Alpha 21264/EV67
Microprocessor Hardware
Reference Manual

Order Number: DS-0028B-TE

This manual is directly derived from the internal 21264/EV67 Specifications, Revi-
sion 1.4. You can access this hardware reference manual in PDF format from the
following site:

ftp://ftp.compag.com/pub/products/alphaCPUdocs

Revision/Update Information: Thisisarevised document. It supercedes
the Alpha 21264A Microprocessor
Hardware Reference Manual
(DS—0028A-TE).

Compaq Computer Corporation
CUMPAQ Shrewsbury, Massachusetts

September 2000
The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL

ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED “AS IS” AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaq Computer Corporation.

© Compag Computer Corporation 2000.

All rights reserved. Printed in the U.S.A.

COMPAQ, the Compag logo, the Digital logo, and VAX Registered in United States Patent and Trademark Office.
Pentium is aregistered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective compa-
nies.

Alpha 21264/EV67 Hardware Reference Manual

Table of Contents

Preface

1 Introduction

11 The ArChiteCtUre o e e e 1-1
111 AdArESSING . . .ttt 1-2
1.1.2 INteger Data TYPES. . . . oo 1-2
1.1.3 Floating-Point Data TYPESo oo e 1-2
1.2 21264/EV67 MIicroproCcessor Features e 1-3
2 Internal Architecture
2.1 21264/EV6E7 MiCroarChiteCturettt e e 2-1
2.1.1 Instruction Fetch, Issue, and Retire Unit 2-2
2111 Virtual Program Counter LOgICo oot e 2-2
2112 Branch Predictor e 2-3
2113 Instruction-Stream Translation Buffer. 2-5
2114 Instruction FetCch LOgiCo e e 2-6
2.1.1.5 Register Rename Mapsot 2-6
2.1.1.6 Integer IsSsue QUEUE 2-6
2117 Floating-Point Issue QUEUE e 2-7
2118 Exception and Interrupt LOgiCo 2-8
2.1.19 Retire LOgIC. . . oot e 2-8
2.1.2 Integer Execution Unit 2-8
2.1.3 Floating-Point Execution Unit. e e e 2-10
214 External Cache and System Interface Unit 2-11
2141 Victim Address File and Victim Data File 2-11
2142 /O Write BUffer e 2-11
2143 Probe QUEUE. 2-11
2144 Duplicate Dcache Tag Arrayottt e et 2-11
2.15 Onchip Caches. 2-11
2151 Instruction Cache 2-11
2152 Data Cache. e 2-12
2.16 Memory Reference Unit. e 2-12
2.16.1 Load QUEBUE ... 2-13
2.1.6.2 StOrE QUEBUE . . o oottt 2-13
2.1.6.3 Miss Address File 2-13
2164 Dstream Translation Buffer. 2-13
217 SROM INterface 2-13
2.2 Pipeline Organization 2-13
221 Pipeline ADOrtS e 2-16
2.3 Instruction Issue RUIES 2-16

Alpha 21264/EV67 Hardware Reference Manual iii

23.1 Instruction Group Definitions 2-17
2.3.2 EDOX SIOtting e 2-18
2.3.3 INStruction LatenCies it 2-20
2.4 Instruction Retire RUIES 2-21
2.4.1 Floating-Point Divide/Square Root Early Retire. 2-22
25 Retire of Operate Instructions into R31/F31 i 2-22
2.6 Load Instructions to R31 and F3L 2-23
2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions 2-23
2.6.2 Prefetch with Modify Intent: LDS Instruction i, 2-23
2.6.3 Prefetch, Evict Next: LDQ and HW_LDQ Instructions 2-24
2.6.4 Prefetch with the LDx_L / STx_C Instruction Sequence 2-24
2.7 Special Cases of Alpha Instruction EXecution. 2-24
271 Load Hit Speculation e 2-24
2.7.2 Floating-Point Store INStructions e 2-26
2.7.3 CMOV INSHIUCHION . . . o 2-26
2.8 Memory and I/0O Address Space Instructions i, 2-27
2.8.1 Memory Address Space Load Instructions i 2-27
2.8.2 I/O Address Space Load InStructions. e 2-28
2.8.3 Memory Address Space Store INStructions 2-29
28.4 I/O Address Space Store InStructions 2-29
29 MAF Memory Address Space MergingRules i i 2-30
2.10 INStrUCHON Ordering. . . . vt e e e 2-30
2.11 ReEpIaY TrapS . . oot 2-31
2111 MBOX Order Trapsottt e e e 2-31
21111 Load-Load Order Trapottt e e e e 2-32
2.111.2 Store-Load Order Trapo oot 2-32
2.11.2 Other Mbox Replay Trapso e e e e 2-32
2.12 I/O Write Buffer and the WMB INStructionot e 2-32
2121 Memory Barrier (MB/WMB/TB Fill Flow) i 2-32
21211 MB InStruction ProCessingottt e e e 2-33
2.12.1.2 WNMB INStruction ProCessiNg.o oottt e 2-34
2.12.1.3 TB Rl FIOW . .. 2-34
2.13 Performance Measurement Support—Performance Counters 2-36
2.14 Floating-Point Control Register. e e 2-36
2.15 AMASK and IMPLVER Instruction Values i 2-38
2.15.1 AMASK . . 2-38
2.15.2 IMPLVER . . .o 2-38
2.16 Design EXamples e 2-39
Hardware Interface

3.1 21264/EV67 Microprocessor Logic Symbol e 3-1
3.2 21264/EV67 Signal Names and FUNCLIONS i e 3-3
3.3 Pin ASSIgNMENtS e 3-8
3.4 Mechanical Specifications. e 3-17
3.5 21264/EVET Packaging. . . . oot 3-18
Cache and External Interfaces

4.1 Introduction to the External Interfaces. 4-1
41.1 System Interface e 4-3
4111 Commands and AdAreSSesS.ttt 4-4
4.1.2 Second-Level Cache (Bcache) Interface i 4-4
4.2 Physical Address Considerationst e 4-4
4.3 Bcache StruCtUre.o 4-7
43.1 Bcache Interface Signals 4-7

Alpha 21264/EV67 Hardware Reference Manual

43.2 System Duplicate Tag Stores.ot e 4-7

4.4 Victim Data Buffer e 4-8
4.5 Cache CoNBIENCY . . . e e e e 4-8
45.1 Cache Coherency BasiCS.ottt 4-8
45.2 Cache BIOCK Statest e 4-9
453 Cache Block State Transitions. e 4-10
454 Using SysDC Commandso 4-11
455 Dcache States and Duplicate Tags.o vttt e 4-13
4.6 Lock MeChanismo 4-14
4.6.1 In-Order Processing of LDx_L/STx_C Instructionsovvuu... 4-15
4.6.2 Internal Eviction of LDX_L Blocks. 4-15
4.6.3 Liveness and Fairnesso 4-15
46.4 Managing Speculative Store Issues with Multiprocessor Systems 4-16
4.7 SYS M POrt. . . e 4-16
4.7.1 SYStemM POt PiNS . .. e e 4-17
4.7.2 Programming the System Interface Clocks 4-18
4.7.3 21264/EV6E7-t0-System Commands.ot vttt e 4-19
4731 Bank Interleave on Cache Block Boundary Mode 4-19
4.7.3.2 Page Hit Mode 4-20
47.4 21264/EV67-to-System Commands Descriptions i 4-21
4.7.5 ProbeResponse Commands (Command[4:0] =00001)...................c.. ... 4-24
4.7.6 SysAck and 21264/EV67-to-System Commands Flow Control 4-25
4.7.7 System-t0-21264/EVE7 COmMmMands.ttt e 4-26
47.7.1 Probe Commands (Four Cycles) e 4-26
47.7.2 Data Transfer Commands (TwWo Cycles).t 4-28
4.7.8 Data Movement In and Out of the 21264/EV67 i 4-30
47.8.1 21264/EV6E7 Clock BasiCS.o 4-30
4.7.8.2 FastData Mode e 4-31
4.7.8.3 Fast Data Disable Mode 4-33
47.8.4 SysDatalnValid_L and SysDataOutValid_L 4-34
4.7.85 SysFillValid_L 4-35
4.7.8.6 Data Wrappingt e 4-36
4.7.9 Nonexistent Memory ProCessSiNg oo v it 4-38
4.7.10 Ordering of System Port Transactions.ottt e i 4-40
4.7.10.1 21264/EV67 Commands and System Probes 4-40
4.7.10.2 System Probes and SysDc Commands 4-42
4.8 Bcache PoOrt.o 4-42
48.1 Bcache Port Pins e 4-43
4.8.2 Bcache CloCKINg oo e 4-44
48.2.1 Setting the Period ofthe Cache Clock 4-45
4.8.3 Bcache Transactions 4-47
48.3.1 Bcache Data Read and Tag Read Transactions 4-47
4.8.3.2 Bcache Data Write Transactionsot 4-48
48.3.3 Bubblesonthe Bcache Data BUS e 4-49
4.8.4 Pin DeSCHiPtiONSo 4-51
48.4.1 BCAdA _H[23:4] . . o 4-51
48.4.2 Bcache Control PiNSo 4-52
4.8.4.3 BcDatalnClk_H and BcTagInCIK_H 4-53
4.8.5 Bcache Banking e 4-54
4.8.6 Disabling the Bcache for Debugging 4-54
4.9 I EITUPES . . oo 4-54

5 Internal Processor Registers

5.1 EDOX [P RS . o 5-3
511 Cycle Counter Register — CC. e e 5-3
5.1.2 Cycle Counter Control Register —CC_CTLottt 5-3

Alpha 21264/EV67 Hardware Reference Manual v

5.13 Virtual Address Register — VA 5-4
5.14 Virtual Address Control Register —VA_CTL 5-4
5.1.5 Virtual Address Format Register —VA_FORM. 5-5
5.2 DOX [P RS . .o 5-6
5.2.1 ITB Tag Array Write Register — ITB_TAGt e 5-6
5.2.2 ITB PTE Array Write Register —ITB_PTE e 5-6
5.2.3 ITB Invalidate All Process (ASM=0) Register —ITB_IAP 5-7
5.2.4 ITB Invalidate All Register — ITB_IA. e 5-7
5.2.5 ITB Invalidate Single Register —ITB_IS. i 5-7
5.2.6 ProfileMe PC Register — PMPC e 5-8
5.2.7 Exception Address Register —EXC_ADDR i 5-8
5.2.8 Instruction Virtual Address Format Register — IVA_FORM. 5-9
5.2.9 Interrupt Enable and Current Processor Mode Register —IER_CM. 5-9
5.2.10 Software Interrupt Request Register —SIRR 5-10
5.2.11 Interrupt Summary Register — ISUM e 5-11
5.2.12 Hardware Interrupt Clear Register —HW_INT_CLR 5-12
5.2.13 Exception Summary Register —EXC_SUM i 5-13
5.2.14 PAL Base Register — PAL_BASE e 5-15
5.2.15 Ibox Control Register — I_CTLt e e 5-15
5.2.16 Ibox Status Register — | ST ATo e 5-18
5.2.17 Icache Flush Register — IC_FLUSH e e 5-21
5.2.18 Icache Flush ASM Register —IC_FLUSH_ASM 5-21
5.2.19 Clear Virtual-to-Physical Map Register —CLR_MAP it 5-21
5.2.20 Sleep Mode Register — SLEEP 5-21
5.2.21 Process Context Register — PCTX. it 5-21
5.2.22 Performance Counter Control Register —-PCTR_CTL it 5-23
53 MBOX P RS . . 5-25
53.1 DTB Tag Array Write Registers 0 and 1 — DTB_TAGO, DTB_TAG1 5-25
5.3.2 DTB PTE Array Write Registers 0 and 1 — DTB_PTEO,DTB_PTELl............... 5-26
5.3.3 DTB Alternate Processor Mode Register - DTB_ALTMODE. 5-26
534 Dstream TB Invalidate All Process (ASM=0) Register—DTB_IAP 5-27
5.35 Dstream TB Invalidate All Register —DTB_IA e 5-27
5.3.6 Dstream TB Invalidate Single Registers0and 1-DTB_IS0,1 5-27
5.3.7 Dstream TB Address Space Number Registers0and 1 —DTB_ASNO,1 5-28
5.3.8 Memory Management Status Register —- MM_STAT i 5-28
5.3.9 Mbox Control Register — M_CTLo e 5-29
5.3.10 Dcache Control Register —DC_CTL it 5-30
5.3.11 Dcache Status Register — DC_STATottt 5-31
5.4 Chox CSRs and IPRS o 5-32
5.4.1 Chox Data Register — C_DAT A e e e 5-33
5.4.2 Chox Shift Register — C_SHFT e e e 5-33
543 Cbox WRITE_ONCE Chain Descriptiont 5-33
5.4.4 Cbox WRITE_MANY Chain Descriptiont 5-38
545 Cbox Read Register (IPR) Description e 5-41
6 Privileged Architecture Library Code
6.1 PALcode DeSCriptioN. . . .ot e 6-1
6.2 PALMoOde Environment e 6-2
6.3 Required PALcode Function Codest e 6-3
6.4 Opcodes Reserved for PALCOE.t e 6-3
6.4.1 HW_LD INStruCtioN.o e e e e 6-3
6.4.2 HW ST INStruCtion.o e e 6—4
6.4.3 HW _RET INStruction e e e e 6-5
6.4.4 HW_MFPR and HW_MTPR INStructions i e e e 6—6
6.5 Internal Processor Register Access Mechanisms. i, 6—7
6.5.1 IPR Scoreboard BitS. 6-8

vi

Alpha 21264/EV67 Hardware Reference Manual

6.5.2 Hardware Structure of Explicitly Written IPRS

6.5.3 Hardware Structure of Implicitly Written IPRs
6.5.4 IPR ACCESS OrerNg . . v v oottt et et e e e e e e e e
6.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers.
6.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers.
6.6 PALShadow RegiSters
6.7 PALcode Emulation of the FPCR e
6.7.1 StatuS Flags oo e
6.7.2 ME P C R .
6.7.3 MT P C R . .
6.8 PALCOdE ENtry POINtSo e
6.8.1 CALL_PAL Entry POINtS.o e
6.8.2 PALcode Exception Entry POINtS
6.9 Translation Buffer (TB) Fill Flows e
6.9.1 DB Fill ..
6.9.2 B Rl .o
6.10 Performance Counter SUPPOItottt
6.10.1 General Precautions e
6.10.2 Aggregate Mode Programming Guidelines
6.10.2.1 Aggregate Mode Precautions e
6.10.2.2 OPeratiON . .o e
6.10.2.3 Aggregate Counting Mode Description. e
6.10.2.3.1 CyCle COUNtING . . .ot e e
6.10.2.3.2 Retired instructions cycles.
6.10.2.3.3 Bcache miss or long latency probescycles.
6.10.2.3.4 Mbox replay traps CYCleSo
6.10.2.4 Counter Modes for Aggregate Mode. i e
6.10.3 ProfileMe Mode Programming Guidelines i
6.10.3.1 ProfileMe Mode Precautions.t
6.10.3.2 OPeratioON . . o
6.10.3.3 ProfileMe Counting Mode Description
6.10.3.3.1 CyCle COUNtINGottt e
6.10.3.3.2 Inumretire delay cycles. e
6.10.3.3.3 Retired instructions cycles.
6.10.3.3.4 Bcache miss or long latency probescycles.
6.10.3.3.5 Mbox replay traps CYCleSo
6.10.3.4 Counter Modes for ProfileMe Mode i

7 Initialization and Configuration

7.1 Power-Up Reset Flow and the Reset Land DCOK HPins.........................
7.1.1 Power Sequencing and Reset State for SignalPins
7.1.2 Clock Forwarding and System Clock Ratio Configuration
7.1.3 PLL RamMpP Up. .t
7.1.4 BiST and SROM Load andthe TestStat HPin
7.1.5 Clock Forward Reset and System Interface Initialization.
7.2 Fault Reset FIOWo
7.3 Energy Star Certification and SleepMode Flow
7.4 Warm Reset FIOWo
7.5 Array Initialization
7.6 Initialization Mode Processing.ottt e
7.7 External Interface Initialization
7.8 Internal Processor Register Power-Up ResetState
7.9 IEEE 1149.1 Test POrt ReSeto e
7.10 Reset State Machine.
7.11 Phase-Lock Loop (PLL) Functional Description i
7.111 Differential Reference Clocks.

Alpha 21264/EV67 Hardware Reference Manual

[T | ~N N~
PRrERPRP L
ANNR OONO®

\ll\ll\ll\ll\l\l\l\l\l
e e
© oo s

|
[y
©

vii

10

11

viii

7.11.2 PLL Output CIOCKS oo e e e 7-19

7.11.2.1 GCLK L 7-19
7.11.2.2 Differential 21264/EV67 Clocks 7-19
7.11.2.3 Nominal Operating FrequencCy e i 7-19
7.11.2.4 Power-Up/Reset CIOCKING.ottt e e e 7-20

Error Detection and Error Handling

8.1 Data Error Correction Code.ttt 8-2
8.2 Icache Data or Tag Parity Error.t e e 8-2
8.3 Dcache Tag Parity Error e 8-2
8.4 Dcache Data Single-Bit Correctable ECC Error i 8-3
8.4.1 Load INStrUCtioNo 8-3
8.4.2 Store Instruction (Quadword or Smaller) 84
8.4.3 Dcache Victim EXIractso 8-4
8.5 Dcache Store Second ErfOr 84
8.6 Dcache Duplicate Tag Parity Errorot e e e 84
8.7 Bcache Tag Parity Error e e e e 8-5
8.8 Bcache Data Single-Bit Correctable ECC EITOrttt 8-5
8.8.1 Icache Fill from Bcache e 8-5
8.8.2 Dcache Fillfrom Bcache 8-6
8.8.3 Bcache Victim Read. 8-6
8.8.3.1 Bcache Victim Read During a Dcache/Bcache Miss 8-6
8.8.3.2 Bcache Victim Read During an ECB Instruction. 8-7
8.9 Memory/System Port Single-Bit Data Correctable ECCError. 8-7
8.9.1 Icache Fill from Memory. e 8-7
8.9.2 Dcache Fill from Memory 8-7
8.10 Bcache Data Single-Bit Correctable ECC ErroronaProbe 8-8
8.11 Double-Bit Fill EITOrSo 8-9
8.12 Error Case SUMMIANY. . . .o oot e e e e e e e 8-9
Electrical Data

9.1 Electrical CharaCteristiCso e 9-1
9.2 DC CharaCteristiCsottt 9-2
9.3 Power Supply Sequencing and Avoiding Potential Failure Mechanisms 9-5
9.4 AC CharaCteristiCS. . . . vttt 9-6

Thermal Management
10.1 Operating TEMPEIatUreottt e e e et e e e et e e 10-1
10.2 Heat Sink Specifications e e 10-3
10.3 Thermal Design Considerations it e e e 10-7
Testability and Diagnostics

111 TSt PINS . .o 111
11.2 SROM/Serial Diagnostic Terminal Port. 11-2
11.21 SROM Load Operation.ottt e e e 11-2
11.2.2 Serial Terminal Port 11-2
11.3 IEEE 1149.0 PO, . . oot 11-3
11.4 TestStat H Pin e 114
115 Power-Up Self-Test and Initialization 11-5
1151 Built-in Self-Test. e 11-5

Alpha 21264/EV67 Hardware Reference Manual

1152 SROM Initialization. 11-5
115.2.1 Serial Instruction Cache Load Operation, 11-6
11.6 Notes on IEEE 1149.1 Operationand Compliance i, 11-7

A AlphaInstruction Set

Al Alpha INStruction SUMMArY e e A-1
A2 Reserved OpCOUESt e A-8
A2.1 Opcodes Reserved for CoOmMpPag. . . . - vt v et e A-8
A2.2 Opcodes Reserved for PALCOMEot e A-9
A3 IEEE Floating-Point INStrUCtioONS i e e e e A-9
A4 VAX Floating-Point INStruCtions.o e e A-11
A5 Independent Floating-Point INStructions i A-11
A.6 OPCOTE SUMMANYttt it e e e e e e e e e e e e e e e e e et e A-12
A7 Required PALcode Function Codest e A-13
A.8 IEEE Floating-Point Conformance e e A-14

B 21264/EV67 Boundary-Scan Register

B.1 Boundary-Scan Register B-1
B.1.1 BSDL Description of the Alpha 21264/EV67 Boundary-Scan Register B-1
C Serial Icache Load Predecode Values
D PALcode Restrictions and Guidelines
D.1 Restriction 1 : Reset Sequence Required by Retire Logic and Mapper. D-1
D.2 Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group D-8
D.3 Restriction 4 : No Writers and Readers to IPRs in Same Scoreboard Group D-8
D.4 Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-Modify-Write D-9
D.5 Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/ITOF D-9
D.6 Restriction 9 : PALmode Istream Address Ranges, D-10
D.7 Restriction 10: Duplicate IPR Mode Bits i D-10
D.8 Restriction 11: Ibox IPR Update Synchronization D-11
D.9 Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR, IVA_FORM, and EXC_SUM D-11
D.10 Restriction 13 : DTB Fill Flow Collision e D-11
D.11 Restriction 14 : HW _RET e e e e e e D-11
D.12 Guideline 16 : JSR-BAD VA . .. D-12
D.13 Restriction 17: MTPR to DTB_TAGO/DTB_PTEO/DTB_TAG1/DTB_PTE1 D-12
D.14 Restriction 18: No FP Operates, FP Conditional Branches, FTOI, or STF in Same Fetch Block as
HW M PR D-12
D.15 Restriction 19: HW_RET/STALL After Updating the FPCR by way of MT_FPCR in PALmode D-12
D.16 Guideline 20 :|_CTL[SBE] Stream BufferEnable............... D-12
D.17 Restriction 21: HW_RET/STALL After HW_MTPR ASNO/ASNL. D-12
D.18 Restriction 22: HW_RET/STALL After HW_MTPRISO/IS1. i, D-13
D.19 Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the Lock Flag. D-13
D.20 Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM, CLEAR_MAP D-
14
D.21 Restriction 25: HW_MTPR ITB_IA After Reset. it i D-14
D.22 Guideline 26: Conditional Branches in PALcode i, D-14
D.23 Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode. D-15
D.24 Restriction 28: Enforce Ordering Between IPRs Implicitly Written by Loads and Subsequent Loads
D-15
D.25 Guideline 29 : JSR, JMP, RET, and JSR_COR inPALcode. D-15

