
Alpha Microprocessors Motherboard
Debug Monitor

User’s Guide
Order Number: EC–QHUVF–TE
Digital Equipment Corporation
Maynard, Massachusetts

http://www.digital.com/semiconductor

Revision/Update Information: This is a revised document. It supersedes
the Alpha Microprocessors Motherboard
Debug Monitor User’s Guide,
EC–QHUVE–TE.

October 1997

While DIGITAL believes the information included in this publication is correct as of the date of publication, it is
subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the manner described in this
publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication
imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

©Digital Equipment Corporation 1997. All rights reserved.
Printed in U.S.A.

AlphaPC, DEC, DECchip, DIGITAL, DIGITAL Semiconductor, DIGITAL UNIX, Ladebug, OpenVMS, and the
DIGITAL logo are trademarks of Digital Equipment Corporation.

DIGITAL Semiconductor is a Digital Equipment Corporation business.

BSD is a trademark of the University of California, Berkeley, CA.
Motorola is a registered trademark of Motorola, Inc.
Linux is a registered trademark of Croce, William R. Della, Jr.
OSF/1 is a registered trademark of Open Software Foundation, Inc.
Microsoft, MS-DOS, and Windows are registered trademarks and Windows NT is a trademark of Microsoft
Corporation.
UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Limited.
VxWorks is a registered trademark of Wind River Systems, Inc.

All other trademarks and registered trademarks are the property of their respective owners.

 Contents
iii

Preface

1 Introduction

1.1 Overview . 1–1
1.2 General Features . 1–1
1.3 Recommended Host System . 1–2

2 Getting Started

2.1 Overview . 2–1
2.2 System Requirements. 2–1
2.3 Configuring Your System . 2–1
2.3.1 Connecting to a Terminal. 2–1
2.3.2 Connecting to a PC . 2–2
2.3.3 Connecting from a System Running Windows NT. 2–2
2.3.4 Connecting from a System Running DIGITAL UNIX 2–3
2.3.4.1 Connecting to a Serial Port. 2–4
2.3.4.2 Setting Up the Host System As a BOOTP Server 2–4
2.3.4.3 Setting Up the Host System As a Ladebug Client 2–5
2.4 Updating the Debug Monitor Firmware . 2–5
2.4.1 Updating Firmware in a Flash ROM. 2–6
2.4.2 Updating the Flash ROM from the AlphaBIOS Setup Program 2–7
2.4.3 Updating the Flash ROM from the Windows NT ARC Firmware 2–9
2.4.4 Updating the Flash ROM from the Debug Monitor Firmware. 2–10
2.4.5 Updating the Flash ROM from the Alpha SRM Console Firmware 2–11
2.4.6 Running Firmware Update. 2–13
2.4.7 Updating Firmware in a UVPROM. 2–14
2.5 Switching to the Debug Monitor Firmware on Flash ROM Systems 2–15
2.6 Debug Monitor Memory Map. 2–16
2.6.1 Stack . 2–17
2.6.2 DMA Buffers . 2–18
2.7 Downloading Files. 2–18

2.8 Execution Commands. 2–18
2.9 Resetting the Debug Monitor . 2–19

3 Remote Debugging

3.1 What Is a Debugger? . 3–1
3.2 What Is a Remote Debugger? . 3–1
3.3 Remote Debug Server . 3–1
3.4 Programming Guidelines . 3–2
3.4.1 The Run-Time Environment. 3–2
3.4.2 Types of Programs . 3–2
3.4.2.1 Restriction. 3–2
iv

3.4.3 PALcode Environment . 3–3
3.5 Ladebug Command Line Options . 3–4
3.6 Building the Executable File . 3–5
3.7 Starting a Ladebug Session . 3–6

4 User Commands

4.1 Overview . 4–1
4.2 Using the Commands . 4–2
4.3 User Commands Quick Reference . 4–4
4.4 User Commands . 4–10

apropos. 4–11
arpshow . 4–12
bcoff . 4–13
bcon . 4–14
beep . 4–15
boot. 4–16
bootadr . 4–17
bootopt . 4–18
bpstat . 4–20
cb . 4–21
cfreg . 4–22
cl . 4–24
compare . 4–25
cont . 4–26
copy . 4–27
cq . 4–29
creg. 4–31
cw . 4–33
date. 4–35
delete . 4–36
dis . 4–37
dml . 4–39
dmq. 4–40
ebuff . 4–41

edevice . 4–42
edmp. 4–43
einit . 4–44
eml . 4–45
emq. 4–46
eprom . 4–47
ereg . 4–48
eshow . 4–50
estat . 4–51
estop. 4–52
fill . 4–53
flash . 4–55
flasherase . 4–58
v

flboot . 4–60
flcd . 4–61
flcopy . 4–63
fldir . 4–65
flload . 4–67
flread. 4–68
flsave . 4–70
flwrite . 4–71
fwupdate . 4–73
go . 4–74
help. 4–75
iack . 4–77
ident . 4–78
init . 4–80
jtopal . 4–81
ladebug. 4–82
load. 4–84
mces . 4–85
mcheck . 4–86
memtest . 4–88
mrb . 4–90
mrl. 4–91
mrw. 4–92
mwb . 4–93
mwl . 4–94
mww . 4–95
netboot . 4–96
netload . 4–98
next . 4–100
pb . 4–102
pcishow. 4–104
pfreg . 4–106
pl . 4–107
pq . 4–109
prb . 4–111
preg . 4–112

prl . 4–113
prw . 4–114
pw . 4–116
pwb . 4–118
pwl . 4–119
pww . 4–120
rabox. 4–121
rb . 4–122
rbcfg . 4–123
rbctl . 4–124
rbiu . 4–125
riccsr . 4–126
rl . 4–127
vi

rmode . 4–128
romboot . 4–131
romlist . 4–134
romload. 4–135
romverify . 4–138
rsys . 4–140
rw . 4–141
sb . 4–142
setbaud. 4–144
setty . 4–145
sl . 4–146
sq . 4–148
step. 4–150
stop. 4–152
sum. 4–153
sw . 4–154
swpipl . 4–155
sysshow . 4–156
tip . 4–157
version . 4–158
wabox . 4–159
wb . 4–160
wbcfg . 4–161
wbctl . 4–162
wbiu . 4–163
wiccsr . 4–164
wl . 4–165
wrfen. 4–166
wsys . 4–167
ww . 4–168

A Support, Products, and Documentation

Index

vii

Figures

2–1 Debug Monitor Memory Map. 2–17

viii

Tables

4–1 Command Summary Table . 4–4

 Preface
ix

Introduction

This document describes the software features of an Alpha microprocessor
motherboard. The motherboard software is intended to provide software monitor and
debug capabilities to customers who use an Alpha microprocessor motherboard as a
development platform for creating their own Alpha microprocessor-based systems.

Audience

This document is for anyone who develops software or hardware to be used with an
Alpha microprocessor. The Alpha Microprocessors Motherboard Debug Monitor
(Debug Monitor) supports the following products:

• AlphaPC 164SX Motherboard (AlphaPC 164SX)

• AlphaPC 164LX Motherboard (AlphaPC 164LX)

• AlphaPC 164 Motherboard (AlphaPC 164)

• Alpha 21164 Evaluation Board (EB164)

• AlphaPC 64 Evaluation Board (AlphaPC 64)

• Alpha 21066A Evaluation Board (EB66+)

• Alpha 21064 and Alpha 21064A PCI Evaluation Board (EB64+)

• Alpha 21066 and Alpha 21068 Evaluation Board (EB66)

• Alpha 21064 Evaluation Board (EB64)

Content Overview

The information in this document is organized as follows:

• Chapter 1 is an introduction to the Debug Monitor.

• Chapter 2 describes how to use this Debug Monitor.

• Chapter 3 describes how to use remote debugging.

• Chapter 4 lists all Debug Monitor commands.

• Appendix A contains information about technical support services and
x

associated documentation.

Conventions

In this document, the term motherboard refers to the AlphaPC 164SX Motherboard,
the AlphaPC 164LX Motherboard, the AlphaPC 164 Motherboard, the Alpha 21164
Evaluation Board, the AlphaPC 64 Evaluation Board, the Alpha 21066A Evaluation
Board, the Alpha 21064 and Alpha 21064A PCI Evaluation Board, the Alpha 21066
and Alpha 21068 Evaluation Board, and the Alpha 21064 Evaluation Board, unless
otherwise noted.

The following conventions are used in this document:

All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal have a subscript indicating their base.

Convention Definition

A percent sign (%) Indicates a DIGITAL UNIX operating system command
prompt.

A pound sign (#)
Indicates a DIGITAL UNIX superuser prompt and indicates
that these commands are performed from the root directory
level.

Square brackets ([]) Denote optional syntax.

Boldface type Indicates Debug Monitor command text.

EBxxx> Indicates a motherboard command prompt.

Italic type
Emphasizes important information, indicates variables in
command syntax, and denotes complete titles of documents.

Monospaced type
Indicates an operating system command, a file name, or a
directory path name.

 1
Introduction

tem

sire.
Introduction 1–1

1.1 Overview

The Alpha Microprocessors Motherboard Debug Monitor can be used to load code
into the system and perform other software debug functions, such as memory
read/write and instruction breakpointing. Combined with a hardware interface, the
Debug Monitor can be used to write and debug software for the following:

• Device drivers for workstation and PC-type products

• Embedded control products, such as:

– Laser printers

– Communication engines

– Video products

The Debug Monitor is provided with the motherboard in an industry-standard
512KB EPROM or a 1MB flash ROM. You can develop your code on a host sys
and load the software into the motherboard through a serial port, Ethernet port,
user-supplied floppy drive, or the extra ROM socket. The full source code is
provided with a free license allowing you to use and modify this code as you de

1.2 General Features

The Debug Monitor offers the ability to:

• Download files via serial and Ethernet ports, ROM socket, and user-supplied
floppy drive.

• Examine and deposit the motherboard system register, CPU internal processor
registers (IPRs), and I/O mapped registers.

• Examine and modify DRAM and I/O mapped memory.

Recommended Host System

• Disassemble CPU instructions in memory.

• Transfer control to programs loaded into memory.

• Perform native debugging, including breakpoints and single stepping.

• Perform full source-level debugging using the DIGITAL Ladebug debugger
(Ladebug) for DIGITAL UNIX running on a remote host that communicates
through an Ethernet connection.

1.3 Recommended Host System
1–2 Introduction

The recommended host system for software development is an Alpha system running
the Windows NT or DIGITAL UNIX operating systems. Alpha hardware is the
platform upon which the initial set of portable development tools is provided. The
native DIGITAL UNIX and Windows NT software development tools are used in
conjunction with the portable tools.

The DIGITAL UNIX operating system also supports the bootstrap protocol
(BOOTP) for downloading executable images to the motherboard and Ladebug for
remote debugging. The examples in this manual that pertain to a host system are
based on Alpha hardware running the DIGITAL UNIX operating system.

 2
Getting Started

 line
Getting Started 2–1

2.1 Overview

This chapter describes how to set up your motherboard and host system.

2.2 System Requirements

The minimum configuration that you need in order to use your motherboard is a
power supply and a terminal. However, to take full advantage of the motherboard,
you need an Alpha host development system running the Windows NT or DIGITAL
UNIX operating systems.

2.3 Configuring Your System

This section describes how to connect your motherboard to the following:

• A terminal

• A PC running communication software

• A system running Windows NT

• An Alpha system running DIGITAL UNIX

You need to provide a power supply for the motherboard. See your motherboard’s
user’s manual for more information about requirements for your power supply.

2.3.1 Connecting to a Terminal

To connect the motherboard to a terminal, connect the terminal communication
to serial port 1 of the motherboard. For example, on the EB64, this port is on
connector J12. Your terminal should be set to match the baud rate of the
motherboard. The default speed of the EB64 serial port is 9600 baud.

Configuring Your System

After the terminal and the motherboard are connected and the motherboard is
powered on, the terminal screen should display the banner and prompt. For example:

DECchip 21064 Evaluation Board (EB64) Debug Monitor
 Version: Tue May 04 16:55:54 EDT 1993
 Bootadr: 0x100000, memSize: 0x2000000 (32MB)

EB64>

Note: Using a terminal in this manner is the most effective way to quickly
verify that your motherboard was not damaged during shipping. You can
use the ROM socket to load and boot software through a compatible
2–2 Getting Started

ROM. However, to download a file, you need a system running terminal
emulation software that has the capability of performing text dumps
through the serial connection or through an Ethernet connection to a host
system that supports the BOOTP protocol.

2.3.2 Connecting to a PC

Communication (terminal emulation) software running on a PC can also be used to
communicate with the motherboard. To connect the motherboard to a PC, connect
the terminal communication line to serial port 1 of the motherboard as described for
the terminal.

2.3.3 Connecting from a System Running Windows NT

A system running the Windows NT operating system supports serial communication
with the motherboard. To configure a COM port, follow these steps:

1. Choose the Program Manager icon.

2. Choose the Accessories icon.

3. Choose the Terminal icon.

4. Set the following terminal characteristics:

Terminal Setting Value

Data bits 8 bit

Transmit/receive speed 9600 baud

Character format No parity

Stop bits 1

Configuring Your System

Save these settings in a file. For example, settings for the EB64 could be saved in a
file called eb64.trm.

For consistency, all examples and command descriptions assume that the
motherboard serial port 1 is connected to COM1.

2.3.4 Connecting from a System Running DIGITAL UNIX

DIGITAL UNIX supports serial communications and Ethernet communications with
the motherboard.

An Alpha system running the DIGITAL UNIX operating system supports serial
Getting Started 2–3

communication through the following two ports that can be connected to the
motherboard:

• /dev/tty00

• /dev/tty01

For consistency, all examples and command descriptions assume that the
motherboard serial port 1 is connected to port /dev/tty00.

To enable these ports for use with the motherboard, follow these steps:

1. Log in as superuser.

2. Modify the following two files:

/etc/remote
/etc/inittab

a. Add the following two lines to the /etc/remote file. These lines define a
device to connect to when using the DIGITAL UNIX tip command.

port_name0:dv=/dev/tty00:br#9600:pa=none:
port_name1:dv=/dev/tty01:br#9600:pa=none:

The port_name refers to an arbitrary name that you assign to that port.

b. Modify the /etc/inittab file to disable logins on the two serial
communication ports by setting the third field to off. For example, modify
the tty00 and tty01 lines as follows:

tty00:23:off:/usr/sbin/getty /dev/tty00 9600
tty01:23:off:/usr/sbin/getty /dev/tty01 9600

3. Reboot the system or issue the following command to ensure that the modified
files take effect:

/sbin/init q

Configuring Your System

2.3.4.1 Connecting to a Serial Port

After you modify the /etc/remote and /etc/inittab files, you can connect
to the serial port under the DIGITAL UNIX operating system using the DIGITAL
UNIX tip command. If the connection is successful, the motherboard prompt
displays, and you are ready to use the Debug Monitor load or boot commands to
download your file. For example,

% tip port_name0
EB64> load
Send File now ...

Type ~> to cause the DIGITAL UNIX tip command to send the file to the
2–4 Getting Started

motherboard.

2.3.4.2 Setting Up the Host System As a BOOTP Server

The bootstrap protocol (BOOTP) needs to be defined so that the commands netload
and netboot work correctly. To set up a DIGITAL UNIX system as a BOOTP server,
follow these steps:

1. Modify the /etc/inetd.conf file. This file enables both the BOOTP and
the TFTP daemons. The TFTP daemon is required by the BOOTP daemon.

a. Add the following line to specify the directories that can be accessed by the
TFTP daemon:

tftp dgram udp wait root /usr/sbin/tftpd tftpd /directory1
 /directory2

If no directory is specified, all files with public access can be accessed by the
TFTP daemon.

b. To start the BOOTP daemon, enter the following line:

bootps dgram udp wait root /usr/sbin/bootpd bootpd -d -d -d

2. If BOOTP is already running on your system, you want to stop it. To stop
BOOTP, enter the following commands:

ps uax | grep bootpd
kill -KILL process_id_number
ps uax | grep inetd
kill -HUP process_id_number

3. To restart BOOTP, enter the following command:

/sbin/init q

The changes made to the /etc/inetd.conf file will now take effect.

Updating the Debug Monitor Firmware

4. Modify the /etc/bootptab file to specify the Ethernet hardware address of
the motherboard and the IP address assigned to that node. Contact your network
administrator to obtain an IP address. Refer to the literature supplied with your
Ethernet card to obtain information about the hardware address. If the hardware
address is accessible through software, you can use the einit command to display
it. For example, the following lines modify this file for the EB64:

remote_system_name0:ht=ethernet:ha=BA9876543210:ip=16.123.45.67:\
:hd=/directory1:bf=filename:vm=auto:

BOOTP checks this file to see if it has changed each time it receives a request. If
it has changed, the new file is read. The directory and filename are the defaults
Getting Started 2–5

for the netload and netboot commands. If no argument is specified with either
command, the file loaded is /directory1/filename.

Verify the BOOTP Server

To verify that the BOOTP server has been set up properly, you can look at the
daemon.log file. This file shows directories accessed for the netload or netboot
commands.

tail -f /var/adm/sylog.dated/dated_dir/daemon.log

The following example displays a boot request from an example daemon log file:

May 5 10:40:28 eval bootpd[328]:request from hardware address BA9876543210
May 5 10:40:28 eval bootpd[328]:found: eb64 (BA9876543210) at (16.123.45.67)
May 5 10:40:28 eval bootpd[328]:file /users/eval/boot/size.eb64 not found
May 5 10:40:28 eval bootpd[328]:vendor magic field is 0.0.0.0
May 5 10:40:28 eval bootpd[328]:sending RFC1048-style reply

You can refer to the DIGITAL UNIX man pages for more information about bootp,
bootpd, tftp, tftpd, inet, inetd, and init.

2.3.4.3 Setting Up the Host System As a Ladebug Client

The Debug Monitor supports remote debugging for DIGITAL UNIX host systems
with Ladebug. The Ladebug software does not accept numeric internet addresses.
You can give your motherboard an internet name in the /etc/hosts file. In the
/etc/hosts file, the format is the internet protocol (IP) address followed by the
host system name. For example:

12.345.67.89 remote_system_name0

2.4 Updating the Debug Monitor Firmware

Depending on the type of motherboard, the firmware is stored in either a flash ROM
or a UVPROM.

Updating the Debug Monitor Firmware

For the AlphaPC 164SX, AlphaPC 164LX, AlphaPC 164, EB164, AlphaPC 64, and
EB66+, you update the Debug Monitor firmware in the flash ROM.

The EB64+, EB66, and EB64 have a UVPROM. A new UVPROM containing the
Debug Monitor firmware needs to be obtained and installed on these motherboards.

After the Debug Monitor firmware has been installed, the motherboard system is
restarted to activate the new firmware.

Use the following table to determine the update procedure for your motherboard.

To update firmware on an... See this section...
2–6 Getting Started

2.4.1 Updating Firmware in a Flash ROM

The AlphaBIOS setup program is used to update the firmware in a flash ROM on the
AlphaPC 164SX and the AlphaPC 164LX. The firmware update utility is used to add
or update the firmware in a flash ROM on the AlphaPC 164, EB164, AlphaPC 64,
and EB66+. Depending on which firmware you are using, this utility can be invoked
from a diskette or from a compact disc.

To update the flash ROM, the update enable/disable jumper must be in the enable
position, which is the default. See your motherboard’s user’s manual for more
information about jumper positions.

AlphaPC 164SX
AlphaPC 164LX
AlphaPC 164
EB164
Alpha PC 64
EB66+

Updating Firmware in a Flash ROM

EB64+
EB66
EB64

Updating Firmware in a UVPROM

Updating the Debug Monitor Firmware

Use the following table to determine the update procedure for your motherboard.

System If your system is running... Then see this section...

AlphaPC 164SX
AlphaPC 164LX

Windows NT firmware Updating the Flash ROM
from the AlphaBIOS Setup
Program

AlphaPC 164
EB164
AlphaPC 64
EB66+

Windows NT firmware Updating the Flash ROM
from Windows NT ARC
Firmware
Getting Started 2–7

2.4.2 Updating the Flash ROM from the AlphaBIOS Setup Program

This section describes how to update the flash ROM from the AlphaBIOS setup
program on the AlphaPC 164SX and the AlphaPC 164LX.

AlphaBIOS Conventions

AlphaBIOS uses universally accepted keys and key combinations for navigating the
interface and selecting items. If you are familiar with MS-DOS or Microsoft
Windows keyboard conventions, navigating AlphaBIOS is simple. Use the keys and
key combinations shown in the following table when navigating and selecting items
in AlphaBIOS.

AlphaPC 164SX
AlphaPC 164LX
AlphaPC 164
EB164
AlphaPC 64
EB66+

Debug Monitor firmware Updating the Flash ROM
from the Debug Monitor
Firmware

AlphaPC 164SX
AlphaPC 164LX
AlphaPC 164
EB164
AlphaPC 64
EB66+

Alpha SRM Console
firmware

Updating the Flash ROM
from the Alpha SRM
Console Firmware

Updating the Debug Monitor Firmware

Key or Key Combination Description

Tab Move highlight forward between fields of a dialog.

Shift + Tab Move highlight backwards between fields of a
dialog.

↓ or ↑ Move highlight within a menu, or cycle through
available field values in a dialog window.
2–8 Getting Started

Two levels of keyboard help are available:

• Press F1 once to display explanations of the keystrokes available for the
currently displayed part of AlphaBIOS.

• Press F1 twice to display explanations of the keystrokes available for navigating
throughout AlphaBIOS.

Running the AlphaBIOS Setup Program

To invoke and run the AlphaBIOS Setup program, follow this procedure:

1. When you power up or reset your system, the AlphaBIOS boot screen with the
system logo is displayed. Press F2 to start the AlphaBIOS Setup program.

2. Insert the diskette or CD-ROM that contains the Debug Monitor firmware image
into the appropriate drive.

3. From the AlphaBIOS Setup screen, select the AlphaBIOS Upgrade... option by
using the arrow or Tab keys. Press Enter to begin installing the Debug Monitor
firmware image.

Alt + ↓ Drop down a menu of choices from a drop-down
listbox. A drop-down listbox can be recognized by
the symbol ⇓.

Home Move to the beginning of a text entry field.

End Move to the end of a text entry field.

← or → Move to the left or right in a text entry field.

Esc Discard changes and back up to previous screen.

Updating the Debug Monitor Firmware

4. The AlphaBIOS Upgrade Options screen is displayed. If more than one image is
found, the new image’s name is displayed. If the name of the new image is not
Debug Monitor, use the down arrow key to cycle through the available field
values until Debug Monitor is displayed. Press Enter to continue the
installation.

5. An AlphaBIOS screen warning you that you have selected to switch the
operating system is displayed. Press Enter to continue the installation.

6. The AlphaBIOS Upgrade Debug Monitor screen is displayed. Press F10 to
continue the installation.

7. The AlphaBIOS Upgrade Complete screen is displayed. To load the Debug

e

ou

ke

Getting Started 2–9

Monitor, power cycle the system.

2.4.3 Updating the Flash ROM from the Windows NT ARC Firmware

The firmware update utility is used to update the firmware in a flash ROM on th
AlphaPC 164, EB164, AlphaPC 64, and EB66+. Depending on the version of
firmware that you have in your motherboard, this utility can be invoked from a
diskette or from a compact disc.

Note: If your motherboard has a version of firmware prior to Version 4.42, y
must use a diskette to invoke the firmware update utility. If your
motherboard has a firmware version of 4.42 or higher, you may invo
the firmware update utility from either a diskette or a compact disc.

The firmware update utility is provided only on a compact disc; a diskette is not
provided. If a firmware update diskette is required, see the Alpha Motherboards
Software Developer’s Kit and Firmware Update Read Me First for information about
how to create a firmware update diskette.

Windows NT ARC Firmware Conventions

The currently selected option in a Windows NT ARC firmware menu is highlighted.
To select and choose different options in the menus, use the following keys.

Key Description

Arrow The arrow keys are used to select different options.

Enter The Enter key is used to choose the highlighted option.

Esc The Esc (escape) key is used to close a menu or cancel an
operation.

Updating the Debug Monitor Firmware

When you power up your motherboard system, the firmware displays a blue screen
on the monitor and initializes the firmware drivers. If autoboot is enabled, cancel it
by pressing the Esc key before the timeout period expires. This allows you to interact
with the firmware.

Starting the Firmware Update Utility

To invoke the firmware update utility to update the firmware in a flash ROM, follow
this procedure:

1. Start the firmware update utility from a compact disc or a diskette:

u
ha

to
ou

 not
2–10 Getting Started

• Compact disc — If you are using firmware Version 4.42 or higher and yo
want to run the firmware update utility from a compact disc, insert the Alp
SDK and firmware update compact disc into the CD–ROM drive.

