of each kernel, and
application runtime for the entire application.

• Device Timeline mode: Gives time stamps for each device activity. All the time stamps are in the same
(CPU) time scale.

• Chrome Call Logging mode: Dumps API calls to JSON format that can be opened in chrome://tracing
browser tool.

These data can help debug offload failures or performance issues.

Additional resources:

• Profiling Tools Interfaces for GPU (PTI for GPU) GitHub project
• Onetrace tool GitHub

Intel® Distribution for GDB*
The Intel Distribution for GDB* is an application debugger that allows you to inspect and modify the program
state. With the debugger, both the host part of your application and kernels that are offloaded to a device
can be debugged seamlessly in the same debug session. The debugger supports the CPU, GPU, and FPGA-
emulation devices. Major features of the tool include:

• Automatically attaching to the GPU device to listen to debug events
• Automatically detecting JIT-compiled, or dynamically loaded, kernel code for debugging
• Defining breakpoints (both inside and outside of a kernel) to halt the execution of the program
• Listing the threads; switching the current thread context
• Listing active SIMD lanes; switching the current SIMD lane context per thread
• Evaluating and printing the values of expressions in multiple thread and SIMD lane contexts
• Inspecting and changing register values
• Disassembling the machine instructions
• Displaying and navigating the function call-stack
• Source- and instruction-level stepping
• Non-stop and all-stop debug mode
• Recording the execution using Intel Processor Trace (CPU only)

For more information and links to full documentation for Intel Distribution for GDB, see Get Started with Intel
Distribution for GDB onLinux* Host|Windows* Host.

Intel® Inspector for Offload
Intel® Inspector is a dynamic memory and threading error checking tool for users developing serial and
multithreaded applications. It can be used to verify correctness of the native part of the application as well as
dynamically generated offload code.

Unlike the tools and techniques above, Intel Inspector cannot be used to catch errors in offload code that is
communicating with a GPU or an FPGA. Instead, Intel Inspector requires that the SYCL or OpenMP runtime
needs to be configured to execute kernels on CPU target. In general, it requires definition of the following
environment variables prior to an analysis run.

• To configure a SYCL application to run kernels on a CPU device

export SYCL_DEVICE_FILTER=opencl:cpu
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• To configure an OpenMP application to run kernels on a CPU device

export OMP_TARGET_OFFLOAD=MANDATORY
export LIBOMPTARGET_DEVICETYPE=cpu

• To enable code analysis and tracing in JIT compilers or runtimes

export CL_CONFIG_USE_VTUNE=True
export CL_CONFIG_USE_VECTORIZER=false

Use one of the following commands to start analysis from the command line. You can also start from the
Intel Inspector graphical user interface.

• Memory: inspxe-cl -c mi3 -- <app> [app_args]
• Threading: inspxe-cl -c ti3 -- <app> [app_args]
View the analysis result using the following command: inspxe-cl -report=problems -report-all
If your SYCL or OpenMP Offload program passes bad pointers to the OpenCL™ backend, or passes the wrong
pointer to the backend from the wrong thread, Intel Inspector should flag the issue. This may make the
problem easier to find than trying to locate it using the intercept layers or the debugger.

Additional details are available from the Intel Inspector User Guide forLinux* OS|Windows* OS.

Trace the Offload Process

When a program that offloads computation to a GPU is started, there are lot of moving parts involved in
program execution. Machine-independent code needs to be compiled to machine-dependent code, data and
binaries need to be copied to the device, results returned, etc. This section will discuss how to trace all this
activity using the tools described in the oneAPI Debug Tools section.

Kernel Setup Time
Before offload code can run on the device, the machine-independent version of the kernel needs to be
compiled for the target device, and the resulting code needs to be copied to the device. This can complicate/
skew benchmarking if this kernel setup time is not considered. Just-in-time compilation can also introduce a
noticeable delay when debugging an offload application.

If you have an OpenMP* offload program, setting LIBOMPTARGET_PLUGIN_PROFILE=T[,usec] explicitly
reports the amount of time required to build the offload code “ModuleBuild”, which you can compare to the
overall execution time of your program.

Kernel setup time is more difficult to determine if you have a SYCL* offload program.

• If Level Zero or OpenCL™ is your backend, you can derive kernel setup time from the Device Timing and
Device Timeline returned by onetrace or ze_tracer.

• If OpenCL™ is your backend, you may also be able to derive the information by setting the BuildLogging,
KernelInfoLogging, CallLogging, CallLoggingElapsedTime, KernelInfoLogging,
HostPerformanceTiming, HostPerformanceTimeLogging, ChromeCallLogging, or
CallLoggingElapsedTime flags when using the Intercept Layer for OpenCL Applications to get similar
information. You can also derive kernel setup time from the Device Timing and Device Time- line returned
by onetrace or cl_tracer.

You can also use these tools to supplement the information returned by LIBOMPTARGET_PLUGIN_PROFILE=T.

For details on how Intel® VTune™ Profiler can analyze kernel setup time, see Enable Linux* Kernel Analysis
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Monitoring Buffer Creation, Sizes, and Copies
Understanding when buffers are created, how many buffers are created, and whether they are reused or
constantly created and destroyed can be key to optimizing the performance of your offload application. This
may not always be obvious when using a high-level programming language like OpenMP or SYCL, which can
hide a lot of the buffer management from the user.

At a high level, you can track buffer-related activities using the LIBOMPTARGET_DEBUG and SYCL_PI_TRACE
environment variables when running your program. LIBOMPTARGET_DEBUG gives you more information than
SYCL_PI_TRACE - it reports the addresses and sizes of the buffers created. By contrast, SYCL_PI_TRACE just
reports the API calls, with no information you can easily tie to the location or size of individual buffers.

At a lower level, if you are using Level Zero or OpenCL™ as your backend, the Call Logging mode of onetrace
or ze_tracer will give you information on all API calls, including their arguments. This can be useful because,
for example, a call for buffer creation (such as zeMemAllocDevice) will give you the size of the resulting
buffer being passed to and from the device. onetrace and ze_tracer also allows you to dump all the Level
Zero device-side activities (including memory transfers) in Device Timeline mode. For each activity one can
get append (to command list), submit (to queue), start and end times.

If you are using OpenCL as your backend, setting the CallLogging, CallLoggingElapsedTime, and
ChromeCallLogging flags when using the Intercept Layer for OpenCL Applications should give you similar
information. The Call Logging mode of onetrace or cl_tracer will give you information on all OpenCL API calls,
including their arguments. As was the case above, onetrace and cl_tracer also allow you to dump all the
OpenCL device-side activities (including memory transfers) in Device Timeline mode.

Total Transfer Time
Comparing total data transfer time to kernel execution time can be important for determining whether it is
profitable to offload a computation to a connected device.

If you have an OpenMP offload program, setting LIBOMPTARGET_PLUGIN_PROFILE=T[,usec] explicitly
reports the amount of time required to build (“DataAlloc”), read (“DataRead”), and write data (“DataWrite”)
to the offload device (although only in aggregate).

Data transfer times can be more difficult to determine if you have a C++ program using SYCL.

• If Level Zero or OpenCL™ is your backend, you can derive total data transfer time from the Device Timing
and Device Timeline returned by onetrace or ze_tracer.

• If OpenCL is your backend, you can use onetrace or cl_tracer, or alternatively you may also be able to
derive the information by setting the BuildLogging, KernelInfoLogging, CallLogging,
CallLoggingElapsedTime, KernelInfoLogging, HostPerformanceTiming,
HostPerformanceTimeLogging, ChromeCallLogging, or CallLoggingElapsedTime flags when using
the Intercept Layer for OpenCL Applications.

For details on how Intel® VTune™ Profiler can analyze transfer setup time, see these sections of the Intel®
VTune™ Profiler User Guide: GPU Offload AnalysisGPU Compute/Media Hotspots ViewHotspots Report

Kernel Execution Time
If you have an OpenMP offload program, setting LIBOMPTARGET_PLUGIN_PROFILE=T[,usec] explicitly
reports the total execution time of every offloaded kernel (“Kernel#…”).