Alpha 21264/EV67 Hardware Reference Manual ix

D.26
D.27
D.28
D.29
D.30
D.31
D.32
D.33
D.34
D.35
D.36
D.37
D.38
D.39
D.40
D.41
D.42
D.43
D.44

Restriction 30 : HW_MTPR and HW_MFPR tothe Cbox CSR. D-15
Restriction 31 : |_CTL[VA_48]Updatet D-17
Restriction 32 : PCTR_CTL Update e i D-17
Restriction 33 : HW_LD Physical/Lock Use. i e e D-18
Restriction 34 : Writing Multiple ITB Entries in the Same PALcode Flow D-18
Guideline 35:HW_INT_CLR Update D-18
Restriction 36 : Updating |_CTL[SDE]. e D-18
Restriction 37 : Updating VA_CTL[VA 48]o D-18
Restriction 38 : Updating PCTR_CTLot e e e e e D-18
Guideline 39: Writing Multiple DTB Entries in the Same PALFlow. D-19
Restriction 40: Scrubbing a Single-Bit Error D-19
Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block. D-21
Restriction 42: Updating VA_CTL, CC_CTL,orCCIPRSt D-21
Restriction 43: No Trappable Instructions Along with HW_MTPR. D-21
Restriction 44: Not Applicable to the 21264/EV67 D-21
Restriction 45: No HW_JMP or JMP Instructions in PALcode D-21
Restriction 46: Avoiding Live locks in Speculative Load CRD Handlers D-22
Restriction 47: Cache Eviction for Single-Bit Cache Errors D-22

Restriction 48:

D-24

MB Bracketing of Dcache Writes to Force Bad Data ECC and Force Bad Tag Parity

E 21264/EV67-to-Bcache Pin Interconnections

E.1
E.2
E.3

Glossary

Index

Forwarding Clock Pin Groupings.ot e
Late-Write Non-Bursting SSRAMs
Dual-Data Rate SSRAMS e

Alpha 21264/EV67 Hardware Reference Manual

Figures

2-1 21264/EVET Block Diagram
2-2 Branch PrediCtor e
2-3 Local Predictor e
2-4 Global PrediCtor. e
2-5 Choice Predictor
2-6 Integer Execution Unit—Clusters0and 1.t
2-7 Floating-Point Execution UNits e e e e
2-8 Pipeline Organization
2-9 Pipeline Timing for Integer Load Instructions i,
2-10 Pipeline Timing for Floating-Point Load Instructions.
2-11 Floating-Point Control Register. e e e e
2-12 Typical Uniprocessor Configurationt i
2-13 Typical Multiprocessor Configuration i e
3-1 21264/EV67 Microprocessor Logic Symbol
3-2 Package DImeNnSIOoNS.o e
3-3 21264/EV6ET Top View (PINDOWN)o e
34 21264/EV6ET Bottom View (PINUP)o e e
4-1 21264/EV67 System and Bcache Interfaces.
4-2 21264/EV67 Bcache Interface Signals i e
4-3 Cache Subset Hierarchy e
4-4 System Interface Signals. e
4-5 Fast Transfer Timing Example e e
4-6 SysFillValid_L Timingttt e e
5-1 Cycle Counter REgIStErot e e e e e
5-2 Cycle Counter Control Register. e e e e e
5-3 Virtual Address Registero
5-4 Virtual Address Control Register.
5-5 Virtual Address Format Register (VA_48 =0, VA_ FORM_32=0)....................
5-6 Virtual Address Format Register (VA_48=1,VA FORM_32=0)....................
5-7 Virtual Address Format Register (VA_48=0,VA FORM_32=1)....................
5-8 ITB Tag Array Write Register e e e
5-9 ITB PTE Array Write RegiSter e e e
5-10 ITB Invalidate Single Register. e
5-11 ProfileMe PC RegiSter.o
5-12 Exception Address Register i e
5-13 Instruction Virtual Address Format Register (VA_48 =0, VA_FORM_32=0)
5-14 Instruction Virtual Address Format Register (VA_48=1, VA FORM_32=0)
5-15 Instruction Virtual Address Format Register (VA_48 =0, VA_FORM_32=1)
5-16 Interrupt Enable and Current Processor Mode Register.o ...
5-17 Software Interrupt Request Register. e
5-18 Interrupt Summary Register e
5-19 Hardware Interrupt Clear Register e e
5-20 Exception Summary Register o
5-21 PAL Base RegiStero
5-22 Ibox Control RegiSter. e
5-23 Ibox Status Register
5-24 Process Context RegiStert e e e
5-25 Performance Counter Control Register. e
5-26 DTB Tag Array Write Registers 0and 1 e
5-27 DTB PTE Array Write Registers0and 1.
5-28 DTB Alternate Processor Mode Register e
5-29 Dstream Translation Buffer Invalidate Single Registers
5-30 Dstream Translation Buffer Address Space Number RegistersOand 1................
5-31 Memory Management Status Register i e
5-32 Mbox Control Register.
5-33 Dcache Control Register e

Alpha 21264/EV67 Hardware Reference Manual

2-3
2-4
2-4
2-5

2-9
2-10
2-14
2-25
2-26
2-36
2-39
2-40

3-2
3-17
3-18
3-19

4-3

4-7

4-17
4-32
4-36

[
(2N I e RNé)

COLNeeeey
0 00NN

© ©

T
[y
o

Xi

Xii

11-2
11-3
11-4

Dcache Status Register. e 5-32

Chox Data RegiSter. e 5-33
ChoX Shift RegISter . . . e 5-33
WRITE_MANY Chain Write Transaction Example 5-39
HW_LD Instruction Formatt e e e 6—4
HW_ST Instruction Format e e e e 6—4
HW_RET Instruction Format e e e e 6—6
HW_MFPR and HW_MTPR Instructions Format 6—6
Single-Miss DTB Instructions Flow Example. i 6-14
ITB Miss Instructions Flow Example i e 6-16
Power-Up Timing SEqUENCEttt e e et e e 7-3
Fault Reset Sequence of Operation e 7-9
Sleep Mode Sequence of Operationttt 7-11
Example for Initializing Bcache 7-13
21264/EV67 Reset State Machine State Diagram i 7-17
Type L Heat SinK. .. .o e 104
Type 2 Heat SinK. . . .o 10-5
Type 3Heat SinK. e 10-6
TAP Controller State Machine. 11-4
TestStat_H Pin Timing During Power-Up Built-In Self-Test (BiST) 11-5
TestStat_H Pin Timing During Built-In Self-Initialization (BiSI) 11-5
SROM Content Map . .. oottt e 11-6

Alpha 21264/EV67 Hardware Reference Manual

Tables

1-1 INteger Data TYPES . . .o oottt et e
2-1 Pipeline Abort Delay (GCLK CyCles).o e e e e
2-2 Instruction Name, Pipeline, and TYpest e e
2-3 Instruction Group Definitions and Pipeline Unit.
2-4 Instruction Class Latency in CycCles. o e e e e
2-5 Minimum Retire Latencies for Instruction Classesc ..
2-6 Instructions Retired Without Execution i
2-7 Rules for I/O Address Space Load Instruction DataMerging
2-8 Rules for I/O Address Space Store Instruction Data Merging.
2-9 MAF Merging RUIES.
2-10 Memory Reference Ordering.ottt e e
2-11 I/O Reference Ordering oottt e e e
2-12 TBFill Flow Example Sequence 1 e e e e
2-13 TBFill Flow Example Sequence 2 e
2-14 Floating-Point Control Register Fields.
2-15 21264/EVE7 AMASK ValUES oot e
2-16 AMASK Bit ASSIgNMENtSt
3-1 Signal Pin Types Definitions e
3-2 21264/EV67 Signal DesCriptioNS.ot
3-3 21264/EV67 Signal Descriptions by Function.
3-4 Pin List Sorted by Signal Name.
3-5 Pin List Sorted by PGA Location.
3-6 Ground and Power (VSS and VDD) Pin List it
4-1 Translation of Internal References to External Interface Reference
4-2 21264/EV67-Supported Cache Block States i
4-3 Cache Block State Transitions e
4-4 System Responses to 21264/EV67 CommandsSot
4-5 System Responses to 21264/EV67 Commands and 21264/EV67 Reactions.
4-6 SYStEemM POt PiNS. . . .o
4-7 Programming Values for System Interface Clocks
4-8 Program Values for Data-Sample/Drive CSRS i
4-9 Forwarded Clocks and Frame Clock Ratio
4-10 Bank Interleave on Cache Block Boundary Mode of Operation
4-11 Page Hit Mode of Operation e
4-12 21264/EV67-to-System Command Fields Definitions
4-13 Maximum Physical Address for ShortBus Format
4-14 21264/EV67-to-System Commands Descriptions. i
4-15 Programming INVAL_TO_DIRTY_ENABLE[L:0].o e
4-16 Programming SET_DIRTY_ENABLE[2:0]. oot
4-17 21264/EV67 ProbeResponse Commandttt
4-18 ProbeResponse Fields Descriptions
4-19 System-t0-21264/EV67 Probe Commandst
4-20 System-t0-21264/EV67 Probe Commands Fields Descriptions
4-21 Data Movement Selection by Probe[4:3].
4-22 Next Cache Block State Selection by Probe[2:0] i
4-23 Data Transfer Command Format
4-24 SysDCc[4:0] Field DesCription oo
4-25 SYSCLK Cycles Between SysAddOutand SysData.ciiiiiiinnnnn.
4-26 Chox CSR SYSDC_DELAY[4:0]Examples
4-27 Four Timing EXamples
4-28 Data Wrapping RUIES e
4-29 SystemWrap and Deliver Data.
4-30 Wrap Interleave Order.ot
4-31 Wrap Order for Double-Pumped Data Transfers.
4-32 21264/EV67 Commands with NXM Addresses and System Response
4-33 21264/EV67 Response to System Probe and In-Flight Command Interaction

Alpha 21264/EV67 Hardware Reference Manual

Xiii

4-34 Rules for System Control of Cache Status Update Order. 4-42

4-35 Range of Maximum Bcache Clock Ratios. 4-43
4-36 Bcache Port Pins. 4-43
4-37 BC_CPU_CLK_DELAY[L:0]VaAlUESttt e e e 4-45
4-38 BC_CLK_DELAY[L:0]Values oottt e e e e e e 4-45
4-39 Program Values to Set the Cache Clock Period (Single-Data) 4-46
4-40 Program Values to Set the Cache Clock Period (Dual-Data Rate) 4-46
4-41 Data-Sample/Drive ChoX CSRS e e 4-47
4-42 Programming the Bcache to Support Each Size ofthe Bcache 4-51
4-43 Programming the Bcache Control Pins i e e 4-52
4-44 Control Pin Assertion for RAM_TYPE A e e e 4-52
4-45 Control Pin Assertion for RAM_TYPE B e e 4-52
4-46 Control Pin Assertion for RAM_TYPE C e 4-53
4-47 Control Pin Assertion for RAM_TYPE D e 4-53
5-1 Internal Processor REgiSterS i 5-1
5-2 Cycle Counter Control Register Fields Description. 5-4
5-3 Virtual Address Control Register Fields Description 5-5
5-4 ProfileMe PC Fields Description e e 5-8
5-5 IER_CM Register Fields Description. e e 5-10
5-6 Software Interrupt Request Register Fields Description 5-11
5-7 Interrupt Summary Register Fields Description. 5-12
5-8 Hardware Interrupt Clear Register Fields Description. o, 5-13
5-9 Exception Summary Register Fields Description i, 5-14
5-10 PAL Base Register Fields Description 5-15
5-11 Ibox Control Register Fields Description. e 5-16
5-12 Ibox Status Register Fields Description 5-19
5-13 IPR Index Bits and Register Fields e 5-21
5-14 Process Context Register Fields Descriptionc. .. 5-22
5-15 Performance Counter Control Register Fields Description 5-24
5-16 Performance Counter Control Register Input Select Fields. 5-25
5-17 DTB Alternate Processor Mode Register Fields Description. 5-27
5-18 Memory Management Status Register Fields Description 5-28
5-19 Mbox Control Register Fields Description. i 5-30
5-20 Dcache Control Register Fields Description i 5-31
5-21 Dcache Status Register Fields Description. i e i 5-32
5-22 Cbox Data Register Fields Description e 5-33
5-23 Cbox Shift Register Fields Description e 5-33
5-24 Cbox WRITE_ONCE Chain Orderttt i 5-34
5-25 Cbox WRITE_MANY Chain Ordert e e 5-39
5-26 Cbox Read IPR Fields DesCription e e e 5-41
6-1 Required PALcode FUNCtioNn Codesttt e e 6-3
6-2 Opcodes Reserved for PALCOOE.ot e e e 6-3
6-3 HW_LD Instruction Fields Descriptions. e 6-4
6-4 HW_ST Instruction Fields Descriptions. e e 6-5
6-5 HW_RET Instruction Fields Descriptions 66
6-6 HW_MFPR and HW_MTPR Instructions Fields Descriptions 6—7
6-7 Paired Instruction Fetch Order e 6-9
6-8 PALcode Exception Entry LOCAtIONSottt e 6-13
6-9 IPRs Used for Performance Counter SUPPOrt.ottt e e 6-18
6-10 Aggregate Mode Returned IPR Contentst 6-19
6-11 Aggregate Mode Performance Counter IPR Input SelectFields. 6-20
612 CMOV DECOMPOSEA . . . o oottt e e e e 6-21
6-13 ProfileMe Mode Returned IPR CONtentS.ot 6-22
6-14 ProfileMe Mode PCTR_CTL Input SelectFields. 624
7-1 21264/EV67 Reset State Machine Major Operations oo, 7-1
7-2 Signal Pin Reset State e 7-3
7-3 Pin Signal Names and Initialization State i 7-5
7-4 Power-Up Flow Signals and Their Constraints, -7
7-5 Effect on IPRs After Fault Reset 7-8

Xiv Alpha 21264/EV67 Hardware Reference Manual

Effect on IPRs After Transition Through SleepMode
Signals and Constraints for the Sleep Mode Sequence
Effect on IPRs After Warm Reset
WRITE_MANY Chain CSR Values for Bcache Initialization
Internal Processor Registers at Power-Up Reset State
21264/EV67 Reset State Machine State Descriptions
Differential Reference Clock Frequencies in Full-Speed Lock
21264/EV67 Error Detection Mechanisms i
64-Bit Data and Check Bt ECC Code.ttt e
Error Case SUMMIANY. . . .o oo e e e e e e e e e
Maximum Electrical Ratings i
SIgNaAl TYPES . . .ot
VDD (ILDC_POWER) . ..ottt e e e e
Input DC Reference Pin (I_LDC_REF) e
Input Differential Amplifier Receiver (I_DA). e
Input Differential Amplifier Clock Receiver (I_DA CLK)
Pin Type: Open-Drain Output Driver (O_OD)o e
Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA_OD)
Pin Type: Open-Drain Driver for Test Pins (O_OD_TP) i
0 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA_PP)
1 Push-Pull Qutput Driver (O_PP) e e e e
2 Push-Pull Output Clock Driver (O_PP_CLK). e
3 AC Specifications e
1 Operating Temperature at Heat Sink Center (TC)ot
10-2 qca at Various Airflows for 21264/EVE7o e
10-3 Maximum Ta for 21264/EV67 @ 600 MHz and @ 2.0 V with Various Airflows
10-4 Maximum Ta for 21264/EV67 @ 667 MHz and @ 2.0 V with Various Airflows
10-5 Maximum Ta for 21264/EV67 @ 700 MHz and @ 2.0 V with Various Airflows
10-6 Maximum Ta for 21264/EV67 @ 733 MHz and @ 2.0 V with Various Airflows
10-7 Maximum Ta for 21264/EV67 @ 750 MHz and @ 2.0 V with Various Airflows
10-8 Maximum Ta for 21264/EV67 @ 833 MHz and @ 2.0 V with Various Airflows
111 Dedicated Test Port Pins. e
11-2 IEEE 1149.1 Instructions and Opcodesttt e
11-3 Icache Bit Fields inan SROM LINEt e
A-1 Instruction Format and Opcode Notation
A-2 Architecture INStrUCtiONSo e
A-3 Opcodes Reserved for COmMpPaq -o oottt e e
Opcodes Reserved for PALCOOE.o e
IEEE Floating-Point Instruction Function Codes.
VAX Floating-Point Instruction Function Codes
Independent Floating-Point Instruction FunctionCodes
OPCOTE SUMMANY ettt et et e e e e e e e e e e e et e e
Key to Opcode Summary Usedin Table A—8
Required PALcode FUNction Codesttt e
Exceptional Input and Output Conditions

Bcache Forwarding Clock Pin Groupings oo it e e
Late-Write Non-Bursting SSRAMs DataPinUsageciiiiiiiinnn...
Late-Write Non-Bursting SSRAMs Tag PinUsage
Dual-Data Rate SSRAM Data PinUsaget
Dual-Data Rate SSRAM Tag PinUsage. it e

IIIIICIDI\‘\‘\‘I\‘\‘\‘\‘
WNPRP WONRPRPRPERPROONOD®
N~ O

|
N

11
oo

|
el el)

I—‘@@@LOLOLO@GR@LOLOLO@@@
~N O O

[|
I

= O

TEMTTRREITLILT
OORRWONRPRPRPEPROONO O

Alpha 21264/EV67 Hardware Reference Manual

7-10
7-11
7-11
7-12
7-14
7-17

T
N
o

| |
P ON P

IR
W www

(O(QLOQOLIOQOODOJCO
N

E-2

XV

Audience

Content

Preface

This manual is for system designers and programmers who use the Alpha 21264/EV 67
microprocessor (referred to as the 21264/EV 67).

This manual contains the following chapters and appendixes:

Chapter 1, Introduction, introduces the 21264/EV 67 and provides an overview of the
Alphaarchitecture.

Chapter 2, Interna Architecture, describes the major hardware functions and the inter-
nal chip architecture. It describes performance measurement facilities, coding rules, and
design examples.

Chapter 3, Hardware Interface, lists and describes the internal hardware interface sig-
nals, and provides mechanical data and packaging information, including signal pin
lists.

Chapter 4, Cache and External Interfaces, describes the external bus functions and
transactions, lists bus commands, and describes the clock functions.

Chapter 5, Internal Processor Registers, lists and describes the internal processor regis-
ter set.

Chapter 6, Privileged Architecture Library Code, describes the privileged architecture
library code (PALcode).

Chapter 7, Initialization and Configuration, describes the initialization and configura-
tion sequence.

Chapter 8, Error Detection and Error Handling, describes error detection and error han-
dling.

Chapter 9, Electrical Data, provides electrical dataand describes signal integrity issues.
Chapter 10, Thermal Management, provides information about thermal management.
Chapter 11, Testability and Diagnostics, describes chip and system testability features.
Appendix A, Alphalnstruction Set, summarizes the Alphainstruction set.

Appendix B, 21264/EV 67 Boundary-Scan Register, presents the BSDL description of
the 21264/EV 67 boundary-scan register.

Alpha 21264/EV67 Hardware Reference Manual XVii

Xviii

Appendix C, Serial Icache Load Predecode Values, provides a pointer to the Alpha
Motherboards Software Developer’s Kit (SDK), which contains this information.

Appendix D, PALcode Restrictions and Guidelines, lists restrictions and guidelines
that must be adhered to when generating PALcode.

Appendix E, 21264/EV67-to-Bcache Pin Interconnections, provides the pin interface
between the 21264/EV67 and Bcache SSRAMSs.

The Glossary lists and defines terms associated with the 21264/EV67.

An Index is provided at the end of the document.

Documentation Included by Reference

The companion volume to this manual, fiigha Architecture Handbook, Version 4, con-

tains the instruction set architecture. You can access this document from the following
website: ftp. di gital . com’ pub/Digital/info/seniconductor/lit-
erature/dsc-library. htm

Also available is thélpha Architecture Reference Manual, Third Edition, which con-
tains the complete architecture information. That manual is available at bookstores
from the Digital Press as EQ-W938E-DP.

Alpha 21264/EV67 Hardware Reference Manual

Terminology and Conventions

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations
» Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

K = 2191024

M = 2%0(1,048576)

G = 280(1,073,741,824)

For example:

2KB = 2kilobytes = 2x 219 pytes
AMB = 4megabytes = 4x2%0 bytes
8GB = 8gigabytes = 8x 2% pytes
2K pixels = 2kilopixels = 2x 210 pixels
4M pixels = 4 megapixels = 4 x 220 pixels

» Register Access

The abbreviations used to indicate the type of accessto register fields and bits have
the following definitions:

Abbreviation Meaning

IGN Ignore
Bits and fields specified are ignored on writes.
MBZ Must Be Zero

Software must never place anonzero value in bits and fields specified as
MBZ. A nonzero read produces an Illegal Operand exception. Also, MBZ
fields are reserved for future use.

RAZ Read As Zero
Bits and fields return a zero when read.
RC Read Clears

Bits and fields are cleared when read. Unless otherwise specified, such bits
cannot be written.

RES Reserved
Bits and fields are reserved by Compaq and should not be used; however,
zeros can be written to reserved fields that cannot be masked.

RO Read Only
The value may beread by software. It iswritten by hardware. Software write
operations are ignored.

RO,n Read Only, and takes the value n at power-on reset.
The value may be read by software. It is written by hardware. Software write
operations are ignored.

Alpha 21264/EV67 Hardware Reference Manual Xix

XX

Abbreviation

Meaning

RwW

RwW,n

wiC

W1S

WO

WO,n

Read/Write
Bits and fields can be read and written.

Read/Write, and takes the value n at power-on reset.
Bits and fields can be read and written.

Write One to Clear

If read operations are allowed to the register, then the value may be read by
software. If it isawrite-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a1 cause
the hit to be cleared by hardware. Software write operations of a0 do not
modify the state of the bit.

Write One to Set

If read operations are allowed to the register, then the value may be read by
software. If it isawrite-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 cause
the hit to be set by hardware. Software write operations of a 0 do not modify
the state of the bit.

Write Only
Bits and fields can be written but not read.

Write Only, and takes the value n at power-on reset.
Bits and fields can be written but not read.