• Diskette — If you are using firmware prior to Version 4.42 or if you want
start the firmware update utility from a diskette, insert the diskette that y
have created into drive A and verify that the CD–ROM drive does not
contain a compact disc.

The firmware update utility is provided only on a compact disc; a diskette is
provided. See the Alpha Motherboards Software Developer’s Kit and Firmware
Update Read Me First for information about how to create a firmware update
diskette.

2. Restart your motherboard system.

3. From the Boot menu, choose Supplementary menu...

4. From the Supplementary menu, choose Install new firmware...

Note: The firmware update utility will reinitialize some system
 components; it may appear as if your system is restarting.

5. Proceed to Section 2.4.6.

2.4.4 Updating the Flash ROM from the Debug Monitor Firmware

The firmware update utility is used to update the firmware in a flash ROM. This
utility can be invoked by the Debug Monitor firmware only from a diskette. The
firmware update utility is provided only on a compact disc; a diskette is not
provided. See the Alpha Motherboards Software Developer’s Kit and Firmware
Update Read Me First for information about how to create a firmware update
diskette.

Updating the Debug Monitor Firmware

Starting the Firmware Update Utility

To start the firmware update utility from the firmware update diskette you created,
follow this procedure:

1. Insert the firmware update diskette into drive A.

2. At the Debug Monitor prompt, enter the following command:

EBxxx> fwupdate

Notes: Debug Monitor firmware versions prior to V2.0 do not
recognize the fwupdate command. For versions prior to V2.0,

e

our
Getting Started 2–11

enter the following command at the Debug Monitor prompt:

EBxxx> flboot fwupdate.exe 900000

The firmware update utility will reinitialize some system
components; it may appear as if your system is restarting.

3. If updating the firmware on the AlphaPC 164SX or the AlphaPC 164LX, go to
Section 2.4.2. If updating the firmware on any other motherboard, proceed to
Section 2.4.6.

2.4.5 Updating the Flash ROM from the Alpha SRM Console Firmware

The firmware update utility is used to update the firmware in a flash ROM. This
utility can be invoked by the Alpha SRM Console firmware from either a compact
disc or a diskette. The firmware update utility is provided only on a compact disc; a
diskette is not provided. To invoke the firmware update utility from a diskette, see
the Alpha Motherboards Software Developer’s Kit and Firmware Update Read M
First for information about how to create a firmware update diskette.

The following procedures describe two methods for invoking the firmware update
utility to update the firmware in the flash ROM.

Starting the Firmware Update Utility from a Compact Disc

To invoke the firmware update utility from a compact disc, follow this procedure:

1. Insert the Alpha SDK and firmware update compact disc into the CD–ROM
drive.

2. Enter the following command to determine the unit number of the drive for y
CD–ROM device:

>>> show dev

Updating the Debug Monitor Firmware

A display appears showing information about the devices on your system. In the
following example, DKA400 is the CD–ROM device:

dka0.0.0.9.0 DKA0 RZ26L 440C
dka400.4.0.9.0 DKA400 RRD43 1084
dva0.0.0.0.1 DVA0
ewa0.0.0.7.0 EWA0 08-00-2B-E2-B1-08
pka0.7.0.9.0 PKA0 SCSI Bus ID 7
>>>

The numbers in the middle column are the unit numbers assigned to each drive on
your system, where:

are

; it
2–12 Getting Started

• The letters DK refer to a SCSI CD–ROM or disk device.

• The third letter (A, B, C, D, or E) refers to the SCSI bus designation.
(Refer to the hardware owner’s guide for more details.)

• The numbers refer to the drive number.

3. Enter the boot command with the following syntax to boot from a compact
disc:

>>> boot -fl 0,a0 unit-number

For example, to boot the system from CD–ROM drive number 4, enter:

>>> boot -fl 0,a0 dka400

The following prompt appears for the bootfile path:

>>> BOOTFILE:

4. Use the following table to determine the path that corresponds to the firmw
update utility for your motherboard.

Note: The firmware update utility will reinitialize some system components
may appear as if your system is restarting.

If you have an... Enter this path...

AlphaPC 164SX [update.sx164]fwupdate.exe

AlphaPC 164LX [update.lx164]fwupdate.exe

AlphaPC 164 [update.pc164]fwupdate.exe

EB164 [update.eb164]fwupdate.exe

AlphaPC 64 [update.pc64]fwupdate.exe

EB66+ [update.eb66p]fwupdate.exe

Updating the Debug Monitor Firmware

5. If updating the firmware on the AlphaPC 164SX or the AlphaPC 164LX, go to
Section 2.4.2. If updating the firmware on any other motherboard, proceed to
Section 2.4.6.

Starting the Firmware Update Utility from a Diskette

The firmware update utility is provided only on a compact disc; a diskette is not
provided. See the Alpha Motherboards Software Developer’s Kit and Firmware
Update Read Me First for information about how to create a firmware update
diskette.

To start the firmware update utility from a firmware update diskette that you have

; it

 to
to

d to
Getting Started 2–13

created, follow this procedure:

1. Insert the firmware update diskette into drive A.

2. At the Alpha SRM Console prompt, enter the following command:

>>> fwupdate

Notes: Alpha SRM Console versions prior to V4.4–1 do not recognize the
fwupdate command. For versions prior to V4.4–1, enter the following
commands at the Alpha SRM Console prompt:

>>> cat fat:fwupdate.exe/dva0 > pmem: 900000

>>> stop -drivers

>>> jtopal 900000

The firmware update utility will reinitialize some system components
may appear as if your system is restarting.

3. If updating the firmware on the AlphaPC 164SX or the AlphaPC 164LX, go
Section 2.4.2. If updating the firmware on any other motherboard, proceed
Section 2.4.6.

2.4.6 Running Firmware Update

To run the firmware update utility, follow this procedure:

1. If you have an AlphaPC 64, an EB164, or an EB66+, you must enable the
Advanced menu to run the firmware update utility. To enable the Advanced
menu, observe the initialization messages displayed on the terminal attache

Updating the Debug Monitor Firmware

the COM1 serial port or on the graphics display unit after starting the firmware
update utility. When the message Initializing Flash Driver is
displayed, press the A key to enable the Advanced menu.

For all other systems, proceed to step 2.

2. Choose whichever selection appears:

Update Debug Monitor

Update Firmware

3. When prompted to continue the update, choose Yes. If the console selection does

OM,

ect

erial
2–14 Getting Started

not match the firmware you flashed, you will be prompted to update the console
selection.

4. If you are prompted to update the console selection, use the arrow keys to choose
Yes.

5. When the update has completed, restart your motherboard system.

2.4.7 Updating Firmware in a UVPROM

The Debug Monitor firmware is provided only on a compact disc; a UVPROM is not
provided. To program your own UVPROM, see the Alpha Motherboards Software
Developer’s Kit and Firmware Update Read Me First to locate the .rom file or the .sr
file on the Alpha SDK and firmware update compact disc. The .rom file is the actual
binary image that resides in the UVPROM. The .sr file is the .rom file translated into
Motorola S–record format.

Replacing the UVPROM

To update the firmware on a motherboard after you have a programmed UVPR
follow this procedure:

1. Turn off the power for the motherboard system.

2. Locate and remove one of the UVPROMs from the motherboard, noting the
correct orientation of the UVPROM.

3. Insert the Debug Monitor firmware UVPROM, using the correct orientation.

4. Select the Debug Monitor firmware UVPROM device with the UVPROM sel
jumper, as described in the motherboard’s user’s manual.

5. Turn on the power for the motherboard system.

6. Observe the Debug Monitor prompt on the terminal attached to the COM1 s
port or on the graphics display unit.

Switching to the Debug Monitor Firmware on Flash ROM Systems

Note: For versions of the Debug Monitor firmware prior to V2.0, the prompt
will be displayed only on the terminal attached to the COM1 serial port.

2.5 Switching to the Debug Monitor Firmware on Flash ROM
Systems

This section describes how to switch to the Debug Monitor firmware from either the
Windows NT ARC firmware or the Alpha SRM Console firmware on the
EB164, AlphaPC 64, EB66+, and EB64+.

Note: Except for the AlphaPC 64, the AlphaPC motherboards support only one

nitor

erial
Getting Started 2–15

firmware in the flash ROM, thus, you cannot switch to the Debug
Monitor firmware from AlphaBIOS, Windows NT ARC firmware, or
Alpha SRM Console firmware. You must reprogram the flash ROM if
you wish to run the Debug Monitor firmware instead of the Windows
NT firmware or Alpha SRM Console firmware.

Switching from Windows NT ARC Firmware

If your Windows NT ARC firmware is prior to Version 4.42, see your motherboard’s
user’s manual on how to set the Boot Option jumper to switch to the Debug Mo
firmware from the Windows NT ARC firmware.

If your Windows NT ARC firmware is Version 4.42 or higher, use the following
procedure to switch to the Debug Monitor firmware from the Windows NT ARC
firmware:

1. From the Boot menu, choose Supplementary menu...

2. From the Supplementary menu, choose Set up the system...

3. From the Setup menu, choose Machine specific setup...

4. From the Machine specific setup menu, choose Switch to Debug Monitor.

5. Restart your motherboard system.

6. Observe the Debug Monitor prompt on the terminal attached to the COM1 s
port or on the graphics display unit.

Debug Monitor Memory Map

Switching from Alpha SRM Console Firmware

To switch to the Debug Monitor firmware from the Alpha SRM Console firmware,
follow this procedure:

1. At the Alpha SRM Console prompt, enter the following command:

>>> deposit -b toy:3f 0

2. Restart your motherboard system.

3. Observe the Debug Monitor prompt on the terminal attached to the COM1 serial
port or on the graphics display unit.
2–16 Getting Started

Note: For versions of the Debug Monitor firmware prior to V2.0, the prompt
will be displayed only on the terminal attached to the COM1 serial port.

2.6 Debug Monitor Memory Map

The Debug Monitor image is loaded from the system ROM into memory at physical
address 0 by the SROM initialization code. At startup, the Debug Monitor
determines the amount of memory present in the motherboard based on parameters
that are passed in from the SROM initialization code. One of these parameters
determines the top of main memory. Refer to your motherboard’s user’s manual for
more information about the SROM initialization code and supported memory
configurations.

Figure 2–1 shows the basic outline for the Debug Monitor memory map.

Debug Monitor Memory Map

Figure 2–1 Debug Monitor Memory Map
Top of Main Memory

Top of Stack
8KB Guard Page

Stack
Getting Started 2–17

The Debug Monitor image consists of PALcode at physical address 0 and the Debug
Monitor kernel at physical address 1000016. After loading the image into memory,
the SROM initialization code begins execution of the image in PALmode at the
PALcode base address.

The PALcode used in the Debug Monitor was designed to support DIGITAL UNIX
(formerly DEC OSF/1) and was later adapted to the Debug Monitor. Refer to the
Alpha AXP Architecture Reference Manual and the PALcode for Alpha
Microprocessors System Design Guide for more information about DIGITAL UNIX
PALcode.

2.6.1 Stack

PALcode starts execution of the Debug Monitor kernel at physical address 1000016.
Upon entry to the Debug Monitor kernel, the Debug Monitor establishes the initial
stack pointer at the first 8KB boundary below the top of main memory. From there
the stack grows downward.

Default Boot Address
(bootadr)

DMA Buffer Base

Debug Monitor Entry

PALcode Base Address

0x200000

0x100000

0x10000

0x0

DMA Buffers

Debug Monitor Kernel

Debug Monitor PALcode

FM-05670.AI4

0x300000

Downloading Files

2.6.2 DMA Buffers

Various devices used with the motherboard require direct memory access (DMA).
The device drivers provided in the Debug Monitor for these devices are designed to
perform their DMA within a 1MB range starting at 1 megabyte (physical address
10000016). At startup, the Debug Monitor initializes the I/O subsystem with DMA
windows that include this range. The device drivers included with the Debug
Monitor that require DMA are the Ethernet and diskette drivers. Although the ebuff
command can be used to change the base of the Ethernet buffers, the buffers must
remain within this 1MB window.
2–18 Getting Started

2.7 Downloading Files

The motherboard supports loading files into memory from a serial port, the Ethernet,
and a diskette. The user can either load the file into memory, or load and execute the
file in a single step. The following table shows the commands for the specific I/O
devices. See Chapter 4 for more details about these commands.

The default boot address (bootadr) is 30000016. However, you can change the default
boot address with the bootadr command. The new setting is then stored in the
battery-backed RAM.

2.8 Execution Commands

After your program is loaded, you are ready to execute it. If the command loads and
executes a program, you may want to re-execute the program during the
motherboard session. The Debug Monitor has two commands to execute programs:
go and jtopal. See Chapter 4 for more details about these commands.

I/O Device
Use this command to
load into memory...

Use this command to
load into memory and execute...

ROM socket romload romboot

Serial port load boot

Ethernet netload netboot

Diskette flload flboot

Resetting the Debug Monitor

2.9 Resetting the Debug Monitor

If the software hangs the motherboard, then the hardware reset on the board can be
used to reset to the Debug Monitor command line. For information about connecting
the reset signals, see your motherboard’s user’s manual.
Getting Started 2–19

 3
Remote Debugging

s are
bug.
when
Remote Debugging 3–1

The Debug Monitor supports remote debugging for DIGITAL UNIX host systems
with Ladebug. The Ladebug software provides the full source-level debugging
capabilities of most programs that run on the motherboard, including the Debug
Monitor.

This chapter describes some debugging hints for use with the Debug Monitor and the
remote debugger. This chapter also describes the guidelines for writing programs
that allow you to take full advantage of remote debugging.

3.1 What Is a Debugger?

A debugger is a tool that helps you locate run-time programming errors or bugs. You
use the debugger on executable programs created when a program has been compiled
and linked successfully.

3.2 What Is a Remote Debugger?

A remote debugger is a tool that helps you locate run-time programming errors or
bugs in a program running on a remote system. The remote system can be a system
that cannot support a full programming environment by itself. You use a remote
debugger on executable programs compiled and linked for the remote system.

3.3 Remote Debug Server

The Debug Monitor’s remote debug server (the part of the monitor that
communicates with Ladebug) uses interrupts and an Ethernet device. Interrupt
used by the Debug Monitor to poll the Ethernet device for messages from Lade
Any program that changes the interrupt handler must instruct the debug server
to poll the Ethernet.

Programming Guidelines

3.4 Programming Guidelines

The following sections describe the programming guidelines for remote debugging.

3.4.1 The Run-Time Environment

When a program is started by the Debug Monitor’s go command, it is started at the
appropriate IPL to enable real-time clock interrupts (usually IPL 4). If a program
does not install its own interrupt handler, then the Debug Monitor will handle all
interrupts. If a program does install its own interrupt handler using the Write System
Entry Address PAL call, then it must be prepared to handle all interrupts as described

itor

three
3–2 Remote Debugging

in the following sections. When a program completes normally, the Debug Mon
reinstalls its own interrupt handler.

3.4.2 Types of Programs

For the purposes of this chapter, programs may be classified into the following
types:

• Programs that do not use the Ethernet or do not include their own interrupt
handler.

• Programs that do not use the Ethernet but do include their own interrupt handler.

• Programs that use the Ethernet.

3.4.2.1 Restriction

There is only one restriction for programs that do not use the Ethernet and that use
the Debug Monitor interrupt handler. Do not disable the real-time clock interrupt and
the Ethernet interrupts for long periods.

Long delays may cause Ladebug to behave as if there is a problem with the Ethernet
link to the target. If network delays are insignificant, Ladebug will tolerate periods of
up to ten seconds with interrupts disabled, although it will normally warn the user of
possible network problems if interrupts are disabled for more than a second.
Ethernet interrupts are disabled at IPL 3 or more, and real-time clock interrupts are
disabled at IPL 5 or more. Writing to the control registers of the Ethernet device or to
the real-time clock can also disable the interrupts. It is possible to set breakpoints or
to single step uninterruptible code. There is no restriction on the time that can be
spent at the breakpoint.

Programming Guidelines

Programs that define or install their own interrupt handler must ensure that the
Debug Monitor polls the Ethernet device often enough to receive all the messages
sent to it by Ladebug. An easy way to do this is to use the ladbx_poll function.
When this function is called, the following occurs:

• All frames that have been received on the Ethernet device are read.

• All remote debug frames are processed and acted upon.

• Any Ethernet interrupt is cleared.

The ladbx_poll function is a void function that takes no arguments. It must be
Remote Debugging 3–3

called often enough to allow the Debug Monitor to respond promptly to all received
Ethernet frames. To ensure that this function gets called at the proper time, enable
either Ethernet or timer interrupts (or both) and call it every time an interrupt occurs.

Programs cannot share an Ethernet device with the Debug Monitor. The Debug Mon-
itor can drive a selection of different types of Ethernet devices on ISA or PCI cards,
and an individual Ethernet device can be selected with the Debug Monitor edevice
command.

3.4.3 PALcode Environment

Most programs will be able to use the DIGITAL UNIX compatible PALcode
included with the Debug Monitor; however, for the programs that install their own
PALcode, the following guidelines must be followed:

• For remote debug to work, the following DIGITAL UNIX PALcode calls must
be implemented according to the interface described in the DEC OSF/1 section
of the Alpha AXP Architecture Reference Manual.

IMB
RDUSP
RTI
WPIPL
WRENT

• The interface to the system must conform to the standards described in the
DEC OSF/1 section of the Alpha AXP Architecture Reference Manual.

Ladebug Command Line Options

• The debug server uses the DBGSTOP PAL call to implement breakpoints. The
program must contain an identical implementation of the DBGSTOP PAL call.

This PAL call, rather than the BPT PAL call, is used because complex programs
(such as operating systems) are likely to reset the EntIF system entry point dur-
ing initialization.

• The program reset PALcode routine must preserve the address of the debug entry
point through the installation of the new PALcode. For the motherboard
PALcode, this address is held in the PAL temporary register with symbolic name
ptEntDbg. The user-defined PALcode must also either preserve the address of
3–4 Remote Debugging

the interrupt entry point (ptEntInt) or set the IPL to a level that prevents all
interrupts until the program sets up its own interrupt handler containing a call to
ladbx_poll.

3.5 Ladebug Command Line Options

Versions 1.3 or later of Ladebug provide the following command line options to
support remote debugging.

(Sheet 1 of 2)

Command Line Option Description

-rn node_name Specifies IP node name of the target node. Required for
remote debug. No default.

-pid process_id Specifies the process id of the process to be debugged. The
Ladebug software debugs a running process rather than
loading a new process.

-rfn arbitrary string Specifies the file name (or other identifier) of the image to
be loaded on a remote system. Defaults to the local object
file name. Passed to the remote system uninterrupted. Will
often have to be quoted to avoid shell command line
interpretation on the local system. Can be used only with
-rn; do not combine with -pid.

Building the Executable File

-rinsist Connects to a running remote process using the connect
insist protocol message instead of the connect protocol
message. This option functions as a request to the server to
connect to the client even if some other client is already
connected. (The previously connected client is
disconnected.) Use only with -rn and -pid.

-rp debug protocol name Specifies the remote debug protocol to be used. The valid
value and default, is ladebug_preemptive.

(Sheet 2 of 2)

Command Line Option Description
Remote Debugging 3–5

Note: The debug server can only be used to debug already loaded processes;
therefore, the pid option must always be specified. Because the Debug
Monitor is not a multiprocessing system, the process id specified with
this option is ignored.

For example:

%ladebug size.out -rn eb64 -pid 0

This example connects to the server on the node with IP node name eb64 and asks
to debug the process with pid 0. The local object file is called size.out.

3.6 Building the Executable File

To build the executable file for remote debugging, follow these steps:

1. Compile your source files using the -g option. This preserves the symbolic
information in the source files.

2. Link the source files with the -N and -Tx options; where x is the load address for
the executable on the motherboard.

3. Use the CSTRIP utility to strip the coff header from the executable file. Keep the
unstripped executable file.

-rt transport protocol name Specifies the transport protocol to be used for remote debug.
The valid value and default is UDP.

Starting a Ladebug Session

3.7 Starting a Ladebug Session

The Debug Monitor ladebug command configures the motherboard as a remote
debugger target. Communication is performed through the Ethernet connection.

To debug a program running on a motherboard using Ladebug running on a remote
host, follow these steps:

1. Set up the host DIGITAL UNIX machine as described in Chapter 2.

2. Start the motherboard.

3. Load the program into memory on the motherboard.
3–6 Remote Debugging

4. Set a breakpoint in the program.

5. Execute the program. The program will stop at the breakpoint and print the
instruction line at that location.

6. Issue the ladebug command. This causes the motherboard to wait for a
connection from Ladebug.

7. From the host system, enter the command to start Ladebug and cause it to
connect to the motherboard.

The following example shows how to set up a sample session:

EB64> netload size
Ethernet Base Address: 360, DMA Mask: 1 = DRQ5
Init Block Address 100000
Init Done.
Ethernet BA-98-76-54-32-01
Attempting BOOTP...success.
 my IP address: 16.123.45.67
 server IP address: 16.123.45.69
 gateway IP address: 16.123.45.69
Loading from /users/eval/boot/size ...

EB64> stop 200000
EB64> go
Executing at 0x200000...

00200000: 23DEFFF0 lda sp, -16(sp)
EB64> ladebug
Ethernet Base Address: 360, DMA Mask: 1 = DRQ5
Init Block Address 100000
Init Done.
Client connected : client is FFFFFFFFA0107F10

Starting a Ladebug Session

The following command, entered from the host system, starts Ladebug and causes it
to connect to the EB64:

 % ladebug size.out -rn eb64 -pid 0
 Welcome to the Ladebug Debugger Version 1.3.1

 object file name: size.out
 machine name: eb64
 process id: 0
 Reading symbolic information ...done
 Connected to remote debugger
 (ladebug)
Remote Debugging 3–7

The (ladebug) in the previous example is the Ladebug prompt. You are now
ready to debug a process that is running on the EB64. To end this session and return
to the Debug Monitor command prompt, use the Ladebug quit command to
disconnect from the server.

Refer to the Ladebug documentation for more information about how to run
Ladebug.

 4
User Commands
User Commands 4–1

4.1 Overview

This chapter describes how to use the Alpha Microprocessors Motherboard Debug
Monitor commands.

The Debug Monitor supports advanced command line editing, including cursor key
movements and an Emacs-like editing interface. In addition, a history buffer has
been added to facilitate repetition of commands.

(Sheet 1 of 2)

Keys Description

. (period) Repeats the last command entered.

↑(up arrow)
Ctrl/P1

Scrolls up (older entries) the history buffer.

↓ (down arrow)
Ctrl/N

Scrolls down (newer entries) the history buffer.

← (left arrow)
Ctrl/B

Moves cursor one character to the left.

→ (right arrow)
Ctrl/F

Moves cursor one character to the right.

Backspace
Delete
Ctrl/H

Deletes the character preceding the cursor.

Ctrl/D Deletes character at cursor position.

Ctrl/K Deletes text from cursor to end of line.

Ctrl/R Refreshes the current line.

Using the Commands

Ctrl/U Erases the current line of command text.

End2

Ctrl/E
Moves to the end of the line.

Esc/B Moves cursor to the previous word.

Esc/Backspace
Esc/DELETE

Deletes previous word.

(Sheet 2 of 2)

Keys Description
4–2 User Commands

1If you connected to the motherboard through the DIGITAL UNIX tip command, you
must press Ctrl/P twice to obtain the normal effect of Ctrl/P.

2This key requires that the keyboard be connected directly to the motherboard.

4.2 Using the Commands

This section describes the Debug Monitor command categories.

• Download and execution commands

The motherboard software basic load command expects to receive Motorola
S-records that are stored in the appropriate memory location. The Ethernet port
provides improved download performance by using the Internet BOOTP
protocol (a UDP-based protocol). This feature allows the motherboard system to
determine its Internet address, the address of a boot server, and the name of a file
to boot. The Debug Monitor also supports loading files from a floppy drive or
the secondary ROM socket.

The execution commands can be used to transfer control to a program in
memory. These commands begin executing a program in memory at the
specified address, or automatically with a download command.

Esc/D Deletes the next word.

Esc/F Moves cursor to the next word.

Home2

Ctrl/A1
Moves to the beginning of the line.

Insert Toggles between insert and overwrite mode.

Return
Ctrl/J
Ctrl/M

Enters current command.

Using the Commands

• Examine and modify memory commands

These commands are used to examine and change memory in various formats
beginning at a specified address and ending at a specified address. Quadwords
(64 bits), longwords (32 bits), halfwords (16 bits), and bytes (8 bits) are all
supported by these commands.