For programs using SYCL to offload kernels:

• If Level Zero or OpenCL™ is your backend, the Device Timing mode of onetrace or ze_tracer will give you
the device-side execution time for every kernel.
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• If OpenCL is your backend , you can use onetrace or cl_tracer, or alternatively you may be able to derive
the information by setting the CallLoggingElapsedTime, DevicePerformanceTiming,
DevicePerformanceTimeKernelInfoTracking, DevicePerformanceTimeLWSTracking,
DevicePerformanceTimeGWSTracking, ChromePerformanceTiming,
ChromePerformanceTimingInStages flags when using the Intercept Layer for OpenCL Applications.

For details on how Intel® VTune™ Profiler can analyze kernel execution time, see Accelerators Analysis Group

When Device Kernels are Called and Threads are Created
On occasion, offload kernels are created and transferred to the device a long time before they actually start
executing (usually only after all data required by the kernel has also been transferred, along with control).

You can set a breakpoint in a device kernel using the Intel® Distribution for GDB* and a compatible GPU.
From there, you can query kernel arguments, monitor thread creation and destruction, list the current
threads and their current positions in the code (using “info thread”), and so on.

Debug the Offload Process

Run with Different Runtimes or Compute Devices
When an offload program fails to run correctly or produces incorrect results, a relatively quick sanity check is
to run the application on a different runtime (OpenCL™ vs. Level Zero) or compute device (CPU vs. GPU)
using LIBOMPTARGET_PLUGIN and OMP_TARGET_OFFLOAD for OpenMP* applications, and
SYCL_DEVICE_FILTER for SYCL* applications. Errors that reproduce across runtimes mostly eliminate the
runtime as being a problem. Errors that reproduce on all available devices mostly eliminates bad hardware as
the problem.

Debug CPU Execution
Offload code has two options for CPU execution: either a “host” implementation, or the CPU version of
OpenCL. A “host” implementation is a truly native implementation of the offloaded code, meaning it can be
debugged like any of the non-offloaded code. The CPU version of OpenCL, while it goes through the OpenCL
runtime and code generation process, eventually ends up as normal parallel code running under a TBB
runtime. Again, this provides a familiar debugging environment with familiar assembly and parallelism
mechanisms. Pointers have meaning through the entire stack, and data can be directly inspected. There are
also no memory limits beyond the usual limits for any operating system process.

Finding and fixing errors in CPU offload execution may solve errors seen in GPU offload execution with less
pain, and without requiring use of a system with an attached GPU or other accelerator.

For OpenMP applications, to get a “host” implementation, remove the “target” or “device” constructs,
replacing them with normal host OpenMP code. If LIBOMPTARGET_PLUGIN=OPENCL and offload to the GPU is
disabled, then the offloaded code runs under the OpenMP runtime with TBB providing parallelism.

For SYCL applications, with SYCL_DEVICE_FILTER=host the “host” device is actually single-threaded, which
may help you determine if threading issues, such as data races and deadlocks, are the source of execution
errors. Setting SYCL_DEVICE_FILTER=opencl:cpu uses the CPU OpenCL runtime, which also uses TBB for
parallelism.

Debug GPU Execution Using Intel® Distribution for GDB* on compatible GPUs
Intel® Distribution for GDB* is extensively documented in Get Started with Intel Distribution for GDB
onLinux* Host|Windows* Host. Useful commands are briefly described in the Intel Distribution for
GDBReference Sheet. However, since debugging applications with GDB* on a GPU differs slightly from the
process on a host (some commands are used differently and you might see some unfamiliar output), some of
those differences are summarized here.
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The Debugging with Intel Distribution for GDB on Linux OS Host Tutorial shows a sample debug session
where we start a debug session of a SYCL program, define a breakpoint inside the kernel, run the program to
offload to the GPU, print the value of a local variable, switch to the SIMD lane 5 of the current thread, and
print the variable again.

As in normal GDB*, for a command <CMD>, use the help <CMD> command of GDB to read the information
text for <CMD>. For example:

(gdb) help info threads
Display currently known threads.
Usage: info threads [OPTION]... [ID]...
If ID is given, it is a space-separated list of IDs of threads to display.
Otherwise, all threads are displayed.

Options:
  -gid
    Show global thread IDs.

Inferiors, Threads, and SIMD Lanes Referencing in GDB*

The threads of the application can be listed using the debugger. The printed information includes the thread
ids and the locations that the threads are currently stopped at. For the GPU threads, the debugger also prints
the active SIMD lanes.

In the example referenced above, you may see some unfamiliar formatting used when threads are displayed
via the GDB “info threads” command:

  Id             Target Id            Frame
  1.1            Thread <id omitted>  <frame omitted>
  1.2            Thread <id omitted>  <frame omitted>
* 2.1:1          Thread 1073741824     <frame> at array-transform.cpp:61
  2.1:[3 5 7]    Thread 1073741824     <frame> at array-transform.cpp:61
  2.2:[1 3 5 7]  Thread 1073741888     <frame> at array-transform.cpp:61
  2.3:[1 3 5 7]  Thread 1073742080     <frame> at array-transform.cpp:61

Here, GDB is displaying the threads with the following format:
<inferior_number>.<thread_number>:<SIMD Lane/s>
So, for example, the thread id “2.3:[1 3 5 7]” refers to SIMD lanes 1, 3, 5, and 7 of thread 3 running on
inferior 2.

An “inferior” in the GDB terminology is the process that is being debugged. In the debug session of a
program that offloads to the GPU, there will typically be two inferiors; one “native” inferior representing a
host part of the program (inferior 1 above), and another “remote” inferior representing the GPU device
(inferior 2 above). Intel Distribution for GDB automatically creates the GPU inferior - no extra steps are
required.

When you print the value of an expression, the expression is evaluated in the context of the current thread’s
current SIMD lane. You can switch the thread as well as the SIMD lane to change the context using the
“thread” command such as “thread 3:4 “, “thread :6 “, or “thread 7 “. The first command makes a
switch to the thread 3 and SIMD lane 4. The second command switches to SIMD lane 6 within the current
thread. The third command switches to thread 7. The default lane selected will either be the previously
selected lane, if it is active, or the first active lane within the thread.

The “thread apply command” may be similarly broad or focused (which can make it easier to limit the output
from, for example, a command to inspect a variable). For more details and examples about debugging with
SIMD lanes, see the Debugging with Intel Distribution for GDB on Linux OS Host Tutorial.
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More information about threads and inferiors in GDB can be found from https://sourceware.org/gdb/current/
onlinedocs/gdb/Threads.html and https://sourceware.org/gdb/current/onlinedocs/gdb/Inferiors-Connections-
and-Programs.html#Inferiors-Connections-and-Programs.

Controlling the Scheduler

By default, when a thread hits a breakpoint, the debugger stops all the threads before displaying the
breakpoint hit event to the user. This is the all-stop mode of GDB. In the non-stop mode, the stop event of a
thread is displayed while the other threads run freely.

In all-stop mode, when a thread is resumed (for example, to resume normally with the continue command,
or for stepping with the next command), all the other threads are also resumed. If you have some
breakpoints set in threaded applications, this can quickly get confusing, as the next thread that hits the
breakpoint may not be the thread you are following.

You can control this behavior using the set scheduler-locking command to prevent resuming other
threads when the current thread is resumed. This is useful to avoid intervention of other threads while only
the current thread executes instructions. Type help set scheduler-locking for the available options, and
see https://sourceware.org/gdb/current/onlinedocs/gdb/Thread-Stops.html for more information. Note that
SIMD lanes cannot be resumed individually; they are resumed together with their underlying thread.

In non-stop mode, by default, only the current thread is resumed. To resume all threads, pass the “-a” flag
to the continue command.