» Signextension

SEXT(x) means X is sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

Theterms aligned and naturally aligned are interchangeabl e and refer to data objects
that are powers of two in size. An aligned datum of size 2n is stored in memory at a
byte address that is a multiple of 2n; that is, one that has n low-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 2nisunaligned if it is stored in a byte address that is not a multiple of

2n.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in square
brackets ([]). Multiple contiguous bits are indicated by apair of numbers separated by a
colon [:]. For example, [9:7,5,2:0] specifiesbits9,8,7,5,2,1, and 0. Similarly, single bits
are frequently indicated with square brackets. For example, [27] specifies bit 27. See
also Field Notation.

Caution

Cautions indicate potential damage to equipment or loss of data.

Alpha 21264/EV67 Hardware Reference Manual

Data Units

The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte) 1 8 —

Word 2 16 —
Longword 2 4 32 Dword
Quadword 4 8 64 2 longword

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.
Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual bit
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For example, Register Name[L owByte] specifies Register Name[7:0].

Note
Notes emphasize particularly important information.
Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indi-
cates ahexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are hexa-
decimal (also see Addresses). Otherwise, the base isindicated by a subscript; for
example, 100, is a binary number.

Ranges and Extents

Ranges are specified by a pair of humbers separated by two periods (..) and are inclu-
sive. For example, arange of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbersin square brackets ([]) separated by a colon
(:) and areinclusive. Bit fields are often specified as extents. For example, bits[7:3]
specifiesbits 7, 6, 5, 4, and 3.

Register Figures
The gray areasin register figures indicate reserved or unused bits and fields.

Bit ranges that are coupled with the field name specify the bits of the named field that
areincluded in the register. The bit range may, but need not necessarily, correspond to
the bit Extent in the register. See the explanation above Table 5-1 for more information.

Signal Names

The following examples describe signal-name conventions used in this document.

Alpha 21264/EV67 Hardware Reference Manual XXi

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that are
assigned internal and external to the 21264/EV 67 (that is,
the signal traverses a chip interface pin).

AlphaSignal_x[n:n] When asignal has high and low assertion states, a lower-
case italic x represents the assertion states. For example,
SignalName_x[3:0] represents SignalName_H[3:0] and
SignalName_L[3:0].

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the pro-
cessor; it continues to execute instructionsin its normal manner. Further:

» Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

« AnUNPREDICTABLE result may acquire an arbitrary value subject to afew con-
straints. Such aresult may be an arbitrary function of the input operands or of any
state information that is accessible to the processin its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

» Anoccurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints as
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be afunction of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the cur-
rent process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

XXii Alpha 21264/EV67 Hardware Reference Manual

X
Do not care. A capital X represents any valid value.

Alpha 21264/EV67 Hardware Reference Manual Xxiii

1

Introduction

This chapter provides a brief introduction to the Alpha architecture, Compaq’s RISC
(reduced instruction set computing) architecture designed for high performance. The
chapter then summarizes the specific features of the Alpha 21264/EV67 microproces-
sor (hereafter called the 21264/EV67) that implements the Alpha architecture. Appen-
dix A provides a list of Alpha instructions.

The companion volume to this manual, ipha Architecture Handbook, Version 4,
contains the instruction set architecture. Also available iélfitea Architecture Refer-
ence Manual, Third Edition, which contains the complete architecture information.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with par-
ticular emphasis on speed, multiple instruction issue, multiple processors, and software
migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit registers.
All instructions are 32 bits long. Memory operations are either load or store operations.
All data manipulation is done between registers.

The Alpha architecture supports the following data types:
e 8-, 16-, 32-, and 64-hit integers

e |EEE 32-bit and 64-bit floating-point formats

e VAX architecture 32-bit and 64-bit floating-point formats

In the Alphaarchitecture, instructions interact with each other only by one instruction
writing to aregister or memory location and another instruction reading from that regis-
ter or memory location. This use of resources makesit easy to build implementations
that issue multiple instructions every CPU cycle.

The 21264/EV 67 uses a set of subroutines, called privileged architecture library code
(PALcode), that is specific to a particular Alpha operating system implementation and
hardware platform. These subroutines provide operating system primitives for context
switching, interrupts, exceptions, and memory management. These subroutines can be
invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the
function field of the instruction to vector to a specified subroutine. PALcode iswritten
in standard machine code with some implementati on-specific extensions to provide

Alpha 21264/EV67 Hardware Reference Manual Introduction 1-1

The Architecture

direct accessto low-level hardware functions. PAL code supports optimizations for mul-
tiple operating systems, flexible memory-management implementations, and multi-
instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, regis-
ter-to-register instructions. The 21264/EV 67 performs single-byte and single-word load
and store instructions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21264/EV 67
supports a 48-hit or 43-bit virtual address (selectable under IPR control).

Virtual addresses as seen by the program are translated into physical memory addresses
by the memory-management mechanism. The 21264/EV 67 supports a 44-bit physical
address.

1.1.2 Integer Data Types

Alpha architecture supports the four integer data types listed in Table 1-1.

Table 1-1 Integer Data Types

Data Type Description
Byte A byteis 8 contiguous bits that start at an addressable byte boundary.
A byteisan 8-bit value.
Word A word is 2 contiguous bytes that start at an arbitrary byte boundary.
A word is a 16-hit value.
Longword A longword is 4 contiguous bytes that start at an arbitrary byte boundary. A
longword is a 32-bit value.
Quadword A quadword is 8 contiguous bytes that start at an arbitrary byte boundary.
Note: Alpha implementations may impose a significant performance penalty

when accessing operands that are not naturally aligned. ReferAtpltiae
Architecture Handbook, Version 4 for details.

1.1.3 Floating-Point Data Types

The 21264/EV67 supports the following floating-point data types:
e Longword integer format in floating-point unit
e Quadword integer format in floating-point unit
e |EEE floating-point formats

— S_floating

— T _floating
e VAX floating-point formats

— F_floating

— G_floating

— D _floating (limited support)

1-2 Introduction Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microprocessor Features

1.2 21264/EV67 Microprocessor Features

The 21264/EV 67 microprocessor is a superscalar pipelined processor. It is packaged in
a587-pin PGA carrier and has removabl e application-specific heat sinks. A number of
configuration options alow its use in arange of system designs ranging from extremely
simple uniprocessor systems with minimum component count to high-performance
multiprocessor systems with very high cache and memory bandwidth.

The 21264/EV 67 can issue four Alphainstructionsin asingle cycle, thereby minimiz-
ing the average cycles per instruction (CPI). A number of low-latency and/or high-
throughput featuresin the instruction issue unit and the onchip components of the mem-
ory subsystem further reduce the average CPI.

The 21264/EV 67 and associated PA L code implements | EEE single-precision and dou-
ble-precision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro-
vided by byte-manipulation instructions. Limited hardware support is provided for the
VAX D_floating data type.

Other 21264/EV 67 features include:
e The ability to issue up to four instructions during each CPU clock cycle.
e A peak instruction execution rate of four times the CPU clock frequency.

* An onchip, demand-paged memory-management unit with translation buffer, which,
when used with PAL code, can implement avariety of page table structures and trans-
lation algorithms. The unit consists of a 128-entry, fully-associative data translation
buffer (DTB) and a 128-entry, fully-associative instruction tranglation buffer (ITB),
with each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB
pages. The alocation scheme for the ITB and DTB isround-robin. The size of each
translation buffer entry’s group is specified by hint bits stored in the entry. The

DTB and ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

* Two onchip, high-throughput pipelined floating-point units, capable of executing
both VAX and |EEE floating-point data types.

e Anonchip, 64K B virtually-addressed instruction cache with 8-bit ASNs
(MAX_ASN=255).

e Anonchip, virtualy-indexed, physically-tagged dual-read-ported, 64K B data
cache.

e Supports a48-bit or 43-bit virtual address (program selectable).

e Supports a 44-bit physical address.

e Anonchip I/O write buffer with four 64-byte entries for 1/O write transactions.
e Anonchip, 8-entry victim data buffer.

e Anonchip, 32-entry load queue.

* Anonchip, 32-entry store queue.

* Anonchip, 8-entry miss address file for cache fill requests and I/O read
transactions.

* Anonchip, 8-entry probe gueue, holding pending system port probe commands.

Alpha 21264/EV67 Hardware Reference Manual Introduction 1-3

21264/EV67 Microprocessor Features

* Anonchip, duplicate tag array used to maintain level 2 cache coherency.
e A 64-bit data bus with onchip parity and error correction code (ECC) support.

e Support for an external second-level (Bcache) cache. The size and some timing
parameters of the Bcache are programmable.

e Aninternal clock generator providing a high-speed clock used by the 21264/EV 67,
and two clocks for use by the CPU module.

e Onchip performance counters to measure and analyze CPU and system perfor-
mance.

e Chip and module level test support, including an instruction cache test interface to
support chip and module level testing.

e A 2.0-V externd interface.

Refer to Chapter 9 for 21264/EV 67 dc and ac electrical characteristics. Refer to the
Alpha Architecture Handbook, Version 4, Appendix E, for waivers and any other
implementation-dependent information.

1-4 Introduction Alpha 21264/EV67 Hardware Reference Manual

2

Internal Architecture

This chapter provides both an overview of the 21264/EV 67 microarchitecture and asys-

tem designer’s view of the 21264/EV67 implementation of the Alpha architecture. The
combination of the 21264/EV67 microarchitecture and privileged architecture library
code (PALcode) defines the chip’s implementation of the Alpha architecture. If a certain
piece of hardware seems to be “architecturally incomplete,” the missing functionality is

implemented in PALcode. Chapter 6 provides more information on PALcode.

This chapter describes the major functional hardware units and is not intended to be a

detailed hardware description of the chip. It is organized as follows:

21264/EV 67 microarchitecture

Pipeline organization

Instruction issue and retire rules

Load instructions to R31/F31 (software-directed instruction prefetch)
Special cases of Alphainstruction execution
Memory and 1/0O address space

Miss address file (MAF) and load-merging rules
Instruction ordering

Replay traps

I/O write buffer and the WMB instruction
Performance measurement support
Floating-point control register

AMASK and IMPLVER instruction values

Design examples

2.1 21264/EV67 Microarchitecture

The 21264/EV 67 microprocessor is a high-performance third-generation implementa-
tion of the Compaq Alpha architecture. The 21264/EV 67 consists of the following sec-
tions, as shown in Figure 2—1.:

Instruction fetch, issue, and retire unit (1box)

Integer execution unit (Ebox)

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-1

21264/EV67 Microarchitecture

* Hoating-point execution unit (Fbox)

* Onchip caches (Icache and Dcache)

e Memory reference unit (Mbox)

e Externa cache and system interface unit (Cbox)

e Pipeline operation sequence
2.1.1 Instruction Fetch, Issue, and Retire Unit

The instruction fetch, issue, and retire unit (Ibox) consists of the following subsections:
e Virtual program counter logic
e Branch predictor
e |nstruction-stream trandlation buffer (ITB)
* Instruction fetch logic
* Register rename maps
* Integer and floating-point issue queues
e EXxception and interrupt logic
e Retirelogic
2.1.1.1 Virtual Program Counter Logic

The virtual program counter (VPC) logic maintains the virtual addresses for instruc-
tionsthat areinflight. There can be up to 80 instructions, in 20 successive fetch dlots, in
flight between the register rename mappers and the end of the pipeline. The VPC logic
contains a 20-entry table to store these fetched V PC addresses.

2-2 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

Figure 2—-1 21264/EV67 Block Diagram

Instruction Cache

A A
Ibox :
- Four Physical
Fetch Unit Virtual Address »| ITB Instructions Address
VPC
Queue < Next Address | Predecode |-
A
Y
Branch Retire Decode and 128
Predictor Unit Rename Registers
I
Y / Y
Integer Issue Queue FP Issue Queue
(20 Entries) (15 Entries) Chox Cs;tr;e
Probe
Queue 128
Ebox Y Y Y Y Fbox Yy Y . Cache
Duplicate
Address INT INT Address FP FP Tag Store Index
ALU O UNIT UNIT ALU 1 ADD MUL 20
(LO) 0 1 (L1) DIV
(CY] (U1) SQRT IOWB System
—TARK WY AA[— 56“5
— 4
Y Y Y Y Victim
Integer Registers 0 Integer Registers 1 FP Registers Buffer System
(80 Registers) (80 Registers) (72 Registers) Address
| —————
A A { T A A A A Arbiter 15
A A
Y Yy Y
Mbox Data
DTB Load Store Miss Address| |
(Dual-ported, 128-entry)| | Queue Queue File o 128
Physical A
Y Address Y Y Data
Dual-Ported Data Cache =<
FM-05642-Al4

2.1.1.2 Branch Predictor

The branch predictor is composed of three units: the local, global, and choice predic-
tors. Figure 2—2 shows how the branch predictor generates the predicted branch

address.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-3

21264/EV67 Microarchitecture

Figure 2—-2 Branch Predictor

Local Global Choice
Predictor Predictor Predictor

Y Y

N A&<—

Predicted
L—> Branch
Address

FM-05810.A14

Local Predictor

Thelocal predictor uses a 2-level table that holds the history of individual branches.

The 2-level table design approaches the prediction accuracy of alarger single-level

table while requiring fewer total bits of storage. Figure 2—3 shows how the local pre-
dictor generates a prediction. Bits [11:2] of the VPC of the current branch are used as
the index to a 1K entry table in which each entry is a 10-bit value. This 10-bit value is
used as the index to a 1K entry table of 3-bit saturating counters. The value of the satu-
rating counter determines the predication, taken/not-taken, of the current branch.

Figure 2—3 Local Predictor

VPC[11:2] ocal
History
Table
»1 1K x 10
10
io e
Inde ca
X »1 Predictor +/-
1K x 3

2 X

1
Y

Local Branch Prediction

FM-05811.Al4

Global Predictor

The global predictor isindexed by a global history of all recent branches. The global

predictor correlates the local history of the current branch with all recent branches. Fig-

ure 2—-4 shows how the global predictor generates a prediction. The global path history
is comprised of the taken/not-taken state of the 12 most-recent branches. These 12
states are used to form an index into a 4K entry table of 2-bit saturating counters. The
value of the saturating counter determines the predication, taken/not-taken, of the cur-
rent branch.

2-4 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

Figure 2—-4 Global Predictor

Global
Path
History
12 Y
Global
|
ndex »1 Predictor +/-
4K x 2
2 \

1

Y

Global Branch Prediction

FM-05812.Al4

Choice Predictor

The choice predictor monitors the history of the local and global predictors and chooses

the best of the two predictors for a particular branch. Figure 2-5 shows how the choice
predictor generates its choice of the result of the local or global prediction. The 12-bit
global path history (see Figure 2—4) is used to index a 4K entry table of 2-bit saturating
counters. The value of the saturating counter determines the choice between the outputs
of the local and global predictors.

Figure 2-5 Choice Predictor

Global
Path
History
12 Y 2
Choice
> Predictor 5 1 > Choice Prediction
4K x 2

FM-05813.Al4

2.1.1.3 Instruction-Stream Translation Buffer

The Ibox includes a 128-entry, fully-associative instruction-stream trand ation buffer
(ITB) that is used to store recently used instruction-stream (Istream) address transla-
tions and page protection information. Each of the entriesin the ITB can map 1, 8, 64,
or 512 contiguous 8K B pages. The allocation scheme is round-robin.

The ITB supports an 8-bit ASN and contains an ASM bit. The Icache is virtually
addressed and contains the access-check information, so the ITB is accessed only for
| stream references that missin the |cache.

Istream transactions to I/O address space are UNDEFINED.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-5

21264/EV67 Microarchitecture

2.1.1.4 Instruction Fetch Logic

The instruction prefetcher (predecode) reads an octaword, containing up to four natu-
rally aligned instructions per cycle, from the Icache. Branch prediction and line predic-
tion bits accompany the four instructions. The branch prediction scheme operates most
efficiently when only one branch instruction is contained among the four fetched
instructions. The line prediction scheme attempts to predict the |cache line that the
branch predictor will generate, and is described in Section 2.2.

An entry from the subroutine return prediction stack, together with set prediction bits
for use by the Icache stream controller, are fetched a ong with the octaword. The Icache
stream controller generates fetch requests for additional | cache lines and stores the
Istream data in the Icache. There is no separate buffer to hold Istream requests.

2.1.1.5 Register Rename Maps

2.1.1.6 Integer

The instruction prefetcher forwards instructions to the integer and floating-point regis-
ter rename maps. The rename maps perform the two functions listed here:

e Eliminate register write-after-read (WAR) and write-after-write (WAW) data
dependencies while preserving true read-after-write (RAW) data dependencies, in
order to allow instructions to be dynamically rescheduled.

* Provide ameans of speculatively executing instructions before the control flow
previous to those instructions is resolved. Both exceptions and branch
mispredictions represent deviations from the control flow predicted by the
instruction prefetcher.

The map logic translates each instruction’s operand register specifiers fraimrtuhle
register numbers in the instruction to fitgsical register numbers that hold the corre-
sponding architecturally-correct values. The map logic also renames each instruction’s
destination register specifier from the virtual number in the instruction to a physical
register number chosen from a list of free physical registers, and updates the register
maps.

The map logic can process four instructions per cycle. It does not return the physical
register, which holds the old value of an instruction’s virtual destination register, to the
free list until the instruction has been retired, indicating that the control flow up to that
instruction has been resolved.

If a branch mispredict or exception occurs, the map logic backs up the contents of the
integer and floating-point register rename maps to the state associated with the instruc-
tion that triggered the condition, and the prefetcher restarts at the appropriate VPC. At
most, 20 valid fetch slots containing up to 80 instructions can be in flight between the
register maps and the end of the machine’s pipeline, where the control flow is finally
resolved. The map logic is capable of backing up the contents of the maps to the state
associated with any of these 80 instructions in a single cycle.

The register rename logic places instructions into an integer or floating-point issue
queue, from which they are later issued to functional units for execution.

Issue Queue

The 20-entry integer issue queue (IQ), associated with the integer execution units
(Ebox), issues the following types of instructions at a maximum rate of four per cycle:

2-6 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

* Integer operate

* Integer conditional branch

e Unconditional branch — both displacement and memory format
e |Integer and floating-point load and store

e PAL-reserved instructions; HW_MTPR, HW_MFPR, HW_ LD, HW_ST,
HW_RET

* Integer-to-floating-point (ITOFx) and floating-point-to-integer (FTOIX)

Each queue entry asserts four request signals—one for each of the Ebox subclusters. A
gueue entry asserts a request when it contains an instruction that can be executed by the
subcluster, if the instruction’s operand register values are available within the subclus-
ter.

There are two arbiters—one for the upper subclusters and one for the lower subclusters.
(Subclusters are described in Section 2.1.2.) Each arbiter picks two of the possible 20
requesters for service each cycle. A given instruction only requests upper subclusters or
lower subclusters, but because many instructions can only be executed in one type or
another this is not too limiting.

For example, load and store instructions can only go to lower subclusters and shift
instructions can only go to upper subclusters. Other instructions, such as addition and
logic operations, can execute in either upper or lower subclusters and are statically
assigned before being placed in the 1Q.

The IQ arbiters choose between simultaneous requesters of a subcluster based on the
age of the request—older requests are given priority over newer requests. If a given
instruction requests both lower subclusters, and no older instruction requests a lower
subcluster, then the arbiter assigns subcluster LO to the instruction. If a given instruction
requests both upper subclusters, and no older instruction requests an upper subcluster,
then the arbiter assigns subcluster U1 to the instruction. This asymmetry between the
upper and lower subcluster arbiters is a circuit implementation optimization with negli-
gible overall performance effect.

2.1.1.7 Floating-Point Issue Queue

The 15-entry floating-point issue queue (FQ) associated with the Fbox issues the fol-
lowing instruction types:

e Floating-point operates

e Floating-point conditional branches

* Foating-point stores

* Foating-point register to integer register transfers (FTOIX)

Each queue entry has three request lines—one for the add pipeline, one for the multiply
pipeline, and one for the two store pipelines. There are three arbiters—one for each of
the add, multiply, and store pipelines. The add and multiply arbiters pick one requester
per cycle, while the store pipeline arbiter picks two requesters per cycle, one for each
store pipeline.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-7

21264/EV67 Microarchitecture

The FQ arbiters pick between simultaneous requesters of a pipeline based on the age of

the request—older requests are given priority over newer requests. Floating-point store
instructions and FTQlinstructions in even-numbered queue entries arbitrate for one
store port. Floating-point store instructions and Bdi@structions in odd-numbered

gueue entries arbitrate for the second store port.

Floating-point store instructions and Fhstructions are queued in both the integer
and floating-point queues. They wait in the floating-point queue until their operand reg-
ister values are available. They subsequently request service from the store arbiter.
Upon being issued from the floating-point queue, they signal the corresponding entry in
the integer queue to request service. Upon being issued from the integer queue, the
operation is completed.

2.1.1.8 Exception and Interrupt Logic

There are two types of exceptions: faults and synchronous traps. Arithmetic exceptions
are precise and are reported as synchronous traps.

The four sources of interrupts are listed as follows:
e Level-sensitive hardware interrupts sourced by the IRQ_H[5:0] pins

* Edge-sensitive hardware interrupts generated by the serial line receive pin,
performance counter overflows, and hardware corrected read errors

* Software interrupts sourced by the software interrupt request (SIRR) register
e Asynchronous system traps (ASTS)

Interrupt sources can be individually masked. In addition, AST interrupts are qualified
by the current processor mode.

2.1.1.9 Retire Logic

The Ibox fetches instructionsin program order, executes them out of order, and then
retires them in order. The Ibox retire logic maintains the architectural state of the
machine by retiring an instruction only if all previous instructions have executed with-
out generating exceptions or branch mispredictions. Retiring an instruction commitsthe
machine to any changes the instruction may have made to the software-visible state.
The three software-visible states are listed as follows:

* Integer and floating-point registers
* Memory

e Internal processor registers (including control/status registers and translation
buffers)

Theretire logic can sustain a maximum retire rate of eight instructions per cycle, and
can retire up to as many as 11 instructionsin asingle cycle.

2.1.2 Integer Execution Unit

The integer execution unit (Ebox) is a4-path integer execution unit that isimplemented

as two functional-unit “clusters” labeled 0 and 1. Each cluster contains a copy of an 80-
entry, physical-register file and two “subclusters”, named upper (U) and lower (L). Fig-
ure 2—6 shows the integer execution unit. In the figopewr is the cross-cluster bus

for moving integer result values between clusters.