• PCI commands

These commands are used to access PCI configuration space.

• Utility commands
User Commands 4–3

These commands are used to display and modify the date and time, display the
version of the Debug Monitor, and obtain information about commands imple-
mented in the current version.

• Debug commands

These commands are used to debug software. Debug commands display internal
CPU registers and provide debug capabilities, including breakpoints and single
stepping.

• Miscellaneous commands

These commands are used to read and write the system register, perform an
interrupt acknowledge cycle, call a subroutine, and connect to serial
communication ports.

• Ethernet commands

These commands are used to set up and verify status of the Ethernet port.

• Diagnostic commands

These commands are used to verify that the motherboard is working properly.

User Commands Quick Reference

4.3 User Commands Quick Reference

Table 4–1 contains a summary of all Debug Monitor commands. The commands are
grouped by category and function.

Table 4–1 Command Summary Table (Sheet 1 of 7)

Command Parameters Description

 Download and Execution Commands

load address Downloads a file through the active serial port using the
XMODEM protocol.
4–4 User Commands

boot address Downloads a file through the active serial port using the
XMODEM protocol and begins execution.

netload file, address Downloads the specified file through the Ethernet port at
the current boot address or specified address.

netboot file, address Downloads the specified file through the Ethernet port and
begins execution.

flcd drive_pathname Changes the current working directory to the specified
drive or path.

flcopy source_file,
destination_file

Copies the specified file to another location.

fldir drive_pathname Displays a list of files in the current or specified directory.

flload file, address Downloads the specified diskette file.

flboot file, address Downloads the specified diskette file and begins execution.

flread first_sector, bytes,
dest_address,
iterations, drive

Reads logical sectors from a diskette.

flwrite first_sector,
image_size,
source_address,
iterations, drive

Writes data by logical sectors to a diskette.

flsave file_name,
start_address,
file_size

Saves the specified memory range to the specified file.

romload type, address Loads the specified image from ROM to the specified
address.

User Commands Quick Reference

romboot type, address Loads the specified image from ROM and begins
execution.

romlist none Lists the ROM image headers contained in ROM.

romverify type, address Compares an image in memory to an image in ROM.

bootadr address Sets default boot address.

bootopt type Selects the operating system and firmware type to be used

Table 4–1 Command Summary Table (Sheet 2 of 7)

Command Parameters Description
User Commands 4–5

on the next power-up.

go start_address Starts execution at the specified address.

jtopal start_address Starts execution at the specified address in PALmode.

init none Reinitializes the Debug Monitor.

 Examine and Modify Memory Commands

eml address, iterations,
silent

Displays longword data at the specified memory address.

emq address, iterations,
silent

Displays quadword data at the specified memory address.

dml address, data,
iterations

Deposits the specified longword data in the specified
memory address.

dmq address, data,
iterations

Deposits the specified quadword data in the specified
memory address.

pq start_address,
end_address,
iterations, silent

Prints memory in quadword (64-bit) format.

pl start_address,
end_address,
iterations, silent

Prints memory in longword (32-bit) format.

pw start_address,
end_address,
iterations, silent

Prints memory in word (16-bit) format.

pb start_address,
end_address,
iterations, silent

Prints memory in byte (8-bit) format.

cq address Edits memory quadwords (64-bit).

User Commands Quick Reference

cl address Edits memory longwords (32-bit).

cw address Edits memory words (16-bit).

cb address Edits memory bytes (8-bit).

fill start_address,
end_address,
fill_value

Fills the specified memory block with the specified 32-bit
pattern.

Table 4–1 Command Summary Table (Sheet 3 of 7)

Command Parameters Description
4–6 User Commands

copy start_address,
end_address,
destination

Copies a memory range to the specified address.

compare start_address,
end_address,
compare_address

Compares a memory range to a specified address.

dis start_address,
end_address

Displays memory as CPU instructions.

sum start_address,
end_address

Prints a checksum of a memory range.

rl register, iterations,
silent

Reads a longword from a register port in I/O address space.

rw register, iterations,
silent

Reads a word from a register port in I/O address space.

rb register, iterations,
silent

Reads a byte from a register port in I/O address space.

wl register, data,
iterations

Writes a longword to a register port in I/O address space.

ww register, data,
iterations

Writes a word to a register port in I/O address space.

wb register, data,
iterations

Writes a byte to a register port in I/O address space.

mrl address, iterations,
silent

Reads a longword from memory in I/O address space.

mrw address, iterations,
silent

Reads a word from memory in I/O address space.

User Commands Quick Reference

mrb address, iterations,
silent

Reads a byte from memory in I/O address space.

mwl address, data,
iterations

Writes a longword to memory I/O address space.

mww address, data,
iterations

Writes a word to memory I/O address space.

mwb address, data, Writes a byte to memory I/O address space.

Table 4–1 Command Summary Table (Sheet 4 of 7)

Command Parameters Description
User Commands 4–7

iterations

sq start_address,
end_address, string,
inverse

Searches the specified memory range by quadwords for the
specified pattern.

sl start_address,
end_address, string,
inverse

Searches the specified memory range by longwords for the
specified pattern.

sw start_address,
end_address, string,
inverse

Searches the specified memory range by words for the
specified pattern.

sb start_address,
end_address, string,
inverse

Searches the specified memory range by bytes for the
specified pattern.

 PCI Commands

pcishow id, bus, function Displays the contents of each PCI slot and current PCI to
system address space mapping.

prl pci_address, id, bus,
function

Reads a longword from the specified address in PCI
configuration space.

prw pci_address, id, bus,
function

Reads a word from the specified address in PCI
configuration space.

prb pci_address, id, bus,
function

Reads a byte from the specified address in PCI
configuration space.

pwl pci_address, id, data,
bus, function

Writes a longword to a specified address in PCI
configuration space.

pww pci_address, id, data,
bus, function

Writes a word to a specified address in PCI configuration
space.

User Commands Quick Reference

pwb pci_address, id, data,
bus, function

Writes a byte to a specified address in PCI configuration
space.

 Utility Commands

bcon none Enables the backup cache.

bcoff none Disables the backup cache.

date yymmddhhmmss Modifies or displays the date and time.

Table 4–1 Command Summary Table (Sheet 5 of 7)

Command Parameters Description
4–8 User Commands

flash source_address,
destination_offset,
bytes_to_write

Programs data into flash memory.

flasherase starting_offset,
bytes_to_erase

Erases data from flash memory.

fwupdate none Loads and runs the firmware update utility.

help command_name Displays a list of commands or displays parameter fields
and syntax if a command is specified.

apropos keyword Displays help text containing the specified keyword.

ident start_address,
end_address

Displays RCS ID strings found in the specified memory
range.

sysshow none Displays SROM parameters.

version none Displays the Debug Monitor firmware version information.

swpipl ipl Sets or displays the current interrupt priority level, IPL of
the CPU.

mces mces_data Sets or displays the machine check error summary register.

wrfen value Enables/disables floating point.

 Debug Commands

preg address Displays CPU general-purpose registers.

pfreg address Displays CPU floating-point registers.

creg register_number,
value

Modifies CPU general-purpose registers.

cfreg register_number,
value

Modifies CPU floating-point registers.

User Commands Quick Reference

stop address Sets a breakpoint at the specified address.

bpstat none Displays the current breakpoint status.

step none Executes a machine instruction by stepping into the first
instruction of the function being called.

next none Executes a machine instruction without stepping into
subroutines.

Table 4–1 Command Summary Table (Sheet 6 of 7)

Command Parameters Description
User Commands 4–9

cont none Continues execution from a breakpoint.

delete address Removes breakpoint from the specified address.

ladebug none Starts a Ladebug server for a remote debug session.

 Miscellaneous Commands

rsys none Reads the EB64 system control register.

wsys data Writes the EB64 system control register.

rabox none Reads the CPU ABOX_CTL register.

wabox data Writes to the CPU ABOX_CTL register.

rbiu none Reads the CPU BIU_CTL register.

wbiu data Writes to the CPU BIU_CTL register.

riccsr none Reads the CPU ICCSR register.

wiccsr data Writes to the CPU ICCSR register.

rbcfg none Reads the backup cache configuration register.

wbcfg bcfg_data, bctl_data Writes to the backup cache configuration register.

rbctl none Reads the backup cache control register.

wbctl bctl_data, bcfg_data Writes to the backup cache control register.

iack none Performs an interrupt acknowledge cycle.

rmode mode Sets the dis command register display mode.

setty port Specifies the port used for Debug Monitor interaction.

setbaud port, baud_rate Sets the communication port baud rate. The default is 9600.

tip port Connects to a specified serial communication port.

User Commands

 Ethernet Commands

edevice device_number Selects a registered Ethernet device.

eshow none Displays all registered Ethernet devices.

ereg none Displays the Ethernet controller registers.

estat none Displays Ethernet statistics.

einit none Initializes Ethernet controller and displays the Ethernet

Table 4–1 Command Summary Table (Sheet 7 of 7)

Command Parameters Description
4–10 User Commands

4.4 User Commands

The following section contains complete descriptions and examples of the Debug
Monitor commands. The commands are listed in alphabetical order.

hardware address.

estop none Stops the Ethernet controller.

ebuff address Sets the base address for Ethernet DMA buffers.

edmp status Sets or clears display of packets received or transmitted.

eprom status Sets or clears flag for receiving all packets (promiscuous
mode).

arpshow none Displays all known address resolution protocol (ARP)
entries.

 Diagnostic Commands

beep duration, frequency Causes speaker to beep for the specified duration and
frequency.

mcheck state Controls the reporting of hardware error conditions
(machine checks).

memtest iterations,
start_address,
end_address,
increment, mcheck,
stop_drivers

Tests memory range. Uses longword accesses to memory.

User Commands
apropos

apropos

The apropos command displays help descriptions for the specified keyword.

Format

apropos keyword

Parameters

keyword

Specifies the string to match in the help command text.
User Commands 4–11

Description

The apropos command is an additional form of help. This command searches the
help file and displays all matches for the specified keyword.

Example
EB66> apropos load
load:
 Downloads S records through a serial port
 syntax: load
 arguments:

boot:
 Downloads S records through a serial port and begins execution
 syntax: boot
 arguments:

netload:
Downloads file via the Ethernet port to address. Address
defaults to bootadr
 syntax: netload file address
 arguments: <opt str> <opt hex>

netboot:
 Downloads file through the Ethernet port and begins execution
 syntax: netboot file address
 arguments: <opt str> <opt hex>

 Hit any key to continue. Control-C to quit...

User Commands
arpshow

arpshow

The arpshow command displays all known address resolution protocol (ARP)
entries.

Format

arpshow
4–12 User Commands

Parameters

None.

Description

The arpshow command displays an IP routing table entry. If there are no ARP
entries, nothing is shown for that device. The Ethernet device number displayed
matches the number that is displayed when the eshow and edevice commands are
entered.

Example
EB64> arpshow

Arp Table Contents (at 0x00074570):

 Ethernet Device 0
 IP Address: 16.123.45.67
 MAC Address: BA-98-76-54-32-10

User Commands
bcoff

bcoff

The bcoff command disables the backup cache.

Format

bcoff

Parameters
User Commands 4–13

None.

Description

The bcoff command disables the external (backup) cache. Use of this command
assumes that the cache has already been initialized (usually by the SROM). If the
cache is initialized but already disabled, this command has no effect on the state of
the cache.

Example
EB66+ bcoff
...CAR = 67B0D8E840031294

EB164> bcoff
Old BC_CTL = 0x00028051 & BC_CFG = 0x01E22772
New BC_CTL = 0x00028050 & BC_CFG = 0x01E25880
 CIA_CACK_EN = 0x0 & CIA_MCR = 0x0001FE01

User Commands
bcon

bcon

The bcon command enables the backup cache.

Format

bcon

Parameters
4–14 User Commands

None.

Description

The bcon command enables the external (backup) cache when it has been disabled
using the bcoff command. If the cache has never been initialized (usually by the
SROM), the bcon cannot be expected to be capable of enabling it. If the cache is
already enabled, this command has no effect on the state of the cache.

Example
EB66+ bcon
...CAR = EFB0D8E940031295

EB164> bcon
Old BC_CTL = 0x00028050 & BC_CFG = 0x01E25880
New BC_CTL = 0x00028051 & BC_CFG = 0x01E22772
 CIA_CACK_EN = 0x8 & CIA_MCR = 0x0001FE21

User Commands
beep

beep

The beep command tests the speaker.

Format

beep duration frequency

Parameters
User Commands 4–15

duration

Specifies the duration of the beep in milliseconds.

frequency

Specifies the frequency in hertz.

Description

The beep command causes the speaker to beep for the specified duration and
frequency.

Example
EB64> beep 1000 4000

User Commands
boot

boot

The boot command downloads a file through the active serial port using the
XMODEM protocol and begins execution.

Format

boot [address]
4–16 User Commands

Parameters

address

Specifies the address at which to download the file. The default is the boot address.

Description

The boot command uses the XMODEM protocol to download a file through the
active serial port. The program is loaded to the supplied address or to the boot
address if an address is not specified. The program is then automatically executed.

Example

In this example, a DIGITAL UNIX host system is connected to the motherboard on
device /dev/tty01. The sx command sends a file using XMODEM.

% echo boot 300000 > /dev/tty01
% sx -kt 10 /users/eval1/demo2/size </dev/tty01 >/dev/tty01
Sector nnn
% tip /dev/tty01
AlphaPC164>

User Commands
bootadr

bootadr

The bootadr command allows you to display or modify the default boot address.

Format

bootadr [address]

Parameters
User Commands 4–17

address

Specifies the starting address at which a program is loaded. Programs loaded with
the netboot command automatically begin program execution at this address. The
default address is 30000016.

Description

The boot address is the address at which your programs load and begin execution.
The bootadr command sets the default address for the load commands to begin
execution or to download your program into memory. If the bootadr command is
specified without an address, the command displays the current default boot address.
If you set the boot address value, the value is stored in battery-backed RAM.

Example

This example sets the starting address to 2000016. The next file that is loaded begins
execution from this address.

EB64> bootadr 20000

User Commands
bootopt

bootopt

The bootopt command selects the operating system and firmware type to be used
on the next power-up.

Format

bootopt [type]
4–18 User Commands

Parameters

type

Specifies the operating system type. If the specified image is not found at power-up,
the first image is booted. If there are no ROM headers, the whole ROM will be
loaded at address 0.

Description

The bootopt command selects the operating system and associated firmware type
that will be used the next time you power up your motherboard. If no type is
specified, a list of predefined types is displayed along with the current selection. Use
the romlist command to display the images contained in the ROM. You can specify
the type as a number or a name.

Type_number Type_name Description

0 DBM Alpha Motherboard Debug Monitor

1 NT Windows NT

2 VMS OpenVMS

3 UNIX DIGITAL UNIX

7 LINUX Linux, MILO

8 VXWORKS VxWorks

10 SROM Serial ROM

User Commands
bootopt

The bootopt command can also be used to select a ROM image based on its position
in the ROM. Specifying the type as #0 selects the whole ROM. Specifying the type
as #1 selects the first image; #2 selects the second image, and so on. The bootopt
command is not supported for the EB64+, EB66, or EB64.

Example
AlphaPC 64> bootopt
Predefined bootoptions are...
 “0” “Alpha Evaluation Board Debug Monitor” “DBM”
 “1” “The Windows NT Operating System” “NT”
User Commands 4–19

 “2” “OpenVMS” “VMS”
 “3” “DIGITAL UNIX, formerly DEC OSF/1” “UNIX”
 “7” “Linux” “Milo”
 “8” “VxWorks. Real-Time Operating System” “VxWorks”
 “10” “Serial ROM (SROM)” “SROM”
O/S type selected: “OpenVMS”
....Firmware type: “Alpha SRM Console”
AlphaPC 64> bootopt 0
O/S type selected: “Alpha Evaluation Board Debug Monitor”
....Firmware type: “Alpha Evaluation Board Debug Monitor”
AlphaPC 64> bootopt nt
O/S type selected: “The Windows NT Operating System”
....Firmware type: “Windows NT Firmware”
AlphaPC 64> bootopt #1
Firmware image 1 selected.
....Firmware type: “Unknown”
AlphaPC 64> bootopt unix
O/S type selected: “DIGITAL UNIX, formerly DEC OSF/1”
....Firmware type: “Alpha SRM Console”
AlphaPC 64> bootopt #0
Load and boot entire ROM at address zero.
....Firmware type: “Unknown”
AlphaPC 64> bootopt
Predefined bootoptions are...
 “0” “Alpha Evaluation Board Debug Monitor” “DBM”
 “1” “The Windows NT Operating System” “NT”
 “2” “OpenVMS” “VMS”
 “3” “DIGITAL UNIX, formerly DEC OSF/1” “UNIX”
 “7” “Linux” “Milo”
 “8” “VxWorks. Real-Time Operating System” “VxWorks”
 “10” “Serial ROM (SROM)” “SROM”
Load and boot entire ROM at address zero.
....Firmware type: “Unknown”

User Commands
bpstat

bpstat

The bpstat command displays the current breakpoint status.

Format

bpstat

Parameters
4–20 User Commands

None.

Description

The bpstat command lists the breakpoints set with the stop command. The
disassembled instructions for that location are also displayed.

Example
EB64> stop 200000
EB64> stop 200FC0
EB64> bpstat
{break} at 00200000: 23DEFFF0 lda sp, -16(sp)
{break} at 00200FC0: 27BB0001 ldah r29, 1(r27)

User Commands
cb

cb

The cb command allows you to edit memory bytes (8-bit).

Format

cb [address]

Parameters
User Commands 4–21

address

Specifies the address of the memory byte you want to change.

Description

The cb command allows you to modify the contents of a specified memory address.
If no address is specified, then the next byte is selected. The Debug Monitor displays
the address followed by the current data and a colon (:). For example:

 00200090: 1D :

To modify the contents of this memory location, type the new data after the colon
and press the Return key. To end the editing of memory locations, type any
nonalphanumeric character except a period (.). The nonalphanumeric character can
be typed after the modified byte (on the same line). To leave the current location
unchanged, press the Return key on an empty line.

Example

In this example, the bytes at 30000016 and 30000316 have been modified, leaving
the ones at 30000116 and 30000216 unchanged.

EB164> pb 300000 300008
00300000: 1f 04 ff 47 1f 04 ff 47 45 00 60 c3 00 00 00 00 ...G...GE.‘.....
EB164> cb 300000
00300000: 1f: aa
00300001: 04:
00300002: ff:
00300003: 47: dd
00300004: 1f: ;
EB164> pb 300000 300008
00300000: aa 04 ff dd 1f 04 ff 47 45 00 60 c3 00 00 00 00GE.‘.....

User Commands
cfreg

cfreg

The cfreg command modifies the saved CPU floating-point register state.

Format

cfreg register_number value

Parameters
4–22 User Commands

register_number

Identifies the register.

value

Specifies the new value of the register in hexadecimal numbers.

Description

The cfreg command modifies the saved CPU floating-point register state to contain
the specified value.

The program register contents are stored in memory to the saved-state area when a
breakpoint is encountered. Modifications to a register using the cfreg command are
applied to that register when execution of the program is resumed using the step or
the cont command.

User Commands
cfreg

Example
EB64> pfreg
Floating Point Registers
register file @: 0000C840
f00: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f04: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f12: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f24: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f28: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
PC: 000000000000000D PS: 000000000000000D
User Commands 4–23

EB64> cfreg 12 ababababab
EB64> cfreg 14 fefefefefe
EB64> pfreg
Floating Point Registers
register file @: 0000C840
f00: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f04: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f12: 000000ABABABABAB 0000000000000000 000000FEFEFEFEFE 0000000000000000
f16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f24: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f28: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
PC: 000000000000000D PS: 000000000000000D

User Commands
cl

cl

The cl command allows you to edit memory longwords (32-bit).

Format

cl [address]

Parameters

address

Specifies the address of the memory longword you want to change.
4–24 User Commands

Description

The cl command allows you to modify the contents of a specified memory address. If
no address is specified, then the next longword is selected. The Debug Monitor
displays the address followed by the current data and a colon (:). For example:

 00200090: E7E0101D :

To modify the contents of this memory location, type the new data after the colon
and press the Return key. To end the editing of memory locations, type any
nonalphanumeric character except a period (.). The nonalphanumeric character can
be typed after the modified byte (on the same line). To leave the current location
unchanged, press the Return key on an empty line.

 Example

In this example, the memory data at address 0 has been modified from 91E01122 to
E7E01021.

EB64> cl 0
00000000: 91E01122: e7e01021
EB64> pl 0 0
00000000: E7E01021 00000000 00000000 00000000 !...............

User Commands
compare

compare

The compare command compares a memory range to a specified address.

Format

compare start_address end_address compare_address

Parameters
User Commands 4–25

start_address

Specifies the memory address at which to start the comparison.

end_address

Specifies the last address that will be compared.

compare_address

Specifies the address to be compared to the memory range.

Description

The compare command compares each longword (32 bits) within a specified range
in memory to another specified location. It then prints the data that differ.

Example
EB66+ copy 3fff80000 3fffd0000 400000
EB66+ fill 400200 400220
EB66+ fill 400400 400440 ffffffff
EB66+ compare 3fff80000 3fffd0000 400000
3FFF80200: 64 86 00 E7 64 00 80 FF 00400200: 00 00 00 00 00 00 00 00
3FFF80208: 7B 06 78 C3 44 A0 10 C0 00400208: 00 00 00 00 00 00 00 00
3FFF80210: F4 9B 10 E0 C3 80 00 80 00400210: 00 00 00 00 00 00 00 00
3FFF80218: 00 CC 00 64 83 00 84 74 00400218: 00 00 00 00 00 00 00 00
3FFF80400: E2 39 37 05 49 99 76 26 00400400: FF FF FF FF FF FF FF FF
3FFF80408: 4B 96 16 C4 4A 36 B7 C1 00400408: FF FF FF FF FF FF FF FF
3FFF80410: 4A 16 04 36 43 00 90 D6 00400410: FF FF FF FF FF FF FF FF
3FFF80418: 6E 0D 00 C0 E2 20 00 08 00400418: FF FF FF FF FF FF FF FF
3FFF80420: 75 40 00 D6 76 42 00 D6 00400420: FF FF FF FF FF FF FF FF
3FFF80428: 76 97 00 08 65 88 00 D6 00400428: FF FF FF FF FF FF FF FF
3FFF80430: 66 95 00 39 67 00 80 FF 00400430: FF FF FF FF FF FF FF FF
3FFF80438: 79 7B 44 00 39 67 99 36 00400438: FF FF FF FF FF FF FF FF
3FFFD0000: FF FF FF FF FF FF FF FF 00450000: 2D 00 00 00 00 00 00 00

User Commands
cont

cont

The cont command continues execution from a breakpoint.

Format

cont

Parameters
4–26 User Commands

None.

Description

The cont command continues from a breakpoint. The program continues until
another breakpoint or the end of the program is reached.

Example
EB64> stop 100000
EB64> go
Executing at 0x100000...
00100000: C1000003 br r8, 100010
EB64> step
00100010: 2F880007 ldq_u r28, 7(r8)
EB64> step
00100014: A49E0000 ldq r4, 0(sp)
EB64> cont
This simple program prints the sizes of
various data types in bytes.
 char = 1
 short = 2
 int = 4
 long = 8
 float = 4
 double = 8

User Commands
copy

copy

The copy command copies the specified memory range to the new specified
address.

Format

copy start_address end_address destination
User Commands 4–27

Parameters

start_address

Specifies the starting address for this copy.

end_address

Specifies the last address to be included in this copy.

destination

Specifies the new starting address for the memory range.

Description

The copy command copies the data from the specified block of memory to a new
location in memory. The original location is unchanged.

User Commands
copy

Example

This example displays the original location and the destination before and after the
copy command.

EB64> pl 8000000
08000000: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000010: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000020: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000030: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000040: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000050: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000060: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
4–28 User Commands

08000070: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
EB64> pl 9000150
09000150: 00000000 00000000 00000000 00000000
09000160: 00000000 00000000 00000000 00000000
09000170: 00000000 00000000 00000000 00000000
09000190: 00000000 00000000 00000000 00000000
090001A0: 00000000 00000000 00000000 00000000
090001B0: 00000000 00000000 00000000 00000000
090001C0: 00000000 00000000 00000000 00000000
EB64> copy 8000000 8000080 9000150
EB64> pl 9000150
09000150: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
09000160: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
09000180: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
09000190: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
090001A0: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
090001B0: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
090001C0: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
EB64> pl 8000000
08000000: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000010: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000020: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000030: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000040: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000050: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000060: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000070: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F

User Commands
cq

cq

The cq command allows you to edit memory quadwords (64-bit).