Dumping Information on One or More Threads/Lanes (Thread Apply)

Commands for inspecting the program state are typically executed in the context of the current thread’s
current SIMD lane. Sometimes it is desired to inspect a value in multiple contexts. For such needs, the
thread apply command can be used. For instance, the following executes the print element command
for the SIMD lanes 3-5 of Thread 2.5:

(gdb) thread apply 2.5:3-5 print element
Similarly, the following runs the same command in the context of SIMD lane 3, 5, and 6 of the current
thread:

(gdb) thread apply :3 :5 :6 print element

Stepping GPU Code After a Breakpoint

To stop inside the kernel that is offloaded to the GPU, simply define a breakpoint at a source line inside the
kernel. When a GPU thread hits that source line, the debugger stops the execution and shows the breakpoint
hit. To single-step a thread over a source-line, use the step or next commands. The step commands steps
into functions while next steps over calls. Before stepping, we recommend to set scheduler-locking
step to prevent intervention of other threads.

Building a SYCL Executable for Use with Intel® Distribution for GDB*

Much like when you want to debug a host application, you need to set some additional flags to create a
binary that can be debugged on the GPU. See Get Started with Intel Distribution for GDB on Linux* Host for
details.

For a smooth debug experience when using the just-in-time (JIT) compilation flow, enable debug information
emission from the compiler via the -g flag, and disable optimizations via the -O0 flag for both a host and JIT-
compiled kernel of the application. The flags for the kernel are taken during link time. For example:

• Compile your program using: icpx -fsycl -g -O0 -c myprogram.cpp
• Link your program using: icpx -fsycl -g -O0 myprogram.o
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If you are using CMake to configure the build of your program, use the Debug type for the
CMAKE_BUILD_TYPE, and append -O0 to the CMAKE_CXX_FLAGS_DEBUG variable. For example: set
(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0")
Applications that are built for debugging may take a little longer to start up than when built with the usual
“release” level of optimization. Thus, your program may appear to run a little more slowly when started in
the debugger. If this causes problems, developers of larger applications may want to use ahead-of-time
(AOT) compilation to JIT the offload code when their program is built, rather than when it is run (warning,
this may also take longer to build when using -g -O0). For more information, see Compilation Flow
Overview.

When doing ahead-of-time compilation for GPU, you must use a device type that fits your target device. Run
the following command to see the available GPU device options on your current machine: ocloc compile
--help
Additionally, the debug mode for the kernel must be enabled. The following example AoT compilation
command targets the KBL device:

dpcpp -g -O0 -fsycl-targets=spir64_gen-unknown-unknown-sycldevice \
-Xs "-device kbl -internal_options -cl-kernel-debug-enable -options -cl-opt-disable" 
myprogram.cpp

Building an OpenMP* Executable for use with Intel® Distribution for GDB*

Compile and link your program using the -g -O0 flags. For example:

icpx -fiopenmp -O0 -fopenmp-targets=spir64 -c -g myprogram.cpp
icpx -fiopenmp -O0 -fopenmp-targets=spir64 -g myprogram.o

Set the following environment variables to disable optimizations and enable debug info for the kernel:

export LIBOMPTARGET_OPENCL_COMPILATION_OPTIONS="-g -cl-opt-disable"
export LIBOMPTARGET_LEVEL0_COMPILATION_OPTIONS="-g -cl-opt-disable"

Debugging GPU Execution
A common issue with offload programs is that they may to fail to run at all, instead giving a generic OpenCL™
error with little additional information. The Intercept Layer for OpenCL Applications along with onetrace,
ze_tracer, and cl_tracer can be used to get more information about these errors, often helping the developer
identify the source of the problem.

Intercept Layer for OpenCL Applications

Using this library, in particular the Buildlogging, ErrorLogging, and USMChecking=1 options, you can
often find the source of the error.

1. Create a clintercept.conf file in the home directory with the following content:

SimpleDumpProgramSource=1
CallLogging=1
LogToFile=1
//KernelNameHashTracking=1
BuildLogging=1
ErrorLogging=1
USMChecking=1
//ContextCallbackLogging=1
// Profiling knobs
KernelInfoLogging=1
DevicePerformanceTiming=1
DevicePerformanceTimeLWSTracking=1
DevicePerformanceTimeGWSTracking=1
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2. Run the application with cliloader as follows:

<OCL_Intercept_Install_Dir>/bin/cliloader/cliloader -d ./<app_name> <app_args>
3. Review the following results in the ~CLIntercept_Dump/<app_name> directory:

• clintercept_report.txt: Profiling results
• clintercept_log.txt: Log of OpenCL™ calls used to debug OpenCL issues

The following snippet is from an example log file generated by a program that returned the runtime error:
CL_INVALID_ARG_VALUE (-50)
...
<<<< clSetKernelArgMemPointerINTEL -> CL_SUCCESS
>>>> 
clGetKernelInfo( _ZTSZZ10outer_coreiP5mesh_i16dpct_type_1c0e3516dpct_type_60257cS2_S2_S2_S2_S2_S2
_S2_S2_fS2_S2_S2_S2_iENKUlRN2cl4sycl7handlerEE197->45clES6_EUlNS4_7nd_itemILi3EEEE225->13 ): 
param_name = CL_KERNEL_CONTEXT (1193)
<<<< clGetKernelInfo -> CL_SUCCESS
>>>> 
clSetKernelArgMemPointerINTEL( _ZTSZZ10outer_coreiP5mesh_i16dpct_type_1c0e3516dpct_type_60257cS2_
S2_S2_S2_S2_S2_S2_S2_fS2_S2_S2_S2_iENKUlRN2cl4sycl7handlerEE197-
>45clES6_EUlNS4_7nd_itemILi3EEEE225->13 ): kernel = 0xa2d51a0, index = 3, value = 0x41995e0
mem pointer 0x41995e0 is an UNKNOWN pointer and no device support shared system pointers!
ERROR! clSetKernelArgMemPointerINTEL returned CL_INVALID_ARG_VALUE (-50)
<<<< clSetKernelArgMemPointerINTEL -> CL_INVALID_ARG_VALUE

In this example, the following values help with debugging the error:

• ZTSZZ10outer_coreiP5mesh
• index = 3, value = 0x41995e0
Using this data, you can identify which kernel had the problems, what argument was problematic, and why.

onetrace, ze_tracer, and cl_tracer

Similar to Intercept Layer for OpenCL Applications, the onetrace, ze_tracer and cl_tracer tools can help find
the source of errors detected by the Level Zero and OpenCL™ runtimes.

To use the onetrace or ze_tracer tools to root-cause Level Zero issues (cl_tracer would be used the same way
to root-cause OpenCL issues):

1. Use Call Logging mode to run the application. Redirecting the tool output to a file is optional, but
recommended.

./onetrace -c ./<app_name> <app_args> [2> log.txt]
The command for ze_tracer is the same - just substitute “ze_tracer” for “onetrace”.