2-8 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

Figure 2-6 Integer Execution Unit—Clusters 0 and 1

eff_VA " ¢ eff_VA

iop_wr
iop_wr
Y Y
uo Ul
Register Register
LO L1
KA op_wr A A A
iop_wr
Load/Store Data

Load/Store Data

Y

Y

FM-05643.A14

Most instructions have 1-cyclelatency for consumers that execute within the same clus-
ter. Also, there is another 1-cycle delay associated with producing avaluein one cluster
and consuming the value in the other cluster. The instruction issue queue minimizesthe
performance effect of this cross-cluster delay. The Ebox contains the following
resources:

Four 64-hit adders that are used to calculate results for integer add instructions
(located in UO, U1, LO, and L1)

The adders in the lower subclusters that are used to generate the effective virtual
address for load and store instructions (located in LO and L 1)

Four logic units

Two barrel shifters and associated byte logic (located in U0 and U1)
Two sets of conditional branch logic (located in UQ and U1)

Two copies of an 80-entry register file

One pipelined multiplier (located in U1) with 7-cycle latency for al integer multiply
operations

One fully-pipelined unit (located in UQ), with 3-cycle latency, that executes the fol -
lowing instructions:

— CTLZ, CTPOP, CTTZ
— PERR, MINxxx, MAXxxx, UNPKxx, PKxx

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-9

21264/EV67 Microarchitecture

The Ebox has 80 register-file entries that contain storage for the values of the 31 Alpha
integer registers (the value of R31 is not stored), the values of 8 PAL shadow registers,
and 41 results written by instructions that have not yet been retired.

Ignoring cross-cluster delay, the two copies of the Ebox register file contain identical
values. Each copy of the Ebox register file contains four read ports and six write ports.
The four read ports are used to source operands to each of the two subclusters within a
cluster. The six write ports are used as follows:

e Two write ports are used to write results generated within the cluster.

e Two write ports are used to write results generated by the other cluster.

e Two write ports are used to write results from load instructions. These two ports
are also used for FTOIX instructions.

2.1.3 Floating-Point Execution Unit

The floating-point execution unit (Fbox) has two paths. The Fbox executes both VAX
and |EEE floating-point instructions. It support IEEE S floating-point and T_floating-
point datatypes and all rounding modes. It also supports VAX F_floating-point and
G_floating-point data types, and provides limited support for D_floating-point format.
The basic structure of the floating-point execution unit is shown in Figure 2—7.

Figure 2—7 Floating-Point Execution Units

Floating-Point
Execution Units

FP Mul

Reg

FP Add

FP Div

SQRT

LK98-0004A

The Fbox contains the following resources:

e 72-entry physical register file

e Fully-pipelined multiplier with 4-cycle latency

* Fully-pipelined adder with 4-cycle latency

e Nonpipelined divide unit associated with the adder pipeline

e Nonpipelined square root unit associated with the adder pipeline

The 72 Fbox register file entries contain storage for the values of the 31 Alpha floating-
point registers (F31 is not stored) and 41 values written by instructions that have not
been retired.

2-10 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Microarchitecture

The Fbox register file contains six reads ports and four write ports. Four read ports are
used to source operands to the add and multiply pipelines, and two read ports are used
to source data for store instructions. Two write ports are used to write results generated
by the add and multiply pipelines, and two write ports are used to write results from
floating-point load instructions.

2.1.4 External Cache and System Interface Unit

Theinterface for the system and external cache (Cbox) controls the Bcache and system
ports. It contains the following structures:

e Victim addressfile (VAF)

e Victim datafile (VDF)

e 1/O write buffer (IOWB)

* Probe queue (PQ)

e Duplicate Dcache tag (DTAG)
2.1.4.1 Victim Address File and Victim Data File

Thevictim address file (VAF) and victim datafile (VDF) together form an 8-entry vic-
tim buffer used for holding:

* Dcache blocks to be written to the Bcache

* Istream cache blocks from memory to be written to the Bcache

e Bcache blocks to be written to memory

e Cache blocks sent to the system in response to probe commands
2.1.4.2 1/O Write Buffer

The 1/O write buffer (IOWB) consists of four 64-byte entries and associated address
and contral logic used for buffering 1/0 write data between the store queue and the sys-
tem port.

2.1.4.3 Probe Queue

The probe queue (PQ) is an 8-entry queue that holds pending system port cache probe
commands and addresses.

2.1.4.4 Duplicate Dcache Tag Array

Theduplicate Dcachetag (DTAG) array holds aduplicate copy of the Dcache tags and
is used by the Cbox when processing Dcache fills, Icache fills, and system port probes.

2.1.5 Onchip Caches
The 21264/EV 67 contains two onchip primary-level caches.

2.1.5.1 Instruction Cache

The instruction cache (Icache) is a 64K B virtual-addressed, 2-way set-predict cache.
Set prediction is used to approximate the performance of a 2-set cache without slowing
the cache access time. Each Icache block contains:

e 16 Alphainstructions (64 bytes)

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-11

21264/EV67 Microarchitecture

e Virtual tag bits[47:15]

e 8-bit address space humber (ASN) field

e 1-bit address space match (ASM) hit

e 1-bit PALcode bit to indicate physical addressing
e Vdid hbit

e Dataand tag parity bits

* Four access-check bits for the following modes: kernel, executive, supervisor, and

user (KESU)
e Additional predecoded information to assist with instruction processing and fetch
control

2.1.5.2 Data Cache

The data cache (Dcache) isa64K B, 2-way set-associative, virtually indexed, physically
tagged, write-back, read/write allocate cache with 64-byte blocks. During each cycle
the Dcache can perform one of the following transactions:

e Two quadword (or shorter) read transactions to arbitrary addresses

e Two quadword write transactions to the same aligned octaword

¢ Two non-overlapping less-than-quadword writes to the same aligned quadword

* One sequential read and write transaction from and to the same aligned octaword
Each Dcache block contains:

e 64 data bytes and associated quadword ECC bits

e Physical tag bits

e Vadlid, dirty, shared, and modified bits

* Tag parity bit calculated across the tag, dirty, shared, and modified bits

* One hit to control round-robin set allocation (one bit per two cache blocks)

The Dcache contains two sets, each with 512 rows containing 64-byte blocks per row
(that is, 32K bytes of data per set). The 21264/EV 67 requires two additional bits of vir-
tual address beyond the bits that specify an 8KB page, in order to specify a Dcache row
index. A given virtual address might be found in four unique locations in the Dcache,
depending on the virtual-to-physical translation for those two bits. The 21264/EV 67
prevents this aliasing by keeping only one of the four possible trand ated addressesin
the cache at any time.

2.1.6 Memory Reference Unit

The memory reference unit (Mbox) controls the Dcache and ensures architecturally
correct behavior for load and store instructions. The Mbox contains the following struc-
tures:

e Load queue (LQ)
e Store queue (SQ)

2-12 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Pipeline Organization

* Missaddressfile (MAF)
e Dstream trandation buffer (DTB)

2.1.6.1 Load Queue

Theload queue (LQ) isareorder buffer for load instructions. It contains 32 entries and
maintains the state associated with load instructions that have been issued to the Mbox,
but for which results have not been delivered to the processor and the instructions
retired. The Mbox assigns load instructions to LQ slots based on the order in which
they were fetched from the Icache, then places them into the L Q after they areissued by
the 1Q. The LQ helps ensure correct Alpha memory reference behavior.

2.1.6.2 Store Queue

The store queue (SQ) is areorder buffer and graduation unit for store instructions. It
contains 32 entries and maintains the state associated with store instructions that have
been issued to the Mbox, but for which data has not been written to the Dcache and the
instruction retired. The Mbox assigns store instructions to SQ slots based on the order
in which they were fetched from the Icache and places them into the SQ after they are
issued by the 1Q. The SQ holds data associated with store instructions issued from the
IQ until they areretired, at which point the store can be allowed to update the Dcache.
The SQ also helps ensure correct Alpha memory reference behavior.

2.1.6.3 Miss Address File

The 8-entry miss address file (MAF) holds physical addresses associated with pending
Icache and Dcache fill requests and pending I/O space read transactions.

2.1.6.4 Dstream Translation Buffer

The Mbox includes a 128-entry, fully associative Dstream trandation buffer (DTB) used
to store Dstream address trandl ations and page protection information. Each of the entries
inthe DTB can map 1, 8, 64, or 512 contiguous 8KB pages. The alocation schemeis
round-robin. The DTB supports an 8-bit ASN and containsan ASM hit.

2.1.7 SROM Interface

The serial read-only memory (SROM) interface provides the initialization dataload
path from a system SROM to the Icache. Refer to Chapter 7 for more information.

2.2 Pipeline Organization

The 7-stage pipeline provides an optimized environment for executing Alpha instruc-
tions. The pipeline stages (0 to 6) are shown in Figure 2—8 and described in the follow-
ing paragraphs.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-13

Pipeline Organization

Figure 2-8 Pipeline Organization

0 1 2 3 4 5 6
o ALU
Branch Shifter ‘
Predictor
éme_ger | ALU shifter
egister Integer » ioli
Integer Multiplier
\ Rename | | Issue »| Redister <>
\ Map Queue lgile Address System
((20) Bus
(64 Bits)
Address
|
— Four 64KB Bus
] Instructions Data |-« Interface j€—>
) Cache Unit Cache
Instruction - - B
Floating-Point us
Cache - 128 Bit
o > Add, Divide, (its)
(64KB)) Floating ; >
Floating- : Floating- and Square Root
(2-Set) : | Point - i
> Point Issue >] Point
Register Queue Reé;illzter o | Floating-Point <>
Re'\r)lame (15) Multiply Physical
ap Address
A (44 Bits)
* FM-05575.A14

Stage 0 — Instruction Fetch

The branch predictor uses a branch history algorithm to predict a branch instruction tar-
get address.

Up to four aligned instructions are fetched from the Icache, in program order. The
branch prediction tables are al so accessed in this cycle. The branch predictor usestables
and a branch history algorithm to predict a branch instruction target address for one
branch or memory format JSR instruction per cycle. Therefore, the prefetcher islimited
to fetching through one branch per cycle. If there is more than one branch within the
fetch line, and the branch predictor predictsthat the first branch will not be taken, it will
predict through subsequent branches at the rate of one per cycle, until it predicts ataken
branch or predicts through the last branch in the fetch line.

The Icache array also contains aline prediction field, the contents of which are applied
to the Icache in the next cycle. The purpose of the line predictor isto remove the pipe-
line bubble which would otherwise be created when the branch predictor predicts a
branch to be taken. In effect, the line predictor attempts to predict the Icache line which
the branch predictor will generate. On fills, the line predictor value at each fetch lineis
initialized with the index of the next sequential fetch line, and later retrained by the
branch predictor if necessary.

Stage 1 — Instruction Slot

The Ibox maps four instructions per cycle from the 64KB 2-way set-predict | cache.
Instructions are mapped in order, executed dynamically, but are retired in order.

2-14 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Pipeline Organization

In the slot stage, the branch predictor compares the next |cacheindex that it generatesto

the index that was generated by the line predictor. If there is amismatch, the branch
predictor wins—the instructions fetched during that cycle are aborted, and the index
predicted by the branch predictor is applied to the Icache during the next cycle. Line
mispredictions result in one pipeline bubble.

The line predictor takes precedence over the branch predictor during memory format
calls or jumps. If the line predictor was trained with a true (as opposed to predicted)
memory format call or jump target, then its contents take precedence over the target
hint field associated with these instructions. This allows dynamic calls or jumps to be
correctly predicted.

The instruction fetcher produces the full VPC address during the fetch stage of the pipe-
line. The Icache produces the tags for both Icache sets 0 and 1 each time it is accessed.
That enables the fetcher to separate set mispredictions from true Icache misses. If the
access was caused by a set misprediction, the instruction fetcher aborts the last two
fetched slots and refetches the slot in the next cycle. It also retrains the appropriate set
prediction bits.

The instruction data is transferred from the Icache to the integer and floating-point reg-
ister map hardware during this stage. When the integer instruction is fetched from the
Icache and slotted into the 1Q, the slot logic determines whether the instruction is for
the upper or lower subclusters. The slot logic makes the decision based on the
resources needed by the (up to four) integer instructions in the fetch block. Although all
four instructions need not be issued simultaneously, distributing their resource usage
improves instruction loading across the units. For example, if a fetch block contains
two instructions that can be placed in either cluster followed by two instructions that
must execute in the lower cluster, the slot logic would designate that combination as
EELL and slot them as UULL. Slot combinations are described in Section 2.3.2 and
Table 2-3.

Stage 2 — Map

Instructions are sent from the | cache to the integer and floating-point register maps dur-
ing the slot stage and register renaming is performed during the map stage. Also, each
instruction is assigned a unique 8-bit number, called an inum, which is used to identify
the instruction and its program order with respect to other instructions during the time
that it isin flight. Instructions are considered to be in flight between the time they are
mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and floating-
point queues by the end of the map stage.

Stage 3 — Issue

The 20-entry integer issue queue (1Q) issues instructions at the rate of four per cycle.
The 15-entry floating-point issue queue (FQ) issues floating-point operate instructions,
conditional branch instructions, and store instructions, at the rate of two per cycle. Nor-
mally, instructions are deleted from the |Q or FQ two cycles after they are issued. For
example, if aninstruction isissued in cyclen, it remainsinthe FQ or IQ incycle n+1
but does not request service, and is deleted in cycle n+2.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-15

Instruction Issue Rules

Stage 4 — Register Read

Instructions issued from the issue queues read their operands from the integer and float-
ing-point register files and receive bypass data.

Stage 5 — Execute
The Ebox and Fbox pipelines begin execution.
Stage 6 — Dcache Access

Memory reference instructions access the Dcache and data translation buffers. Nor-
mally load instructions access the tag and data arrays while store instructions only
access the tag arrays. Store datais written to the store queue where it is held until the
store instruction is retired. Most integer operate instructions write their register results
in thiscycle.

2.2.1 Pipeline Aborts

The abort penalty as given is measured from the cycle after the fetch stage of the
instruction which triggers the abort to the fetch stage of the new target, ignoring any
Ibox pipeline stalls or queuing delay that the triggering instruction might experience.
Table 2—1 lists the timing associated with each common source of pipeline abort.

Table 2-1 Pipeline Abort Delay (GCLK Cycles)

Penalty
Abort Condition (Cycles) Comments
Branch misprediction 7 Integer or floating-point conditional branch
misprediction.
JSR misprediction 8 Memory format JSR or HW_RET.
Mbox order trap 14 L oad-load order or store-load order.
Other Mbox replay traps 13 —
DTB miss 13 —
ITB miss 7 —
Integer arithmetic trap 12 —

Floating-point arithmetic 13+latency Add latency of instruction. See Section 2.3.3 for
trap instruction latencies.

2.3 Instruction Issue Rules

This section defines instruction classes, the functional unit pipelines to which they are
issued, and their associated latencies.

2-16 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

2.3.1 Instruction Group Definitions

Instruction Issue Rules

Table 2-2 lists the instruction class, the pipeline assignments, and the instructions
included in the class.

Table 2-2 Instruction Name, Pipeline, and Types

Class

Name Pipeline Instruction Type

ild LO, L1 All integer load instructions

fld LO, L1 All floating-point load instructions

ist LO, L1 All integer store instructions

fst FSTO, FST1, L0, L1 All floating-point store instructions

Ida LO, L1, U0, U1 LDA, LDAH

mem_misc L1 WH64, ECB, WMB

rpcc L1 RPCC

rx L1 RS, RC

mxpr LO, L1 HW_MTPR, HW_MFPR

(depends on IPR)

ibr uo, U1 Integer conditional branch instructions

jsr LO BR, BSR, IMP, CALL, RET, COR, HW_RET,
CALL_PAL

iadd LO, U0, L1, U1 Instructions with opcode 10,4, except CMPBGE

ilog LO,UQ, L1, U1 AND, BIC, BIS, ORNOT, XOR, EQV, CMPBGE

ishf uo, U1 Instructions with opcode 124

cmov LO,UQ, L1, Ul Integer CMOV — either cluster

imul Ul Integer multiply instructions

imisc uo CTLZ, CTPOP, CTTZ, PERR, MINXxxx, MAXxXX, PKXX,
UNPKXxx

fbor FA Floating-point conditional branch instructions

fadd FA All floating-point operate instructions except multiply,
divide, square root, and conditional move instructions

fmul FM Floating-point multiply instruction

fcmovl FA Floating-point CMOV—first half

fcmov2 FA Floating-point CMOV— second half

fdiv FA Floating-point divide instruction

fsqrt FA Floating-point square root instruction

nop None TRAP, EXCB, UNOP - LDQ_U R31, 0(Rx)

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-17

Instruction Issue Rules

Table 2-2 Instruction Name, Pipeline, and Types (Continued)

Class

Name Pipeline Instruction Type

ftoi FSTO,FST1, L0, L1 FTOIS, FTOIT

itof LO, L1 ITOFS, ITOFF, ITOFT

mx_fpcr FM Instructions that move data from the floating-point

control register

2.3.2 Ebox Slotting

Instructions that are issued from the 1Q, and could execute in either upper or lower

Ebox subclusters, are slotted to one pair or the other during the pipeline mapping stage

based on the instruction mixture in the fetch line. The codes that are used in Table 2-3
are as follows:

* U—The instruction only executes in an upper subcluster.
e |L—The instruction only executes in a lower subcluster.
e E—The instruction could execute in either an upper or lower subcluster.

Table 2—3 defines the slotting rules. The table fieftkuction Class 3, 2, 1 and 0 iden-
tifies each instruction’s location in the fetch line by the value of bits [3:2] in its PC.

Table 2—-3 Instruction Group Definitions and Pipeline Unit

Instruction Class Slotting Instruction Class Slotting
3210 3210 3210 3210
EEEE ULUL LLLL LLLL
EEEL ULUL LLLU LLLU
EEEU ULLU LLUE LLUU
EELE ULLU LLUL LLUL
EELL UuulLL LLUU LLUU
EELU ULLU LUEE LULU
EEUE ULUL LUEL LUUL
EEUL ULUL LUEU LULU
EEUU LLUU LULE LULU
ELEE ULUL LULL LULL
ELEL ULUL LULU LULU
ELEU ULLU LUUE LUUL
ELLE ULLU LUUL LUUL
ELLL ULLL LUUU LUUU
ELLU ULLU UEEE ULUL
ELUE ULUL UEEL ULUL
ELUL ULUL UEEU ULLU

2-18 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Instruction Issue Rules

Table 2—-3 Instruction Group Definitions and Pipeline Unit (Continued)

Instruction Class Slotting Instruction Class Slotting
3210 3210 3210 3210

ELUU LLUU UELE ULLU
EUEE LULU UELL UulLL
EUEL LUUL UELU ULLU
EUEU LULU UEUE ULUL
EULE LULU UEUL ULUL
EULL UuLL UEUU UuLuu
EULU LULU ULEE ULUL
EUUE LUUL ULEL ULUL
EUUL LUUL ULEU ULLU
EUUU LUUU ULLE ULLU
LEEE LULU ULLL ULLL

LEEL LUUL ULLU ULLU
LEEU LULU ULUE ULUL
LELE LULU ULUL ULUL
LELL LULL UuLuUu UuLuUu
LELU LULU UUEE UulLL
LEUE LUUL UUEL UulLL
LEUL LUUL UUEU uulLu
LEUU LLUU UULE UulLL
LLEE LLUU UulLL UulLlL
LLEL LLUL uulLu UuulLu
LLEU LLUU UUUE uuulL
LLLE LLLU uuulL uuulL
— — uuuu uuuu

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-19

Instruction Issue Rules

2.3.3 Instruction Latencies

After aninstruction is placed in the 1Q or FQ, itsissue point is determined by the avail-
ability of itsregister operands, functional unit(s), and relationship to other instructions
in the queue. There are register producer-consumer dependencies and dynamic func-
tional unit availability dependencies that affect instruction issue. The mapper removes
register producer-producer dependencies.

Thelatency to produce aregister result is generaly fixed. The one exception is for load
instructions that miss the Dcache. Table 2—4 lists the latency, in cycles, for each
instruction class.

Table 2—-4 Instruction Class Latency in Cycles

Class Latency Comments
ild 3 Dcache hit.
13+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if
Bcache latency is greater than 6 cycles.
fld 4 Dcache hit.
14+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if
Bcache latency is greater than 6 cycles.
ist — Does not produce register value.
fst — Does not produce register value.
rpcc 1 Possible 1-cycle cross-cluster delay.
rx 1 —
mxpr lor3 HW_MFPR: Ebox IPRs = 1.
Ibox and Mbox IPRs = 3.
HW_MTPR does not produce a register value.
icbr — Conditional branch. Does not produce register value.
ubr 3 Unconditional branch. Does not produce register value.
jsr 3 —
iadd 1 Possible 1-cycle Ebox cross-cluster delay.
ilog 1 Possible 1-cycle Ebox cross-cluster delay.
ishf 1 Possible 1-cycle Ebox cross-cluster delay.
cmovl 1 Only consumer is cmov2. Possible 1-cycle Ebox cross-cluster delay.
cmov2 1 Possible 1-cycle Ebox cross-cluster delay.
imul 7 Possible 1-cycle Ebox cross-cluster delay.
imisc 3 Possible 1-cycle Ebox cross-cluster delay.
fcbr — Does not produce register value.
fadd 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fadd is issued from the FQ to when an fst or ftoi is issued
from the IQ.
2-20 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Instruction Retire Rules

Table 2—4 Instruction Class Latency in Cycles (Continued)

Class Latency Comments
fmul 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
M easured from when an fmul isissued from the FQ to when an fst or ftoi isissued
fromthe Q.
fcmovl 4 Only consumer is fcmov2.

fcmov2 4 Consumer other than fst.
6 Consumer fst or ftoi.
Measured from when an fcmov2 is issued from the FQ to when an fst or ftoi isissued
fromthe Q.
fdiv 12 Single precision - latency to consumer of result value.
9 Single precision - latency to using divider again.
15 Double precision - latency to consumer of result value.
12 Double precision - latency to using divider again.
fsort 18 Single precision - latency to consumer of result value.
15 Single precision - latency to using unit again.
33 Double precision - latency to consumer of result value.
30 Double precision - latency to using unit again.
ftoi 3 —
itof 4 —
nop — Does not produce register value.