Format

cq [address]

Parameters
User Commands 4–29

address

Specifies the address of the memory quadword you want to change.

Description

The cq command allows you to modify the contents of the specified memory
address. If no address is specified, then the next quadword is selected. The Debug
Monitor displays the address followed by the current data and a colon (:). For
example:

 00200090: 00000000E7E0101D :

To modify the contents of this memory location, type the new data after the colon
and press the Return key. To end the editing of memory locations, type any
nonalphanumeric character except a period (.). The nonalphanumeric character can
be typed after the modified byte (on the same line). To leave the current location
unchanged, press the Return key on an empty line.

User Commands
cq

Example

This example modifies only quadword 20002016.

EB64> cq 200020

00200020: 0000000004000000: 0000000011111111
00200028: 0000000000000000:
00200030: 3402010400120106:
00200038: 0402010004020100:
00200040: FBFDFEFFFFFDFEFF: ;
EB64> pq 200000
00200000: FA7D7299CE7F3299 DA65FA99DA7D32D9 .2...r}..2}...e.
00200010: FFFFFFFBFBFFFFDB FFFFFFFFFFFFFFFF
4–30 User Commands

00200020: 0000000011111111 0000000000000000
00200030: 3402010400120106 04020100040201004........
00200040: FBFDFEFFFFFDFEFF FBFDFEFFFBFDFEFF
00200050: CFE7FF99CB6FF799 EEE7FBFBFFFFFFFF ..o.............
00200060: 0000000004020000 0000000000000000
00200070: 1402010620100106 050A050004020100

User Commands
creg

creg

 The creg command modifies the saved CPU general-purpose register state.

Format

creg register_number value

Parameters
User Commands 4–31

register_number

Identifies the register.

value

Specifies the new value of the register in hexadecimal numbers.

Description

The creg command modifies the saved CPU general-purpose register state to contain
the specified value.

The program register contents are stored in memory to the saved-state area when a
breakpoint is encountered. Modifications to a register using the creg command are
applied to that register when execution of the program is resumed using the step or
cont command.

User Commands
creg

Example
EB64> preg
General Purpose Registers
register file @: 0000C040
r00: 0000000000000020 0000000000000005 000000000000C000 000000000000000D
r04: 00000000000003F8 0000000000000000 0000000000000000 000000000000000D
r08: FFFFFC000005F470 0000000000027340 0444306453605341 0A110C485F6EA26E
r12: 208090EA6024C19C 882C08AA92065B2D 4100610AE100244F 9E2891ACA8A9D984
r16: 0000000000100000 000000000000000D 0000000000000006 0000000000000030
r20: 0000000E20026335 5619A46B2B1A5125 0000000000000000 000000000000000D
r24: 0000000000000003 0000000000000000 FFFFFC0000042C3C 0000000000100000
r28: FFFFFC02C0000000 FFFFFC000006C1E0 0000000000FFDF40 0000000000000003
PC: 000000000000000D PS: 000000000000000D
4–32 User Commands

EB64> creg 04 555
EB64> preg
General Purpose Registers
register file @: 0000C040
r00: 0000000000000020 0000000000000005 000000000000C000 000000000000000D
r04: 0000000000000555 0000000000000000 0000000000000000 000000000000000D
r08: FFFFFC000005F470 0000000000027340 0444306453605341 0A110C485F6EA26E
r12: 208090EA6024C19C 882C08AA92065B2D 4100610AE100244F 9E2891ACA8A9D984
r16: 0000000000100000 000000000000000D 0000000000000006 0000000000000030
r20: 0000000E20026335 5619A46B2B1A5125 0000000000000000 000000000000000D
r24: 0000000000000003 0000000000000000 FFFFFC0000042C3C 0000000000100000
r28: FFFFFC02C0000000 FFFFFC000006C1E0 0000000000FFDF40 0000000000000003
PC: 000000000000000D PS: 000000000000000D

User Commands
cw

cw

The cw command allows you to edit memory words (16-bit).

Format

cw [address]

Parameters
User Commands 4–33

address

Specifies the address of the memory word you want to change.

Description

The cw command allows you to modify the contents of the specified memory
address. If no address is specified, then the next word is selected. The Debug
Monitor displays the address followed by the current data and a colon (:). For
example:

 00200090: 101D :

To modify the contents of this memory location, type the new data after the colon
and press the Return key. To end the editing of memory locations, type any
nonalphanumeric character except a period (.). The nonalphanumeric character can
be typed after the modified byte (on the same line). To leave the current location
unchanged, press the Return key on an empty line.

User Commands
cw

Example

This example modifies words 20009416 through 20009816.

EB64> pw 200090
00200090: 3BB9 CA6D FFB9 CFE7 3FBF FFFF 33F9 CE67.;m......?...3g.
002000A0: 0000 0400 0000 0000 0000 0000 0000 0000................
002000B0: 8166 309A 4166 3402 8960 0402 8D46 359Af..0fA.4‘...F..5
002000C0: FEFF FFFD FEFF FBFD FEFF FBFD FEFF FBFD................
002000D0: 3399 DA65 BB99 CFF7 37BF FFFF 33D9 CE67.3e......7...3g.
002000E0: 0000 0000 0000 0000 0000 0000 0000 0000................
002000F0: 8142 2012 0166 3402 8140 0402 4504 049A B..f..4@....E..
00200100: FEFF FFFD FEFF FBFD FEFF FBFD FEFF FBFD...............
4–34 User Commands

EB64> cw 200090
00200090: 3BB9:
00200092: CA6D:
00200094: FFB9: ffff
00200096: CFE7: 0000
00200098: 3FBF: 0101
0020009A: FFFF: ;
EB64> pw 200090 20009A
00200090: 3BB9 CA6D FFFF 0000 0101 FFFF 33F9 CE67.;m..........3g.

User Commands
date

date

The date command displays or modifies the date and time.

Format

date [yymmddhhmmss]

Parameters
User Commands 4–35

yymmddhhmmss

To modify the date, supply the year, month, day, hour, minute, and second.

Description

If the date command is specified alone, the month, day, time, and year is displayed.
If you supply a parameter, the date is modified.

Example

This example displays the current date and time setting.

EB64> date
Jun 1 12:58:19 1992

These examples show how to modify the date and time setting.

EB64> date 930211000000
EB64> date
Feb 11 00:00:04 1993
EB64> date 930211135700
EB64> date
Feb 11 13:57:02 1993

User Commands
delete

delete

The delete command removes a breakpoint from the specified address.

Format

delete address

Parameters
4–36 User Commands

address

Specifies the address from which to delete the breakpoint.

Description

The delete command removes a breakpoint from the specified address. You can use
an asterisk (*) to remove all breakpoints.

Example
EB64> delete 00200050

User Commands
dis

dis

The dis command displays memory as CPU instructions.

Format

dis [start_address [end_address]]

Parameters
User Commands 4–37

start_address

Specifies the address at which to start disassembling instructions. If the start_address
is not specified, the address of the last load command, the last breakpoint, or the last
dis command is used.

end_address

Specifies the address at which to end disassembling instructions. The default is the
start_address plus 32 bytes (8 instructions).

Description

The dis command disassembles instructions starting with the specified address. You
can specify an address range of instructions to be disassembled. If no parameters are
specified, then the command starts with the current address and disassembles the
next eight instructions. If a file is downloaded to memory, then the default starting
address for the dis command is the first memory location in the downloaded file. If a
breakpoint is encountered, then the default starting address is the breakpoint address.

The rmode command is used to select whether the hardware or software register
names are displayed when instructions are disassembled. The hardware register
names are shown by default. The rmode setting is stored in nonvolatile RAM.

User Commands
dis

Example
EB64> dis 243a0
000243A0: 43020122 subl r24, r2, r2
000243A4: 48441722 sll r2, 0x20, r2
000243A8: 74420050 mt r2, cc
000243AC: 64630082 mf r3, pt2
000243B0: 209F07E1 lda r4, 2017(zero)
000243B4: 48855724 sll r4, 0x2A, r4
000243B8: 44640103 bic r3, r4, r3
000243BC: 47203019 and r25, 0x1, r25
EB64> dis
000243C0: 4B037698 srl r24, 0x1B, r24
000243C4: 4703F118 bic r24, 0x1F, r24
4–38 User Commands

000243C8: 47190418 bis r24, r25, r24
000243CC: 4B055738 sll r24, 0x2A, r24
000243D0: 44780403 bis r3, r24, r3
000243D4: 746300A2 mt r3, A2
000243D8: 77FF0055 mt zero, flushIc
000243DC: 77FF0000 mt zero, 0
EB64>

User Commands
dml

dml

The dml command deposits the specified longword data in the specified memory
location.

Format

dml address data [iterations]
User Commands 4–39

Parameters

address

Specifies the memory address.

data

Specifies the longword data to be stored.

iterations

Specifies how many times the command is executed. The default is 1.

Description

The dml command deposits the specified longword data in the specified memory
location. A memory barrier (MB) instruction is executed after the store to force the
stored data out of the chip.

Example
EB64> dml d0000 FC04FF00

User Commands
dmq

dmq

The dmq command deposits the specified quadword data in the specified memory
location.

Format

dmq address data [iterations]
4–40 User Commands

Parameters

address

Specifies the memory address.

data

Specifies the quadword data to be stored.

iterations

Specifies how many times the command is executed. The default is 1.

Description

The dmq command deposits the specified quadword data in the specified memory
location. A memory barrier (MB) instruction is executed after the store to force the
stored data out of the chip.

Example
EB64> dmq d0000 00000000FC04FF00

User Commands
ebuff

ebuff

The ebuff command sets the base address for the Ethernet transmit receive buffers.

Format

ebuff [address]

Parameters
User Commands 4–41

address

Specifies the address for the transmit and receive buffers. The default is 10000016.

Description

The ebuff command sets the address in physical memory where the transmit and
receive buffers are located. If specified without an address, this command displays
the current location of the buffers in memory.

Example
EB64> ebuff 180000

User Commands
edevice

edevice

The edevice command selects the registered Ethernet device that the Debug
Monitor will use.

Format

edevice [device_number]
4–42 User Commands

Parameters

device_number

Specifies the net device number of any registered Ethernet device. If no device
number is provided, the current device number is displayed.

Description

The edevice command sets the Debug Monitor to use one of the registered Ethernet
devices. Use the eshow command to display all of the registered Ethernet devices.

Example
EB64> eshow

All registered Ethernet devices:

 Net Type
 Device

 0 AM79C960
 1 WD3003
 2 Digital Semiconductor 21040
 3* Digital Semiconductor 21040

EB64> edevice 1

User Commands
edmp

edmp

The edmp command displays packets received or transmitted to the terminal screen.

Format

edmp [status]

Parameters
User Commands 4–43

status

Determines whether packets are displayed. Status can be 1 (on) or 0 (off).

Description

The edmp command sets or clears the display of packets received or transmitted to
the screen. If this command is entered with no status, then the current status is
displayed.

Example
EB64> edmp
packet dumps are OFF.
EB64> eprom 1
EB64> edmp 1

User Commands
einit

einit

The einit command initializes the Ethernet controller.

Format

einit

Parameters
4–44 User Commands

None.

Description

The einit command initializes the Ethernet controller and displays the Ethernet
hardware address.

Example
EB64> einit
Ethernet Base Address: 360, DMA Mask: 1 = DRQ5
Init Block Address 80000
Init Done.
Ethernet BA-98-76-54-32-10

User Commands
eml

eml

The eml command examines and displays a longword of data in memory.

Format

eml address [iterations [silent]]

Parameters
User Commands 4–45

address

Specifies the memory address.

iterations

Specifies how many times the command is executed. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this parameter to 1 causes the
data to be read but not displayed. The default is 0 (data is displayed).

Description

The eml command displays a longword of data from the specified memory location.

Example
EB64> eml d0000
FC04FF00

User Commands
emq

emq

The emq command examines and displays a quadword of data in memory.

Format

emq address [iterations [silent]]

Parameters
4–46 User Commands

address

Specifies the memory address.

iterations

Specifies how many times the command is executed. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this parameter to 1 causes the
data to be read but not displayed. The default is 0 (data is displayed).

Description

The emq command displays a quadword of data from the specified memory location.

Example
EB64> emq d0000
00000000FC04FF00

User Commands
eprom

eprom

The eprom command sets or clears a flag for receiving all packets (promiscuous
mode).

Format

eprom [status]
User Commands 4–47

Parameters

status

Determines whether packets are displayed. Status can be 1 (on) or 0 (off).

Description

The eprom command sets a flag for receiving packets. If status is set to 1 (on), then
promiscuous mode is turned on and packets can be continuously received. If this
command is entered with no status, then the current status is displayed. The default
status is 0 (off).

Example
EB64> eprom
Promiscuous Mode is DISABLED.
EB64> eprom 1

User Commands
ereg

ereg

The ereg command displays the Ethernet controller registers.

Format

ereg

Parameters

4–48 User Commands

None.

Description

The ereg command displays the Ethernet controller registers. This command’s
output is dependent on the Ethernet device selected for the motherboard. For
example, the ISA-based AM79C960 controller must be in stop mode (write 0 to
register port 372 and write 4 to data port 370) to view most of its registers.

User Commands
ereg

Example
EB64> ww 372 0
EB64> ww 370 4
EB64> ereg
Ethernet Controller Base Address 360, CSR 0...126
0 0004 1 0000 2 0008 3 0000 4 1115 5 8000 6 1200
7 0000 8 0000 9 0000 10 0000 11 0000 12 0008 13 1A2B
14 D637 15 4080 16 0000 17 0008 18 0CC8 19 0008 20 1F88
21 0008 22 1308 23 0008 24 0018 25 0008 26 0030 27 0008
28 0028 29 0008 30 0038 31 0008 32 FFFF 33 FDFF 34 0040
35 0008 36 0018 37 0008 38 FFFF 39 FDFF 40 F9C0 41 8308
42 FFC4 43 0308 44 F9C0 45 8308 46 3CFD 47 FFFF 48 FFFF
49 FFFF 50 FFFF 51 FFFF 52 DFFF 53 7EFF 54 FFFF 55 FFFD
User Commands 4–49

56 EFFF 57 FFFF 58 FFFF 59 EFFF 60 0038 61 0008 62 F000
63 8308 64 1F88 65 0008 66 FFC4 67 0308 68 8000 69 0235
70 0202 71 0000 72 FFFC 73 FFFF 74 FFFF 75 FFFF 76 FFFC
77 FFFF 78 FFFE 79 FFFF 80 E810 81 FFFF 82 0000 83 FFFF
84 0038 85 0008 86 F000 87 FFFF 88 3003 89 2000 90 FFFF
91 FFFF 92 FFFE 93 FFFF 94 0235 95 FFFF 96 1308 97 8308
98 F9C0 99 0235 100 FFFF 101 FFFF 102 FFFF 103 FFFF 104 0000
105 0202 106 FFFF 107 FFFF 108 8000 109 0235 110 FFFF 111 FFFF
112 0000 113 FFFF 114 00A2 115 FFFF 116 FFFF 117 FFFF 118 FFFF
119 FFFF 120 FFFF 121 FFFF 122 FFFF 123 FFFF 124 FC00 125 FFFF
126 0000

Ethernet Controller ISACSR0 ... 7
0 0005 1 0005 2 0003 3 0000 4 0000 5 0084 6 0008 7 0090

User Commands
eshow

eshow

The eshow command displays all of the registered Ethernet devices.

Format

eshow

Parameters
4–50 User Commands

None.

Description

The eshow command displays all of the installed device drivers and works for all of
the motherboards. To set the Debug Monitor to use one of these devices, see the
edevice command. An asterisk following the net device number indicates the
selected Ethernet device to be used by the Debug Monitor Ethernet commands.

Example
EB64> eshow

 All registered Ethernet devices:

 Net Type
 Device

 0 AM79C960
 1 WD3003
 2 Digital Semiconductor 21040
 3* Digital Semiconductor 21040

User Commands
estat

estat

The estat command displays Ethernet statistics.

Format

estat

Parameters
User Commands 4–51

None.

Description

The estat command displays Ethernet statistics kept by the Ethernet device driver.

Example
EB64> estat
 secs: 7 mc bytes rcv: 130075
 bytes rcv: 1297171 mc frms rcv: 625
 bytes snt: 0 frms snt dfrd: 0
 frms rcv: 3129 frms snt - cllsn: 0
 frms snt: 0 frms snt - mult cllsn: 0

 snd flrs - xs cllsn: 0 snd flrs - def: 0
 snd flrs - cc: 0 rcv flrs - fcs: 0
 snd flrs - shrt: 0 rcv flrs - ferr: 0
 snd flrs - opn: 0 rcv flrs flen: 0
 snd flrs - flen: 0 data ovrn: 0
 cllsn chk flr: 0

User Commands
estop

estop

The estop command stops the Ethernet controller.

Format

estop

Parameters
4–52 User Commands

None.

Description

The estop command allows you to stop sending or receiving packets from an
Ethernet device selected with the edevice command.

Example
EB66> eshow
All registered Ethernet devices:

 Net Type
 Device
 0* Digital Semiconductor 21040
 1 AM79C960
EB66> edevice
Using network device 0
EB66> estop

Stopping network device 0 in PCI slot 20:

User Commands
fill

fill

The fill command fills a specified memory block with the specified 32-bit pattern.

Format

fill start_address end_address [fill_value]

Parameters
User Commands 4–53

start_address

Specifies the start address for the fill value.

end_address

Specifies the end address for the fill value. The fill value includes the end_address.

fill_value

Specifies a longword hexadecimal number as the fill value for the specified address.
The default is 0.

Description

The fill command fills a specified block of memory with a specified value. The data
or fill value specified is placed in memory starting at the first address specified, and
it fills through the last (or end) address specified.

User Commands
fill

Example

This example displays the original value in address range 08000000 through
08000080 and the value of the same address range after the fill command.

EB64> pl 8000000

08000000: E7E01021 00000000 00000000 00000000 !...............
08000010: 00000000 00000000 00000000 00000000
08000020: E7E01095 00000000 00000000 00000000
08000030: 00000000 00000000 00000000 00000000
08000040: 00000000 00000000 00000000 00000000
08000050: 00000000 00000000 00000000 00000000
08000060: 00000000 00000000 00000000 00000000
4–54 User Commands

08000070: 00000000 00000000 00000000 00000000
EB64> fill 8000000 8000080 1f1f1f1f
EB64> pl 8000000 8000080
08000000: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000010: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000020: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000030: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000040: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000050: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000060: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000070: 1F1F1F1F 1F1F1F1F 1F1F1F1F 1F1F1F1F
08000080: 1F1F1F1F 00000000 00000000 00000000

User Commands
flash

flash

The flash command programs data into flash memory.

Format

flash [source_address [destination_offset [bytes_to_write]]]

Parameters
User Commands 4–55

source_address

Specifies the address in memory of the data to be programmed into the flash. The
default is the default boot address (see bootadr).

destination_offset

Specifies the offset, in bytes, into the flash where the first byte of source data will
be programmed. If not provided, you are prompted with a default
destination_offset value. The destination_offset combined with the size the data to
be written must fit within the remaining space in the flash. Also note that ROM
images containing the standard Makerom header must be longword aligned. See
the MAKEROM chapter of the Alpha Microprocessors Motherboard Software
Design Tools User Guide.

bytes_to_write

Specifies how many bytes to write beginning at the source_address. This parameter
causes the flash command to ignore any standard header that might be included in
the source data. This value defaults to the value in the image size field of the
standard header. If not specified and if there is no standard image at the beginning of
the source data, this value is assumed to be the remaining space in the flash.

Description

The flash command programs the flash memory on the motherboards containing this
type of memory. It reads data from memory at the specified source address and
programs it into the flash at the specified offset. The amount of data written can be
specified by the user or determined by the flash command.

User Commands
flash

Example
AlphaPC 64> netload pc64dbm.rom
Attempting BOOTP...
Loading /users/eval/pc64/pc64dbm.rom at 300000
 My IP address: 16.123.45.67
 Server IP address: 16.123.45.69
###################File loaded
AlphaPC 64> flash
Image source address : 0x300000
Standard image header: Found.

Header Size......... 56 bytes
Image Checksum...... 0x6eeb (28395)
Memory Image Size... 0x30B2C (199468 = 194 KB)
4–56 User Commands

Compression Type.... 0
Image Destination... 0x0000000000300000
Header Version...... 2
Firmware ID (Opt.). 0 - Alpha Evaluation Board Debug Monitor
FROM Image Size....... 0x30B2C (199468 = 194 KB)
Firmware ID (Opt.).. 0200009511221015 ..”....
ROM offset.......... 0x00000000
Header Checksum..... 0x71fb

Enter destination offset or press RETURN for default [0]:

Flash offset : 0x0
Image size w/ header : 199524 (Segment 0 to 3 inclusive).

 !!!!! Warning: About to overwrite flash memory !!!!!
 Press Y to proceed, any other key to abort.

Update canceled by user.
AlphaPC 64> flash
Image source address : 0x300000
Standard image header: Found.

Header Size......... 56 bytes
Image Checksum...... 0x6eeb (28395)
Memory Image Size... 0x30B2C (199468 = 194 KB)
Compression Type.... 0
Image Destination... 0x0000000000300000
Header Version...... 2
Firmware ID..........0 - Alpha Evaluation Board Debug Monitor
ROM Image Size...... 0x30B2C (199468 = 194 KB)
Firmware ID (Opt.).. 0200009511221015 ..”....
ROM offset.......... 0x00000000
Header Checksum..... 0x71fb

Enter destination offset or press RETURN for default [0]: 40000
Flash offset : 0x40000
Image size w/ header : 199524 (Segment 4 to 7 inclusive).

 !!!!! Warning: About to overwrite flash memory !!!!!

User Commands
flash

 Press Y to proceed, any other key to abort.

 Writing Flash Block: 4W 5W 6W 7W
 Verifying Flash Block: 4V 5V 6V 7V
AlphaPC 64> romlist
ROM image header found at offset: 0x040000
 Header Size......... 56 bytes
 Image Checksum...... 0x6eeb (28395)
 Memory Image Size... 0x30B2C (199468 = 194 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 2
 Firmware ID......... 0 - Alpha Evaluation Board Debug Monitor
User Commands 4–57

 ROM Image Size...... 0x30B2C (199468 = 194 KB)
 Firmware ID (Opt.).. 0200009511221015 ..”....
 ROM offset.......... 0x00000000
 Header Checksum..... 0x71fb

! Change the Image Destination field from 300000 to 400000
! Note that because no changes were performed to the Header
! Checksum field after the change, a header checksum
! error will be reported with romlist.
AlphaPC 64> dml 500000 400000
AlphaPC 64> flash 500000 40018 4
Image source address : 0x500000

Flash offset : 0x40018
Data image size : 4 (Segment 4 to 4 inclusive).

 !!!!! Warning: About to overwrite flash memory !!!!!
 Press Y to proceed, any other key to abort.

 Writing Flash Block: 4W
 Verifying Flash Block: 4V
AlphaPC 64> romlist
ROM image header found at offset: 0x040000
 Header Size......... 56 bytes
 Image Checksum...... 0x6eeb (28395)
 Memory Image Size... 0x30B2C (199468 = 194 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000400000
 Firmware ID......... 0 - Alpha Evaluation Board Debug Monitor
 ROM Image Size...... 0x30B2C (199468 = 194 KB)
 Firmware ID (Opt.).. 0200009511221015 ..”....
 ROM offset.......... 0x00000000
 Header Checksum..... 0x71fb
 ERROR: Bad ROM header checksum. 0x79fb

User Commands
flasherase

flasherase

The flasherase command erases data from flash memory.

Format

flasherase [starting_offset [bytes_to_erase]]

Parameters
4–58 User Commands

starting_offest

Specifies the offset, in bytes, into the flash where data will be erased. If not provided,
the entire flash will be erased.

bytes_to_erase

Specifies how many bytes to erase. If not specified, all bytes from the starting_offset
through the rest of the flash will be erased.

Description

The flasherase command clears flash memory on boards equipped with flash. The
area to be erased, that is, filled with zeros, can be specified or calculated by the
flasherase command.