1. Review the call trace to figure out the error (log.txt). For example:

>>>> [102032049] zeKernelCreate: hModule = 0x55a68c762690 desc = 0x7fff865b5570 {29 0 0 GEMM} 
phKernel = 0x7fff865b5438 (hKernel = 0)
<<<< [102060428] zeKernelCreate [28379 ns] hKernel = 0x55a68c790280 -> ZE_RESULT_SUCCESS (0)
...
>>>> [102249951] zeKernelSetGroupSize: hKernel = 0x55a68c790280 groupSizeX = 256 groupSizeY = 1 
groupSizeZ = 1
<<<< [102264632] zeKernelSetGroupSize [14681 ns] -> ZE_RESULT_SUCCESS (0)
>>>> [102278558] zeKernelSetArgumentValue: hKernel = 0x55a68c790280 argIndex = 0 argSize = 8 
pArgValue = 0x7fff865b5440
<<<< [102294960] zeKernelSetArgumentValue [16402 ns] -> ZE_RESULT_SUCCESS (0)
>>>> [102308273] zeKernelSetArgumentValue: hKernel = 0x55a68c790280 argIndex = 1 argSize = 8 
pArgValue = 0x7fff865b5458
<<<< [102321981] zeKernelSetArgumentValue [13708 ns] -> ZE_RESULT_ERROR_INVALID_ARGUMENT 
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(2013265924)
>>>> [104428764] zeKernelSetArgumentValue: hKernel = 0x55af5f3ca600 argIndex = 2 argSize = 8 
pArgValue = 0x7ffe289c7e60
<<<< [104442529] zeKernelSetArgumentValue [13765 ns] -> ZE_RESULT_SUCCESS (0)
>>>> [104455176] zeKernelSetArgumentValue: hKernel = 0x55af5f3ca600 argIndex = 3 argSize = 4 
pArgValue = 0x7ffe289c7e2c
<<<< [104468472] zeKernelSetArgumentValue [13296 ns] -> ZE_RESULT_SUCCESS (0)
...

The example log data shows:

• A level zero API call that causes the problem (zeKernelSetArgumentValue)
• The problem reason (ZE_RESULT_ERROR_INVALID_ARGUMENT)
• The argument index (argIndex = 1)
• An invalid value location (pArgValue = 0x7fff865b5458)
• A kernel handle (hKernel = 0x55a68c790280), which provides the name of the kernel for which

this issue is observed (GEMM)

More information could be obtained by omitting the “redirection to file” option and dumping all the output
(application output + tool output) into one stream. Dumping to one stream may help determine the source of
the error in respect to application output (for example, you can find that the error happens between
application initialization and the first phase of computations):

Level Zero Matrix Multiplication (matrix size: 1024 x 1024, repeats 4 times)
Target device: Intel® Graphics [0x3ea5]
...
>>>> [104131109] zeKernelCreate: hModule = 0x55af5f39ca10 desc = 0x7ffe289c7f80 {29 0 0 GEMM} 
phKernel = 0x7ffe289c7e48 (hKernel = 0)
<<<< [104158819] zeKernelCreate [27710 ns] hKernel = 0x55af5f3ca600 -> ZE_RESULT_SUCCESS (0)
...
>>>> [104345820] zeKernelSetGroupSize: hKernel = 0x55af5f3ca600 groupSizeX = 256 groupSizeY = 1 
groupSizeZ = 1
<<<< [104360082] zeKernelSetGroupSize [14262 ns] -> ZE_RESULT_SUCCESS (0)
>>>> [104373679] zeKernelSetArgumentValue: hKernel = 0x55af5f3ca600 argIndex = 0 argSize = 8 
pArgValue = 0x7ffe289c7e50
<<<< [104389443] zeKernelSetArgumentValue [15764 ns] -> ZE_RESULT_SUCCESS (0)
>>>> [104402448] zeKernelSetArgumentValue: hKernel = 0x55af5f3ca600 argIndex = 1 argSize = 8 
pArgValue = 0x7ffe289c7e68
<<<< [104415871] zeKernelSetArgumentValue [13423 ns] -> ZE_RESULT_ERROR_INVALID_ARGUMENT 
(2013265924)
>>>> [104428764] zeKernelSetArgumentValue: hKernel = 0x55af5f3ca600 argIndex = 2 argSize = 8 
pArgValue = 0x7ffe289c7e60
<<<< [104442529] zeKernelSetArgumentValue [13765 ns] -> ZE_RESULT_SUCCESS (0)
>>>> [104455176] zeKernelSetArgumentValue: hKernel = 0x55af5f3ca600 argIndex = 3 argSize = 4 
pArgValue = 0x7ffe289c7e2c
<<<< [104468472] zeKernelSetArgumentValue [13296 ns] -> ZE_RESULT_SUCCESS (0)
...
Matrix multiplication time: 0.0427564 sec
Results are INCORRECT with accuracy: 1
...
Matrix multiplication time: 0.0430995 sec
Results are INCORRECT with accuracy: 1
...
Total execution time: 0.381558 sec
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Correctness
Offload code is often used for kernels that can efficiently process large amounts of information on the
attached compute device, or to generate large amounts of information from some input parameters. If these
kernels are running without crashing, this can often mean that you learn that they are not producing the
correct results much later in program execution.

In these cases, it can be difficult to identify which kernel is producing incorrect results. One technique for
finding the kernel producing incorrect data is to run the program twice, once using a purely host-based
implementation, and once using an offload implementation, capturing the inputs and outputs from every
kernel (often to individual files). Now compare the results and see which kernel call is producing unexpected
results (within a certain epsilon - the offload hardware may have a different order of operation or native
precision that causes the results to differ from the host code in the last digit or two).

Once you know which kernel is producing incorrect results, and you are working with a compatible GPU, use
Intel Distribution for GDB to determine the reason. See the Debugging with Intel Distribution for GDB on
Linux OS Host Tutorial for basic information and links to more detailed documentation.

Both SYCL and OpenMP* also allow for the use of standard language print mechanisms (printf for SYCL and
C++ OpenMP offload, print *, ... for Fortran OpenMP offload) within offloaded kernels, which you can
use to verify correct operation while they run. Print the thread and SIMD lane the output is coming from and
consider adding synchronization mechanisms to ensure printed information is in a consistent state when
printed. Examples for how to do this in SYCL using the stream class can be found in the Intel oneAPI GPU
Optimization Guide. You could use a similar approach to the one described for SYCL for OpenMP offload.

Tip Using printf can be verbose in SYCL kernels. To simplify, add the following macro:

#ifdef __SYCL_DEVICE_ONLY__
  #define CL_CONSTANT __attribute__((opencl_constant))
#else
  #define CL_CONSTANT
#endif
#define PRINTF(format, ...) { \
            static const CL_CONSTANT char _format[] = format; \
            sycl::ONEAPI::experimental::printf(_format, ## __VA_ARGS__); }

Usage example: PRINTF("My integer variable:%d\n", (int) x);

Failures
Just-in-time (JIT) compilation failures that occur at runtime due to incorrect use of the SYCL or OpenMP*
offload languages will cause your program to exit with an error.

In the case of SYCL, if you cannot find these using ahead-of-time compilation of your SYCL code, selecting
the OpenCL backend, setting SimpleDumpProgramSource and BuildLogging, and using the Intercept Layer for
OpenCL Applications may help identify the kernel with the syntax error.

Logic errors can also result in crashes or error messages during execution. Such issues can include:

• Passing a buffer that belongs to the wrong context to a kernel
• Passing the “this” pointer to a kernel rather than a class element
• Passing a host buffer rather than a device buffer
• Passing an uninitialized pointer, even if it is not used in the kernel

Using the Intel® Distribution for GDB* (or even the native GDB), if you watch carefully, you can record the
addresses of all contexts created and verify that the address being passed to an offload kernel belongs to the
correct context. Likewise, you can verify that the address of a variable passed matches that of the variable
itself, and not its containing class.
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It may be easier to track buffers and addresses using the Intercept Layer for OpenCL™ allocation or onetrace/
cl_tracer and choosing the appropriate backend. When using the OpenCL backend, setting CallLogging,
BuildLogging, ErrorLogging, and USMChecking and running your program should produce output that
explains what error in your code caused the generic OpenCL error to be produced.

Using onetrace or ze_tracer’s Call Logging or Device Timeline should give additional enhanced error
information to help you better understand the source of generic errors from the Level Zero backend. This can
help locate many of the logic errors mentioned above.

If the code is giving an error when offloading to a device using the Level Zero backend, try using the OpenCL
backend. If the program works, report an error against the Level Zero backend. If the error reproduces in the
OpenCL backend to the device, try using the OpenCL CPU backend. In OpenMP offload, this can be specified
by setting OMP_TARGET_OFFLOAD to CPU. For SYCL, this can be done by setting
SYCL_DEVICE_FILTER=opencl:cpu. Debugging with everything on the CPU can be easier, and removes
complications caused by data copies and translation of the program to a non-CPU device.