2.4 Instruction Retire Rules

Aningruction isretired when it has been executed to completion, and al previous
instructions have been retired. The execution pipeline stage in which an instruction
becomes eligible to be retired depends upon the instruction’s class.

Table 2-5 gives the minimum retire latencies (assuming that all previous instructions
have been retired) for various classes of instructions.

Table 2-5 Minimum Retire Latencies for Instruction Classes

Instruction Class Retire Stage Comments

Integer conditional branch 7 —

Integer multiply 7/13 Latency is 13 cycles for the MUL/V instruction.
Integer operate 7 —

Memory 10 —

Floating-point add 11 —

Floating-point multiply 11 —

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-21

Retire of Operate Instructions into R31/F31

Table 2-5 Minimum Retire Latencies for Instruction Classes (Continued)

Instruction Class Retire Stage Comments

Floating-point DIV/SQRT 11 + latency Add latency of unit reuse for the instruction indicated in Table
2-4. For example, latency for a single-precision fdiv would be
11 plus 9 from Table 2—4. Latency is 11 if hardware detects that
no exception is possible (see Section 2.4.1).

Floating-point conditional 11 Branch instruction mispredict is reported in stage 7.
branch
BSR/JSR 10 JSR instruction mispredict is reported in stage 8.

2.4.1 Floating-Point Divide/Square Root Early Retire

The floating-point divider and square root unit can detect that, for many combinations
of source operand values, no exception can be generated. I nstructions with these oper-
ands can be retired before the result is generated. When detected, they are retired with
the same latency as the FP add class. Early retirement is not possible for the following
instruction/operand/architecture state conditions:

e |nstructionisnot aDIV or SQRT.
* SQRT source operand is negative.
e Divide operand exponent_aisO.

e Either operand isNaN or INF.

e Divide operand exponent_bisO.

e Trapping modeis/l (inexact).

* INE statushitisO.

Early retirement is also not possible for divide instructionsif the resulting exponent has
any of the following characteristics (EXP is the result exponent):

« DIVT, DIVG: (EXP >= 3FF4) OR (EXP <= 2;¢)
« DIVS, DIVF: (EXP>= 7F;5) OR (EXP <= 382;4)

2.5 Retire of Operate Instructions into R31/F31

Many instructions that have R31 or F31 as their destination are retired immediately

upon decode (stage 3). These instructions do not produce aresult and are removed from

the pipeline as well. They do not occupy aslot in the issue queues and do not occupy a
functional unit. Table 2—6 lists these instructions and some of their characteristics. The
instruction type in Table 2—6 is from Table C-6 in Appendix C oflipha Architecture
Handbook, Version 4.

2-22 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Load Instructions to R31 and F31

Table 2-6 Instructions Retired Without Execution

Instruction Type Notes

INTA, INTL, INTM, INTS All with R31 as destination.

FLTI, FLTL, FLTV All with F31 as destination. MT_FPCR is not included
because it has no destination—it is never removed from the
pipeline.

LDQ_U All with R31 as destination.

MISC TRAPB and EXCB are always removed. Others are never
removed.

FLTS All (SQRT, ITOF) with F31 as destination.

2.6 Load Instructions to R31 and F31

This section describes how the 21264/EV 67 processes software-directed prefetch trans-
actions and load instructions with a destination of R31 and F31.

Prefetches allocate a MAF entry. How the MAF entry is alocated iswhat distinguishes
the type of prefetch. A normal prefetch is equivalent to a normal load MAF (that is, a
MAF entry that puts the block into the Dcache in areadable state). A prefetch with
modify intent is equivalent to a normal store MAF (that is, a MAF entry that puts the
block into the Dcache in awriteable state). A prefetch, evict next, is equivalent to anor-
mal load MAF, with the additional behavior described in Section 2.6.3, below.

A prefetch is not performed if the prefetch hitsin the Dcache (asif it were anormal
load).

Load operationsto R31 and F31 may generate exceptions. These exceptions must be
dismissed by PAL code.

The following sections describe the operational prefetch behavior of these instructions.

2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions

The 21264/EV 67 processes these instructions as normal cache line prefetches. If the
load instruction hits the Dcache, the instruction is dismissed, otherwise the addressed
cache block is allocated into the Dcache.

The HW_LDL instruction construct equates to the HW_L D instruction with the LEN
field clear. See Table 6-3.

2.6.2 Prefetch with Modify Intent: LDS Instruction

The 21264/EV67 processes an LDS instruction, with F31 as the destination, as a
prefetch with modify intent transaction (ReadBlkMod command). If the transaction hits

a dirty Dcache block, the instruction is dismissed. Otherwise, the addressed cache block
is allocated into the Dcache for write access, with its dirty and modified bits set.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-23

Special Cases of Alpha Instruction Execution

2.6.3 Prefetch, Evict Next: LDQ and HW_LDQ Instructions

The 21264/EV 67 processes thisinstruction like anormal prefetch transaction (Read-

BIkSpec command), with one exception—if the load misses the Dcache, the addressed
cache block is allocated into the Dcache, but the Dcache set allocation pointer is left
pointing to this block. The next miss to the same Dcache line will evict the block. For
example, this instruction might be used when software is reading an array that is known
to fit in the offchip Bcache, but will not fit into the onchip Dcache. In this case, the
instruction ensures that the hardware provides the desired prefetch function without dis-
placing useful cache blocks stored in the other set within the Dcache.

The HW_LDQ instruction construct equates to the HW_LD instruction with the LEN
field set. See Table 6-3.

2.6.4 Prefetch with the LDx_L / STx_C Instruction Sequence

A prefetch within a dynamic 80-instruction window of a LDx_L instruction can cause

the subsequent STx_C to incorrectly succeed when all three references are to the same
64-byte cache block. Within that 80-instruction window, the proximity of the prefetch

to the LDx_L instruction directly affects the possibility of the incorrect behavior. Fur-
ther, if the prefetch issues before the LDx_L, the error cannot occur, and if the prefetch
issues after the LDx_L, the error can only occur when another processor is simulta-
neously acquiring the same lock.

2.7 Special Cases of Alpha Instruction Execution

This section describes the mechanisms that the 21264/EV67 uses to process irregular
instructions in the Alpha instruction set, and cases in which the 21264/EV67 processes
instructions in a non-intuitive way.

2.7.1 Load Hit Speculation

2-24

The latency of integer load instructions that hit in the Dcache is three cycles. Figure 2—
9 shows the pipeline timing for these integer load instructions. In Figure 2-9:

Symbol Meaning

Q I ssue queue

R Register file read
E Execute

D Dcache access

B Data bus active

Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Special Cases of Alpha Instruction Execution

Figure 2-9 Pipeline Timing for Integer Load Instructions

Hit
Cycle Number 1 2 3 4 (5 6 7 8
ILD Q R E D B
Instruction 1 Q R
Instruction 2 Q

FM-05814.A14

There aretwo cycles in which the |Q may speculatively issue instructions that use load
databefore Dcache hit information is known. Any instructions that areissued by the 1Q

within this 2-cycle speculative window are kept in the 1Q with their requests inhibited

until the load instruction’s hit condition is known, even if they are not dependent on the
load operation. If the load instruction hits, then these instructions are removed from the
gqueue. If the load instruction misses, then the execution of these instructions is aborted
and the instructions are allowed to request service again.

For example, in Figure 2-9, instruction 1 and instruction 2 are issued within the specu-
lative window of the load instruction. If the load instruction hits, then both instructions
will be deleted from the queue by the start of cycle 7—one cycle later than normal for
instruction 1 and at the normal time for instruction 2. If the load instruction misses, both
instructions are aborted from the execution pipelines and may request service again in
cycle 6.

IQ-issued instructions are aborted if issued within the speculative window of an integer
load instruction that missed in the Dcache, even if they are not dependent on the load
data. However, if software misses are likely, the 21264/EV67 can still benefit from
scheduling the instruction stream for Dcache miss latency. The 21264/EV67 includes a
saturating counter that is incremented when load instructions hit and is decremented
when load instructions miss. When the upper bit of the counter equals zero, the integer
load latency is increased to five cycles and the speculative window is removed. The
counter is 4 bits wide and is incremented by 1 on a hit and is decremented by two on a
miss.

Since load instructions to R31 do not produce a result, they do not create a speculative
window when they execute and, therefore, never waste 1Q-issue cycles if they miss.

Floating-point load instructions that hit in the Dcache have a latency of four cycles. Fig-
ure 2—10 shows the pipeline timing for floating-point load instructions. In Figure 2—-10:

Symbol Meaning

Q I ssue queue

R Register file read
E Execute

D Dcache access

B Data bus active

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-25

Special Cases of Alpha Instruction Execution

Figure 2-10 Pipeline Timing for Floating-Point Load Instructions

Hit
Cycle Number 1 2 3 4 (5 6 7 8
FLD Q R E D B
Instruction 1 Q R
Instruction 2 Q

FM-05815.A14

The speculative window for floating-point load instructions is one cycle wide.
FQ-issued instructions that are issued within the speculative window of afloating-point
load instruction that has missed, are only aborted if they depend on the load being suc-
cessful.

For example, in Figure 2-10 instruction 1 is issued in the speculative window of the
load instruction.

If instruction 1 is not a user of the data returned by the load instruction, then it is
removed from the queue at its normal time (at the start of cycle 7).

If instruction 1 is dependent on the load instruction data and the load instruction hits,
instruction 1 is removed from the queue one cycle later (at the start of cycle 8). If the
load instruction misses, then instruction 1 is aborted from the Fbox pipeline and may
request service again in cycle 7.

2.7.2 Floating-Point Store Instructions

Floating-point store instructions are duplicated and loaded into both the IQ and the FQ
from the mapper. Each IQ entry contains a control bit, foWait, that when set prevents
that entry from asserting its requests. This bit is initially set for each floating-point store
instruction that enters the 1Q, unless it was the target of a replay trap. The instruction’s
FQ clone is issued when its Ra register is about to become clean, resulting in its IQ
clone’s fpWait bit being cleared and allowing the 1Q clone to issue and be executed by
the Mbox. This mechanism ensures that floating-point store instructions are always
issued to the Mbox, along with the associated data, without requiring the floating-point
register dirty bits to be available within the 1Q.

2.7.3 CMOV Instruction

For the 21264/EV67, the Alpha CMOQV instruction has three operands, and so presents
a special case. The required operation is to move either the value in register Rb or the
value from the old physical destination register into the new destination register, based
upon the value in Ra. Since neither the mapper nor the Ebox and Fbox data paths are
otherwise required to handle three operand instructions, the CMOV instruction is
decomposed by the Ibox pipeline into two 2-operand instructions:

The Alpha architecture instruction CMOV Ra, RbRc
Becomes the 21264/EV67 instructions CMOV1 Ra, oldReewRc1
CMOV2 newRc1JRiewRc2

2-26 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Memory and I/O Address Space Instructions

Thefirst instruction, CMOV 1, tests the value of Ra and records the result of thistest in
a 65th hit of its destination register, newRcl. It also copies the value of the old physical
destination register, oldRc, to newRcl.

The second instruction, CMOV 2, then copies either the valuein newRc1 or the valuein
Rb into a second physical destination register, newRc2, based on the CMOV predicate
bit stored in newRc1.

In summary, the original CMQOV instruction is decomposed into two dependent instruc-
tions that each use a physical register from the freelist.

To further simplify this operation, the two component instructions of a CMOV instruc-
tion are driven through the mappersin successive cycles. Hence, if a fetch line contains
n CMOV instructions, it takes n+1 cycles to run that fetch line through the mappers.

For example, the following fetch line;
ADD CMOVx SUB CMOVy

Results in the following three map cycles:
ADD CMOVx1
CMOVx2 SUB CMOVy1l
CMOVy2

The Ebox executes integer CMOV instructions as two distinct 1-cycle latency opera-
tions. The Fbox add pipeline executes floating-point CM OV instructions as two distinct
4-cycle latency operations.

2.8 Memory and I/O Address Space Instructions

This section provides an overview of theway the 21264/EV 67 processes memory and 1/
O address space instructions.

The 21264/EV 67 supports, and internally recognizes, a 44-hit physical address space
that is divided equally between memory address space and 1/0O address space. Memory
address space resides in the lower half of the physical address space (PA[43]=0)

and 1/0 address space resides in the upper half of the physical address space
(PA[43]=1).

The 1 Q can issue any combination of load and store instructions to the Mbox at the rate
of two per cycle. Thetwo lower Ebox subclusters, LO and L1, generate the
48-bit effective virtual address for these instructions.

Aninstruction is defined to be newer than another instruction if it follows that instruc-
tion in program order and is older if it precedes that instruction in program order.

2.8.1 Memory Address Space Load Instructions

The Mbox begins execution of aload instruction by tranglating its virtual addressto a
physical address using the DTB and by accessing the Dcache. The Dcacheis virtually
indexed, allowing these two operations to be done in parallel. The Mbox puts informa-
tion about the load instruction, including its physical address, destination register, and
dataformat, into the LQ.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-27

Memory and I/O Address Space Instructions

If the requested physical location isfound in the Dcache (a hit), the datais formatted
and written into the appropriate integer or floating-point register. If thelocationisnotin
the Dcache (amiss), the physical addressis placed in the miss address file (MAF) for
processing by the Cbox. The MAF performs a merging function in which a new miss
addressis compared to miss addresses already held inthe MAF. If the new miss address
points to the same Dcache block as a miss address in the MAF, then the new miss
addressis discarded.

When Dcache fill datais returned to the Dcache by the Cbox, the Mbox satisfies the
requesting load instructions in the LQ.

2.8.2 1/0 Address Space Load Instructions

Because |/0 space load instructions may have side effects, they cannot be performed
speculatively. When the Mbox receives an |/O space load instruction, the Mbox places
the load instruction in the LQ, whereit is held until it retires. The Mbox replays retired
1/0 space load instructions from the LQ to the MAF in program order, at arate of one
per GCLK cycle.

The Mbox allocates anew MAF entry to an I/O load instruction and increases |/O band-

width by attempting to merge I/O load instructions in a merge register. Table 2—7 shows
the rules for merging data. The columns represent the load instructions replayed to the
MAF while the rows represent the size of the load in the merge register.

Table 2—7 Rules for I/O Address Space Load Instruction Data Merging

Merge Register/

Replayed Instruction Load Byte/Word Load Longword Load Quadword
Byte/Word No merge No merge No merge

Longword No merge Mergeup to 32 bytes No merge

Quadword No merge No merge Merge up to 64 bytes

In summary, Table 2—7 shows some of the following rules:

e Byte/word load instructions and different size load instructions are not allowed to
merge.

* A stream of ascending non-overlapping, but not necessarily consecutive, longword
load instructions are allowed to merge into naturally aligned 32-byte blocks.

* A stream of ascending non-overlapping, but not necessarily consecutive, quadword
load instructions are allowed to merge into naturally aligned 64-byte blocks.

e Merging of quadwords can be limited to naturally-aligned 32-byte blocks based on
the Cbox WRITE_ONCE chain 32_BYTE_IO field.

* Issued MB, WMB, and I/0 load instructions close the /O register merge window.
To minimize latency, the merge window is also closed when atimer detects no I/O
store instruction activity for 1024 cycles.

After the Mbox |/O register has closed its merge window, the Cbox sends /O read
requests offchip in the order that they were received from the Mbox.

2-28 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Memory and I/O Address Space Instructions

2.8.3 Memory Address Space Store Instructions

The Mbox begins execution of a store instruction by tranglating its virtual addressto a
physical address using the DTB and by probing the Dcache. The Mbox puts informa-
tion about the store instruction, including its physical address, its data and the results of
the Dcache probe, into the store queue (SQ).

If the Mbox does not find the addressed location in the Dcache, it places the address
into the MAF for processing by the Cbox. If the Mbox finds the addressed location in a
Dcache block that is not dirty, then it places a ChangeToDirty request into the MAF.

A storeinstruction can write its data into the Dcache when it is retired, and when the
Dcache block containing its addressis dirty and not shared. SQ entries that meet these
two conditions can be placed into the writable state. These SQ entries are placed into
the writable state in program order at a maximum rate of two entries per cycle. The
Mbox transfers writable store queue entry data from the SQ to the Dcache in program
order at amaximum rate of two entries per cycle. Dcache lines associated with writable
store queue entries are locked by the Mbox. System port probe commands cannot evict
these blocks until their associated writable SQ entries have been transferred into the
Dcache. Thisrestriction assistsin STx_C instruction and Dcache ECC processing.

SQ entry datathat has not been transferred to the Dcache may source datato newer [oad
instructions. The Mbox compares the virtual Dcache index bits of incoming load
instructions to queued SQ entries, and sources the data from the SQ, bypassing the
Dcache, when necessary.

2.8.4 1/0 Address Space Store Instructions

The Mbox begins processing |/O space store instructions, like memory space store
instructions, by trandlating the virtual address and placing the state associated with the
store instruction into the SQ.

The Mbox replays retired 1/0 space store entries from the SQ to the IOWB in program
order at arate of one per GCLK cycle. The Mbox never alows queued I/O space store
instructions to source data to subsequent load instructions.

The Cbox maximizes I/O bandwidth when it allocates anew IOWB entry to an 1/O

store instruction by attempting to merge 1/O store instructions in a merge register. Table

2-8 shows the rules for I/O space store instruction data merging. The columns represent
the load instructions replayed to the IOWB while the rows represent the size of the store
in the merge register.

Table 2—-8 Rules for I/O Address Space Store Instruction Data Merging

Merge Register/ Store

Replayed Instruction Byte/Word Store Longword Store Quadword
Byte/Word No merge No merge No merge

Longword No merge Mergeup to 32 bytes No merge

Quadword No merge No merge Merge up to 64 bytes

Table 2—8 shows some of the following rules:

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-29

MAF Memory Address Space Merging Rules

* Byte/word store instructions and different size store instructions are not allowed to
merge.

e A stream of ascending non-overlapping, but not necessarily consecutive, longword
store instructions are alowed to merge into naturally aligned 32-byte blocks.

e A stream of ascending non-overlapping, but not necessarily consecutive, quadword
store instructions are allowed to merge into naturally aligned 64-byte blocks.

* Merging of quadwords can be limited to naturally-aligned 32-byte blocks based on
the Cbox WRITE_ONCE chain 32 BYTE_IO field.

e |ssued MB, WMB, and I/O load instructions close the |/O register merge window.
To minimize latency, the merge window is also closed when atimer detects no 1/0
store instruction activity for 1024 cycles.

After the IOWB merge register has closed its merge window, the Cbox sends 1/0 space
store requests offchip in the order that they were received from the Mbox.

2.9 MAF Memory Address Space Merging Rules

Because all memory transactions are to 64-byte blocks, efficiency isimproved by merg-

ing several small data transactions into a single larger data transaction. Table 2-9 lists
the rules the 21264/EV67 uses when merging memory transactions into 64-byte natu-
rally aligned data block transactions. Rows represent the merged instruction in the
MAF and columns represent the new issued transaction.

Table 2-9 MAF Merging Rules
MAF/New LDx STx STx _C WH64 ECB Istream

LDx Merge — — — — —
STx Merge Merge — — — —
STx_C — — Merge — — —
WH64 — — — Merge — —
ECB — — — — Merge —

Istream — — — — — Merge

In summary, Table 2—9 shows that only like instruction types, with the exception of
load instructions merging with store instructions, are merged.

2.10 Instruction Ordering

In the absence of explicit instruction ordering, such as with MB or WMB instructions,
the 21264/EV67 maintains a default instruction ordering relationship between pairs of
load and store instructions.

2-30 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

The 21264/EV 67 maintains the default memory data instruction ordering as shown in

Replay Traps

Table 2—10 (assume address X and address Y are different).

Table 2-10 Memory Reference Ordering

First Instruction in Pair

Second Instruction In Pair

Reference Order

Load memory to address X
Load memory to address X
Store memory to address X
Store memory to address X
Load memory to address X
Load memory to address X
Store memory to address X

Store memory to address X

Load memory to address X
Load memory to address Y
Store memory to address X
Store memory to address Y
Store memory to address X
Store memory to address Y
Load memory to address X
Load memory to address Y

Maintained (litmus test 1)
Not maintained
Maintained

Maintained

Maintained

Not maintained
Maintained

Not maintained

The 21264/EV67 maintains the default I/O instruction ordering as shown in Table 2-11

(assume address X and address Y are different).

Table 2-11 1/0 Reference Ordering

First Instruction in Pair

Second Instruction in Pair

Reference Order

Load I/O to address X
Load I/O to address X
Store 1/0 to address X
Store 1/0 to address X
Load I/O to address X
Load I/O to address X
Store 1/0 to address X
Store 1/0O to address X

Load 1/O to address X
Load I/O to address Y
Store 1/0 to address X
Store 1/0 to address Y
Store 1/0 to address X
Store 1/O to address Y
Load 1/O to address X
Load I/O to address Y

Maintained
Maintained
Maintained
Maintained
Maintained
Not maintained
Maintained

Not maintained

2.11 Replay Traps

There are some situations in which a load or store instruction cannot be executed due to
a condition that occurs after that instruction issues from the 1Q or FQ. The instruction is
aborted (along with all newer instructions) and restarted from the fetch stage of the
pipeline. This mechanism is called a replay trap.

2.11.1 Mbox Order Traps

Load and store instructions may be issued from the 1Q in a different order than they
were fetched from the Icache, while the architecture dictates that Dstream memory
transactions to the same physical bytes must be completed in order. Usually, the Mbox
manages the memory reference stream by itself to achieve architecturally correct
behavior, but the two cases in which the Mbox uses replay traps to manage the memory
stream aréoad-load andstore-load order traps.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-31

/O Write Buffer and the WMB Instruction

2.11.1.1 Load-Load Order Trap

The Mbox ensures that load instructions that read the same physical byte(s) ultimately
issue in correct order by using the load-load order trap. The Mbox compares the
address of each load instruction, asit isissued, to the address of all load instructionsin
the load queue. If the Mbox finds a newer load instruction in the load queue, it invokes
aload-load order trap on the newer instruction. Thisis areplay trap that aborts the tar-
get of the trap and all newer instructions from the machine and refetches instructions
starting at the target of the trap.