Example
AlphaPC164> romlist
ROM image header found at offset: 0x000000
 Header Size......... 0x38 (56) bytes
 Image Checksum...... 0x45b0 (17840)
 Memory Image Size... 0xBA40 (47680 = 46 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 2
 Firmware ID......... 6 - Alpha Evaluation Board Fail-Safe Booter
 ROM Image Size...... 0xBA40 (47680 = 46 KB)
 Firmware ID (Opt.).. 0202009702121228 (.......
 ROM offset.......... 0x00000000
 Header Checksum..... 0xfad4

ROM image header found at offset: 0x010000
 Header Size......... 0x38 (56) bytes
 Image Checksum...... 0xc63c (50748)
 Memory Image Size... 0x280B4 (164020 = 160 KB)

User Commands
flasherase

 Firmware ID (Opt.).. 0202009706130904
 ROM offset.......... 0x00000000
 Header Checksum..... 0x94a5
AlphaPC164> flasherase 40000
Flash offset : 0x40000
Bytes to be erased : 786432 (Block 4 to 15 inclusive).
 !!!!! Warning: About to overwrite flash memory !!!!!
 Press Y to proceed, any other key to abort.
 Writing Flash Block: 4V 5V 6V 7V 8V 9V 10V 11V 12V 13V 14V 15V
User Commands 4–59

User Commands
flboot

flboot

The flboot command downloads the specified file from the diskette and begins
execution of that file.

Format

flboot file [address]
4–60 User Commands

Parameters

file

Specifies the name of the file to access on the diskette.

address

Specifies the address at which to load the file. The default is the boot address.

Description

The flboot command downloads the specified file into the specified address or the
boot address. The downloaded file automatically begins execution in PALmode as if
a jtopal command had been entered.

Example
EB64> flboot size2
High Density selected

size2 . 20 bytes 11/21/1991 13:42:20
loading...
cluster: 2 sector: 33 buffer: 200000
done...
Jumping to 0x200000...

User Commands
flcd

flcd

The flcd command displays or changes the current working directory or drive.

Format

flcd [drive_pathname]

Parameters
User Commands 4–61

drive_pathname

Specifies the new drive and working directory.

Description

The flcd command allows you to change the current working directory for the
current drive. It can also be used to switch to a different default drive. If no
parameters are specified, then the default drive and working directory are displayed.

Drives are specified by using the letters A through Z. The path is a list of
subdirectories separated by a slash (/) for DIGITAL UNIX users or a backslash (\)
for DOS users. The top-level directory (known as the root directory) is represented
by a slash (/) or backslash (\). A path can be an absolute or relative path. An absolute
path begins with the root directory, whereas a relative path begins with the current
working directory.

Subdirectory entries also contain two special entries that can be used to specify a
path. One period (.) represents the current directory and two periods (..) represent the
directory above the current level.

User Commands
flcd

Example
AlphaPC 64> flcd
a:\
AlphaPC 64> fldir
High Density selected
10/04/95 02:07p 203088 rom.cmp
10/04/95 02:08p 203140 rom.rom
10/06/95 10:05a <DIR> dir1
10/06/95 10:05a <DIR> dir3
 1048576 bytes free
AlphaPC 64> flcd dir1
a:\dir1\
AlphaPC 64> fldir
4–62 User Commands

High Density selected
10/06/95 10:05a <DIR> .
10/06/95 10:05a <DIR> ..
10/06/95 10:05a <DIR> dir2
 1048576 bytes free
AlphaPC 64> flcd /dir1/dir2
a:\dir1\dir2\
AlphaPC 64> fldir
High Density selected
10/06/95 10:05a <DIR> .
10/06/95 10:05a <DIR> ..
 1048576 bytes free
AlphaPC 64> flcd ../../dir3
a:\dir1\dir2\..\..\dir3\
AlphaPC 64> fldir
High Density selected
10/06/95 10:05a <DIR> .
10/06/95 10:05a <DIR> ..
04/28/95 05:50p 71 diff.lst
 1048576 bytes free
AlphaPC 64> flcd b:
b:\
AlphaPC 64> fldir
High Density selected
09/07/95 10:28a 6688 srom
10/03/95 05:59p 202980 rom.rom
 1247232 bytes free

User Commands
flcopy

flcopy

The flcopy command copies a file to another location.

Format

flcopy source_file destination_file

Parameters
User Commands 4–63

source_file

Specifies the file to be copied. If no drive and path are specified, the default drive
and path are used.

destination_file

Specifies the name of the copied file. If no drive and path are specified, the default
drive and path are used. Note that a destination file name must always be specified,
even if copying to a subdirectory.

 Description

The flcopy command allows you to copy a file to another destination. An optional
drive and path specification may be specified for either the source or destination file
name. If they are not specified, then the default drive and path are used.

User Commands
flcopy

Example
AlphaPC 64> flcd \dir3
a:\dir3\
AlphaPC 64> fldir
High Density selected
10/06/95 10:05a <DIR> .
10/06/95 10:05a <DIR> ..
04/28/95 05:50p 71 diff.lst
 1048064 bytes free
AlphaPC 64> flcopy diff.lst ..\dir1\dir2\diff2.lst
High Density selected
Copying files...
Done...
4–64 User Commands

AlphaPC 64> fldir ..\dir1\dir2\
High Density selected
10/06/95 10:05a <DIR> .
10/06/95 10:05a <DIR> ..
10/06/95 10:48a 71 diff2.lst
 1047552 bytes free
AlphaPC 64> flcopy diff.lst b:\diff2.lst
High Density selected
High Density selected
Copying files...
Done...
AlphaPC 64> fldir b:\
High Density selected
09/07/95 10:28a 6688 srom
10/03/95 05:59p 202980 rom.rom
10/06/95 10:53a 71 diff2.lst
 1246720 bytes free

User Commands
fldir

fldir

The fldir command displays a list of files in the current or specified directory.

Format

fldir [drive_pathname]

Parameters
User Commands 4–65

drive_pathname

Specifies the drive or subdirectory.

Description

The fldir command displays a directory of files in the current or specified directory.

Drives are specified by using the letters A through Z. The path is a list of
subdirectories separated by a slash (/) for DIGITAL UNIX users or a backslash (\)
for DOS users. The top-level directory (known as the root directory) is represented
by a slash (/) or backslash (\). A path can be an absolute or relative path. An absolute
path begins with the root directory, whereas a relative path begins with the current
working directory.

Subdirectory entries also contain two special entries that can be used to specify a
path. One period (.) represents the current directory and two periods (..) represent the
directory above the current level.

User Commands
fldir

Example
AlphaPC 64> flcd
a:\

AlphaPC 64> fldir
High Density selected
10/04/95 02:07p 203088 rom.cmp
10/04/95 02:08p 203140 rom.rom
10/06/95 10:05a <DIR> dir1
10/06/95 10:05a <DIR> dir3
 1048064 bytes free
AlphaPC 64> fldir /dir1
High Density selected
4–66 User Commands

10/06/95 10:05a <DIR> .
10/06/95 10:05a <DIR> ..
10/06/95 10:05a <DIR> dir2
 1048064 bytes free
AlphaPC 64> flcd dir1\dir2
a:\dir1\dir2\
AlphaPC 64> fldir ..\..\dir3
High Density selected
10/06/95 10:05a <DIR> .
10/06/95 10:05a <DIR> ..
04/28/95 05:50p 71 diff.lst
 1048064 bytes free
AlphaPC 64> fldir b:\
High Density selected
09/07/95 10:28a 6688 srom
10/03/95 05:59p 202980 rom.rom
 1247232 bytes free

User Commands
flload

flload

The flload command downloads the specified file from the diskette.

Format

flload file [address]

Parameters
User Commands 4–67

file

Specifies the name of the file to access on the diskette.

address

Specifies the address at which to load the file. The default is the boot address.

Description

The flload command downloads the specified file into the specified address or the
boot address. The program can then be executed with the go or jtopal commands.

Example
EB64> bootadr
00200000
EB64> flload size2
High Density selected

size2 . 20 bytes 11/21/1991 13:42:20
loading...
cluster: 2 sector: 33 buffer: 200000
done...

User Commands
flread

flread

The flread command reads logical sectors from a diskette.

Format

flread [first_sector [bytes [dest_address [iterations [drive]]]]

Parameters
4–68 User Commands

first_sector

Specifies the first logical sector of diskette to read. The default is sector 0 (the boot
sector).

bytes

Specifies the number of bytes to be read from the diskette. The default sector is one
sector.

dest_address

Specifies the beginning address where data will be loaded. The default is the boot
address.

iterations

Specifies the number of times to repeat the reading of the sector range. The default
is 1.

drive

Specifies the diskette drive number to use: 0 or 1. The default is 0.

Description

The flread command reads the data from the specified logical sectors of a diskette
into memory. The iterations parameter can be used to repeat the task a specified
number of times.

User Commands
flread

Example
AlphaPC164> flread 1
High Density selected
Reading 0 bytes to 0x300000 starting at sector 1.
Done... 512 (0X200) bytes transferred
AlphaPC164> flread 1 1500
High Density selected
Reading 1500 bytes to 0x300000 starting at sector 1.
Done... 1536 (0X600) bytes transferred
AlphaPC164> flread 1 1500 400000
High Density selected
Reading 1500 bytes to 0x400000 starting at sector 1.
Done... 1536 (0X600) bytes transferred
User Commands 4–69

AlphaPC164> flread 1 1500 400000 3
High Density selected
Reading 1500 bytes to 0x400000 starting at sector 1.
Done... 1536 (0X600) bytes transferred
 2 iterations remaining
Done... 1536 (0X600) bytes transferred
 1 iterations remaining
Done... 1536 (0X600) bytes transferred

User Commands
flsave

flsave

The flsave command writes a memory range to a file.

Format

flsave file_name start_address file_size

Parameters
4–70 User Commands

file_name

Specifies the name of the file to be created with the data. If no drive or path is
specified, the file is created in the default working directory.

start_address

Specifies the address in memory to start writing to the file.

file_size

Specifies the size in bytes of the file to write.

Description

The flsave command writes a section of memory to a file. The file name can specify
a drive and path.

Example
AlphaPC164> flsave test.txt 300000 34526
High Density selected
Saving range 0x300000 to 0x334525 to file test.txt
AlphaPC164> flsave b:\test.txt 300000 34526
High Density selected
Saving range 0x300000 to 0x334525 to file b:\test.txt

User Commands
flwrite

flwrite

The flwrite command writes data to logical sectors on a diskette.

Caution: This is a destructive command. You must be careful which
sectors you write to because you may render the disk unusable.

Format
User Commands 4–71

flwrite [first_sector [image_size [source_address [iterations [drive]]]]

Parameters

first_sector

Specifies the first logical sector of diskette to be written. The default is sector 0 (the
boot sector).

image_size

Specifies the number of bytes to write to the diskette. The default is one sector.

source_address

Specifies the beginning address where data to be written resides. The default is the
boot address.

iterations

Specifies the number of times to repeat the writing of the sector range. The default
is 1.

drive

Specifies the diskette drive number to use: 0 or 1. The default is 0.

Description

The flwrite command writes data from memory to the specified logical sectors of a
diskette.

The iterations parameter can be used to repeat the task a specified number of times.

User Commands
flwrite

Example
AlphaPC164> flwrite 30
High Density selected
Writing 0 bytes from 0x400000 starting at sector 30.
Done... 512 (0X200) bytes transferred
AlphaPC164> flwrite 30 3400
High Density selected
Writing 3400 bytes from 0x400000 starting at sector 30.
Done... 3584 (0XE00) bytes transferred
AlphaPC164> flwrite 30 3400 300000
High Density selected
Writing 3400 bytes from 0x300000 starting at sector 30.
Done... 3584 (0XE00) bytes transferred
4–72 User Commands

AlphaPC164> flwrite 30 3400 300000 2
High Density selected
Writing 3400 bytes from 0x300000 starting at sector 30.
Done... 3584 (0XE00) bytes transferred
 1 iterations remaining
Done... 3584 (0XE00) bytes transferred

User Commands
fwupdate

fwupdate

The fwupdate command loads and runs the firmware update utility from diskette.

Format

fwupdate

Parameters
User Commands 4–73

None.

Description

The fwupdate command loads and executes the firmware update utility
(fwupdate.exe) from diskette. The utility gets loaded into physical address 90000016
(physical location 9 MB), and gets executed in PALmode.

This command expects the diskette to be formatted with a FAT file structure.

Example
AlphaPC 64> fwupdate
 ...follow instructions to update firmware for
 Windows NT Firmware, the Debug Monitor, or the Alpha SRM Console ...

User Commands
go

go

The go command begins execution of instructions at the specified address.

Format

go [start_address]

Parameters
4–74 User Commands

start_address

Specifies the address at which to start executing the instructions.

Description

The go command jumps to a location in memory and begins executing instructions.
If no address is specified, then the execution of instructions begins at the boot
address.

Example

This example starts executing instructions at address 10000016.

EB64> go 100000

User Commands
help

help

The help command displays a list of commands currently available. If you specify a
command keyword, information about the specified command is displayed.

Format

h[elp] [command_keyword]
User Commands 4–75

Parameters

command_keyword

Indicates any command name that appears in the list when you type the help
command. An asterisk (*) displays help for all commands.

Description

The help command displays a list of command keywords implemented in the current
release. The command can be abbreviated to one letter, h. If you specify a command
with a command keyword, then a brief description and syntax for the specified
command is displayed. You can use an asterisk (*) in place of a command keyword
to display all help information.

User Commands
help

Example

The help command without a parameter displays a list of all commands
implemented in the current version of the software. When specified with a
parameter, it displays more information about that command keyword.

AlphaPC164LX> help
A brief help description is available for each of the
following commands.

load boot netload netboot flcd flcopy
fldir flboot flload flread flwrite flsave
romboot romlist romload romverify bootadr go
4–76 User Commands

jtopal init eml emq dml dmq
pq pl pw pb cq cl
cw cb fill copy compare dis
rl rw rb wl ww wb
wb mrl mrw mrb mwl mww
mwb sq sl sw sb pcishow
prl prw prb pwl pww pwb
flash flasherase fwupdate date apropos help
h ident version sysshow swpipl mces
wrfen preg pfreg creg cfreg stop
bpstat next n step s cont
delete ladebug riccsr wiccsr rbctl wbctl
rbcfg wbcfg iack rmode setty setbaud
tip edevice eshow ereg estat einit
estop ebuff edmp eprom arpshow mcheck
beep memtest
 Hit any key to continue. Control-C to quit...

AlphaPC164LX> help *
Displays help for all commands in the command list.

User Commands
iack

iack

The iack command performs an interrupt acknowledge cycle.

Format

iack

Parameters
User Commands 4–77

None.

Description

The iack command allows you to perform an interrupt acknowledge cycle. Two iack
commands are required to read the interrupt vector.

Example
EB64> iack
FF
EB64> iack
07

User Commands
ident

ident

The ident command displays revision control system (RCS) ID strings found in the
specified memory range.

Format

ident [start_address [end_address]]
4–78 User Commands

Parameters

start_address

Specifies a hexadecimal number that represents a legal address at which to start
searching for RCS keywords. The default value is the boot address.

end_address

Specifies a hexadecimal number that represents a legal address at which to end the
search for RCS keywords. The default value is the boot address plus 7016.

Description

The ident command identifies the revision of files used to build images that were
loaded into memory by searching for all occurrences of the pattern $keyword: ...$ in
the specified memory range. This command is based on the assumption that RCS
was used for version control on the source files on the host development system.
RCS is supplied with the DIGITAL UNIX operating system.

User Commands
ident

Example
EB64> ident 0 80000
Id: crt_startup.s,v 1.3 1993/06/18 20:30:03 fdh Rel $
Id: crt.c,v 1.1 1993/06/08 19:56:39 fdh Rel $
Id: dis.c,v 1.1 1993/06/08 19:56:40 fdh Rel $
Id: ffexec.c,v 1.2 1993/06/09 20:23:05 fdh Rel $
Id: ffsrec.c,v 1.1 1993/06/08 19:56:41 fdh Rel $
Id: cmd.c,v 1.6 1993/06/18 17:32:36 fdh Rel $
Id: pReg.c,v 1.1 1993/06/08 19:56:41 fdh Rel $
Id: rw.c,v 1.1 1993/06/08 19:56:42 fdh Rel $
Id: netboot.c,v 1.1 1993/06/08 19:56:30 fdh Rel $
Id: amd.c,v 1.2 1993/06/08 22:32:57 berent Rel $
Id: tftp.c,v 1.1 1993/06/08 19:56:31 fdh Rel $
User Commands 4–79

Id: netutil.c,v 1.1 1993/06/08 19:56:31 fdh Rel $
Id: boots.c,v 1.2 1993/06/08 22:32:57 berent Rel $
Id: listener.c,v 1.2 1993/06/08 22:32:57 berent Rel $
Id: kernel.c,v 1.5 1993/06/18 17:49:34 fdh Rel $
Id: bptable.c,v 1.1 1993/06/08 19:56:33 fdh Rel $
Id: kutil.s,v 1.1 1993/06/08 19:56:36 fdh Rel $
Id: comms.c,v 1.2 1993/06/08 22:32:06 berent Rel $
Id: server_read_loop.c,v 1.1 1993/06/08 19:56:38 fdh Rel $
Id: packet-handling.c,v 1.2 1993/06/08 22:32:06 berent Rel $
Id: printf.c,v 1.1 1993/06/08 19:56:24 fdh Rel $

 Hit any key to continue. Control-C to quit...

User Commands
init

init

The init command reinitializes the Debug Monitor.

Format

init

Parameters
4–80 User Commands

None.

Description

The init command restarts the Debug Monitor by jumping to the PALcode base
address in PALmode. It is analogous to using the jtopal command with the PALbase
address.

Example
AlphaPC 64> init
Stopping network device 0 in PCI slot 18:
Jumping to 0x000000...
========== Starting Debug Monitor!!! =============

User Commands
jtopal

jtopal

The jtopal command sets the environment to PALmode and begins execution of
instructions at the specified address.

Format

jtopal [start_address]
User Commands 4–81

Parameters

start_address

Specifies the address at which to start executing instructions. The default is the boot
address.

Description

The jtopal command emulates the hardware mechanism for entering PALcode.
When instructions contain PALcode, you must set the environment to PALmode to
properly execute instructions. This command is required for executing downloaded
images entered in PALmode, such as a serial ROM or debug ROM image. The jtopal
command sets the environment to PALmode and then jumps to the specified location
in memory to begin executing instructions.

Example

This example starts executing instructions at address 10000016.

EB64> jtopal 100000

User Commands
ladebug

ladebug

The ladebug command starts the Ladebug server for a remote debug session.

Format

ladebug

Parameters
4–82 User Commands

None.

Description

The ladebug command configures the motherboard as a remote debugger target. You
can connect to the motherboard from the Ladebug source-level debugger running on
a DIGITAL UNIX host. Communication is performed through the Ethernet
connection. The Ladebug software provides the full source-level debugging
capabilities of most programs running on the motherboard, including the Debug
Monitor.

To debug a program running on a motherboard using Ladebug running on a remote
host, follow these steps:

1. Load the program into memory on the motherboard.

2. Set a breakpoint in the program.

3. Execute the program. The program will stop at the breakpoint and print the
instruction line at that location.

4. Issue the ladebug command. This causes the motherboard to wait for a
connection from Ladebug.

5. From the host system, enter the command to start up Ladebug and cause it to
connect to the motherboard.

Refer to the Ladebug documentation for more information.

User Commands
ladebug

Example
EB64> netload size
Ethernet Base Address: 360, DMA Mask: 1 = DRQ5
Init Block Address 100000
Init Done.
Ethernet BA-98-76-54-32-10
Attempting BOOTP...success.
 my IP address: 16.123.45.67
 server IP address: 16.123.45.69
 gateway IP address: 16.123.45.69
Loading from /users/eval/boot/size ...

EB64> stop 200000
User Commands 4–83

EB64> go
Executing at 0x200000...

00200000: 23DEFFF0 lda sp, -16(sp)
EB64> ladebug
Ethernet Base Address: 360, DMA Mask: 1 = DRQ5
Init Block Address 100000
Init Done.
Client connected : client is FFFFFFFFA0107F10

The following command, entered from the host system, starts Ladebug and causes it
to connect to the EB64:

 % ladebug size.out -rn eb64 -pid 0

The following information is displayed on the host system:

 Welcome to the Ladebug Debugger Version 1.3.1

 object file name: size.out
 machine name: eb64
 process id: 0
 Reading symbolic information ...done
 Connected to remote debugger
 (ladebug)

The (ladebug) in the previous example is the Ladebug prompt. You are now ready
to debug a process that is running on the EB64.

User Commands
load

load

The load command downloads a file through the active serial port using the
XMODEM protocol.

Format

load [address]
4–84 User Commands

Parameters

address

Specifies the address at which to download the file. The default is the boot address.

Description

The load command uses the XMODEM protocol to download a file through the
active serial port. The program is loaded to the supplied address or the boot address
if an address is not specified. The program can then be executed with the go or jtopal
commands.

Example

In this example, a DIGITAL UNIX host system is connected to the motherboard on
device /dev/tty01. The sx command sends a file using XMODEM.

% echo load 300000 > /dev/tty01
% sx -kt 10 /users/eval1/demo2/size </dev/ttya01 >/dev/tty01
Sector nnn
%tip /dev/tty01
AlphaPC164>

User Commands
mces

mces

The mces command sets or displays the machine check error summary register.

Format

mces [mces_data]

Parameters
User Commands 4–85

mces_data

Specifies the value to be written to the machine check error summary register.

Description

The machine check error summary register controls machine check and system-
correctable error handling. The mces command provides direct user access to the
rdmces and wrmces PALcode instructions that are defined by the Alpha AXP
Architecture Reference Manual.

This register is also affected by the mcheck command.

Example

In the following example, a zero is written to the machine check error summary
register:

EB164> mces
Machine Check Error Summary: 08
EB164> mces 0
Machine Check Error Summary: 00

User Commands
mcheck

mcheck

The mcheck command controls the reporting of hardware error conditions
(machine checks).

Format

mcheck state
4–86 User Commands

Parameters

state = on

Enables all machine check reporting.

state = off

Disables all machine check reporting.

state = system

Enables machine check reporting for hardware errors detected external to the CPU.

state = cpu

Enables machine check reporting for hardware errors detected by the CPU.

Description

The mcheck command controls the reporting of hardware error conditions. A
machine check indicates that a hardware error condition was detected. Different
error conditions are detected by the CPU or system logic external to the CPU. To
help to ensure the availability of the Debug Monitor for hardware debug, machine
check reporting is disabled when the Debug Monitor starts up. This condition makes
the Debug Monitor firmware more fail-safe than conventional firmware when
hardware integrity is questionable. Therefore, when using the Debug Monitor,
machine checks can be enabled on demand by the mcheck command to facilitate
low-level hardware debug.

Because some machine checks are reported through interrupt requests at interrupt
priority level (IPL) 6, the mcheck command could change the current IPL. If the
current IPL is lower than 7, the current IPL will not be affected. See the description
of the swpipl command for more information about the IPL.

User Commands
mcheck

The mcheck command could also modify the machine check error summary register.
See the mces command for more information about the machine check error
summary register.

Example

In the following example, all machine check and correctable error reporting are
enabled before running the memory test. The errors displayed in this example are
correctable, and without machine checks enabled, these memory errors would be
corrected by the CPU.

 EB164> mcheck on
User Commands 4–87

 Old BC_CTL = 0x00028051 & BC_CFG = 0x01E21772
 New BC_CTL = 0x00020041 & BC_CFG = 0x01E21772
 CIA_CACK_EN = 0x8 & CIA_MCR = 0x2001FE21
 EB164> mces
 Machine Check Error Summary: 00
 EB164> memtest
 Walking 1’s ... range 0x0008a420:0x03ffc000
 Processor Correctable Machine Check: Interrupt vector = 0x630
 EI_STAT: FFFFFFF0C4FFFFFF EI_ADDR: FFFFFF00001231AF
 FILL_SYNDROME: 0000000000000019 ISR: 0000000100600000
 Processor Correctable Machine Check: Interrupt vector = 0x630
 EI_STAT: FFFFFFF0C4FFFFFF EI_ADDR: FFFFFF00009231AF
 FILL_SYNDROME: 0000000000000019 ISR: 0000000100600000

User Commands
memtest

memtest

The memtest command tests a memory range.

Format

memtest [iterations [start_address [end_address [increment [mcheck [stop_drivers]]]]]]

 Parameters
4–88 User Commands

iterations

Specifies the number of times the memory range test will run. The default iteration
is 1.

start_address

Specifies the address at which to start the memory test. The default is the current
address.

end_address

Specifies the address at which to end the memory test.

increment

Defines the step size. The default is longword access (4).

mcheck

Specifies the machine check state as defined by the mcheck command (see the
mcheck command). The mcheck state is specified during the start of the memory
test. Possible selections are: on, off, cpu, and system. The default is on.

stop_drivers

Specifies if device drivers should be stopped before the start of the memory test. A
nonzero value stops all device drivers. A zero value specifies that drivers should not
be stopped. The default is stopped.