As an example of a logic issue that can get you in trouble, consider what is captured by the lambda function
used to implement the parallel_for in this SYCL code snippet.

class MyClass {
private:
  int *data;
  int factor;
  :
void run() {
  :
  auto data2 = data;
  auto factor2 = factor;
  {
    dpct::get_default_queue_wait().submit([&](cl::sycl::handler &cgh)
    {
       auto dpct_global_range = grid * block;
       auto dpct_local_range = block;
       cgh.parallel_for<dpct_kernel_name<class kernel_855a44>>(
           cl::sycl::nd_range<1>(
             cl::sycl::range<1> dpct_global_range.get(0)),
             cl::sycl::range<1>( dpct_local_range.get(0))),
             [=](cl::sycl::nd_item<3> item_ct1)
       {
           kernel(data, b, factor, LEN, item_ct1);    // This blows up
       });
     });
   }
} // run
} // MyClass

In the above code snippet, the program crashes because [=] will copy by value all variables used inside the
lambda. In the example it may not be obvious that “factor” is really “this->factor” and “data” is really
“this->data,” so “this” is the variable that is captured for the use of “data” and “factor” above. OpenCL
or Level Zero will crash with an illegal arguments error in the “kernel(data, b, factor, LEN,
item_ct1)” call.

The fix is the use of local variables auto data2 and auto factor2. “auto factor2 = factor” becomes
“int factor2 = this->factor” so using factor2 inside the lambda with [=] would capture an “int”. We
would rewrite the inner section as “kernel(data2, b, factor2, LEN, item_ct1);” .

  1  Intel® oneAPI Programming Guide

166



NOTE This issue is commonly seen when migrating CUDA* kernels. You can also resolve the issue by
keeping the same CUDA kernel launch signature and placing the command group and lambda inside
the kernel itself.

Using the Intercept Layer for OpenCL™ allocation or onetrace or ze_tracer, you would see that the kernel was
called with two identical addresses, and the extended error information would tell you that you are trying to
copy a non-trivial data structure to the offload device.

Note that if you are using unified shared memory (USM), and “MyClass” is allocated in USM, the above code
will work. However, if only “data” is allocated in USM, then the program will crash for the above reason.

In this example, note that you can also re-declare the variables in local scope with the same name so that
you don’t need to change everything in the kernel call.

Intel® Inspector can also help diagnose these sorts of failures. If you set the following environment variables
and then run Memory Error Analysis on offload code using the CPU device, Intel Inspector will flag many of
the above issues:

• OpenMP*

• export OMP_TARGET_OFFLOAD=CPU
• export OMP_TARGET_OFFLOAD=MANDATORY
• export LIBOMPTARGET_PLUGIN=OPENCL

• SYCL

• export SYCL_DEVICE_FILTER=opencl:cpu
• Or initialize your queue with a CPU selector to force use of the OpenCL CPU device: cl::sycl::queue

Queue(cl::sycl::cpu_selector{});
• Both

• export CL_CONFIG_USE_VTUNE=True
• export CL_CONFIG_USE_VECTORIZER=false

NOTE A crash can occur when optimizations are turned on during the compilation process. If turning
off optimizations causes your crash to disappear, use -g -[optimization level] for debugging. For
more information, see the Intel oneAPI DPC++/C++ Compiler Developer Guide and Reference.

Using the SYCL* Exception Handler

As explained in the book Data Parallel C++ Mastering DPC++ for Programming of Heterogeneous Systems
using C++ and SYCL:

The C++ exception features are designed to cleanly separate the point in a program where an error is
detected from the point where it may be handled, and this concept fits very well with both synchronous and
asynchronous errors in SYCL.

Using the methods from this book, C++ exception handling can help terminate a program when an error is
encountered instead of allowing the program to silently fail.

Note: the italicized text in this section is copied directly from Chapter 5 “Error Handling” in the book Data
Parallel C++ Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL. In some
places, text has been removed for brevity. See the book for full details.

Ignoring Error Handling

C++ and SYCL are designed to tell us that something went wrong even when we don’t handle errors
explicitly. The default result of unhandled synchronous or asynchronous errors is abnormal program
termination which an operating system should tell us about. The following two examples mimic the behavior
that will occur if we do not handle a synchronous and an asynchronous error, respectively.
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The figure below shows the result of an unhandled C++ exception, which could be an unhandled SYCL
synchronous error, for example. We can use this code to test what a particular operating system will report
in such a case.

Figure: Unhandled exception in C++

#include <iostream>

class something_went_wrong {};

int main() {
  std::cout << "Hello\n";

  throw(something_went_wrong{});
}

Example output in Linux:

Hello
terminate called after throwing an instance of 'something_went_wrong'

Aborted (core dumped)
The next figure shows example output from std::terminate being called, which will be the result of an
unhandled SYCL asynchronous error in our application. We can use this code to test what a particular
operating system will report in such a case.

Although we probably should handle errors in our programs, since uncaught errors will be caught and the
program terminated, we do not need to worry about a program silently failing!

Figure: std::terminateis called when a SYCL asynchronous exception isn’t handled

#include <iostream>

int main() {
   std::cout << "Hello\n";

   std::terminate();
}

Example output in Linux:
Hello
terminate called without an active exception
Aborted (core dumped)

The book details reasons for why synchronous errors can be handled by the C++ exceptions. However, to
handle asynchronous errors at controlled points in an application, one must be aware of the situations where
a SYCL throw is invoked, and accordingly, SYCL exceptions must be used.

Synchronous errors defined by SYCL are a derived class from std::exception of type ``sycl::exception``,
which allows us to catch the SYCL errors specifically though a try-catch structure such as what we see in the
figure below.

Figure.Pattern to catchsycl::exceptionspecifically

try{
  // Do some SYCL work
} catch (sycl::exception &e) {
  // Do something to output or handle the exception
  std::cout << "Caught sync SYCL exception: " << e.what() << "\n";
  return 1;
}
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On top of the C++ error handling mechanisms, SYCL adds a * ``sycl::exception`` *type for the exceptions
thrown by the runtime. Everything else is standard C++ exception handling, so will be familiar to most
developers. A slightly more complete example is provided in the figure below, where additional classes of
exception are handled, as well as the program being ended by returning from main(). On top of the C++
error handling mechanisms, SYCL adds a * ``sycl::exception`` *type for the exceptions thrown by the
runtime. Everything else is standard C++ exception handling, so will be familiar to most developers. A
slightly more complete example is provided in the figure below, where additional classes of exception are
handled, as well as the program being ended by returning from main().

Figure. Pattern to catch exceptions from a block of code

try{
  buffer<int> B{ range{16} };

  // ERROR: Create sub-buffer larger than size of parent buffer
  // An exception is thrown from within the buffer constructor
  buffer<int> B2(B, id{8}, range{16});

} catch (sycl::exception &e) {
  // Do something to output or handle the exception
  std::cout << "Caught sync SYCL exception: " << e.what() << "\n";
  return 1;
} catch (std::exception &e) {
  std::cout << "Caught std exception: " << e.what() << "\n";
  return 2;
} catch (...) {
  std::cout << "Caught unknown exception\n";
  return 3;
}

return 0;

Example output:
Caught sync SYCL exception: Requested sub-buffer size exceeds the
size of the parent buffer -30 (CL_INVALID_VALUE)

Asynchronous Error Handling

Asynchronous errors are detected by the SYCL runtime (or an underlying backend), and the errors occur
independently of execution of commands in the host program. The errors are stored in lists internal to the
SYCL runtime and only released for processing at specific points that the programmer can control. There are
two topics that we need to discuss to cover handling of asynchronous errors