2.11.1.2 Store-Load Order Trap

The Mbox ensures that aload instruction ultimately issues after an older store instruc-

tion that writes some portion of its memory operand by using the store-load order trap.
The Mbox compares the address of each store instruction, as it is issued, to the address
of all load instructionsin the load queue. If the Mbox finds a newer load instruction in
theload queue, it invokes astore-load order trap on the load instruction. Thisisareplay
trap. It functions like the load-load order trap.

The Ibox contains extra hardware to reduce the frequency of the store-load trap. There
isa1-bit by 1024-entry VPC-indexed table in the Ibox called the stWait table. When an
Icache instruction is fetched, the associated stWait table entry is fetched along with the
Icache instruction. The stWait table produces 1 bit for each instruction accessed from
the Icache. When aload instruction gets a store-load order replay trap, its associated bit
in the stWait table is set during the cycle that the load is refetched. Hence, the trapping
load instruction’s stWait bit will be set the next time it is fetched.

The 1Q will not issue load instructions whose stWait bit is set while there are older unis-
sued store instructions in the queue. A load instruction whose stWait bit is set can be
issued the cycle immediately after the last older store instruction is issued from the
gueue. All the bits in the stWait table are unconditionally cleared every 16384 cycles, or
every 65536 cycles if |_ CTL[ST_WAIT_64K] is set.

2.11.2 Other Mbox Replay Traps

The Mbox also uses replay traps to control the flow of the load queue and store queue,
and to ensure that there are never multiple outstanding misses to different physical
addresses that map to the same Dcache or Bcache line. Unlike the order traps, however,
these replay traps are invoked on the incoming instruction that triggered the condition.

2.12 /O Write Buffer and the WMB Instruction

The I/O write buffer IOWB) consists of four 64-byte entries with the associated
address and control logic used to buffer I1/0O write data between the store queue (SQ)
and the system port.

2.12.1 Memory Barrier (MB/WMB/TB Fill Flow)

The Cbox CSR SYSBUS_ MB_ENABLE bit determines if MB instructions produce
external system port transactions. When the SYSBUS_MB_ENABLE bit equals 0, the
Cbox CSR MB_CNT]J3:0] field contains the number of pending uncommitted transac-
tions. The counter will increment for each of the following commands:

* RdBlk, RdBIkMod, RdBIKkI

2-32 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

/O Write Buffer and the WMB Instruction

* RdBlkSpec (vaid), RdBIkModSpec (valid), RdBIkSpecl (valid)
* RdBlkVic, RdBIkModVic, RdBIkVicl

e CleanTaDirty, SharedToDirty, STChangeToDirty, Inval ToDirty
* FetchBIk, FetchBlkSpec (valid), Evict

¢ RdByte, RdLw, RdQw, WrByte, WrLW, WrQW

The counter is decremented with the C (commit) bit in the Probe and SysDc commands
(see Section 4.7.7). Systems can assert the C bit in the SysDc fill response to the com-
mands that originally incremented the counter, or attached to the last probe seen by that
command when it reached the system serialization point. If the number of uncommitted
transactions reaches 15 (saturating the counter), the Cbox will stall MAF and IOWB
processing until at least one of the pending transactions has been committed. Probe pro-
cessing is not interrupted by the state of this counter.

2.12.1.1 MB Instruction Processing

When an MB instruction is fetched in the predicted instruction execution path, it stalls
in the map stage of the pipeline. This also stals al instructions after the MB, and con-

trol of instruction flow is based upon the value in Cbox CSR SYSBUS MB_ENABLE
asfollows:

* If Chox CSR SYSBUS MB_ENABLE isclear, the Cbox waits until the IQ is
empty and then performs the following actions:

a. Sendsall pending MAF and IOWB entries to the system port.

b. Monitors Cbox CSR MB_CNT[3:0], a4-hit counter of outstanding committed
events. When the counter decrements from one to zero, the Cbox marks the
youngest probe queue entry.

c. Waitsuntil the MAF contains no more Dstream references and the SQ, LQ, and
IOWB are empty.

When all of the above have occurred and a probe response has been sent to the sys-
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

e |f Cbox CSR SYSBUS MB_ENABLE isset, the Cbox waits until the 1Q is empty
and then performs the following actions:

a. Sendsall pending MAF and IOWB entries to the system port
b. Sendsthe MB command to the system port

c. Waitsuntil the MB command is acknowledged, then marks the youngest entry
in the probe queue

d. Waitsuntil the MAF contains no more Dstream references and the SQ, LQ, and
IOWB are empty

When all of the above have occurred and a probe response has been sent to the sys-
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-33

/O Write Buffer and the WMB Instruction

Because the MB instruction is executed speculatively, MB processing can begin
and the original MB can be killed. In the internal acknowledge case, the MB may
have already been sent to the system interface, and the system is still expected to
respond to the MB.

2.12.1.2 WMB Instruction Processing

Write memory barrier (WMB) instructions are issued into the Mbox store-queue, where
they wait until they are retired and al prior store instructions become writable. The
Mbox then stallsthe writable pointer and informs the Cbox. The Cbox closesthe |IOWB
merge register and responds in one of the following two ways:

e If Chox CSR SYSBUS MB_ENABLE isclear, the Cbox performs the following
actions:

a. Stalsfurther MAF and IOWB processing.

b. Monitors Cbox CSR MB_CNT[3:0], a4-hit counter of outstanding committed
events. When the counter decrements from one to zero, the Cbox marks the
youngest probe queue entry.

c. When a probe response has been sent to the system for the marked probe queue
entry, the Chox considers the WMB to be satisfied.

e |f Cbox CSR SYSBUS MB_ENABLE is set, the Chox performs the following
actions:

a. Stalsfurther MAF and IOWB processing.
b. Sendsthe MB command to the system port.

c. Waitsuntil the MB command is acknowledged by the system with a SysDc
MBDone command, then sends acknowledge and marks the youngest entry in
the probe queue.

d. When a probe response has been sent to the system for the marked probe queue
entry, the Chox considers the WMB to be satisfied.

2.12.1.3 TB Fill Flow

Load instructions (HW_LDs) to avirtual page table entry (VPTE) are processed by the
21264/EV 67 to avoid litmus test problems associated with the ordering of memory
transactions from another processor against loading of a page table entry and the subse-
guent virtual-mode load from this processor.

Consider the sequence shown in Table 2—12. The data could be in the Bcache. Pj should
fetch datai if it is using PTEi.

Table 2-12 TB Fill Flow Example Sequence 1

Pi Pj
Write Datai Load/Store datai
MB <TB miss>
Write PTEi Load-PTE

<write TB>

L oad/Store (restart)

2-34 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

/O Write Buffer and the WMB Instruction

Also consider the related sequence shown in Table 2—-13. In this case, the data could be
cached in the Bcache; Pj should fetch datai if it is using PTEi.

Table 2-13 TB Fill Flow Example Sequence 2

Pi Pj

Write Datai Istream read datai

MB <TB miss>

Write PTE LoapI-F’TE
<write TB>

Istream read (restart) - will miss the Icache

The 21264/EV67 processes Dstream loads to the PTE by injecting, in hardware, some
memory barrier processing between the PTE transaction and any subsequent load or
store instruction. This is accomplished by the following mechanism:

1. The integer queue issues a HW_LD instruction with VPTE.

2. The integer queue issues a HW_MTPR instruction with a DTB_PTEDO, that is data-
dependent on the HW_LD instruction with a VPTE, and is required in order to fill
the DTBs. The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4]
and [0].

3. When a HW_MTPR instruction with a DTB_PTEO is issued, the Ibox signals the
Cbox indicating that a HW_LD instruction with a VPTE has been processed. This
causes the Chox to begin processing the MB instruction. The Ibox prevents any
subsequent memory operations being issued by not clearing the IPR scoreboard bit
[0]. IPR scoreboard bit [0] is one of the scoreboard bits associated with the
HW_MTPR instruction with DTB_PTEO.

4. When the Cbox completes processing the MB instruction (using one of the above
sequences, depending upon the state of SYSBUS_MB_ENABLE), the Chox sig-
nals the Ibox to clear IPR scoreboard bit [0].

The 21264/EV67 uses a similar mechanism to process Istream TB misses and fills to
the PTE for the Istream.

1. The integer queue issues a HW_LD instruction with VPTE.

2. The IQ issues a HW_MTPR instruction with an ITB_PTE that is data-dependent
upon the HW_LD instruction with VPTE. This is required in order to fill the ITB.
The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4] and [0].

3. The Cbox issues a HW_MTPR instruction for the ITB_PTE and signals the Ibox
that a HW_LD/VPTE instruction has been processed, causing the Chox to start pro-
cessing the MB instruction. The Mbox stalls Ibox fetching from when the HW_LD/
VPTE instruction finishes until the probe queue is drained.

4. When the 21264/EV67 is finished (SYS_MB selects one of the above sequences),
the Cbox directs the Ibox to clear IPR scoreboard bit [0]. Also, the Mbox directs the
Ibox to start prefetching.

Inserting MB instruction processing within the TB fill flow is only required for multi-
processor systems. Uniprocessor systems can disable MB instruction processing by
deasserting Ibox CSR |_CTL[TB_MB_EN].

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-35

Performance Measurement Support—Performance Counters

2.13 Performance Measurement Support—Performance Counters

The 21264/EV 67 provides hardware support for two methods of obtaining program
performance feedback information. The two methods do not require program modifica-
tion. The first method offers similar capabilities to earlier microprocessor performance
counters. The second method supports the new ProfileM e way of statistically sampling
individual instructions during program execution to develop a model of program execu-
tion. Both methods use the same hardware registers.

See Section 6.10 for information about counter control.

2.14 Floating-Point Control Register

The floating-point control register (FPCR) is shown in Figure 2-11.

Figure 2—11 Floating-Point Control Register

6362616059585756555453525150494847 0

SUM J

INED ——
UNFD
UNDZ

DYN

[0}V
INE
UNF
OVF
DZE
INV
OVFD
DZED
INVD
DNz LK99-0050A

The floating-point control register fields are described in Table 2—-14.

Table 2-14 Floating-Point Control Register Fields

Name Extent Type Description
SUM [63] RwW Summary bit. Records bit-wise OR of FPCR exception bits.
INED [62] RwW Inexact Disable. If this bit is set and a floating-point instruction that enables

trapping on inexact results generates an inexact value, the result is placed in the
destination register and the trap is suppressed.

2-36 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Floating-Point Control Register

Table 2-14 Floating-Point Control Register Fields (Continued)

Name

Extent

Type

Description

UNFD

UNDZ

DYN

o)V

INE

UNF

OVF

DZE

INV

OVFD

DZED

INVD

Alpha 21264/EV67 Hardware Reference Manual

[61]

(60]

[59:58]

(57]

[56]

[59]

[54]

(53]

[52]

[51]

(50]

[49]

RwW

RwW

RwW

Underflow Disable. The 21264/EV 67 hardware cannot generate | EEE compli-
ant denormal results. UNFD isused in conjunction with UNDZ as follows:

UNFD UNDZ Result

0 X Underflow trap.
1 0 Trap to supply apossible denormal result.

1 1 Underflow trap suppressed. Destination is written with a
true zero (+0.0).

Underflow to zero. When UNDZ is set together with UNFD, underflow traps
are disabled and the 21264/EV 67 places atrue zero in the destination register.
See UNFD, above.

Dynamic rounding mode. Indicates the rounding mode to be used by an |IEEE
floating-point instruction when the instruction specifies dynamic rounding
mode:

Bits Meaning

00 Chopped

01 Minus infinity
10 Normal

11 Plusinfinity

Integer overflow. An integer arithmetic operation or a conversion from float-
ing-point to integer overflowed the destination precision.

Inexact result. A floating-point arithmetic or conversion operation gave aresult
that differed from the mathematically exact result.

Underflow. A floating-point arithmetic or conversion operation gave aresult
that underflowed the destination exponent.

Overflow. A floating-point arithmetic or conversion operation gave aresult that
overflowed the destination exponent.

Divide by zero. An attempt was made to perform afloating-point divide with a
divisor of zero.

Invalid operation. An attempt was made to perform afloating-point arithmetic
operation and one or more of its operand values were illegal .

Overflow disable. If this bit is set and a floating-point arithmetic operation gen-
erates an overflow condition, then the appropriate | EEE nontrapping result is
placed in the destination register and the trap is suppressed.

Division by zero disable. If thisbit is set and a floating-point divide by zero is
detected, the appropriate | EEE nontrapping result is placed in the destination
register and the trap is suppressed.

Invalid operation disable. If thishit is set and a floating-point operate generates
an invalid operation condition and 21264/EV 67 is capable of producing the
correct | EEE nontrapping result, that result is placed in the destination register
and the trap is suppressed.

Internal Architecture 2-37

AMASK and IMPLVER Instruction Values

Table 2-14 Floating-Point Control Register Fields (Continued)

Name Extent Type Description

DNz [48] RwW Denormal operandsto zero. If thisbit is set, treat all Denormal operands as a
signed zero value with the same sign as the Denormal operand.

Reserved [47:01' — —

1 Alpha architecture FPCR bit 47 (DNOD) is not implemented by the 21264/EV67.

2.15 AMASK and IMPLVER Instruction Values

The AMASK and IMPLVER instructions return processor type and supported architec-
ture extensions, respectively.

2.15.1 AMASK

The 21264/EV67 returns the AMASK instruction values provided in Table 2-15. The
|_CTL register reports the 21264/EV67 pass level (see |_CTL[CHIP_ID], Section
5.2.15).

Table 2-15 21264/EV67 AMASK Values

21264/EV67 Pass Level AMASK Feature Mask Value
See |_CTL[CHIP_ID], Table 5-11 3¢y

The AMASK bit definitions provided in Table 2-15 are defined in Table 2—-16.

Table 2-16 AMASK Bit Assignments

Bit Meaning

0 Support for the byte/word extension (BWX)
Theinstructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

1 Support for the square-root and floating-point convert extension (FIX)
Theinstructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF, ITOFS,
ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

2 Support for the count extension (CIX)
Theinstructions that comprise the CIX extension are CTLZ, CTPOP, and CTTZ.

8 Support for the multimedia extension (MV1)
Theinstructions that comprise the MV 1 extension are MAXSB8, MAXSWA4,
MAXUB8, MAXUW4, MINSB8, MINSW4, MINUBS8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

9 Support for precise arithmetic trap reporting in hardware. The trap PC isthe same as
the instruction PC after the trapping instruction is executed.

2.15.2 IMPLVER
For the 21264/EV67, the IMPLVER instruction returns the value 2.

2-38 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

Design Examples

2.16 Design Examples

The 21264/EV 67 can be designed into many different uniprocessor and multiprocessor
system configurations. Figures 2—12 and 2-13 illustrate two possible configurations.
These configurations employ additional system/memory controller chipsets.

Figure 2—-12 shows a typical uniprocessor system with a second-level cache. This sys-
tem configuration could be used in standalone or networked workstations.

Figure 2—12 Typical Uniprocessor Configuration

L2 Cache 21264 21272 Core Duplicate
Logic Chipset |=€ > Tag Store
Tag T (Optional)
l————
Store ag
Address - Control
\ Out - Chips
Address SRAM
Address | Data Slice ArTa
=< ; ys
/ In Chips
Data »| Data
Store Host PCI »1 Address
Data = > Bridge Chip
- >»1 Data

Y Y
< 64-bit PCI Bus >
FM-05573-EV67

Figure 2—13 shows a typical multiprocessor system, each processor with a second-level
cache. Each interface controller must employ a duplicate tag store to maintain cache
coherency. This system configuration could be used in a networked database server
application.

Alpha 21264/EV67 Hardware Reference Manual Internal Architecture 2-39

Design Examples

Figure 2—13 Typical Multiprocessor Configuration

21272 Core
21264 - . DRAM
L Ch t
< > - ogic Chipse Arrays
L2 o
Cache [~ © B >»-1 Address
<> <« Control <% »| Data
Chip
o 21264 o Data Slice
<> P Chips DRAM
Arrays
L2 -
Cache |~ © B
»| Address
< > < > Host PCI Host PCI
Bridge Chip Bridge Chip | |« »|Data
A A A A

Y\

< 64-bit PCI Bus >
A
< 84-bit PCI Bus > FM-05574-EV67

2-40 Internal Architecture Alpha 21264/EV67 Hardware Reference Manual

3

Hardware Interface

This chapter contains the 21264/EV 67 microprocessor logic symbol and providesinfor-
mation about signal names, their function, and their location. This chapter also
describes the mechanical specifications of the 21264/EV67. It is organized as follows:

The 21264/EV 67 logic symbol

The 21264/EV 67 signal names and functions

Lists of the signal pins, sorted by name and PGA location
The specifications for the 21264/EV 67 mechanical package
The top and bottom views of the 21264/EV 67 pinouts

3.1 21264/EV67 Microprocessor Logic Symbol
Figure 3—1 show the logic symbol for the 21264/EV67 chip.

Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3-1

21264/EV67 Microprocessor Logic Symbol

Figure 3—1 21264/EV67 Microprocessor Logic Symbol

21264
System Interface Bcache Interface
—» SysAddin_L[14:0] BcAdd_H[23:4] | —>
—» SysAddInClk_L BcData_H[127:0] [€«—>
< SysAddOut_L[14:0] BcCheck_H[15:0] [€«—>»
<— SysAddOutClk_L BcDatalnClk_H[7:0] [€&——
—» SysVref BcDataOutClk_pB:.0] |——>»
<—» SysData_L[63:0] BcDataOE_L [—»
<—» SysCheck_L[7:0] BcDatawr L [—»
—» SysDatalnClk_H[7:0] BcTag_H[42:20] [<—>
<— SysDataOutClk_L[7:0] BcTaginClk_ H |€&—
—» SysDatalnValid_L BcTagOutClk_x |——»
—» SysDataOutValid_L Bcvref |[€&——
—» SyskFillvalid_L BcTagDirty H [€<—>»
BcTagParity H [€«—>»
BcTagShared H [<«—>»
BcTagValid_ H [«—>»
BcTagOE_L [—»
BcTagWr L [—»
BcLoad L [—>»
——» Clkin_x Clocks
—»| FrameClk_x
—»| EV6CIK x
3.3V———| PLL_VDD
Miscellaneous
——»{ IRQ_H[5:0]
—»| ClkFwdRst_H
—» SromData_H
—» Tms_H
—» Trst_L
—» Tck_H
—» Tdi_H
—» PlIBypass_H SromClk_H [—»
—»| MiscVref SromOE_L [—»
—»| Reset_L TestStat H |—»
—>»] DCOK_H Tdo H F—>»

3-2

Hardware Interface

Alpha 21264/EV67 Hardware Reference Manual

LK99-0051A

21264/EV67 Signal Names and Functions

3.2 21264/EV67 Signal Names and Functions
Table 3-1 defines the 21264/EV67 signal types referred to in this section.

Table 3—-1 Signal Pin Types Definitions

Signal Type Definition

Inputs

| DC REF Input DC reference pin

| DA Input differential amplifier receiver

| DA _CLK Input clock pin

Outputs

O _OD Open drain output driver

O _ OD_TP Open drain driver for test pins

O_PP Push/pull output driver

O_PP _CLK Push/pull output clock driver

Bidirectional

B_DA_OD Bidirectional differential amplifier receiver with open drain output
B_DA_PP Bidirectional differential amplifier receiver with push/pull output
Other

Spare Reserved to Compaq1

NoConnect No connection — Do not connect to these pins for any revision of the

21264/EV67. These pins must float.

1 All Spare connections are Reserved to Compag to maintain compatibility between
passes of the chip. Designers should not use these pins.

Table 3-2 lists all signal pins in alphabetic order and provides a full functional descrip-
tion of the pins. Table 3—4 lists the signal pins and their corresponding pin grid array
(PGA) locations in alphabetic order for the signal type. Table 3-5 lists the pin grid array
locations in alphabetical order.

Table 3-2 21264/EV67 Signal Descriptions

Signal Type Count Description

BcAdd_H[23:4] O PP 20 These signals provide the index to the Bcache.

BcCheck H[15:0] B DA PP 16 ECC check bitsfor BcData H[127:0].

BcData H[127:0] B DA PP 128 Bcache data signals.

BcDatalnClk_H[7:0] | DA 8 Bcache datainput clocks. These clocks are used with high
speed SDRAMS, such as DDRs, that provide a clock-out with
data-output pins to optimize Bcache read bandwidths. The
21264/EV 67 internally synchronizes the datato its logic with
clock forward receive circuits similar to the system interface.

BcDataOE_L O_PP 1 Bcache data output enable. The 21264/EV 67 assertsthis signal

during Bcache read operations.

Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3-3

21264/EV67 Signal Names and Functions

Table 3—2 21264/EV67 Signal Descriptions (Continued)

Signal

Type Count

Description

BcDataOutClk_H[3:0]
BcDataOutClk_L[3:0]

BcDataWr_L

BcLoad L
BcTag H[42:20]
BcTagDirty H

BcTaglnClk_H

BcTagOE_L

BcTagOutClk_H
BcTagOutClk_L

BcTagParity H
BcTagShared H

BcTagvalid_H

BcTagWr_L

BcVref
ClkFwdRst_H

Clkin_H
Clkin_L

DCOK_H

EV6CIK_H
EV6CIK_L

O PP 8

O PP 1
O_PP 1
B DA_PP 23
BDAPP 1
|_DA 1
O_PP 1
O_PP 2
B DA PP 1
B DA PP 1
B DA PP 1
O_PP 1
| DC_REF 1
|_DA 1
| DA_CLK 2
|_DA 1
O_PP CLK 2

3-4 Hardware Interface

Bcache data output clocks. These free-running clocks are dif-
ferential copies of the Bcache clock and are derived from the
21264/EV67 GCLK. Their period isamultiple of the GCLK
and is fixed for al operations. They can be configured so that
their rising edge lags BcAdd_H[23:4] by 0to 2 GCLK cycles.
The 21264/EV 67 synchronizes tag output information with
these clocks.

Bcache datawrite enable. The 21264/EV 67 asserts this signal
when writing data to the Bcache data arrays.

Bcache burst enable.
Bcache tag hits.