Description

The memtest command performs a set of memory tests on the specified address
range. This test uses longword accesses to memory. The tests include walking 1s and
walking 0s as well as alternating 1s and 0s.

User Commands
memtest

While conducting the memory test, correctable read data errors may be encountered,
indicating memory integrity problems. However, if hardware error reporting is
disabled, the CPU corrects the correctable errors without reporting them. To alleviate
this problem, the mcheck parameter must specify the machine check conditions
while running the memory test.

Device drivers that use main memory for DMA access while the memory test is
running may cause unpredictable results. To prevent the memory test from
conflicting with the device drivers, the stop_drivers parameter must be set to a
nonzero value.
User Commands 4–89

Example
EB64> memtest 2 8000000 8ffffff 4 on 1

User Commands
mrb

mrb

The mrb command reads a byte from memory in the register port in I/O address
space.

Format

mrb address [iterations [silent]]
4–90 User Commands

Parameters

address

Specifies the address in memory I/O space.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The mrb command displays the byte from the specified memory location in the
memory I/O space. For example, on the EB64, the byte is read from the ISA
extension slot.

Example
EB64> mrb d0000
FF

User Commands
mrl

mrl

The mrl command reads a longword from memory in the register port in I/O address
space.

Format

mrl address [iterations [silent]]
User Commands 4–91

Parameters

address

Specifies the address in memory I/O space.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The mrl command displays the longword from the specified memory location in the
memory I/O space. For example, on the EB64, the longword is read from the ISA
extension slot.

Example
EB64> mrl d0000
FC04FF00

User Commands
mrw

mrw

The mrw command reads a word from memory in the register port in I/O address
space.

Format

mrw address [iterations [silent]]
4–92 User Commands

Parameters

address

Specifies the address in memory I/O space.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The mrw command displays the word from the specified memory location in the
memory I/O space. For example, on the EB64, the word is read from the ISA
extension slot.

Example
EB64> mrw d0000
FF00

User Commands
mwb

mwb

The mwb command writes a byte to memory in the register port in I/O address
space.

Format

mwb address data [iterations]
User Commands 4–93

Parameters

address

Specifies the address in memory I/O space where the byte is written.

data

Specifies byte data.

iterations

Specifies how many times the data is read. The default is 1.

Description

The mwb command specifies the memory location in I/O memory space to write
data in byte format.

Example
EB64> mrb d0000
FF
EB64> mwb d0000 0
EB64> mrb d0000
00

User Commands
mwl

mwl

The mwl command writes a longword to memory in the register port in I/O address
space.

Format

mwl address data [iterations]
4–94 User Commands

Parameters

address

Specifies the address in memory I/O space where the longword is written.

data

Specifies longword data.

iterations

Specifies how many times the data is read. The default is 1.

Description

The mwl command writes a longword to memory in I/O address space. For example,
on the EB64, the longword is written to the ISA extension slot.

Example
EB64> mwl d0000 fc04ff00

User Commands
mww

mww

The mww command writes a word to memory in the register port in I/O address
space.

Format

mww address data [iterations]
User Commands 4–95

Parameters

address

Specifies the address in memory I/O space where the word is written.

data

Specifies word data.

iterations

Specifies how many times the data is read. The default is 1.

Description

The mww command writes a word to memory I/O space. For example, on the EB64,
a word is written to the ISA extension slot.

Example
EB64> mrw d0000
FF00
EB64> mww d0000 a5a5
EB64> mrw d0000
A5A5

User Commands
netboot

netboot

The netboot command downloads the specified file through the Ethernet port and
begins execution of that file.

Format

netboot [file [address]]
4–96 User Commands

Parameters

file

Specifies a legal file name to be downloaded to the motherboard. The default is to
load the file specified in the bootptab file.

address

Specifies the address at which to download the file. The default is the boot address.

Description

The netboot command uses BOOTP to download the specified file through the
Ethernet port. The Ethernet port is selected through the edevice command. The
downloaded file automatically begins execution in PALmode. This command has the
same effect as using the netload command followed by the jtopal command.

A default file and directory path may be defined in the bootptab file. See
Section 2.3.4.2 for more information.

If you specify an address, this address becomes the default boot address. This value,
however, is not set in battery-backed RAM.

User Commands
netboot

Example

This example downloads and begins execution of a file called size.

EB64> netboot size
Ethernet Base Address: 360, DMA Mask: 1 = DRQ5
Init Block Address 80000
Init Done.
Ethernet BA-98-76-54-32-10
Attempting BOOTP...success.
 my IP address: 16.123.45.67
 server IP address: 16.123.45.69
 gateway IP address: 16.123.45.69
User Commands 4–97

Loading from /users/eval/boot/size ...
###
Jumping to 0x100000...

 char = 1
 short = 2
 int = 4
 long = 8
 float = 4
 double = 8

Alpha 21064 Evaluation Board (EB64) Debug Monitor
 Version: Wed Feb 10 19:52:24 EST 1993
 Bootadr: 0x100000, memSize: 0x2000000

User Commands
netload

netload

The netload command downloads the specified file through the Ethernet port to the
default boot address.

Format

netload [file [address]]
4–98 User Commands

Parameters

file

Specifies a legal file name to be downloaded to the motherboard. The default is to
load the file specified in the bootptab file.

address

Specifies the address at which to download the file. The default is the boot address.

Description

The netload command uses BOOTP to download the specified file through the
Ethernet port. The Ethernet port is selected using the edevice command. The
program is loaded into the default boot address. You can set up or change the boot
address with the bootadr command. The program can then be executed with the go
or jtopal command.

A default file and directory path may be defined in the bootptab file. See
Section 2.3.4.2 for more information.

If you specify an address, this address becomes the default boot address. This value,
however, is not set in battery-backed RAM.

User Commands
netload

Example

In this example, a file called size is loaded into the default boot address.

EB64> netload size
Ethernet Base Address: 360, DMA Mask: 1 = DRQ5
Init Block Address 80000
Init Done.
Ethernet BA-98-76-54-32-10
Attempting BOOTP...success.
 my IP address: 16.123.45.67
 server IP address: 16.123.45.69
 gateway IP address: 16.123.45.69
User Commands 4–99

Loading from /users/eval/boot/size ...
###

User Commands
next

next

The next command executes the machine instruction without stepping into
subroutines.

Format

n[ext]
4–100 User Commands

Parameters

None.

Description

Use the step command and the next command to execute a machine instruction.
When the instruction contains a subroutine, the step command steps into the
subroutine being called and the next command executes the subroutine being called.

User Commands
next

Example

In the following example, the step command used at address 200034 steps to the first
instruction of the function being called at address 2000c0. The next command used
at address 2000ec executes the function being called and steps to the next instruction
at address 2000f0.

EB164> dis
00200030: a77d8010 ldq r27, 32784(r29)
00200034: 6b5b4000 jsr r26, r27
00200038: 27ba0001 ldah r29, 1(r26)
0020003c: 23bdc148 lda r29, 49480(r29)
User Commands 4–101

EB164> step
00200030: a77d8010 ldq r27, 32784(r29)
EB164> step
00200034: 6b5b4000 jsr r26, r27
EB164> step
002000c0: 27bb0001 ldah r29, 1(r27)
 .
 .
 .
EB164> dis
002000e8: a77d8040 ldq r27, 32832(r29)
002000ec: 6b5b46b8 jsr r26, r27
002000f0: 27ba0001 ldah r29, 1(r26)
EB164> step
002000e8: a77d8040 ldq r27, 32832(r29)
EB164> step
002000ec: 6b5b46b8 jsr r26, r27
EB164> next
002000f0: 27ba0001 ldah r29, 1(r26)
EB164>

User Commands
pb

pb

The pb command displays the specified memory byte (8-bit).

Format

pb [start_address [end_address [iterations [silent]]]]

Parameters
4–102 User Commands

start_address

Specifies a hexadecimal number that represents a legal address at which to start the
display. The default is the current address.

end_address

Specifies a hexadecimal number that represents a legal address at which to end the
display. The default is the current address plus 127 bytes.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The pb command displays the specified memory in byte format. If no address is
specified, then the current memory byte and the following 127 bytes are displayed.
The field displayed after the bytes represents the translation of the memory contents
in ASCII characters. If the memory contents can be translated to an ASCII character,
then that character is displayed; otherwise, a dot is displayed.

The silent and iterations fields are often used together to continuously perform read
operations, thus, avoiding slowdowns caused by displaying the data. The repeating
cycles can be monitored with test equipment.

User Commands
pb

Example

This example displays 128 bytes from memory starting with 100000 in byte format.

EB64> pb 100000
00100000: 03 00 00 C1 00 00 00 00 10 D9 10 00 00 00 00 00
00100010: 07 00 88 2F 00 00 9E A4 05 14 C1 43 06 14 A1 40 .../.......C...@
00100020: 22 77 80 48 06 04 C2 40 F0 82 DC B4 F8 82 9C B4 “w.H...@.......
00100030: 00 83 BC B4 3E 15 C5 43 20 00 FE B7 08 83 FC B3>..C
00100040: 07 00 00 D0 04 04 E2 47 19 10 00 D0 80 00 00 00G........
00100050: 1F 04 FF 47 00 00 00 00 00 00 00 00 00 00 00 00 ...G............
00100060: 3E 15 C6 43 28 00 1E B4 36 01 00 D0 18 80 9C A4 >..C(...6.......
00100070: 05 34 E0 43 09 03 00 D0 20 80 9C A4 05 54 E0 43 .4.C....T.C
User Commands 4–103

User Commands
pcishow

pcishow

The pcishow command displays the contents of each PCI slot and the current
PCI-to-system address space mapping.

Format

pcishow bus id function
4–104 User Commands

Parameters

bus

Specifies which bus to show. The default value is 0.

id

Specifies a decimal number that represents the slot assigned to the PCI device.

function

Specifies which funtion to read from. The default value is 0.

Description

The pcishow command applies only to PCI motherboards.

User Commands
pcishow

Example
EB164> pcishow

PCI Address Mapping windows are:
 (1) PCI Base = 0x00100000, Size = 0x00100000
 Translated Base = 0x00100000

Bus = 0
 primary = 0, secondary = 0, subordinate = 0
 PCI I/O space = 1000, PCI Mem space = 3F00000
 PCI I/O base = B000, PCI Mem base = 200000
PCI slot 18, vendor = 0x1011, device = 0x4
 PCI IO Base = 0x0, PCI IO Size = 0x0
User Commands 4–105

 PCI Mem Base = 0x2000000, PCI Mem Size = 0x2000000
 Display controller
PCI slot 19, vendor = 0x8086, device = 0x484
 PCI IO Base = 0x0, PCI IO Size = 0x0
 PCI Mem Base = 0x0, PCI Mem Size = 0x0
 Non-VGA compatible device
PCI slot 17, vendor = 0x1011, device = 0x2
 PCI IO Base = 0xB000, PCI IO Size = 0x80
 PCI Mem Base = 0x4000000, PCI Mem Size = 0x80
 Ethernet controller
PCI slot 20, vendor = 0x1000, device = 0x1
 PCI IO Base = 0xB400, PCI IO Size = 0x100
 PCI Mem Base = 0x4001000, PCI Mem Size = 0x100
 Non-VGA compatible device
EB164>

User Commands
pfreg

pfreg

The pfreg command displays the saved CPU floating-point register state.

Format

pfreg [address]

Parameters
4–106 User Commands

address

Specifies an alternate address for the saved-state area.

Description

The pfreg command displays the contents of the CPU floating-point registers stored
in the saved-state area. A register state is stored when a breakpoint is encountered or
the PALcode reset flow is entered.

Example
EB64> pfreg
Floating Point Registers
register file @: 0000C840
f00: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f04: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f12: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f24: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
f28: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
PC: 000000000000000D PS: 000000000000000D

User Commands
pl

pl

The pl command displays the specified memory longword (32-bit).

Format

pl [start_address [end_address [iterations [silent]]]]

Parameters
User Commands 4–107

start_address

Specifies a hexadecimal number that represents a legal address at which to start the
display. The default is the current address.

end_address

Specifies a hexadecimal number that represents a legal address at which to end the
display. The default is the current address plus 127 bytes.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The pl command displays the specified memory in longword format. If no address is
specified, then the current memory longword and the following 31 longwords are
displayed. The field displayed after the longword represents the translation of the
memory contents in ASCII characters. If the memory contents can be translated to an
ASCII character, then that character is displayed; otherwise, a dot is displayed.

The silent and iterations fields are often used together to continuously perform read
operations, thus, avoiding slowdowns caused by displaying the data. The repeating
cycles can be monitored with test equipment.

User Commands
pl

Example

This example displays memory longwords.

EB64> pl 0
00000000: E7E01021 00000000 00000000 00000000 !...............
00000010: 00000000 00000000 00000000 00000000
00000020: E7E01095 00000000 00000000 00000000
00000030: 00000000 00000000 00000000 00000000
00000040: 00000000 00000000 00000000 00000000
00000050: 00000000 00000000 00000000 00000000
00000060: 00000000 00000000 00000000 00000000
00000070: 00000000 00000000 00000000 00000000
4–108 User Commands

EB64> pl
00000090: 00000000 00000000 00000000 00000000
000000A0: 00000000 00000000 00000000 00000000
000000B0: 00000000 00000000 00000000 00000000
000000C0: 00000000 00000000 00000000 00000000
000000D0: 00000000 00000000 00000000 00000000
000000E0: 74420082 644200A9 74210081 64210024 ..Bt..Bd..!t$.!d
000000F0: 48405682 F0400013 E4400003 77DE009E .V@H..@...@....w
00000100: 67DE009F 44205401 47E09402 744200A9 ...g.T D...G..Bt
EB64> pl 100000
00100000: C1000003 00000000 0010D910 00000000
00100010: 2F880007 A49E0000 43C11405 40A11406 .../.......C...@
00100020: 48807722 40C20406 B4DC82F0 B49C82F8 “w.H...@........
00100030: B4BC8300 43C5153E B7FE0020 B3FC8308>..C
00100040: D0000007 47E20404 D0001019 00000080G........
00100050: 47FF041F 00000000 00000000 00000000 ...G............
00100060: 43C6153E B41E0028 D0000136 A49C8018 >..C(...6.......
00100070: 43E03405 D0000309 A49C8020 43E05405 .4.C....T.C
EB64> pl 100000 100000
00100000: C1000003 00000000 0010D910 00000000................

User Commands
pq

pq

The pq command displays the specified memory quadword (64-bit).

Format

pq [start_address [end_address [iterations [silent]]]]

Parameters
User Commands 4–109

start_address

Specifies a hexadecimal number that represents a legal address at which to start the
display. The default is the current address.

end_address

Specifies a hexadecimal number that represents a legal address at which to end the
display. The default is the current address plus 127 bytes.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The pq command displays the specified memory in quadword format. If no address
is specified, then the current memory quadword and the following 15 quadwords are
displayed. The field displayed after the quadword represents the translation of the
memory contents in ASCII characters. If the memory contents can be translated to an
ASCII character, then that character is displayed; otherwise, a dot is displayed.

The silent and iterations fields are often used together to continuously perform read
operations, thus, avoiding slowdowns caused by displaying the data. The repeating
cycles can be monitored with test equipment.

User Commands
pq

Example
This example displays memory quadwords.

EB64> pq
00000000: 00000000E7E01021 0000000000000000 !...............
00000010: 0000000000000000 0000000000000000
00000020: 00000000E7E01095 0000000000000000
00000030: 0000000000000000 0000000000000000
00000040: 0000000000000000 0000000000000000
00000050: 0000000000000000 0000000000000000
00000060: 0000000000000000 0000000000000000
00000070: 0000000000000000 0000000000000000
EB64> pq 100000
4–110 User Commands

00100000: 00000000C1000003 000000000010D910
00100010: A49E00002F880007 40A1140643C11405 .../.......C...@
00100020: 40C2040648807722 B49C82F8B4DC82F0 “w.H...@........
00100030: 43C5153EB4BC8300 B3FC8308B7FE0020>..C
00100040: 47E20404D0000007 00000080D0001019G........
00100050: 0000000047FF041F 0000000000000000 ...G............
00100060: B41E002843C6153E A49C8018D0000136 >..C(...6.......
00100070: D000030943E03405 43E05405A49C8020 .4.C....T.C

User Commands
prb

prb

The prb command reads a byte (8 bits) from the specified address in the PCI
configuration space.

Format

prb pci_address id bus function
User Commands 4–111

Parameters

pci_address

Specifies the address in PCI space.

id

Specifies a decimal number that represents the slot assigned to the PCI device.

bus

Specifies which bus to read from. The default value is 0.

function

Specifies which function to read from. The default value is 0.

Description

The prb command reads a byte from the specified address in the PCI configuration
space for a device specified by the id. If the motherboard does not support PCI, then
this command is not implemented. If your system configuration supports multiple
PCI buses, use the parameters to specify the PCI device. Use the pcishow command
to view the available PCI devices.

Example
EB66> prb 0 19
86

User Commands
preg

preg

The preg command displays the saved CPU general-purpose register state.

Format

preg [address]

Parameters
4–112 User Commands

address

Specifies an alternate address for the saved-state area.

Description

The preg command displays the contents of the CPU general-purpose registers
stored in the saved-state area. A register state is stored when a breakpoint is
encountered or the PALcode reset flow is entered.

Example
EB64> preg
General Purpose Registers
register file @: 0000C040
r00: 0000000000000020 0000000000000005 000000000000C000 000000000000000D
r04: 00000000000003F8 0000000000000000 0000000000000000 000000000000000D
r08: FFFFFC000005F470 0000000000027340 0444306453605341 0A110C485F6EA26E
r12: 208090EA6024C19C 882C08AA92065B2D 4100610AE100244F 9E2891ACA8A9D984
r16: 0000000000100000 000000000000000D 0000000000000006 0000000000000030
r20: 0000000E20026335 5619A46B2B1A5125 0000000000000000 000000000000000D
r24: 0000000000000003 0000000000000000 FFFFFC0000042C3C 0000000000100000
r28: FFFFFC02C0000000 FFFFFC000006C1E0 0000000000FFDF40 0000000000000003
PC: 000000000000000D PS: 000000000000000D

User Commands
prl

prl

The prl command reads a longword (32 bits) from the specified address in the PCI
configuration space.

Format

prl pci_address id bus function
User Commands 4–113

Parameters

pci_address

Specifies the address in PCI space.

id

Specifies a decimal number that represents the slot assigned to the PCI device.

bus

Specifies which bus to read from. The default value is 0.

function

Specifies which function to read from. The default value is 0.

Description

The prl command reads a longword from the specified address in the PCI
configuration space for a device specified by the id. If the motherboard does not
support PCI, then this command is not implemented. If your system configuration
supports multiple PCI buses, use the parameters to specify the PCI device. Use the
pcishow command to view the available PCI devices.

Example
EB66> prl 0 19
04848086

User Commands
prw

prw

The prw command reads a word (16 bits) from the specified address in the PCI
configuration space.

Format

prw pci_address id bus function
4–114 User Commands

Parameters

pci_address

Specifies the address in PCI space.

id

Specifies a decimal number that represents the slot assigned to the PCI device.

bus

Specifies which bus to read from. The default value is 0.

function

Specifies which function to read from. The default value is 0.

Description

The prw command reads a word from the specified address in the PCI configuration
space for a device specified by the id. If the motherboard does not support PCI, then
this command is not implemented. If your system configuration supports multiple
PCI buses, use the parameters to specify the PCI device. Use the pcishow command
to view the available PCI devices.

User Commands
prw

Example
AlphaPC 64> pcishow

PCI Address Mapping windows are:
 (1) PCI Base = 0x00100000, Size = 0x00100000
 Translated Base = 0x00100000
Bus = 0
 primary = 0, secondary = 0, subordinate = 1
 PCI I/O space = 1000, PCI Mem space = 100000
 PCI I/O base = B000, PCI Mem base = 200000
PCI slot 17, vendor = 0x1011, device = 0x1
 PCI IO Base = 0x0, PCI IO Size = 0x0
 PCI Mem Base = 0x0, PCI Mem Size = 0x0
User Commands 4–115

 PCI-PCI bridge
PCI slot 19, vendor = 0x8086, device = 0x484
 PCI IO Base = 0x0, PCI IO Size = 0x0
 PCI Mem Base = 0x0, PCI Mem Size = 0x0
 Non-VGA compatible device
Bus = 1
 primary = 0, secondary = 1, subordinate = 1
 PCI I/O space = 1000, PCI Mem space = 100000
 PCI I/O base = B000, PCI Mem base = 200000
PCI slot 6, vendor = 0x1011, device = 0x2
 PCI IO Base = 0xB000, PCI IO Size = 0x80
 PCI Mem Base = 0x200000, PCI Mem Size = 0x80
 Ethernet controller
AlphaPC 64> prw 0 6 1
1011
AlphaPC 64> prw 0 19
8086

User Commands
pw

pw

The pw command displays the specified memory word (16-bit).

Format

pw [start_address [end_address [iterations [silent]]]]

Parameters
4–116 User Commands

start_address

Specifies a hexadecimal number that represents a legal address at which to start the
display. The default is the current address.

end_address

Specifies a hexadecimal number that represents a legal address at which to end the
display. The default is the current address plus 127 bytes.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The pw command displays the specified memory in word format. If no address is
specified, then the current memory word and the following 63 words are displayed.
The field displayed after the word represents the translation of the memory contents
in ASCII characters. If the memory contents can be translated to an ASCII character,
then that character is displayed; otherwise, a dot is displayed.

The silent and iterations fields are often used together to continuously perform read
operations, thus, avoiding slowdowns caused by displaying the data. The repeating
cycles can be monitored with test equipment.

User Commands
pw

Example

This example displays eight memory addresses starting with 10000016 in word
format.

EB64> pw 100000
00100000: 0003 C100 0000 0000 D910 0010 0000 0000
00100010: 0007 2F88 0000 A49E 1405 43C1 1406 40A1 .../.......C...@
00100020: 7722 4880 0406 40C2 82F0 B4DC 82F8 B49C “w.H...@........
00100030: 8300 B4BC 153E 43C5 0020 B7FE 8308 B3FC>..C
00100040: 0007 D000 0404 47E2 1019 D000 0080 0000G........
00100050: 041F 47FF 0000 0000 0000 0000 0000 0000 ...G............
00100060: 153E 43C6 0028 B41E 0136 D000 8018 A49C >..C(...6.......
User Commands 4–117

00100070: 3405 43E0 0309 D000 8020 A49C 5405 43E0 .4.C....T.C

User Commands
pwb

pwb

The pwb command writes a byte (8 bits) to an address in the PCI configuration
space.

Format

pwb pci_address id data bus function
4–118 User Commands

Parameters

pci_address

Specifies which address to write to.

id

Specifies a decimal number that represents the slot assigned to the PCI device.

data

Specifies the value that is written to the pci_address.

bus

Specifies which bus to write to. The default value is 0.

function

Specifies which function to write from. The default value is 0.

Description

The pwb command writes a byte to the specified address in the PCI configuration
space for a device specified by the id. If the motherboard does not support PCI, then
this command is not implemented. If your system configuration supports multiple
PCI buses, use the parameters to specify the PCI device. Use the pcishow command
to view the available PCI devices.

Example
EB66> prb 4f 19
3F
EB66> pwb 4f 19 2f
EB66> prb 4f 19
2F

User Commands
pwl

pwl

The pwl command writes a longword (32 bits) to an address in the PCI configuration
space.

Format

pwl pci_address id data bus function
User Commands 4–119

Parameters

pci_address

Specifies which address to write to.

id

Specifies a decimal number that represents the slot assigned to the PCI device.

data

Specifies the value that is written to the pci_address.

bus

Specifies which bus to write to. The default value is 0.

function

Specifies which function to write from. The default value is 0.

Description

The pwl command writes a longword to the specified address in the PCI
configuration space for a device specified by the id. If the motherboard does not
support PCI, then this command is not implemented. If your system configuration
supports multiple PCI buses, use the parameters to specify the PCI device. Use the
pcishow command to view the available PCI devices.

Example
EB66> pwl 4f 19 0000a6f3

User Commands
pww

pww

The pww command writes a word (16 bits) to an address in the PCI configuration
space.

Format

pww pci_address id data bus function
4–120 User Commands

Parameters

pci_address

Specifies which address to write to.

id

Specifies a decimal number that represents the slot assigned to the PCI device.

data

Specifies the value that is written to the pci_address.

bus

Specifies which bus to write to. The default value is 0.

function

Specifies which function to write from. The default value is 0.

Description

The pww command writes a word to the specified address in the PCI configuration
space for a device specified by the id. If the motherboard does not support PCI, then
this command is not implemented. If your system configuration supports multiple
PCI buses, use the parameters to specify the PCI device. Use the pcishow command
to view the available PCI devices.