1. The asynchronous handlerthat is invoked when there are outstanding asynchronous errors to process

2. Whenthe asynchronous handler is invoked The Asynchronous Handle

The asynchronous handler is a function that the application defines, which is registered with SYCL contexts
and/or queues. At the times defined by the next section, if there are any unprocessed asynchronous
exceptions that are available to be handled, then the asynchronous handler is invoked by the SYCL runtime
and passed a list of these exceptions. The asynchronous handler is passed to a context or queue constructor
as astd::functionand can be defined in ways such as a regular function, lambda, or functor, depending on
our preference. The handler must accept asycl::exception_listargument, such as in the example
handler shown in the figure below

Figure. Example asynchronous handler implementation defined as a lambda

// Our simple asynchronous handler function
auto handle_async_error = [](exception_list elist) {
  for (auto &e : elist) {
    try{ std::rethrow_exception(e); }
    catch ( sycl::exception& e ) {
      std::cout << "ASYNC EXCEPTION!!\n";
      std::cout << e.what() << "\n";

Intel® oneAPI Programming Guide  1  

169



    }
  }
};

In the figure above, thestd::rethrow_exceptionfollowed by catch of a specific exception type provides
filtering of the type of exception, in this case to the onlysycl::exception. We can also use alternative
filtering approaches in C++ or just choose to handle all exceptions regardless of the type The handler is
associated with a queue or context (low-level detail covered more inChapter 6) at construction time. For
example, to register the handler defined in the figure above with a queue that we are creating, we could
writequeue my_queue{ gpu_selector{}, handle_async_error }Likewise, to register the handler
defined in the figure above with a context that we are creating, we could writecontext
my_context{ handle_async_error }Most applications do not need contexts to be explicitly created or
managed (they are created behind the scenes for us automatically), so if an asynchronous handler is going
to be used, most developers should associate such handlers with queues that are being constructed for
specific devices (and not explicit contexts).

NOTE: In defining asynchronous handlers, most developers should define them on queues unless already
explicitly managing contexts for other reasons.

If an asynchronous handler is not defined for a queue or the queue’s parent context and an asynchronous
error occurs on that queue (or in the context) that must be processed, then the default asynchronous
handler is invoked. The default handler operates as if it was coded as shown in the figure below.

Figure. Example of how the default asynchronous handler behaves

// Our simple asynchronous handler function
auto handle_async_error = [](exception_list elist) {
  for (auto &e : elist) {
    try{ std::rethrow_exception(e); }
    catch ( sycl::exception& e ) {
       // Print information about the asynchronous exception
    }
  }

  // Terminate abnormally to make clear to user
  // that something unhandled happened
  std::terminate();
};

The default handler should display some information to the user on any errors in the exception list and then
will terminate the application abnormally, which should also cause the operating system to report that
termination was abnormal.

What we put within an asynchronous handler is up to us. It can range from logging of an error to application
termination to recovery of the error condition so that an application can continue executing normally.

The common case is to report any details of the error available by callingsycl::exception::what(),
followed by termination of the application. Although it’s up to us to decide what an asynchronous handler
does internally, a common mistake is to print an error message (that may be missed in the noise of other
messages from the program), followed by completion of the handler function. Unless we have error
management principles in place that allow us to recover known program state and to be confident that it’s
safe to continue execution, we should consider terminating the application within our asynchronous handler
function(s).

This reduces the chance that incorrect results will appear from a program where an error was detected, but
where the application was inadvertently allowed to continue with execution regardless. In many programs,
abnormal termination is the preferred result once we have experienced asynchronous exceptions.
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Example: SYCL Throw on Zero Sized Object
The source code below shows how the SYCL handler will produce an error when a zero-sized object is passed.

#include <cstdio>
#include <CL/sycl.hpp>

template <bool non_empty>
static void fill(sycl::buffer<int> buf, sycl::queue & q) {
    q.submit([&](sycl::handler & h) {
        auto acc  = sycl::accessor { buf, h, sycl::read_write };
        h.single_task([=]() {
            if constexpr(non_empty) {
                acc[0] = 1;
            }
        }
        );
    }
    );
    q.wait();

}

int main(int argc, char *argv[]) {
    sycl::queue q;
    sycl::buffer<int, 1> buf_zero ( 0 );

    fprintf(stderr, "buf_zero.count() = %zu\n", buf_zero.get_count());
    fill<false>(buf_zero, q);
    fprintf(stdout, "PASS\n");

    return 0;
}

When the application encounters the zero-sized object at runtime, the program aborts and produces an error
message:

$ dpcpp zero.cpp
$ ./a.out
buf_zero.count() = 0
submit...
terminate called after throwing an instance of 'cl::sycl::invalid_object_error'
  what():  SYCL buffer size is zero. To create a device accessor, SYCL buffer size must be 
greater than zero. -30 (CL_INVALID_VALUE)
Aborted (core dumped)

The programmer can then locate the programming error by catching the exception in the debugger and
looking at the backtrace for the source line that triggered the error.

Example: SYCL Throw on Illegal Null Pointer
Consider code that does the following:

deviceQueue.memset(mdlReal, 0, mdlXYZ \* sizeof(XFLOAT));

deviceQueue.memcpy(mdlImag, 0, mdlXYZ \* sizeof(XFLOAT)); // coding
error
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The compiler will not flag the bad (null pointer) value specified in deviceQueue.memcpy. This error will not
be caught until runtime.

terminate called after throwing an instance of 'cl::sycl::runtime_error'

what(): NULL pointer argument in memory copy operation. -30
(CL_INVALID_VALUE)

Aborted (core dumped)
The example code that follows shows a way the user can control the format of the exception output when it
is detected at runtime on a given queue, implemented in a standalone program that demonstrates the null
pointer error.

#include "stdlib.h"
#include "stdio.h"
#include <cmath>
#include <signal.h>
#include <fstream>
#include <iostream>
#include <vector>
#include <CL/sycl.hpp>

#define XFLOAT float
#define mdlXYZ 1000
#define MEM_ALIGN 64

int main(int argc, char *argv[])
{
      XFLOAT *mdlReal, *mdlImag;

      cl::sycl::property_list propList = 
cl::sycl::property_list{cl::sycl::property::queue::enable_profiling()};
cl::sycl::queue deviceQueue(cl::sycl::gpu_selector { }, [&](cl::sycl::exception_list eL)
      {
             bool error = false;
             for (auto e : eL)
             {
                  try
                  {
                        std::rethrow_exception(e);
                  } catch (const cl::sycl::exception& e)
                  {
                        auto clError = e.get_cl_code();
                        bool hascontext = e.has_context();
                        std::cout << e.what() << "CL ERROR CODE : " << clError << std::endl;
                        error = true;
                        if (hascontext)
                        {
                              std::cout << "We got a context with this exception" << std::endl;
                        }
                  }
             }
             if (error) {
                  throw std::runtime_error("SYCL errors detected");
             }
      }, propList);

      mdlReal   = sycl::malloc_device<XFLOAT>(mdlXYZ, deviceQueue);
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      mdlImag   = sycl::malloc_device<XFLOAT>(mdlXYZ, deviceQueue);

      deviceQueue.memset(mdlReal, 0, mdlXYZ * sizeof(XFLOAT));
      deviceQueue.memcpy(mdlImag, 0, mdlXYZ * sizeof(XFLOAT));   // coding error

      deviceQueue.wait();

      exit(0);
}

Resources
For a a guided approach to debugging SYCL exceptions from incorrect use of the SYCL* API, see the Guided
Matrix Multiplication Exception Sample.

To troubleshoot your applications that use OpenMP* or the SYCL* API with extensions to offload resources,
see Troubleshoot Highly Parallel Applications.

Optimize Offload Performance

Offload performance optimization basically boils down to three tasks:

1. Minimize the number and size of data transfers to and from the device while maximizing execution time
of the kernel on the device.

2. When possible, overlap data transfers to/from the device with computation on the device.
3. Maximize the performance of the kernel on the device.