Tag dirty state bit. During cache write operations, the 21264/
EV67 will assert thissigna if the Bcache data has been modi-
fied.

Bcache tag input clock. The 21264/EV 67 uses this input clock
to latch the tag information on Bcache read operations. This
clock is used with high-speed SDRAMS, such as DDRSs, that
provide a clock-out with data-output pins to optimize Bcache
read bandwidths. The 21264/EV 67 internally synchronizesthe
datato its logic with clock forward receive circuits similar to
the system interface.

Bcache tag output enable. Thissignal is asserted by the 21264/
EV67 for Bcache read operations.

Bcache tag output clock. These clocks “echo” the clock-for-
wardedBcDataOutClk_x[3:0] clocks.

Tag parity state bit.

Tag shared state bit. The 21264/EV67 will write a 1 on this sig-
nal line if another agent has a copy of the cache line.

Tag valid state bit. If set, this line indicates that the cache line
is valid.

Tag RAM write enable. The 21264/EV67 asserts this signal
when writing a tag to the Bcache tag arrays.

Bcache tag reference voltage.

Systems assert this synchronous signal to wake up a powered-
down 21264/EV67. Th€lkFwdRst_H signal is clocked into

a 21264/EV67 register by the captufedmeClk_x signals.
Systems must ensure that the timing of this signal meets
21264/EV67 requirements (see Section 4.7.2).

Differential input signals provided by the system.

dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After thadCOK _H is asserted.

Provides an external test point to measure phase alignment of
the PLL.

Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Signal Names and Functions

Table 3—2 21264/EV67 Signal Descriptions (Continued)

Signal Type Count Description

FrameClk_H | DA _CLK 2 A skew-controlled differential 50% duty cycle copy of the sys-

FrameClk_L tem clock. It is used by the 21264/EV 67 as areference, or
framing, clock.

IRQ_HI[5:0Q] |_DA 6 These six interrupt signal lines may be asserted by the system.

The response of the 21264/EV 67 is determined by the system
software.

MiscVref | DC REF 1 Voltage reference for the miscellaneous pins
(see Table 3-3).

PlIBypass H I|_DA 1 When asserted, this signal will cause the two input clocks
(ClkIn_x) to be applied to the 21264/EV67 internal circuits,
instead of the 21264/EV67 global clock (GCLK).

PLL_VDD 3.3V 1 3.3-V dedicated power supply for the 21264/EV67 PLL.

Reset L I_DA 1 System reset. This signal protects the 21264/EV67 from dam-
age during initial power-up. It must be asserted until
DCOK _H is asserted. After that, it is deasserted and the
21264/EV67 begins its reset sequence.

SromClk_H O OD TP 1 Serial ROM clock. Supplies the clock that causes the SROM to
advance to the next bit. The cycle time for this clock is 256
times the cycle time of the GCLK (internal 21264/EV67
clock).

SromData H |_DA 1 Serial ROM data. Input data line from the SROM.

SromOE_L O OD TP 1 Serial ROM enable. Supplies the output enable to the SROM.

SysAddin_L[14:0] I_DA 15 Time-multiplexed command/address/ID/Ack from system to
the 21264/EV67.

SysAddInClk_L |_DA 1 Single-ended forwarded clock from system for
SysAddin_L[14:0] andSysFillVvalid_L.

SysAddOut_L[14:0Q] O _OD 15 Time-multiplexed command/address/ID/mask from the 21264/
EV67 to the system bus.

SysAddOutClk_L O_OD 1 Single-ended forwarded clock output for
SysAddOut_L[14:0].

SysCheck_L[7:0] B DA OD 8 Quadword ECC check bits f8ysData_L [63:0].

SysData L[63:0] B_DA _OD 64 Data bus for memory and I/O data.

SysDatalnClk_H[7:0] |_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDatal nValid_L I_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EV67.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV67-generated clocks for clock for-
warded output system data.

SysDataOutValid_L I|_DA 1 When asserted, marks a valid data cycle for data transfers from
the 21264/EV67.

SysFillValid_L I_DA 1 When asserted, this bit indicates validation for the cache fill

Alpha 21264/EV67 Hardware Reference Manual

delivered in the previous system SysDc command.

Hardware Interface 3-5

21264/EV67 Signal Names and Functions

Table 3—2 21264/EV67 Signal Descriptions (Continued)

Signal Type Count Description

SysVref | DC REF 1 System interface reference voltage.

Tck_H |_DA 1 |EEE 1149.1 test clock.

Tdi_H I_DA 1 |EEE 1149.1 test data-in signal.

Tdo_H O OD TP 1 |EEE 1149.1 test data-out signal.

TestStat H OOD TP 1 Test status pin. System reset drives the test status pin low.

The TestSat_H pinisforced high at the start of the Icache
BiST. If the Icache Bi ST passes, the pin is deasserted at the end
of the BiST operation; otherwise, it remains high.

The 21264/EV 67 generates atimeout reset signal if an instruc-
tion is not retired within one billion cycles.

The 21264/EV 67 signals the timeout reset event by outputting
a256 GCLK cyclewide pulseon TestStat H.

Tms H |_DA 1 |EEE 1149.1 test mode select signal.
Trst_ L I_DA 1 |EEE 1149.1 test access port (TAP) reset signal.

Table 3-3 lists signals by function and provides an abbreviated description.

Table 3—-3 21264/EV67 Signal Descriptions by Function

Signal Type Count Description

BcVref Domain

BcAdd_H[23:4] O_PP 20 Bcache index.

BcCheck _H[15:0] B_ DA PP 16 ECC check bitsfor BcData H[127:0].
BcData H[127:0] B DA PP 128 Bcache data.
BcDatalnClk_H[7:0] | _DA 8 Bcache datainput clocks.
BcDataOE_L O PP 1 Bcache data output enable.
BcDataOutClk_H[3:0] O _PP 8 Bcache data output clocks.
BcDataOutClk_L[3:0]

BcDataWr_L O PP 1 Bcache datawrite enable.
BcLoad L O PP 1 Bcache burst enable.
BcTag H[42:20] B DA PP 23 Bcache tag bits.
BcTagDirty H B DA PP 1 Tag dirty state bit.
BcTaglnClk_H |_DA 1 Bcache tag input clock.
BcTagOE_L O PP 1 Bcache tag output enable.
BcTagOutClk_H O PP 2 Bcache tag output clocks.
BcTagOutClk_L

BcTagParity H B DA PP 1 Tag parity state bit.
BcTagShared H B DA PP 1 Tag shared state hit.
BcTagvalid H B DA PP 1 Tag valid state bit.
BcTagWr_L O PP 1 Tag RAM write enable.

3-6 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Signal Names and Functions

Table 3—3 21264/EV67 Signal Descriptions by Function (Continued)

Signal Type Count Description

BcVref | DC REF 1 Tag data input reference voltage.

SysVref Domain

SysAddin_L[14:0] I|_DA 15 Time-multiplexed SysAddin, system-to-21264/EV67.

SysAddInClk_L I_DA 1 Single-ended forwarded clock from system for
SysAddin_L[14:0] and SysFillValid_L.

SysAddOut_L[14:0Q] O _OD 15 Time-multiplexed SysAddOut, 21264/EV 67-to-system.

SysAddOutClk_L O 0D 1 Single-ended forwarded-clock.

SysCheck_L[7:0] B DA OD 8 Quadword ECC check bitsfor SysData_L [63:0].

SysData L[63:0] B DA OD 64 Data bus for memory and 1/0O data.

SysDatalnClk_H[7:0] |1_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDatalnValid_L |_DA 1 When asserted, marks avalid data cycle for data transfers to
the 21264/EV67.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV 67-generated clocks for clock for-
warded output system data.

SysDataOutValid_L |_DA 1 When asserted, marks avalid data cycle for data transfers
from the 21264/EV 67.

SysFillvalid_L I_DA 1 Validation for fill given in previous SysDC command.

SysVref | DC REF 1 System interface reference voltage.

Clocksand PLL

ClkIn_H | DA CLK 2 Differential input signals provided by the system.

Clkin_L

EV6CIk_H O PP CLK 2 Provides an external test point to measure phase alignment of

EV6CIk_L the PLL.

FrameClk_H | DA CLK 2 A skew-controlled differential 50% duty cycle copy of the

FrameClk_L system clock. It is used by the 21264/EV 67 as areference, or
framing, clock.

PLL VDD 33V 1 3.3-V dedicated power supply for the 21264/EV 67 PLL.

MiscVref Domain

ClkFwdRst_H |_DA 1 Systems assert this synchronous signal to wake up a powered-
down 21264/EV67. The CIkFwdRst_H signal is clocked into
a21264/EV 67 register by the captured FrameClk_x signals.

DCOK_H I_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After that, DCOK _H is asserted.

IRQ_HI[5:0] I_DA 6 These six interrupt signal lines may be asserted by the system.

MiscVref | DC REF 1 Reference voltage for miscellaneous pins.

PlIBypass H |_DA 1 When asserted, this signal will cause the input clocks

Alpha 21264/EV67 Hardware Reference Manual

(ClklIn_x) to be applied to the 21264/EV 67 interna circuits,
instead of the 21264/EV67’s global clock (GCLK).

Hardware Interface 3-7

Pin Assignments

Table 3—-3 21264/EV67 Signal Descriptions by Function (Continued)

Signal Type Count Description

Reset L |_DA 1 System reset. Thissignal protects the 21264/EV 67 from dam-
age during initial power-up. It must be asserted until
DCOK _H isasserted. After that, it is deasserted and the
21264/EV 67 begins its reset sequence.

SromClk_H OOD TP 1 Serial ROM clock.

SromData H |_DA 1 Serial ROM data.

SromOE_L OODb TP 1 Serial ROM enable.

Tck_H I_DA 1 |EEE 1149.1 test clock.

Tdi_H |_DA 1 |EEE 1149.1 test data-in signal.

Tdo H OOD TP 1 |EEE 1149.1 test data-out signal.

TestSat H OOoDb TP 1 Test status pin.

Tms H |_DA 1 |EEE 1149.1 test mode select signal.

Trst L |_DA 1 |EEE 1149.1 test access port (TAP) reset signal.

3.3 Pin Assignments

The 21264/EV 67 package has 587 pinsaligned in apin grid array (PGA) design. There

are 380 functional signal pins, 1 dedicated 3.3-V pinfor the PLL, 112 groundV SS pins,

and 94 VDD pins. Table 3—4 lists the signal pins and their corresponding pin grid array
(PGA) locations in alphabetical order for the signal type. Table 3-5 lists the pin grid
array locations in alphabetical order

Table 3—4 Pin List Sorted by Signal Name

Signal Name PGA Location Signal Name PGA Location Signal Name PGA Location
BcAdd_H_10 B30 BcAdd H_11 D30 BcAdd _H_12 c31
BcAdd H 13 H28 BcAdd H_ 14 G29 BcAdd H 15 A33
BcAdd H_16 E31 BcAdd H_17 D32 BcAdd H 18 B34
BcAdd H_19 A35 BcAdd H 20 B36 BcAdd H 21 H30
BcAdd H_22 C35 BcAdd_H_23 E33 BcAdd_H 4 B28
BcAdd H 5 E27 BcAdd_H 6 A29 BcAdd H_ 7 G27
BcAdd_H_8 C29 BcAdd_H_9 F28 BcCheck_H_0 F2
BcCheck H 1 AB4 BcCheck H_10 AW1 BcCheck H 11 BD10
BcCheck H 12 E45 BcCheck H_13 AC45 BcCheck H_14 AT44
BcCheck H_15 BB36 BcCheck H 2 AT2 BcCheck H 3 BC11
BcCheck_ H_4 M38 BcCheck_ H 5 AB42 BcCheck_ H_6 AU43
BcCheck_H_7 BC37 BcCheck_H_8 M8 BcCheck_ H_9 AA3
BcData H_ 0O B10 BcData H_1 D10 BcData H_10 L3
BcData H_100 D42 BcData H_101 D44 BcData H_102 H40
BcData H_103 H42 BcData H_104 G45 BcData H_105 L43

3-8 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

Table 3—4 Pin List Sorted by Signal Name (Continued)

Pin Assignments

Signal Name

PGA Location Signal Name

PGA Location Signal Name

PGA Location

BcData H_106
BcData H_ 109
BcData H 111
BcData H_114
BcData H_117
BcData H_12
BcData H 122
BcData H_ 125
BcData H 13
BcData H_16
BcData H_19
BcData H_21
BcData H 24
BcData H 27
BcData H 3
BcData H_32
BcData H_35
BcData H_38
BcData H 40
BcData H 43
BcData H 46
BcData H_49
BcData H_51
BcData_ H_54
BcData H 57
BcData H 6
BcData H 62
BcData H_65
BcData H_68
BcData H_70
BcData H 73
BcData H 76
BcData H 79
BcData H_81
BcData H_84
BcData H_87

Alpha 21264/EV67 Hardware Reference Manual

L45
u45
AA43
AEA4l
AL43
T2
AV42
BC41
ul
ACl1
AGl
AL3
AY2
BB4
C5
G33

G41
K44
P42
Y42
AE43
AHA5
AP44
AU41
H6
BB38
A7
B4
G5
Gl
N1
wi
AC3
AJ3
AM4

BcData H_ 107
BcData H 11
BcData H 112
BcData H_115
BcData H_118
BcData H_120
BcData H 123
BcData H 126
BcData H 14
BcData H_17
BcData H_2
BcData H_22
BcData H 25
BcData H 28
BcData H 30
BcData H_33
BcData H_36
BcData H_39
BcData H 41
BcData H 44
BcData H_ 47
BcData H 5
BcData H_52
BcData H_55
BcData H 58
BcData H 60
BcData H 63
BcData H_66
BcData H_69
BcData H_71
BcData H 74
BcData H_ 77
BcData H 8
BcData H_82
BcData H_85
BcData H_88

N45
M2
AC43
AG45
AMA42
AP40
BB44
BA37
V2
AD2
A5
AR1
BB2
BB8
BB10
C37

F44
N41
u43
AB44
E3
AK42
AN41
AY 44
BC43
BE41
c9
D4
D2
N5
us3

AD4
AK4
AUS

BcData H 108
BcData H 110
BcData H 113
BcData H_116
BcData H_119
BcData H_121
BcData H 124
BcData H 127
BcData H 15
BcData H_18
BcData H_20
BcData H_23
BcData H 26
BcData H 29
BcData H 31
BcData H_34
BcData H_37
BcData H_4
BcData H 42
BcData H 45
BcData H 48
BcData H_50
BcData H_53
BcData H_56
BcData H 59
BcData H 61
BcData H 64
BcData H_67
BcData H_7
BcData H_72
BcData H 75
BcData H 78
BcData H 80
BcData H_83
BcData H_86
BcData H_89

T44
W45
AD44
AK44
AR45
BA45
BB42
BD40
Y4
AE3
AK2
AP2
AWS5
BES
BE7
B40
E43
Cc3
Ma44
Va4
AD42
AF42
AN45
AW45
BA43
BD42
cu
B6
E1
H4
L1
W5
AB2
AF4
AN1
BA1

Hardware Interface 3-9

Pin Assignments

Table 3—4 Pin List Sorted by Signal Name (Continued)

Signal Name PGA Location Signal Name PGA Location Signal Name PGA Location
BcData H 9 K2 BcData H 90 BA3 BcData H 91 BC3
BcData H 92 BD6 BcData H_93 BA9 BcData H_94 BC9
BcData H_95 AY12 BcData H_96 A39 BcData H_97 D36
BcData H_98 A4l BcData H_99 B42 BcDatalnClk H 0 E7
BcDatalnClk H 1 R3 BcDatalnClk_ H 2 AH2 BcDatalnClk_ H_ 3 BC5
BcDatalnClk_ H_ 4 F38 BcDatalnClk_ H 5 U39 BcDatalnClk_ H 6 AH44
BcDatalnClk H 7 AY40 BcDataOE_L A27 BcDataOutClk H 0 X5
BcDataOutClk H 1 AU3 BcDataOutClk H 2 A3 BcDataOutClk H 3 AR43
BcDataOutClk L 0 K4 BcDataOutClk L 1 Av4 BcDataOutClk L 2 K42
BcDataOutClk_L_3 AT42 BcDataWr_L D26 BcLoad_L F26
BcTag_H_20 E13 BcTag_ H_21 H16 BcTag H_22 All
BcTag_H_23 B12 BcTag_ H_24 D14 BcTag_ H_25 E15
BcTag H_26 A13 BcTag H_27 G17 BcTag H_28 c15
BcTag H_29 H18 BcTag H_30 D16 BcTag H_31 B16
BcTag H_32 c17 BcTag H_33 Al7 BcTag H_34 E19
BcTag_H_35 B18 BcTag_H_36 A19 BcTag_ H_37 F20
BcTag_H_38 D20 BcTag_H_39 E21 BcTag_H_40 c21
BcTag_H_41 D22 BcTag_H_42 H22 BcTagDirty H C23
BcTagIinClk_H G19 BcTagOE_L H24 BcTagOutClk_H C25
BcTagOutClk_L D24 BcTagParity H B22 BcTagShared_H G23
BcTagValid_H B24 BcTagWr_L E25 BcVref F18
ClkFwdRst_H BE11 Clkin_H AMS8 Clkin_L AN7
DCOK_H AY18 EV6CIk_H AM6 EV6CIKk_L AL7
FrameClk_H AV16 FrameClk_L AW15 IRQ H O BA15
IRQ H 1 BE13 IRQ H 2 AW17 IRQ H 3 AV18
IRQ H 4 BC15 IRQ H 5 BB16 MiscVref AV22
NoConnect BB14 NoConnect BD2 PLL VDD AV8
PlIBypass H BD12 Reset_L BD16 Spare AJl
Spare V38 Spare AT4 Spare BE9
Spare F8 Spare BD4 Spare A3
Spare AR3 Spare T4 Spare E39
Spare BA39 Spare BC21 SromClk_H AW19
SromData H BC17 SromOE_L BE17 SysAddin L_0 BD30
SysAddin L_1 BC29 SysAddin_L_10 BB24 SysAddin_ L_11 AV24
SysAddin_L_12 BD24 SysAddin_L_13 BE23 SysAddin_L_14 AW23
SysAddin L_2 AY28 SysAddin_L_3 BE29 SysAddin_L_4 AW27

3-10 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

Pin Assignments

Table 3—4 Pin List Sorted by Signal Name (Continued)

Signal Name PGA Location Signal Name PGA Location Signal Name PGA Location
SysAddin L_5 BA27 SysAddin_L_6 BD28 SysAddin_L_7 BE27
SysAddin L_8 AY 26 SysAddin L_9 BC25 SysAddinClk_L BB26
SysAddOut_L 0 AW33 SysAddOut_L 1 BE39 SysAddOut_L_10 BE33
SysAddOut L 11 AW29 SysAddOut_L 12 BC31 SysAddOut L 13 AV28
SysAddOut_L _14 BB30 SysAddOut_L _2 BD36 SysAddOut_L_3 BC35
SysAddout_L 4 BA33 SysAddOut_L 5 AY32 SysAddOut_L 6 BE35
SysAddOut_L_7 AV30 SysAddOut_L_8 BB32 SysAddOut_L_9 BA31
SysAddOutClk_ L BD34 SysCheck_L_0 L7 SysCheck_L 1 AA5
SysCheck_L 2 AK8 SysCheck L 3 BA13 SysCheck_L_4 L39
SysCheck L 5 AA41 SysCheck L 6 AM40 SysCheck L 7 AY 34
SysData L_0 F14 SysData L 1 G13 SysData_L_10 P6
SysData L 11 T8 SysData_L_12 V8 SysData_L_13 V6
SysData L_14 w7 SysData L_15 Y6 SysData L_16 ABS
SysData L_17 AC7 SysData L_18 AD8 SysData L_19 AE5
SysData L_2 F12 SysData L_20 AH6 SysData L_21 AH8
SysData_L_22 AJ7 SysData_L_23 AL5 SysData L 24 AP8
SysData_L_25 AR7 SysData_L_26 AT8 SysData_L_27 AV6
SysData_L_28 AV10 SysData_L_29 AW11 SysData L_3 H12
SysData L_30 AV12 SysData L_31 AW13 SysData L_32 F32
SysData L_33 F34 SysData L_34 H34 SysData L_35 G35
SysData L_36 F40 SysData L_37 G39 SysData L_38 K38
SysData_L_39 Hu1 SysData L_4 H10 SysData_L_40 M40
SysData_L_41 N39 SysData_L_42 P40 SysData_L_43 T38
SysData L 44 V40 SysData_L_45 w4l SysData_L_46 W39
SysData L_47 Y40 SysData L_48 AB38 SysData L_49 AC39
SysData L_5 G7 SysData L_50 AD38 SysData L_51 AF40
SysData L_52 AH38 SysData L_53 AJ39 SysData L_54 AL41
SysData_L_55 AK38 SysData_L_56 AN39 SysData_L_57 AP38
SysData L _58 AR39 SysData L _59 AT38 SysData L _6 F6
SysData L _60 AY 38 SysData L _61 AV 36 SysData L _62 AW35
SysData L_63 AV34 SysData L_7 K8 SysData L_8 M6
SysData L_9 N7 SysDatalnClk H 0 D8 SysDatalnClk_ H 1 P4
SysDatalnClk H 2 AF6 SysDatalnClk_ H_ 3 AY6 SysDatalnClk_H_ 4 E37
SysDatalnClk_ H 5 R43 SysDatalnClk_ H 6 AG41 SysDatalnClk_H_7 AV40
SysDatalnValid_L BD22 SysDataOutClk_L_0 G11 SysDataOutClk_L_1 U7
SysDataOutClk_L_2 AG7 SysDataOutClk_L_3 AY8 SysDataOutClk_L_4 H36

Alpha 21264/EV67 Hardware Reference Manual Hardware Interface 3-11

Pin Assignments

Table 3—4 Pin List Sorted by Signal Name (Continued)