Example
EB66> pww 4f 19 4
EB66> prw 4f 19
0004

User Commands
rabox

rabox

The rabox command reads the CPU ABOX_CTL register.

Format

rabox

Parameters
User Commands 4–121

None.

Description

The rabox command reads the CPU ABOX_CTL register and displays the value in
hexadecimal format.

This command applies only to motherboard designs based on the Alpha 21064 and
Alpha 21066 microprocessors.

Example
EB64> rabox
0000000000000428

User Commands
rb

rb

The rb command reads a byte (8 bits) from a register port in I/O address space.

Format

rb register [iterations [silent]]

Parameters
4–122 User Commands

register

Specifies the register from the I/O address space.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The rb command reads a byte from the specified register in I/O address space.

Example
EB64> rb 370
04

User Commands
rbcfg

rbcfg

The rbcfg command reads the backup cache configuration register.

Format

rbcfg

Parameters
User Commands 4–123

None.

Description

The rbcfg command reads a shadow copy of the backup cache configuration register.

If you manually change this register by writing to its architected address, the change
will not be reflected for this command. You must use the wbctl or wbcfg command
to make any changes.

This command is implemented only for the Alpha 21164 microprocessor family.

Example
EB164> rbcfg
0000000001E22772

User Commands
rbctl

rbctl

The rbctl command reads the backup cache control register.

Format

rbctl

Parameters
4–124 User Commands

None.

Description

The rbctl command reads a shadow copy of the backup cache control register.

If you manually change this register by writing to its architected address, the change
will not be reflected for this command. You must use the wbctl or wbcfg command
to make any changes.

This command is implemented only for the Alpha 21164 microprocessor family.

Example
EB164> rbctl
0000000000028051

User Commands
rbiu

rbiu

The rbiu command reads the CPU BIU_CTL register.

Format

rbiu

Parameters
User Commands 4–125

None.

Description

The rbiu command reads the CPU BIU_CTL register and displays the value in
hexadecimal format.

This command applies only to motherboard designs based on the Alpha 21064
microprocessor.

Example
EB64> rbiu
0000000E2001C645

User Commands
riccsr

riccsr

The riccsr command reads the CPU ICCSR register.

Format

riccsr

Parameters
4–126 User Commands

None.

Description

The riccsr command reads the CPU ICCSR register and displays the value in the
CPU write format. For more information about the write format, see the hardware
reference manual that corresponds to your CPU chip.

Example
EB64> riccsr
000006F800000000

User Commands
rl

rl

The rl command reads a longword (32 bits) from a register port in I/O address space.

Format

rl register [iterations [silent]]

Parameters
User Commands 4–127

register

Specifies the register from the I/O address space.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The rl command reads a longword from the specified register in I/O address space.

Example
EB64> rl 370
0000A6F3

User Commands
rmode

rmode

The rmode command sets the dis command register display mode.

Format

rmode [mode]

Parameters
4–128 User Commands

mode

Determines the mode. If set (1), the software register names are displayed. If cleared
(0), the hardware register names are displayed. The default is 0.

Description

The rmode command specifies whether hardware register names, such as r16, or
software register names, such as a0, are displayed with the dis command.

User Commands
rmode

The following table displays the DIGITAL UNIX Alpha microprocessor register
usage.

Hardware
Register
Name

Software
Register
Name Use and Linkage

r0 v0 Used for expression evaluation and to hold integer
function results.

r1...r8 t0...t7 Temporary registers; not preserved across procedure
calls.
User Commands 4–129

If you enter the command without a parameter, then the current mode is displayed.
The rmode setting is stored in battery-backed RAM.

r9...r14 s0...s5 Saved registers; their values must be preserved
across procedure calls.

r15 FP or s6 Frame pointer or a saved register.

r16...r21 a0...a5 Argument registers; used to pass the first six integer
type arguments; their values are not preserved across
procedure calls.

r22...r25 t8...t11 Temporary registers; not preserved across procedure
calls.

r26 ra Contains the return address; used for expression
evaluation.

r27 pv or t12 Procedure value or a temporary register.

r28 at Assembler temporary register; not preserved across
procedure calls.

r29 GP Global pointer.

r30 SP Stack pointer.

r31 zero Always has the value 0.

User Commands
rmode

Example
EB64> rmode
rmode = 0
EB64> dis 243a0
000243A0: 43020122 subl r24, r2, r2
000243A4: 48441722 sll r2, 0x20, r2
000243A8: 74420050 mt r2, cc
000243AC: 64630082 mf r3, pt2
000243B0: 209F07E1 lda r4, 2017(zero)
000243B4: 48855724 sll r4, 0x2A, r4
000243B8: 44640103 bic r3, r4, r3
000243BC: 47203019 and r25, 0x1, r25
EB64> dis
4–130 User Commands

000243C0: 4B037698 srl r24, 0x1B, r24
000243C4: 4703F118 bic r24, 0x1F, r24
000243C8: 47190418 bis r24, r25, r24
000243CC: 4B055738 sll r24, 0x2A, r24
000243D0: 44780403 bis r3, r24, r3
000243D4: 746300A2 mt r3, A2
000243D8: 77FF0055 mt zero, flushIc
000243DC: 77FF0000 mt zero, 0
EB64> rmode 1
EB64> dis 243a0
000243A0: 43020122 subl t10, t1, t1
000243A4: 48441722 sll t1, 0x20, t1
000243A8: 74420050 mt t1, cc
000243AC: 64630082 mf t2, pt2
000243B0: 209F07E1 lda t3, 2017(zero)
000243B4: 48855724 sll t3, 0x2A, t3
000243B8: 44640103 bic t2, t3, t2
000243BC: 47203019 and t11, 0x1, t11
EB64> dis
000243C0: 4B037698 srl t10, 0x1B, t10
000243C4: 4703F118 bic t10, 0x1F, t10
000243C8: 47190418 bis t10, t11, t10
000243CC: 4B055738 sll t10, 0x2A, t10
000243D0: 44780403 bis t2, t10, t2
000243D4: 746300A2 mt t2, A2
000243D8: 77FF0055 mt zero, flushIc
000243DC: 77FF0000 mt zero, 0
EB64>

User Commands
romboot

romboot

The romboot command loads the specified image from ROM and begins execution.

Format

romboot [type] [address]

Parameters
User Commands 4–131

type

Specifies the image to load into ROM. If the type is specified as #0, then any header
information is ignored and the entire contents of the ROM is loaded. The default is to
load and execute the first image in the system ROM.

address

Specifies the starting address for loading the image into ROM.

Description

The romboot command loads and executes the operating system and associated
firmware from the system ROM. Use the romlist command to display the images
contained in the ROM. You can specify the type as a number or a name.

Type_number Type_name Description

0 DBM Alpha Motherboard Debug Monitor

1 NT Windows NT

2 VMS OpenVMS

3 UNIX DIGITAL UNIX

7 LINUX Linux, MILO

8 VXWORKS VxWorks

10 SROM Serial ROM

User Commands
romboot

The romboot command can also be used to select a ROM image based on its
position in the ROM. Specifying the type as #0 selects the entire ROM. Specifying
the type as #1 selects the first image; #2 selects the second image, and so on.

You can specify an address to override what is in the image file header. You may also
use the bootadr command. Use the system reset to reset the motherboard to the
initial booted state.

Example
AlphaPC 64> romboot
Searching for ROM image #1

Header Size......... 52 bytes
4–132 User Commands

Image Checksum...... 0x581A (22554)
Image Size (Uncomp). 117160 (114 KB)
Compression Type.... 0
Image Destination... 0x0000000000300000
Header Version...... 1
Firmware ID........... 0 - Alpha Evaluation Board Debug Monitor
ROM Image Size...... 117160 (114 KB)
Firmware ID (Opt.).. 0000000000000000 ASCII:
Header Checksum..... 0x8F5C

Loading ROM to address 00300000
Image checksum verified. 0x581A
Loaded 117160 bytes starting at 300000 to 31C9A8
Jumping to 0x300000...
AlphaPC 64> romboot #2
Searching for ROM image #2
 Header Size......... 52 bytes
 Image Checksum...... 0xD38C (54156)
 Image Size (Uncomp). 211728 (206 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 1
 Firmware ID......... 1 - Windows NT Firmware
 ROM Image Size...... 211728 (206 KB)
 Firmware ID (Opt.).. 0305109502131030 ASCII: 0.......
 Header Checksum..... 0xCED2
Loading ROM to address 00300000
Image checksum verified. 0xD38C
Loaded 211728 bytes starting at 300000 to 333B10
Jumping to 0x300000...
AlphaPC 64> romboot unix
Searching for the “Alpha SRM Console”.
The specified ROM image was not found

User Commands
romboot

AlphaPC 64> romboot nt
Searching for the “Windows NT Firmware”.
 Header Size......... 52 bytes
 Image Checksum...... 0xD38C (54156)
 Image Size (Uncomp). 211728 (206 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 1
 Firmware ID......... 1 - Windows NT Firmware
 ROM Image Size...... 211728 (206 KB)
 Firmware ID (Opt.).. 0305109502131030 ASCII: 0.......
 Header Checksum..... 0xCED2
Loading ROM to address 00300000
User Commands 4–133

Image checksum verified. 0xD38C
Loaded 211728 bytes starting at 300000 to 333B10
Jumping to 0x300000...

User Commands
romlist

romlist

The romlist command lists the ROM image headers contained in ROM.

Format

romlist

Parameters
4–134 User Commands

None.

Description

The romlist command searches the system ROM for any ROM image headers that
might be present. It then prints a summary for each header found.

Example
AlphaPC 64> romlist

ROM image header found at offset: 0x000000
 Header Size......... 52 bytes
 Image Checksum...... 0x8111
 Image Size (Uncomp). 129552 (126 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 1
 Firmware ID........... 0 - Alpha Evaluation Board Debug Monitor
 ROM Image Size...... 129552 (126 KB)
 Firmware ID (Opt.).. 0000000000000000 ASCII:
 Header Checksum..... 0xA839

ROM image header found at offset: 0x040000
 Header Size......... 52 bytes
 Image Checksum...... 0xD38C
 Image Size (Uncomp). 211728 (206 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 1
 Firmware ID......... 1 - Windows NT Firmware
 ROM Image Size...... 211728 (206 KB)
 Firmware ID (Opt.).. 0305109502131030 ASCII: 0.......
 Header Checksum..... 0xCED25
AlphaPC 64>

User Commands
romload

romload

The romload command loads the specified image from ROM to the specified
address.

Format

romload [type] [address]
User Commands 4–135

Parameters

type

Specifies the image to load into ROM. If the type is specified as #0, then any header
information is ignored and the entire contents of the ROM is loaded. The default is to
load the first image in the system ROM.

address

Specifies the starting address for loading the image into ROM.

Description

The romload command loads the operating system and associated firmware from the
system ROM. Use the romlist command to display the images contained in the
ROM. You can specify the type as a number or a name.

Type_number Type_name Description

0 DBM Alpha Motherboard Debug Monitor

1 NT Windows NT

2 VMS OpenVMS

3 UNIX DIGITAL UNIX

7 LINUX Linux, MILO

8 VXWORKS VxWorks

10 SROM Serial ROM

User Commands
romload

The romload command can also be used to select a ROM image based on its
position in the ROM. Specifying the type as #0 selects the entire ROM. Specifying
the type as #1 selects the first image; #2 selects the second image, and so on.

You can specify an address to override what is in the image file header. You may also
use the bootadr command. Use the jtopal command to execute the image.

Example
AlphaPC 64> romload #0
Loading entire ROM.
Loading ROM to address 00200000
Loaded 1048576 bytes from 200000 to 300000
4–136 User Commands

AlphaPC 64>
AlphaPC 64> romload #1
Searching for ROM image #1
 Header Size......... 52 bytes
 Image Checksum...... 0x581A (22554)
 Image Size (Uncomp). 117160 (114 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 1
 Firmware ID............0 - Alpha Evaluation Board Debug Monitor
 ROM Image Size...... 117160 (114 KB)
 Firmware ID (Opt.).. 0000000000000000 ASCII:
 Header Checksum..... 0x8F5C
Loading ROM to address 00300000
Image checksum verified. 0x581A
Loaded 117160 bytes from 300000 to 31C9A8
AlphaPC 64>
AlphaPC 64> romload
Searching for ROM image #1
 Header Size......... 52 bytes
 Image Checksum...... 0x581A (22554)
 Image Size (Uncomp). 117160 (114 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 1
 Firmware ID............0 - Alpha Evaluation Board Debug Monitor
 ROM Image Size...... 117160 (114 KB)
 Firmware ID (Opt.).. 0000000000000000 ASCII:
 Header Checksum..... 0x8F5C
Loading ROM to address 00300000
Image checksum verified. 0x581A
Loaded 117160 bytes from 300000 to 31C9A8
AlphaPC 64>
AlphaPC 64> romload unix
Searching for “Alpha SRM Console”.
The specified ROM image was not found
AlphaPC 64>

User Commands
romload

AlphaPC 64> romload nt
Searching for “Windows NT Firmware”.
 Header Size......... 52 bytes
 Image Checksum...... 0xD38C (54156)
 Image Size (Uncomp). 211728 (206 KB)
 Compression Type.... 0
 Image Destination... 0x0000000000300000
 Header Version...... 1
 Firmware ID......... 1 - Windows NT Firmware
 ROM Image Size...... 211728 (206 KB)
 Firmware ID (Opt.).. 0305109502131030 ASCII: 0.......
 Header Checksum..... 0xCED2
Loading ROM to address 00300000
User Commands 4–137

Image checksum verified. 0xD38C
Loaded 211728 bytes from 300000 to 333B10
AlphaPC 64>

User Commands
romverify

romverify

The romverify command compares an image in memory to an image in the ROM.

Format

romverify [type [address]]

Parameters
4–138 User Commands

type

Specifies the name or number of an image in the ROM to compare against memory.
If the type specified is #0, then any header information is ignored and the entire
contents of the ROM are compared. If the type is #n the nth image in the ROM will
be used (#2 is the second entry). The default is to compare the first image in the
system ROM.

address

Specifies the starting address for comparing the image in the ROM. The bootadr is
the default.

Description

The romverify command compares an image in memory to an image in the ROM.
Use the romlist command to display the images contained in the ROM. You can
specify the type as a number or a name.

Type_number Type_name Description

0 DBM Alpha Motherboard Debug Monitor

1 NT Windows NT

2 VMS OpenVMS

3 UNIX DIGITAL UNIX

7 LINUX Linux, MILO

8 VXWORKS VxWorks

10 SROM Serial ROM

User Commands
romverify

Examples
AlphaPC164> romload #0 300000
Loading entire ROM.
Loading ROM to address 00300000
Loaded 1048576 bytes starting at 0x300000 to 0x3fffff
AlphaPC164> romverify #0
Comparing entire ROM to image at 0x300000.
Images match.
AlphaPC164> netload PC164dbm.rom
Attempting BOOTP...
Loading PC164dbm.rom at 0x300000
User Commands 4–139

 My IP address: 192.168.0.107
 Server IP address: 192.168.0.114
################
File loaded successfully. Size = 0x28380 (164736)
AlphaPC164> romverify dbm
Searching for the "Alpha Evaluation Board Debug Monitor".
Comparing to image at 0x300000.
Images match.
AlphaPC164> romverify 0 300000
Searching for the "Alpha Evaluation Board Debug Monitor".
Comparing to image at 0x300000.
Images match.
AlphaPC164> romverify #1 300000
Searching for ROM image #1
Comparing to image at 0x300000.
Images do not match.
AlphaPC164> romverify #2 300000
Searching for ROM image #2
Comparing to image at 0x300000.
Images match.

User Commands
rsys

rsys

The rsys command reads the EB64 system control register.

Format

rsys

Parameters
4–140 User Commands

None.

Description

The rsys command displays the current value of the system register. This command
applies only to the EB64.

Example
EB64> rsys
840000

User Commands
rw

rw

The rw command reads a word (16 bits) from a register port in I/O address space.

Format

rw register [iterations [silent]]

Parameters
User Commands 4–141

register

Specifies the register from the I/O address space.

iterations

Specifies how many times the data is read. The default is 1.

silent

Specifies whether or not the data is displayed. Setting this field to 1 causes the data
to be read but not displayed. The default is 0 (data is displayed).

Description

The rw command reads a word from the specified register in I/O address space.

Example
EB64> rw 372
0000
EB64> rw 370
A6B3

User Commands
sb

sb

The sb command searches memory by bytes (8-bit).

Format

sb start_address end_address string [inverse]

Parameters
4–142 User Commands

start_address

Specifies the address at which to begin the search.

end_address

Specifies the address at which to end the search.

string

Specifies the search string.

inverse

Specifies whether to search for a matching string (0) or a nonmatching string (1).
The default is 0 (search for a matching string).

Description

The sb command searches memory by byte chunks for the specified string. You can
use an asterisk (*) as a wildcard character for single-character matching.

User Commands
sb

Example
EB64> pl 100000 100080
00100000: C3E00007 00000000 00000000 00000000
00100010: 00000000 00000000 00000000 00000000
00100020: 221F0000 26100012 6BF00000 00000000 ...”...&...k....
00100030: 00000000 00000000 00000000 00000000
00100040: 00000000 00000000 00000000 00000000
00100050: 00000000 00000000 00000000 00000000
00100060: 00000000 00000000 00000000 00000000
00100070: 00000000 00000000 00000000 00000000
00100080: 00000000 00000000 00000000 00000000................
EB64> sb 100000 100080 2*
val = 20 mask = F0
User Commands 4–143

occurrence at 00100023 22
occurrence at 00100027 26
EB64> sb 100000 100080 1*
val = 10 mask = F0
occurrence at 00100022 1F
occurrence at 00100024 12
occurrence at 00100026 10
EB64> sb 100000 100080 1f
val = 1F mask = FF
occurrence at 00100022 1F

User Commands
setbaud

setbaud

The setbaud command sets the baud rate for the specified communication port
connection.

Format

setbaud port baud_rate
4–144 User Commands

Parameters

port

Specifies the number identifier for the keyboard or serial port.

baud_rate

Specifies the baud rate for the specified port. The default is 9600.

Description

The setbaud command sets the baud rate for the specified keyboard or serial
communication port. The baud rate can be set to 1200, 2400, 9600, 19200, or 38400.

The following table shows the port identifier numbers.

Example
EB64> setbaud 1 2400

Port ID Port Name

0 Keyboard port

1 Serial communication port 1

2 Serial communication port 2

User Commands
setty

setty

The setty command sets the Debug Monitor to the specified port.

Format

setty port

Parameters
User Commands 4–145

port

Specifies the number identifier for the keyboard or serial port.

Description

The setty command specifies the port used for Debug Monitor interaction. The
following table shows the port identifier numbers.

Example
EB64> setty 1

Port ID Port Name

0 Keyboard port

1 Serial communication port 1

2 Serial communication port 2

User Commands
sl

sl

The sl command searches memory by longwords (32-bit).

Format

sl start_address end_address string [inverse]

Parameters
4–146 User Commands

start_address

Specifies the address at which to begin the search.

end_address

Specifies the address at which to end the search.

string

Specifies the search string.

inverse

Specifies whether to search for a matching string (0) or a nonmatching string (1).
The default is 0 (search for a matching string).

Description

The sl command searches memory by longword chunks for the specified string. You
can use an asterisk (*) as a wildcard character for single-character matching.

User Commands
sl

Example
EB64> pl 100000
00100000: C3E00007 00000000 00000000 00000000
00100010: 00000000 00000000 00000000 00000000
00100020: 221F0000 26100012 6BF00000 00000000 ...”...&...k....
00100030: 00000000 00000000 00000000 00000000
00100040: 00000000 00000000 00000000 00000000
00100050: 00000000 00000000 00000000 00000000
00100060: 00000000 00000000 00000000 00000000
00100070: 00000000 00000000 00000000 00000000
EB64> sl 100000 100070 2*******
val = 20000000 mask = F0000000
occurrence at 00100020 221F0000
User Commands 4–147

occurrence at 00100024 26100012
EB64> sl 100000 100070 2*1*****
val = 20100000 mask = F0F00000
occurrence at 00100020 221F0000
occurrence at 00100024 26100012

User Commands
sq

sq

The sq command searches memory by quadwords (64-bit).

Format

sq start_address end_address string [inverse]

Parameters
4–148 User Commands

start_address

Specifies the address at which to begin the search.

end_address

Specifies the address at which to end the search.

string

Specifies the search string.

inverse

Specifies whether to search for a matching string (0) or a nonmatching string (1).
The default is 0 (search for a matching string).

Description

The sq command searches memory by quadword chunks for the specified string. You
can use an asterisk (*) as a wildcard character for single-character matching.

User Commands
sq

Example
EB64> pq
00000000: 00000000C3E00007 0000000000000000
00000010: 0000000000000000 0000000000000000
00000020: 26100002221F0000 000000006BF00000 ...”...&...k....
00000030: 0000000000000000 0000000000000000
00000040: 0000000000000000 0000000000000000
00000050: 0000000000000000 0000000000000000
00000060: 0000000000000000 0000000000000000
00000070: 0000000000000000 0000000000000000
EB64> sq 100000 100080 2
val = 2 mask = FFFFFFFFFFFFFFFF
value not found
User Commands 4–149

EB64> sq 100000 100080 26100002221F0000
value = 26100002221F0000 mask = FFFFFFFFFFFFFFFF
occurrence at 00000020 26100002221F0000

User Commands
step

step

The step command executes the next instruction.

Format

s[tep]

Parameters
4–150 User Commands

None.

Description

Use the step command and the next command to execute a machine instruction.
When the instruction contains a subroutine call, the step command steps into the
subroutine being called and the next command executes that subroutine.

In the following example, the step command used at address 00200034 steps to the
first instruction of the subroutine being called at address 002000c0. The next
command used at address 002000ec executes the subroutine being called and steps to
the next instruction at address 002000f0.

User Commands
step

Example
EB164> dis
00200030: a77d8010 ldq r27, 32784(r29)
00200034: 6b5b4000 jsr r26, r27
00200038: 27ba0001 ldah r29, 1(r26)
0020003c: 23bdc148 lda r29, 49480(r29)
EB164> step
00200030: a77d8010 ldq r27, 32784(r29)
EB164> step
00200034: 6b5b4000 jsr r26, r27
EB164> step
002000c0: 27bb0001 ldah r29, 1(r27)
 .
User Commands 4–151

 .
 .
EB164> dis
002000e8: a77d8040 ldq r27, 32832(r29)
002000ec: 6b5b46b8 jsr r26, r27
002000f0: 27ba0001 ldah r29, 1(r26)
EB164> step
002000e8: a77d8040 ldq r27, 32832(r29)
EB164> step
02000ec: 6b5b46b8 jsr r26, r27
EB164> next
002000f0: 27ba0001 ldah r29, 1(r26)
EB164>

User Commands
stop

stop

The stop command sets a breakpoint.

Format

stop address

Parameters
4–152 User Commands

address

Specifies the address at which the breakpoint is set.

Description

The stop command sets a breakpoint at the specified address. When a breakpoint is
encountered, all current register values are stored in memory and can be viewed with
the preg and pfreg commands.

Example
EB64> stop 100000
EB64> go
Executing at 0x100000...
00100000: C1000003 br r8, 100010
EB64> stop 100200
EB64> go
Executing at 0x100000...
00100200: 4A671793 sra r19, 0x38, r19
EB64> cont
00100200: 4A671793 sra r19, 0x38, r19
This simple program prints the size of
various data types in bytes.
 char = 1
 short = 2
 int = 4
 long = 8
 float = 4
 double = 8
Alpha 21064 Evaluation Board (EB64) Debug Monitor
 Version: Fri Apr 09 20:50:11 EDT 1993
 Bootadr: 0x100000, memSize: 0x2000000

User Commands
sum

sum

The sum command computes the checksum of the data in the specified range.

Format

sum start_address end_address

Parameters
User Commands 4–153

start_address

Specifies the address at which the checksum check begins.

end_address

Specifies the address at which the checksum check ends.

Description

The sum command prints the checksum of the data contained in the specified
memory range. The algorithm used computes a 16-bit checksum and is compatible
with the standard BSD4.3 algorithm provided in most implementations of UNIX
(sum), thus allowing easy comparisons of images in the motherboard’s memory with
those on the UNIX host.