While it is possible to take explicit control of data transfers in both OpenMP* offload and SYCL*, you also can
allow this to happen automatically. In addition, because the host and offload device operate mostly
asynchronously, even if you try to take control over data transfers, the transfers may not happen in the
expected order, and may take longer than anticipated. When data used by both the device and the host is
stored in unified shared memory (USM), there is another transparent layer of data transfers happening that
also can affect performance.

Resources:

• Intel oneAPI GPU Optimization Guide
• Intel oneAPI FPGA Optimization Guide

Buffer Transfer Time vs Execution Time
Transferring any data to or from an offload device is relatively expensive, requiring memory allocations in
user space, system calls, and interfacing with hardware controllers. Unified shared memory (USM) adds to
these costs by requiring that some background process keeps memory being modified on either the host or
offload device in sync. Furthermore, kernels on the offload device must wait to run until all the input or
output buffers they need to run are set up and ready to use.

All this overhead is roughly the same no matter how much information you need to transfer to or from the
offload device in a single data transfer. Thus, it is much more efficient to transfer 10 numbers in bulk rather
than one at a time. Still, every data transfer is expensive, so minimizing the total number of transfers is also
very important. If, for example, you have some constants that are needed by multiple kernels, or during
multiple invocations of the same kernel, transfer them to the offload device once and reuse them, rather
than sending them with every kernel invocation. Finally, as might be expected, single large data transfers
take more time than single small data transfers.

The number and size of buffers sent is only part of the equation. Once the data is at the offload device,
consider how long the resulting kernel executes. If it runs for less time than it takes to transfer the data to
the offload device, it may not be worthwhile to offload the data in the first place unless the time to do the
same operation on the host is longer than the combined kernel execution and data transfer time.
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Finally, consider how long the offload device is idle between the execution of one kernel and the next. A long
wait could be due data transfer or just the nature of the algorithm on the host. If the former, it may be
worthwhile to overlap data transfer and kernel execution, if possible.

In short, execution of code on the host, execution of code on the offload device, and data transfer is quite
complex. The order and time of such operations isn’t something you can gain through intuition, even in the
simplest code. You need to make use of tools like those listed below to get a visual representation of these
activities and use that information to optimize your offload code.

Intel® VTune™ Profiler
In addition to giving you detailed performance information on the host, VTune can also provide detailed
information about performance on a connected GPU. Setup information for GPUs is available from the Intel
VTune Profiler User Guide.

Intel VTune Profiler’s GPU Offload view gives you an overview of the hotspots on the GPU, including the
amount of time spent for data transfer to and from each kernel. The GPU Compute/Media Hotspots view
allows you to dive more deeply into what is happening to your kernels on the GPU, such as by using the
Dynamic Instruction Count to view a micro analysis of the GPU kernel performance. With these profiling
modes, you can observe how data transfer and compute occur over time, determine if there is enough work
for a kernel to run effectively, learn how your kernels use the GPU memory hierarchy, and so on.

Additional details about these analysis types is available from the Intel VTune Profiler User Guide. A detailed
look at optimizing for GPU using VTune Profiler is available from the Optimize Applications for Intel GPUs with
Intel VTune Profiler page.

You can also use Intel VTune Profiler to capture kernel execution time. The following commands provide light-
weight profiling results:

• Collect

• Level zero backend: vtune -collect-with runss -knob enable-gpu-level-zero=true -
finalization-mode=none -app-working-dir <app_working_dir> <app>

• OpenCL™ backend: vtune -collect-with runss -knob collect-programming-api=true -
finalization-mode=none -r <result_dir_name> -app-working-dir <app_working_dir>
<app>

• Report: vtune --report hotspots --group-by=source-computing-task --sort-desc="Total
Time" -r <result_dir_name>

Intel® Advisor
Intel® Advisor provides two features that can help you get the improved performance when offloading
computation to GPU:

• Offload Modeling can watch your host OpenMP* program and recommend parts of it that would be
profitably offloaded to the GPU. It also allows you to model a variety of different target GPUs, so that you
can learn if offload will be profitable on some but not others. Offload Advisor gives detailed information on
what factors may bound offload performance.

• GPU Roofline analysis can watch your application when it runs on the GPU, and graphically show how well
each kernel is making use of the memory subsystem and compute units on the GPU. This can let you
know how well your kernel is optimized for the GPU.

To run these modes on an application that already does some offload, you need to set up your environment
to use the OpenCL™ device on the CPU for analysis. Instructions are available from the Intel Advisor User
Guide.

Offload modeling does not require that you have already modified your application to use a GPU - it can work
entirely on host code.

Resources:
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• Intel Advisor Cookbook: GPU Offload
• Get Started with Offload Modeling
• Get Started with GPU Roofline

Offload API call Timelines
If you do not want to use Intel® VTune™ Profiler to understand when data is being copied to the GPU, and
when kernels run, onetrace, ze_tracer, cl_tracer, and the Intercept Layer for OpenCL™ Applications give you a
way to observe this information /(although, if you want a graphical timeline, you’ll need to write a script to
visualize the output/). For more information, see oneAPI Debug Tools, Trace the Offload Process, and Debug
the Offload Process.

Performance Tuning Cycle

The goal of the performance tuning cycle is to improve the time to solution whether that be interactive
response time or elapsed time of a batch job. In the case of a heterogeneous platform, there are compute
cycles available on the devices that execute independently from the host. Taking advantage of these
resources offers a performance boost.

The performance tuning cycle includes the following steps detailed in the next sections:

1. Establish a baseline
2. Identify kernels to offload
3. Offload the kernels
4. Optimize
5. Repeat until objectives are met

Establish Baseline

Establish a baseline that includes a metric such as elapsed time, time in a compute kernel, or floating-point
operations per second that can be used to measure the performance improvement and that provides a
means to verify the correctness of the results.

A simple method is to employ the chrono library routines in C++, placing timer calls before and after the
workload executes.

Identify Kernels to Offload

To best utilize the compute cycles available on the devices of a heterogeneous platform, it is important to
identify the tasks that are compute intensive and that can benefit from parallel execution. Consider an
application that executes solely on a CPU, but there may be some tasks suitable to execute on a GPU. This
can be determined using the Offload Modeling perspective of the Intel® Advisor.

Intel Advisor estimates performance characterizations of the workload as it may execute on an accelerator. It
consumes the information from profiling the workload and provides performance estimates, speedup,
bottleneck characterization, and offload data transfer estimates and recommendations.

Typically, kernels with high compute, a large dataset, and limited memory transfers are best suited for
offload to a device.

See Get Started: Identify High-impact Opportunities to Offload to GPU for quick steps to ramp up with the
Offload Modeling perspective. For more resources about modeling performance of your application on GPU
platforms, see Offload Modeling Resources for Intel® Advisor Users.

Offload Kernels
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After identifying kernels that are suitable for offload, employ SYCL* or OpenMP* to offload the kernel onto
the device. Consult the previous chapters as an information resource.

Optimize Your SYCL* Applications

oneAPI enables functional code that can execute on multiple accelerators such as CPU, GPU, and FPGA.
However, the code may not be the most optimal across the accelerators. A three-step optimization strategy is
recommended to meet performance needs:

1. Pursue general optimizations that apply across accelerators.
2. Optimize aggressively for the prioritized accelerators.
3. Optimize the host code in conjunction with step 1 and 2.

Optimization is a process of eliminating bottlenecks, i.e., the sections of code that are taking more execution
time relative to other sections of the code. These sections could be executing on the devices or the host.
During optimization, employ a profiling tool such as Intel® VTune™ Profiler to find these bottlenecks in the
code.

This section discusses the first step of the strategy - Pursue general optimizations that apply across
accelerators. Device specific optimizations and best practices for specific devices (step 2) and optimizations
between the host and devices (step 3) are detailed in device-specific optimization guides, such as the FPGA
Optimization Guide for Intel® oneAPI Toolkits. This section assumes that the kernel to offload to the
accelerator is already determined. It also assumes that work will be accomplished on one accelerator. This
guide does not speak to division of work between host and accelerator or between host and potentially
multiple and/or different accelerators.

General optimizations that apply across accelerators can be classified into four categories:

1. High-level optimizations
2. Loop-related optimizations
3. Memory-related optimizations
4. SYCL-specific optimizations

The following sections summarize these optimizations only; specific details on how to code most of these
optimizations can be found online or in commonly available code optimization literature. More detail is
provided for the SYCL-specific optimizations.

High-level Optimization Tips
• Increase the amount of parallel work. More work than the number of processing elements is desired to

help keep the processing elements more fully utilized.
• Minimize the code size of kernels. This helps keep the kernels in the instruction cache of the accelerator, if

the accelerator contains one.
• Load balance kernels. Avoid significantly different execution times between kernels as the long-running

kernels may become bottlenecks and affect the throughput of the other kernels.
• Avoid expensive functions. Avoid calling functions that have high execution times as they may become

bottlenecks.

Loop-related Optimizations
• Prefer well-structured, well-formed, and simple exit condition loops – these are loops that have a single

exit and a single condition when comparing against an integer bound.
• Prefer loops with linear indexes and constant bounds – these are loops that employ an integer index into

an array, for example, and have bounds that are known at compile-time.
• Declare variables in deepest scope possible. Doing so can help reduce memory or stack usage.
• Minimize or relax loop-carried data dependencies. Loop-carried dependencies can limit parallelization.

Remove dependencies if possible. If not, pursue techniques to maximize the distance between the
dependency and/or keep the dependency in local memory.

• Unroll loops with pragma unroll.
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Memory-related Optimizations
• When possible, favor greater computation over greater memory use. The latency and bandwidth of

memory compared to computation can become a bottleneck.
• When possible, favor greater local and private memory use over global memory use.
• Avoid pointer aliasing.
• Coalesce memory accesses. Grouping memory accesses helps limit the number of individual memory

requests and increases utilization of individual cache lines.
• When possible, store variables and arrays in private memory for high-execution areas of code.
• Beware of loop unrolling effects on concurrent memory accesses.
• Avoid a write to a global that another kernel reads. Use a pipe instead.
• Consider employing the [[intel::kernel_args_restrict]] attribute to a kernel. The attribute allows

the compiler to ignore dependencies between accessor arguments in the kernel. In turn, ignoring accessor
argument dependencies allows the compiler to perform more aggressive optimizations and potentially
improve the performance of the kernel.

SYCL-specific Optimizations
• When possible, specify a work-group size. The attribute, [[cl::reqd_work_group_size(X, Y, Z)]],

where X, Y, and Z are integer dimension in the ND-range, can be employed to set the work-group size.
The compiler can take advantage of this information to optimize more aggressively.

• Consider use of the -Xsfp-relaxed option when possible. This option relaxes the order of arithmetic
floating-point operations.

• Consider use of the -Xsfpc option when possible. This option removes intermediary floating-point
rounding operations and conversions whenever possible and carries additional bits to maintain precision.

• Consider use of the -Xsno-accessor-aliasing option. This option ignores dependencies between
accessor arguments in a SYCL* kernel.

Recompile, Run, Profile, and Repeat

Once the code is optimized, it is important to measure the performance. The questions to be answered
include:

• Did the metric improve?
• Is the performance goal met?
• Are there any more compute cycles left that can be used?

Confirm the results are correct. If you are comparing numerical results, the numbers may vary depending on
how the compiler optimized the code or the modifications made to the code. Are any differences acceptable?
If not, go back to optimization step.

oneAPI Library Compatibility

oneAPI applications may include dynamic libraries at runtime that require compatibility across release
versions of Intel tools. Intel oneAPI Toolkits and component products use semantic versioning to support
compatibility.

The following policies apply to APIs and ABIs delivered with Intel oneAPI Toolkits.

NOTE oneAPI applications are supported on 64-bit target devices.

• New Intel oneAPI device drivers, oneAPI dynamic libraries, and oneAPI compilers will not break previously
deployed applications built with oneAPI tools. Current APIs will not be removed or modified without notice
and an iteration of the major version.
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• Developers of oneAPI applications should ensure that the header files and libraries have the same release
version. For example, an application should not use 2021.2 Intel® oneAPI Math Kernel Library header files
with 2021.1 Intel oneAPI Math Kernel Library.

• New dynamic libraries provided with the Intel compilers will work with applications built by older versions
of the compilers (this is commonly referred to as backward compatibility). However, the converse is not
true: newer versions of the oneAPI dynamic libraries may contain routines that are not available in earlier
versions of the library.

• Older dynamic libraries provided with the oneAPI Intel compilers will not work with newer versions of the
oneAPI compilers.

Developers of oneAPI applications should ensure that thorough application testing is conducted to ensure
that a oneAPI application is deployed with a compatible oneAPI library.

SYCL* Extensions

SYCL extensions provide the ability to rapidly experiment, innovate, develop, and establish a virtuous cycle
into open standards bodies—like SYCL from the Khronos Group to facilitate cross-architecture systems. To
access extensions that work with the Intel® oneAPI DPC++ Compiler, see SYCL Extensions on GitHub.

Glossary

Accelerator
Specialized component containing compute resources that can quickly execute a subset of operations.
Examples include CPU, FPGA, GPU.

See also: Device

Accessor
Communicates the desired location (host, device) and mode (read, write) of access.

Application Scope
Code that executes on the host.

Buffers
Memory object that communicates the type and number of items of that type to be communicated to the
device for computation.

Command Group Scope
Code that acts as the interface between the host and device.

Command Queue
Issues command groups concurrently.

Compute Unit
A grouping of processing elements into a ‘core’ that contains shared elements for use between the processing
elements and with faster access than memory residing on other compute units on the device.

  1  Intel® oneAPI Programming Guide

178

https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions


Device
An accelerator or specialized component containing compute resources that can quickly execute a subset of
operations. A CPU can be employed as a device, but when it is, it is being employed as an accelerator.
Examples include CPU, FPGA, GPU.

See also: Accelerator

Device Code
Code that executes on the device rather than the host. Device code is specified via lambda expression,
functor, or kernel class.

DPC++
An open source project is adding SYCL* support to the LLVM C++ compiler.

Fat Binary
Application binary that contains device code for multiple devices. The binary includes both the generic code
(SPIR-V representation) and target specific executable code.

Fat Library
Archive or library of object code that contains object code for multiple devices. The fat library includes both
the generic object (SPIR-V representation) and target specific object code.

Fat Object
File that contains object code for multiple devices. The fat object includes both the generic object (SPIR-V
representation) and target specific object code.

Host
A CPU-based system (computer) that executes the primary portion of a program, specifically the application
scope and command group scope.

Host Code
Code that is compiled by the host compiler and executes on the host rather than the device.

Images
Formatted opaque memory object that is accessed via built-in function. Typically pertains to pictures
comprised of pixels stored in format like RGB.

Kernel Scope
Code that executes on the device.

ND-range
Short for N-Dimensional Range, a group of kernel instances, or work item, across one, two, or three
dimensions.

Processing Element
Individual engine for computation that makes up a compute unit.
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Single Source
Code in the same file that can execute on a host and accelerator(s).

SPIR-V
Binary intermediate language for representing graphical-shader stages and compute kernels.

SYCL
A standard for a cross-platform abstraction layer that enables code for heterogeneous processors to be
written using standard ISO C++ with the host and kernel code for an application contained in the same
source file.

Work-groups
Collection of work-items that execute on a compute unit.

Work-item
Basic unit of computation in the oneAPI programming model. It is associated with a kernel which executes on
the processing element.

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Unless stated otherwise, the code examples in this document are provided to you under an MIT license, the
terms of which are as follows:

Copyright Intel Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
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