Example
AlphaPC 64> netload pc64dbm.rom
Digital Semiconductor 21040 (0): Initializing
 Hardware address = BA-98-76-54-32-10
 Trying 10 Base T
 Switching to AUI
MAC address: BA-98-76-54-32-10
Attempting BOOTP...
Loading /sae_share/boot/user1/pc64/pc64dbm.rom at 0x300000
 My IP address: 16.123.45.67
 Server IP address: 16.123.45.69
###################
File loaded successfully. Size = 0x30B80 (199552)
AlphaPC 64> sum 300000 330B7F
0xe5cc 58828

User Commands
sw

sw

The sw command searches memory by words (16-bit).

Format

sw start_address end_address string [inverse]

Parameters
4–154 User Commands

start_address

Specifies the address at which to begin the search.

end_address

Specifies the address at which to end the search.

string

Specifies the search string.

inverse

Specifies whether to search for a matching string (0) or a nonmatching string (1).
The default is 0 (search for a matching string).

Description

The sw command searches memory by word chunks for the specified string. You can
use an asterisk (*) as a wildcard character for single-character matching.

Example
EB64> pl 100000 100080
00100000: C3E00007 00000000 00000000 00000000
00100010: 00000000 00000000 00000000 00000000
00100020: 221F0000 26100012 6BF00000 00000000 ...”...&...k....
00100030: 00000000 00000000 00000000 00000000
00100040: 00000000 00000000 00000000 00000000
00100050: 00000000 00000000 00000000 00000000
00100060: 00000000 00000000 00000000 00000000
00100070: 00000000 00000000 00000000 00000000
00100080: 00000000 00000000 00000000 00000000
EB64> sw 100000 100080 2*1*
val = 2010 mask = F0F0
occurrence at 00100022 221F
occurrence at 00100026 2610

User Commands
swpipl

swpipl

The swpipl command sets or displays the current interrupt priority level (IPL) of the
CPU.

Format

swpipl [ipl]
User Commands 4–155

Parameters

ipl

Specifies the IPL ranging from 0 to 7 as defined for DIGITAL UNIX by the Alpha
AXP Architecture Reference Manual.

Description

The swpipl command reports the current IPL when no parameter is provided. When
a value of 0 to 7 is provided to the swpipl command, the current IPL is set to that
value. This command uses the swpipl PALcode instruction for DIGITAL UNIX
defined by the Alpha AXP Architecture Reference Manual. The CPU arbitrates
interrupt requests based on the IPL. When the current IPL is lower than a pending
interrupt request, the CPU will raise the IPL while it services that interrupt. At IPL 7,
no interrupt requests are handled. To avoid interrupt complexities when debugging
hardware, the Debug Monitor is designed for minimal use of interrupts. Therefore, at
startup, the IPL is set to 7 and can be lowered on demand using the swpipl
command. Other commands that affect the IPL are the mcheck and the ladebug
commands.

In the following example, the IPL is lowered from 6 to 4.

Example
AlphaPC 164> swpipl
Current Interrupt Priority Level: 6
AlphaPC 164> swpipl 4
AlphaPC 164> swpipl
Current Interrupt Priority Level: 4
AlphaPC 164>

User Commands
sysshow

sysshow

The sysshow command displays all SROM parameters.

Format

sysshow

Parameters
4–156 User Commands

None.

Description

The sysshow command displays the system status passed from the SROM at
initialization or reset. Refer to your motherboard’s user’s manual for more
information about the SROM parameters displayed.

Example
EB66> sysshow
abox_ctl : 428
bcr0 : 64C0 bcr1 : 10064C0
bcr2 : 0 bcr3 : 0
bmr0 : F00000 bmr1 : F00000
bmr2 : 0 bmr3 : 0
srom_rev : 1805 proc_id : 4
mem_size : 2000000 cycle_cnt: 1771
signature: DECB0001 proc_mask: 1
sysctx : 0 valid : 1

User Commands
tip

tip

The tip command connects to the specified serial communication port.

Format

tip port

Parameters
User Commands 4–157

port

Specifies the serial port.

Description

The tip command is a subset of the DIGITAL UNIX tip command. It allows you to
connect directly from the motherboard to the specified serial communication port.
You can specify 1 for serial port 1, or specify 2 for serial port 2.

Example

In this example, the host system is connected to serial port 1.

EB64> tip 1

User Commands
version

version

The version command displays the current Debug Monitor firmware version
information.

Format

version
4–158 User Commands

Parameters

None.

Description

The version command displays the current Debug Monitor firmware version
information. This information is also displayed in the banner when you power up the
motherboard.

Example
EB64> version
Wed Feb 10 19:52:24 EST 1993

User Commands
wabox

wabox

The wabox�command writes to the CPU ABOX_CTL register.

Format

wabox data

Parameters
User Commands 4–159

data

Specifies the new value written to the register.

Description

The wabox command writes to the CPU ABOX_CTL register. The motherboard
does not check for valid register values.

This command applies only to Alpha motherboards based on the 21064 and 21066
microprocessors.

Example
EB64> rabox
0000000000000428
EB64> wabox 418
EB64> rabox
0000000000000418

User Commands
wb

wb

The wb command writes a byte (8 bits) to a register port in I/O address space.

Format

wb register data [iterations]

Parameters
4–160 User Commands

register

Specifies which register to write to.

data

Specifies the value that is written to the register.

iterations

Specifies how many times the data is read. The default is 1.

Description

The wb command writes a byte to the specified register in I/O address space.

Example
EB64> rb 280
28
EB64> wb 280 68
EB64> rb 280
68

User Commands
wbcfg

wbcfg

The wbcfg command writes to the backup cache configuration register.

Format

wbcfg bcfg_data [bctl_data]

Parameters
User Commands 4–161

bcfg_data

Specifies the new backup cache configuration register value.

bctl_data

Specifies the new backup cache control register value. If not supplied, the current
value remains unchanged.

Description

The wbcfg command writes to the backup cache configuration register and the
backup cache control register in the same command. If you are making a change to
the configuration register that requires a change to the control register, specify both
values in a single write to prevent the CPU from being in an inconsistent state. If the
change you are making to the backup cache configuration register does not require a
change to the control register, the second parameter is optional. The memory
controller registers are automatically changed to reflect the new state of the backup
cache.

This command is implemented only for the Alpha 21164 microprocessor family.

Example
EB164> wbcfg 1e22772 28051
Old BC_CTL = 0x00008051 & BC_CFG = 0x01E21772
New BC_CTL = 0x00028051 & BC_CFG = 0x01E22772
 CIA_CACK_EN = 0x8 & CIA_MCR = 0x0001FE21

User Commands
wbctl

wbctl

The wbctl command writes to the backup cache control register.

Format

wbctl bctl_data [bcfg_data]

Parameters
4–162 User Commands

bctl_data

Specifies the new backup cache control register value. If not supplied, the current
value remains unchanged.

bcfg_data

Specifies the new backup cache configuration register value.

Description

The wbctl command writes to the backup cache control register and the backup
cache configuration register in the same command. If you are making a change to the
control register that requires a change to the configuration register, specify both
values in a single write to prevent the CPU from being in an inconsistent state. If the
change you are making to the backup cache control register does not require a
change to the configuration register, the second parameter is optional. The memory
controller registers are automatically changed to reflect the new state of the backup
cache.

This command is implemented only for the Alpha 21164 microprocessor family.

Example
EB164> wbctl 8051
Old BC_CTL = 0x00028051 & BC_CFG = 0x01E21772
New BC_CTL = 0x00008051 & BC_CFG = 0x01E21772
 CIA_CACK_EN = 0x8 & CIA_MCR = 0x0001FE21

User Commands
wbiu

wbiu

The wbiu command writes to the CPU BIU_CTL register.

Format

wbiu data

Parameters
User Commands 4–163

data

Specifies the new value written to the register.

Description

The wbiu command writes to the CPU BIU_CTL register. The motherboard does not
check for valid register values.

Caution: Bit 2 of the BIU_CTL register cannot be cleared with this command.
Setting the OE could damage the EB64. If you are writing your own
software and accessing the BIU_CTL register, set bit 2 of this register to
1 to avoid potential damage to your hardware.

This command applies only to motherboard designs based on the Alpha 21064
microprocessor.

Example
EB64> rbiu
0000000E2001C645
EB64> wbiu E2001c545
EB64> rbiu
0000000E2001C545

User Commands
wiccsr

wiccsr

The wiccsr command writes to the CPU ICCSR register.

Format

wiccsr data

Parameters
4–164 User Commands

data

Specifies the new value written to the register.

Description

The wiccsr command writes to the CPU ICCSR register. The motherboard does not
check for valid register values.

Example
EB64> riccsr
000006F800000000
EB64> wiccsr 6f900000000
EB64> riccsr
000006F900000000

User Commands
wl

wl

The wl command writes a longword (32 bits) to a register port in I/O address space.

Format

wl register data [iterations]

Parameters
User Commands 4–165

register

Specifies which register to write to.

data

Specifies the value that is written to the register.

iterations

Specifies how many times the data is read. The default is 1.

Description

The wl command writes a longword to the specified register in I/O address space.

Example
EB64> wl 370 0000a6f3

User Commands
wrfen

wrfen

The wrfen command enables or disables floating point.

Format

wrfen value

Parameters

sed
d to
4–166 User Commands

value

Specifies a value of 0 or 1 that is written into the processor’s floating-point enable
register.

Description

The wrfen (write floating-point enable) command writes bit zero of the value pas
to the floating-point enable register in the CPU. The value of FEN is also update
the PCB.

Example
AlphaPC164> wrfen 1

User Commands
wsys

wsys

The wsys command writes to the EB64 system control register.

Format

wsys data

Parameters
User Commands 4–167

data

Specifies a value that becomes the new value of the system register.

Description

The wsys command modifies the contents of the EB64 system register. This
command applies only to the EB64.

Example
EB64> rsys
840000
EB64> wsys 177700
EB64> rsys
177700

User Commands
ww

ww

The ww command writes a word (16 bits) to a register port in I/O address space.

Format

ww register data [iterations]

Parameters
4–168 User Commands

register

Specifies which register to write to.

data

Specifies the value that is written to the register.

iterations

Specifies how many times the data is read. The default is 1.

Description

The ww command writes a word to the specified register in I/O address space. For
example, on the EB64, the word is written to the ISA extension slot.

Example
EB64> ww 370 4
EB64> rw 370
0004

 A
Support, Products, and Documentation
Support, Products, and Documentation A–1

If you need technical support, a DIGITAL Semiconductor Product Catalog, or help
deciding which documentation best meets your needs, visit the DIGITAL
Semiconductor World Wide Web Internet site:

http://www.digital.com/semiconductor

You can also call the DIGITAL Semiconductor Information Line or the DIGITAL
Semiconductor Customer Technology Center. Please use the following information
lines for support.

For documentation and general information:

DIGITAL Semiconductor Information Line

United States and Canada:
Outside North America:
Electronic mail address:

1–800–332–2717
1–510–490–4753
semiconductor@digital.com

For technical support:

DIGITAL Semiconductor Customer Technology Center

Phone (U.S. and international):
Fax:
Electronic mail address:

1–978–568–7474
1–978–568–6698
ctc@hlo.mts.dec.com

DIGITAL Semiconductor Products

Note: The following products and order numbers might have been revised. For
the latest versions, contact your local distributor.

Microprocessors

To order Alpha microprocessors, contact your local distributor.

Product Order Number

DIGITAL Semiconductor Alpha 21164 600 MHz Microprocessor 21164–MB
A–2 Support, Products, and Documentation

Motherboard Kits

Motherboard kits include the motherboard, the motherboard’s user’s manual, and
firmware.

Design Kits

Design kits include full documentation and schematics. They do not include
motherboards or related hardware.

DIGITAL Semiconductor Alpha 21164 533 MHz Microprocessor 21164–P8

DIGITAL Semiconductor Alpha 21164 466 MHz Microprocessor 21164–IB

Product Order Number

DIGITAL Semiconductor AlphaPC 164SX Motherboard Windows NT 21A05–A0

DIGITAL Semiconductor AlphaPC 164SX Motherboard DIGITAL UNIX 21A05–A1

DIGITAL Semiconductor AlphaPC 164LX Motherboard Windows NT 21A04–C0

DIGITAL Semiconductor AlphaPC 164LX Motherboard DIGITAL UNIX 21A04–C1

DIGITAL Semiconductor AlphaPC 164 Motherboard Windows NT 21A04–B0

DIGITAL Semiconductor AlphaPC 164 Motherboard DIGITAL UNIX 21A04–B2

Design Kits Order Number

DIGITAL Semiconductor AlphaPC 164 Motherboard Design Kit QR–21A04–12

DIGITAL Semiconductor Documentation

The following table lists some of the available DIGITAL Semiconductor
documentation.

(Sheet 1 of 2)

Title Order Number

Alpha AXP Architecture Reference Manual1 EY–T132E–DP

Alpha Architecture Handbook2 EC–QD2KB–TE

E

Support, Products, and Documentation A–3

DIGITAL Semiconductor 21164PC Alpha Microprocessor Hardware
Reference Manual

EC–R2W0A–TE

DIGITAL Semiconductor 21164 Alpha Microprocessor Hardware
Reference Manual

EC-QP99B-TE

DIGITAL Semiconductor AlphaPC 164SX Motherboard Product Brief EC–R57CA–TE

DIGITAL Semiconductor AlphaPC 164LX Motherboard Product Brief EC-R2RZA-TE

AlphaPC 164SX Motherboard Windows NT User’s Manual EC–R57DA–TE

AlphaPC 164LX Motherboard Windows NT User’s Manual EC–R2ZQD–TE

DIGITAL Semiconductor AlphaPC 164LX Motherboard Technical
Reference Manual

EC–R46WA–TE

DIGITAL Semiconductor AlphaPC 164 Motherboard Product Brief EC–QUQKC–T

AlphaPC 164 Motherboard User’s Manual EC–QPG0B–TE

DIGITAL Semiconductor AlphaPC 164 Motherboard Technical
Reference Manual

EC–QPFYB–TE

DIGITAL Semiconductor AlphaPC 164 Motherboard Design Kit Read
Me First

EC-QPFZA-TE

DIGITAL Semiconductor AlphaPC 164 Motherboard DIGITAL UNIX
Product Brief

EC–QZT6B–TE

AlphaPC 164 Motherboard DIGITAL UNIX User’s Manual EC–QZT5B–TE

DIGITAL Semiconductor Alpha Motherboards Software Developer’s
Kit and Firmware Update V3.1 Product Brief

EC–QXQKC–TE

Alpha Motherboards Software Developer’s Kit and Firmware Update
Read Me First

EC-QERSH-TE

Alpha Microprocessors Motherboard Software Design Tools User’s
Guide

EC-QHUWD-TE

Alpha Microprocessors Motherboard Windows NT 3.51 and 4.0
Installation Guide

EC-QLUAH-TE

Alpha Microprocessors SROM Mini-Debugger User’s Guide EC-QHUXC-TE

Alpha SRM Console for Alpha Microprocessor Motherboards User’s
Guide

EC-QK8DF-TE

PALcode for Alpha Microprocessors System Design Guide EC-QFGLC-TE

(Sheet 2 of 2)

Title Order Number
A–4 Support, Products, and Documentation

Third-Party Documentation

You can order the following third-party documentation directly form the vendor.

1 To purchase the Alpha AXP Architecture Reference Manual, contact your local distributor or call
Butterworth-Heinemann (Digital Press) at 1–800–366–2665.

2 This handbook provides information subsequent to the Alpha AXP Architecture Reference
 Manual.

Title Vendor

PCI Local Bus Specification, Revision 2.0
PCI Local Bus Specification, Revision 2.1
PCI BIOS Specification, Revision 2.1

PCI Special Interest Group
1–800–433–5177 (U.S.)
1–503–797–4207 (International)
1–503–234–6762 (Fax)

Index
A

Alpha, 1–2
documentation, A–3

Alpha SRM Console firmware, 2–11

AlphaBIOS, 2–7

apropos, 4–11

arpshow, 4–12

Audience, ix

B

C

cb, 4–21

cfreg, 4–22

cl, 4–24

Command features, 1–1

Command interface features, 4–1

Command line editing, 4–1

Command overview, 4–1

Command quick reference, 4–4

Commands
Index–1

Baud rate, 2–1

bcoff, 4–13

bcon, 4–14

beep, 4–15

boot, 2–4, 4–16

Boot address, 4–17

bootadr, 4–17

bootopt, 4–18

BOOTP, 4–96

BOOTP server
setting up, 2–4
verification of, 2–5

bootptab, 4–96, 4–98

bpstat, 4–20

usage of, 4–2
Communication ports, 2–1, 2–3

compare, 4–25

Configuring the system, 2–1

Connecting to a PC, 2–2

Connecting to a serial port, 2–4

Connecting to a system for DIGITAL UNIX,
2–3

Connecting to a system for Windows NT, 2–2

Connecting to a terminal, 2–1

Connector J12, 2–1

cont, 4–26

Conventions of document, x

copy, 4–27

cq, 4–29

creg, 4–31

cw, 4–33

D

Daemon log file, 2–5

date, 4–35

Debug Monitor commands, 4–10

Debugger
definition of, 3–1

Debugging hints, 3–1

eprom, 4–47

ereg, 4–48

eshow, 4–50

estat, 4–51

estop, 4–52

Ethernet, 2–18

Execution commands, 2–18

F

Index–2

delete, 4–36

Digital Semiconductor Information Line, A–1

DIGITAL UNIX, 1–2, 2–3

DIGITAL UNIX remote debugging, 3–1

DIGITAL UNIX tip command, 2–4

dis, 4–37

Diskette, 2–18

DMA buffers, 2–18

dml, 4–39

dmq, 4–40

Document
audience, ix
conventions, x
structure, x

Documentation, A–3

Downloading files, 2–18

Drive, 4–61, 4–65

E

ebuff, 4–41

edevice, 4–42

edmp, 4–43

einit, 4–44

eml, 4–45

emq, 4–46

Environment for PALcode, 3–3

Features, 1–1
of command interface, 4–1

fill, 4–53

Firmware update
Alpha SRM Console firmware, 2–11
AlphaBIOS, 2–7
Debug Monitor, 2–10
Windows NT ARC, 2–9

Firmware update utility, 2–5

flash, 4–55

Flash ROM, 2–6

flasherase, 4–58

flboot, 4–60

flcd, 4–61

flcopy, 4–63

fldir, 4–65

flload, 4–67

flread, 4–68

flsave, 4–70

flwrite, 4–71

fwupdate, 4–73

fwupdate.exe, 2–6

G

Getting started, 2–1

go, 2–18, 4–74

H

Hardware requirements, 2–1

help, 4–75

Host system, 2–4

I

iack, 4–77

ident, 4–78

init, 4–80

mrw, 4–92

mwb, 4–93

mwl, 4–94

mww, 4–95

N

netboot, 2–4, 4–96

netload, 2–4, 4–98

next, 4–100
Index–3

Introduction, 1–1

J

jtopal, 2–18, 4–81

K

Kernel stack, 2–17

L

Ladebug, 2–5, 3–1
command line options, 3–4
starting a session, 3–6

ladebug command, 4–82

load, 2–4, 4–84

Loading a file
from diskette, 4–60, 4–67

Loading a program, 2–18

M

Machine check, 4–86

mces, 4–85

mcheck, 4–86

Memory map, 2–16

Memory regions, 2–18

memtest, 4–88

mrb, 4–90

mrl, 4–91

O

Operating system requirements, 2–1

Ordering products, A–2

P

PALcode environment, 3–3

PALcode guidelines, 3–3

Path, 4–61, 4–65

pb, 4–102

PC
connecting to, 2–2

pcishow, 4–104

Personal computer, 2–2

pfreg, 4–106

pl, 4–107

pq, 4–109

prb, 4–111

preg, 4–112

prl, 4–113

Products
ordering, A–2

Programmable memory regions, 2–18

prw, 4–114

pw, 4–116

pwb, 4–118

pwl, 4–119

pww, 4–120

R

rabox, 4–121

rb, 4–122

rbcfg, 4–123

rbctl, 4–124

rbiu, 4–125

Setting up for remote debugging, 2–5

setty, 4–145

sl, 4–146

sq, 4–148

Stack, 2–17

step, 4–150

stop, 4–152

Structure of document, x

sum, 4–153
Index–4

Recommended host system, 1–2

Related documentation, A–3

Remote debug server, 3–1

Remote debugger
definition of, 3–1

Remote debugging, 2–5, 3–1
command line options, 3–4
executable file, 3–5
guidelines, 3–2

Requirements
host system, 2–1

Reset, 2–19

riccsr, 4–126

rl, 4–127

rmode, 4–128

romboot, 4–131

romlist, 4–134

romload, 4–135

romverify, 4–138

rsys, 4–140

rw, 4–141

S

sb, 4–142

Serial connection - DIGITAL UNIX, 2–3

Serial port, 2–1, 2–18, 4–16
connecting to, 2–4

setbaud, 4–144

Summary of commands, 4–4

sw, 4–154

swpipl, 4–155

sysshow, 4–156

System configuration, 2–1

T

Technical support, A–1

Terminal
connecting to, 2–1

tip, 4–157
DIGITAL UNIX command, 2–4

U

Updating firmware, 2–5

User commands, 4–10

UVPROM, 2–6

V

version, 4–158

W

wabox, 4–159

wb, 4–160

wbcfg, 4–161

wbctl, 4–162

wbiu, 4–163

wiccsr, 4–164

Windows NT, 1–2, 2–2

wl, 4–165

wrfen, 4–166

wsys, 4–167

ww, 4–168
Index–5

	Contents
	Figures
	Tables
	Preface
	Introduction
	1.1� Overview
	1.2� General Features
	1.3� Recommended Host System

	Getting Started
	2.1� Overview
	2.2� System Requirements
	2.3� Configuring Your System
	2.3.1� Connecting to a Terminal
	2.3.2� Connecting to a PC
	2.3.3� Connecting from a System Running Windows NT...
	2.3.4� Connecting from a System Running DIGITAL UN...
	2.3.4.1� Connecting to a Serial Port
	2.3.4.2� Setting Up the Host System As a BOOTP Ser...
	2.3.4.3� Setting Up the Host System As a Ladebug C...

	2.4� Updating the Debug Monitor Firmware
	2.4.1� Updating Firmware in a Flash ROM
	2.4.2� Updating the Flash ROM from the AlphaBIOS S...
	2.4.3� Updating the Flash ROM from the Windows NT ...
	2.4.4� Updating the Flash ROM from the Debug Monit...
	2.4.5� Updating the Flash ROM from the Alpha SRM C...
	2.4.6� Running Firmware Update
	2.4.7� Updating Firmware in a UVPROM

	2.5� Switching to the Debug Monitor Firmware on Fl...
	2.6� Debug Monitor Memory Map
	2.6.1� Stack
	2.6.2� DMA Buffers

	2.7� Downloading Files
	2.8� Execution Commands
	2.9� Resetting the Debug Monitor

	Remote Debugging
	3.1� What Is a Debugger?
	3.2� What Is a Remote Debugger?
	3.3� Remote Debug Server
	3.4� Programming Guidelines
	3.4.1� The Run-Time Environment
	3.4.2� Types of Programs
	3.4.2.1� Restriction

	3.4.3� PALcode Environment

	3.5� Ladebug Command Line Options
	3.6� Building the Executable File
	3.7� Starting a Ladebug Session

	User Commands
	4.1� Overview
	4.2� Using the Commands
	4.3� User Commands Quick Reference
	4.4� User Commands
	apropos
	arpshow
	bcoff
	bcon
	beep
	boot
	bootadr
	bootopt
	bpstat
	cb
	cfreg
	cl
	compare
	cont
	copy
	cq
	creg
	cw
	date
	delete
	dis
	dml
	dmq
	ebuff
	edevice
	edmp
	einit
	eml
	emq
	eprom
	ereg
	eshow
	estat
	estop
	fill
	flash
	flasherase
	flboot
	flcd
	flcopy
	fldir
	flload
	flread
	flsave
	flwrite
	fwupdate
	go
	help
	iack
	ident
	init
	jtopal
	ladebug
	load
	mces
	mcheck
	memtest
	mrb
	mrl
	mrw
	mwb
	mwl
	mww
	netboot
	netload
	next
	pb
	pcishow
	pfreg
	pl
	pq
	prb
	preg
	prl
	prw
	pw
	pwb
	pwl
	pww
	rabox
	rb
	rbcfg
	rbctl
	rbiu
	riccsr
	rl
	rmode
	romboot
	romlist
	romload
	romverify
	rsys
	rw
	sb
	setbaud
	setty
	sl
	sq
	step
	stop
	sum
	sw
	swpipl
	sysshow
	tip
	version
	wabox
	wb
	wbcfg
	wbctl
	wbiu
	wiccsr
	wl
	wrfen
	wsys
	ww

	Support, Products, and Documentation
	Index