Signal Name

PGA Location Signal Name

PGA Location Signal Name

PGA Location

SysDataOutClk L 5 R4l
SysDataOutValid L BB22

Tck_ H
TestSat_H

BE19
BA19

SysDataOutClk_L_6 AH40

sysFillvalid_L
Tdi_H
Tms H

BC23
BAZ21
BD18

SysDataOutClk_L_7 AW39

SysVref
Tdo H
Trst_L

BA25
BB20
AY 20

Table 3-5 Pin List Sorted by PGA Location

PGA Location Signal Name

PGA Location

Signal Name

PGA Location Signal Name

All
A19
A33
A4l
AA3
AAS
AB4
AB8
AC39
AC7
AD4
AD8
AE43
AF40
AG1
AG7
AH40
AHS8
AJ39
AJ7
AK4
AKS8
AL43
AM4
AM6
AN39
AN7
AP40

BcTag_H_22
BcTag_H_36
BcAdd H_15
BcData H 98
BcCheck_H_9
SysCheck L _1
BcCheck H_1
SysData L _16
SysData L _49
SysData L _17
BcData H_82
SysData_L_18
BcData H_49
SysData L 51
BcData H 19

SysDataOutClk_L_2
SysDataOutClk_L_6

SysData L 21
SysData L _53
SysData L 22
BcData H 85
SysCheck_L_2
BcData H_117
BcData H_87
EV6CIk_H
SysData_L_56
Clkin_L
BcData H_120

3-12 Hardware Interface

Al3
A27
A35
A5
AA4l
AB2
AB42
AC1
AC43
AD2
AD42
AE3
AE5
AF42
AG41
AH2
AH44
AJl
A3
AK2
AK42
AL3
AL5
AM40
AMS8
ANA41
AP2
AP44

BcTag_H_26
BcDataOE L
BcAdd H_19
BcData H 2
SysCheck L 5
BcData H_80
BcCheck_ H 5
BcData H 16
BcData H 112
BcData H 17
BcData H_48
BcData H_18
SysData L _19
BcData H 50

SysDatalnClk_H_6
BcDatalnClk_ H 2
BcDatalnClk_H_6

Spare

Spare

BcData H 20
BcData H 52
BcData H 21
SysData L_23
SysCheck_L_6
ClkIn_H
BcData H 55
BcData H 23
BcData H 54

Alpha 21264/EV67 Hardware Reference Manual

Al7
A29
A39
A7
AA43
AB38
AB44
AC3
AC45
AD38
AD44
AEAL
AF4
AF6
AG45
AH38
AH6
AJ3
AHA5
AK38
AK44
AL41
AL7
AM42
AN1
AN45
AP38
AP8

BcTag_H_33
BcAdd H 6
BcData H 96
BcData H 65
BcData H_111
SysData L _48
BcData H_47
BcData H 81
BcCheck H 13
SysData_L_50
BcData H_113
BcData H_114
BcData H_83

SysDatalnClk_H_2

BcData H 115
SysData L 52
SysData_L_20
BcData H_84
BcData H_51
SysData_L_55
BcData H 116
SysData L _54
EV6CIK_L
BcData H_118
BcData H_86
BcData H 53
SysData L _57
SysData_L_24

Table 3-5 Pin List Sorted by PGA Location (Continued)

Pin Assignments

PGA Location Signal Name

PGA Location Signal Name

PGA Location Signal Name

AR1
ARA43
AT2
AT42
AU3
AUS
AV16
AvV24
AV34
AV40
AV8
AW13
AW19
AW?29
AW39
AY12
AY 20
AY 32
AY 40
AY8
B16
B24
B34
B40
BA1
BA19
BA27
BA33
BA43
BB10
BB2
BB24
BB32
BB4
BB8
BC17

BcData H 22
BcDataOutClk_ H 3
BcCheck H 2
BcDataOutClk_L_3
BcDataOutClk_H_1
BcData H_88
FrameClk_H
SysAddin L 11
SysData_L_63
SysDatalnClk_H_7
PLL_ VDD
SysData L _31
SromClk_H
SysAddout_L_ 11
SysDataOutClk_L_7
BcData H_95
Trst L
SysAddOut_L 5
BcDatalnClk_H_7
SysDataOutClk_L_3
BcTag_H_31
BcTagValid_H
BcAdd_H_18
BcData H_34
BcData H 89
TestStat H

SysAddin L 5
SysAddout_L 4
BcData H_59
BcData H_30
BcData H 25
SysAddin_L_10
SysAddOout_L 8
BcData H_27
BcData H_28
SromData H

AR3
AR45
AT38
AT44
AU4l
AV10
AV18
AV28
AV 36
AV42
AW1
AW15
AW23
AW33
AW45
AY18
AY 26
AY 34
AY 44
B10
B18
B28
B36
B42
BA13
BA21
BA3
BA37
BA45
BB14
BB20
BB26
BB36
BB42
BC11
BC21

Spare
BcData H 119
SysData L_59
BcCheck_H_14
BcData H_57
SysData L _28
IRQ H 3
SysAddOut_L_13
SysData L_61
BcData H_122
BcCheck_H_10
FrameClk_L
SysAddin_L_14
SysAddOut_L_0
BcData H 56
DCOK_H
SysAddin_L_8
SysCheck L _7
BcData H 58
BcData H 0O
BcTag_H_35
BcAdd H 4
BcAdd_H_20
BcData H_99
SysCheck L 3
Tdi_H
BcData H 90
BcData H_126
BcData H_121
NoConnect
Tdo H
SysAddinClk_L
BcCheck H 15
BcData H_124
BcCheck H_3

Spare

Alpha 21264/EV67 Hardware Reference Manual

AR39
AR7
AT4
AT8
AU43
AV12
AV22
AV30
AV4
AV6
AW11l
AW17
AW27
AW35
AW5
AY2
AY28
AY38
AY6
B12
B22
B30
B4

B6
BA15
BA25
BA31
BA39
BA9
BB16
BB22
BB30
BB38
BB44
BC15
BC23

SysData_L_58
SysData_L_25
Spare
SysData L _26
BcCheck_H_6
SysData_ L _30
MiscVref
SysAddout_L 7
BcDataOutClk L 1
SysData L _27
SysData L _29
IRQ H_2
SysAddin_L_4
SysData L _62
BcData H 26
BcData H_24
SysAddin L 2
SysData_L_60
SysDatalnClk_H_3
BcTag_H_23
BcTagParity H
BcAdd_H_10
BcData H_68
BcData H_67
IRQ H O
SysVref
SysAddOout_L 9
Spare

BcData H_93
IRQ H 5
SysDataOutValid_L
SysAddout_L 14
BcData H 62
BcData H_123
IRQ_H_ 4
SysFillValid_L

Hardware Interface 3-13

Pin Assignments

Table 3-5 Pin List Sorted by PGA Location (Continued)

PGA Location Signal Name

PGA Location Signal Name

PGA Location Signal Name

BC25
BC31
BC41
BC9
BD16
BD22
BD30
BD4
BD6
BE17
BE27
BES35
BES5
cu
c21
C29
C35
C43
D10
D2
D24
D32
D42
E1l
E19
E27
E33
E43
F12
F2
F28
F38
F6
Gl1
G19
G29

SysAddin_L_9
SysAddout_L_12
BcData H_125
BcData H_94
Reset_L
SysDatalnValid_L
SysAddin_L_0
Spare

BcData H 92
SromOE_L
SysAddin L_7
SysAddOut_L _6
BcData H 29
BcData H 64
BcTag_H_40
BcAdd _H_8
BcAdd_H_22
BcData H_36
BcData H 1
BcData H 71
BcTagOutClk_L
BcAdd_H_17
BcData H_100
BcData H_7
BcTag_H_34
BcAdd H 5
BcAdd H_23
BcData H_37
SysData L 2
BcCheck_H_0
BcAdd H 9
BcDatalnClk_H 4
SysData L 6
SysDataOutClk_L_0
BcTaglnClk_H
BcAdd_H_14

3-14 Hardware Interface

BC29
BC35
BC43
BD10
BD18
BD24
BD34
BD40
BE11
BE19
BE29
BE39
BE7
C15
C23
C3
C37

D14
D20
D26
D36
D44
E13
E21
E3

E37
E45
F14
F20
F32
F40
F8

G13
G23
G33

SysAddin L _1
SysAddOout_L_3
BcData H 60
BcCheck_H_11
Tms H
SysAddin_L_12
SysAddOutClk_L
BcData H_ 127
ClkFwdRst_H
Tck_H
SysAddin_L_3
SysAddOut_L 1
BcData H 31
BcTag_H_28
BcTagDirty H
BcData H 4
BcData H_33
BcData H_3
BcTag_H_24
BcTag_H_38
BcDataWr_L
BcData H_97
BcData H_101
BcTag_H_20
BcTag_H_39
BcData H 5
SysDatalnClk_H_4
BcCheck_H_12
SysData L 0O
BcTag_H_37
SysData L_32
SysData L_36
Spare
SysData L 1
BcTagShared H
BcData H_32

BC3
BC37
BC5
BD12
BD2
BD28
BD36
BD42
BE13
BE23
BE33
BE41
BE9
c17
c25
C31
c41
c9
D16
D22
D30
D4
D8
E15
E25
E31
E39
E7
F18
F26
F34
Fa4
Gl
G17
G27
G35

BcData H 91
BcCheck H 7
BcDatalnClk_H_3
PlIBypass H
NoConnect
SysAddin_L_6
SysAddout_L 2
BcData H 61
IRQ H 1
SysAddin_L_13
SysAddOut_L _10
BcData H_63
Spare
BcTag_H_32
BcTagOutClk_H
BcAdd_H_12
BcData H_35
BcData H_66
BcTag_H_30
BcTag_H_41
BcAdd H 11
BcData H_69
SysDatalnClk_H_0
BcTag_H_25
BcTagWr_L
BcAdd _H_16
Spare
BcDatalnClk_H_0
BcVref

BcLoad_L
SysData_L_33
BcData H 39
BcData H 73
BcTag_H_27
BcAdd_H_7
SysData L _35

Alpha 21264/EV67 Hardware Reference Manual

Table 3-5 Pin List Sorted by PGA Location (Continued)

Pin Assignments

PGA Location Signal Name

PGA Location Signal Name

PGA Location Signal Name

G39
G5
H12
H22
H30
H4
H6

K38
K44
L3
L45
M38
M6
N39
N5
P40
R3
T2
T44
u3
u4s5
V38
V6
W39
W5
Y40

SysData_L_37
BcData H 70
SysData L_3
BcTag_H_42
BcAdd_H_21
BcData H_72
BcData H 6

BcDataOutClk_ H 2

SysData L _38
BcData H_40
BcData H_10
BcData H_106
BcCheck H 4
SysData L _8
SysData L 41
BcData H_74
SysData L _42

BcDatalnClk_H_1

BcData H 12
BcData H_108
BcData H_77
BcData H_109
Spare
SysData_L_13
SysData_L_46
BcData H 78
SysData L _47

G41
G7

H16
H24
H34
H40

K4
K8
L39
L7
M40
M8
N41

P42
R4l

T8
U39
u7
V40

w41
w7
Y42

BcData H 38
SysData L 5
BcTag_ H_21
BcTagOE_L
SysData L_34
BcData H_102
BcData H 8

BcDataOutClk_ H 0
BcDataOutClk_L 0

SysData L _7
SysCheck L _4
SysCheck_L_0
SysData L_40
BcCheck H 8
BcData H 41
SysData L 9
BcData H_43

SysDataOutClk_L_5

SysData L _43
SysData L_11

BcDatalnClk_ H 5
SysDataOutClk_L _1

SysData L _44
SysData L _12
SysData L_45
SysData L_14
BcData H 46

G45
H10
H18
H28
H36
H42
1
K2
K42
L1
L43

M44
N1
N45
P4

R43

Ul
u43
V2
2
w1
W45
Y4
Y6

BcData H 104
SysData L _4
BcTag_H_29
BcAdd_H_13

SysDataOutCIlk_L_4

BcData H_103
SysData_ L_39
BcData H 9

BcDataOutClk L 2

BcData H_75
BcData H_105
BcData H_11
BcData H 42
BcData H 76
BcData H 107

SysDatalnClk_H_1

SysData_ L _10

SysDatalnClk_H_5

Spare
BcData H 13
BcData H 44
BcData H_14
BcData H_45
BcData H_79
BcData H 110
BcData H 15
SysData_L_15

Alpha 21264/EV67 Hardware Reference Manual

Hardware Interface 3-15

Pin Assignments

Table 3-6 lists the 21264/EV67 ground and powS andVDD, respectively) pin
list.

Table 3—6 Ground and Power (VSS and VDD) Pin List

Signal PGA Location

VSS Al5 A2l A5 A3 A3l A37 A43 A9 AAl AA39
AA45 AA7 AC41 AC5 AE1 AE39 AE45 AE7 AG3 AG39
AG43 AG5 AM1 AP AL1 AL39 AL45 AN3 AN43 ANS5
AR41 AR5 AUl AU39 AU45 AU7 AW21 AW25 AW3 AW3l
AW37 AW4l AW43 AW7 AW9 AY14 BAI1l BAl1l7 BA23 BA29
BA35 BA41 BA5 BA7 BCl1 BC13 BC19 BC27 BC33 BC39
BC45 BC7 BE15S BE21 BE25 BE3 BE31 BE37 BE43 C1
C13 C19 c27 C33 C39 C45 c7 DS8 Ell E17
E23 E29 E35 E41 E5 E9 G15 G21 G25 G3
G31 G37 G43 G9 J1 J39 5 J7 L41 L5
N3 N43 R1 R39 R45 R5 R7 T42 U4l us
W3 w43 — — — — — — — —

VDD A23 AB40 AB6 AD40 AD6 AF2 AF38 AF44 AF8 AH4
AH42 AK40 AK6 AM2 AM38 AM44 AP4 AP42 AP6 AT40
AT6 AV14 AV2 AV20 AV26 AV32 AV38 Av44 AY10 AY16
AY22 AY24 AY30 AY36 AY4 AY42 Bil4 B2 B20 B26
B32 B38 B44 B8 BB12 BB18 BB28 BB34 BB40 BB6
BD14 BD20 BD26 BD32 BD38 BD44 BDS8 D12 D18 D28
D34 D40 D6 F10 F16 F22 F24 F30 F36 F4
F42 H14 H2 H20 H26 H32 H38 H44 K40 K6
M4 M42 P2 P38 P44 P8 T40 T6 V4 V42
Y2 Y38 Y44 Y8 — — — — — —

3-16 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

3.4 Mechanical Specifications

Mechanical Specifications

This section shows the 21264/EV 67 mechanical package dimensions without a heat
sink. For heat sink information and dimensions, refer to Chapter 10.

Figure 3—-2 shows the package physical dimensions without a heat sink.

Figure 3—2 Package Dimensions

—

)

(@)

@)
OL JF
@)

‘4- 2.54 mm (.100 in) Typ

B

587x 1.40 mm (.055 in) Typ

r1.27 mm (.050 in) Typ

(<=1.27 mm (.050 in) Typ
(<= 4.32 mm (.170 in) Typ

-

>‘ «—1.377 mm (.055 in) Typ

T

[

 ———

Lid

ﬁ
(@)
@)

[oxe)

[oxe)

5000

(ON®) (@)

(@) (ON@) 000

< Q.
HP’T LTI

27.94 mm
(1.100 in)

©) ©) O (OXOROX®)
l
|

HW |

S

02|04|06|08|10{12

18|20

40

22|24|26|28|30(32|34 36|38

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

29.62 mm
(1.180in) Typ

27.94 mm
(1.100 in)

&——59.94 mm (2.360 in) Typ =——>

42|44

s] s Y s s s e
s I s | =
| w— =

 —) —}

1S

)

Q

29.62 mm
(1.180in) Typ

Jr
&)

I]T] ol
m 1|
[0

= =a /s
—_ s s |

a0
a0

1l
ol

25.40 mm
(1.000 in) Typ

53.85 mm
(2.120 in) Typ

—_—

Alpha 21264/EV67 Hardware Reference Manual

m , 1/4-20 Stud (2x)

<— 7.62 mm (.300 in) Typ

) — -

.13 mm
(.005in) R

«— 1.905 mm (.075 in) Typ

FM-05662.A14

Hardware Interface 3-17

21264/EV67 Packaging

3.5 21264/EV67 Packaging
Figure 3—3 shows the 21264/EV67 pinout from the top view with pins facing down.

Figure 3—-3 21264/EV67 Top View (Pin Down)

BE [5 00000000000000000000
BD 9 0 0 0 000000 0 00000000000
BC o 0 00 00 00000000000 000000
TS S NONONONONO NG NONONONONONONONONO N NONONONONS
BA 000000000 0000000000000
AW S N -0 00000002 000007020
A =60 0"0 0 0000000000000 0000
AU F5-0°00 ONONON®
AT T —6)"0~"0"0 0-0-0-0
AR 5000 ONONON®
AP ——6)" 000 0-0-0-0
AN 5000 ONONON®
AM——" O~ 0O"0O 0-0-0-0
AL 5000 ONONON®
AK ——6)" 000 0-0-0-0
Al 5000 ONONON®
AH——6)" 000 0-0-0-0
AG 5000 ONONON®
AF ——6)"0~" 00 0-0-0-0
AE 5000 ONONON®
AD 0 OO0 21264/ EV67 OAGKOR®
AC 5000 . ONONON®
AB ——6) OO0 Top View 0-0-0-0
AA —) OO O (PinDown) OO OO
Yy =000 0-0-0-0
w INSONON® 0000
v—I—=0"01070 0-0-0-0
U INSONON® 0000
T1=0"0"0°0 0-0-0-0
R INSONON® 0000
P 10000 0-0-0-0
N INSONON® 0000
M ——6-0-0-0 0-0-0-0
L INSONON® 0000
TSN S0
H—1=5"0"0"000000000000000. 000
G o 0000000000000 000000000
FI—0"0"0"0- 0000000000 00000000
E 000000000 0000000000000
D =600 000000 0000000000000
e A X OO OO PR OO PR OO PR OO OO PR OO ORONON
A otototetotoleoleoleototototetetetoteotetetote

~
N

42140 |38 |36 B4 B2 130‘826 24 22 2D 18 1¢ 14 14 10 08| 06] 04| 02
45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 09 07 05 03 01

FM-05644-EV6 *

3-18 Hardware Interface Alpha 21264/EV67 Hardware Reference Manual

21264/EV67 Packaging

Figure 3—4 shows the 21264/EV67 pinout from the bottom view with pins facing up.

Figure 3—-4 21264/EV67 Bottom View (Pin Up)

> > > > > m @ w
23 hoazEzZ ez 3R

> O mMm®E - zZ 0 C =

Alpha 21264/EV67 Hardware Reference Manual

0 0000000000000 0000000

o]
O

0 0000000000000 000 00000

vy]
w

0 0000000000000 00000000

>
=

© O 0 0 00 0000000000000 000

© O 0 0 0000000000000 00000

O

>
<

© O 0 0 000 0000000000000

© O 0 0 0000000000000 00000

OO

@)

OO
O

3

INONONE)

0 00 000000000000 0000

@)

>
o

© 000

©)
O
O
O

>
<

© 000

©)
O
O
O

>
~

© 000

©)
O
O
O

>
T

© 000

©)
O
O
O

>
A

© 000

©)
O
O
O

>
O

© 000

©)
O
O
O

SRHONONO) 21264/ V67

>
5y

©)
O
O
O

Bottom View

INONONG)

©)
O
O
O

(PinUp)

INONONG)

©)
O
O
O

INONONG)

©)
O
O
O

INONONG)

©)
O
O
O

Q)
O
O
O

©)
O
O
O

Q)
O
O
O

0000000000000
OOOOOOOOOOOOOOOOOOOOOOOOOOO

©)
O
O
O

Q)
O
O
@)
O

©)
O
O
O
O
O 00 000000000000

O 00 000000000000

QOO0 O0000000000

O
@)

Q)
O
O
O
O
O
O

Q)
@)
@)
O 0 0 0000000000000

O 00 0000000000000

O
O
O
O
O
O

Q)
O
O
O
O
O
O

CHONCHOHONCHCHONCHONONCNONONONONO

Q)
O
O

O 0 0000000000000

OO
O
OO
O
OO
@)
OO
O
OO
OO
OO
OO
O
OO
OO
O

O
O
O

WIOITM|IT|X|IZ|D|H|I<]|<

D
O
O
O
O
O
O
O
O
O
O
O
@)
O
O
O
O
O
O
O
O
@)
)

Q)
O
O

OO0 0 0000000000000

D
)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
©)
)
©)
)
©)
)
©)
)
©)
)
©)
)
©)
)
©)
)
©)
OO
©)

020406 (08 |10 12 14 16 18 40 22 24 2p 2

3(f 33 34 36| 38 40| 42| 44

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

FM-05645-EV6

Hardware Interface 3-19

A

Cache and External Interfaces

This chapter describes the 21264/EV 67 cache and external interface, which includesthe
second-level cache (Bcache) interface and the system interface. It also describes locks,
interrupt signals, and ECC/parity generation. It is organized as follows:

e Introduction to the external interfaces
e Physical address considerations

e Bcache structure

* Victim data buffer

e Cache coherency

* Lock mechanism

e System port

e Bcache port

* Interrupts

Chapter 3 lists and defines all 21264/EV 67 hardware interface signal pins. Chapter 9
describes the 21264/EV 67 hardware interface electrical reguirements.

4.1 Introduction to the External Interfaces

A 21264/EV 67-based system can be divided into three major sections:
e 21264/EV67 microprocessor

e Second-level Bcache

e System interface logic

— Optional duplicate tag store
— Optional lock register
— Optional victim buffers

The 21264/EV67 external interface is flexible and mandates few design rules, allowing
a wide range of prospective systems. The external interface is composed of the Bcache
interface and the system interface.

* |Input clocks must have the same frequency astheir corresponding output clock. For
example, the frequency of SysAddInClk_L must be the same as
SysAddOutCIk_L.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-1

Introduction to the External Interfaces

¢ The Bcacheinterface includes a 128-bit bidirectional data bus, a 20-bit unidirec-
tional address bus, and several control signals.

— TheBcDataOutClk_x[3:0] clocks are free-running and are derived from the
internal GCLK. The period dBcDataOutClk_x[3:0] is a programmable mul-
tiple of GCLK.

— The Bcache turns tigcDataOutClk_x[3:0] clocks around and returns them
to the 21264/EV67 aBcDatalnClk_H[7:0]. Likewise,BcTagOutClk_x
returns aBcTaginClk_H.

— The Bcache interface supports a 64-byte block size.

* The system interface includes a 64-hit bidirectional data bus, two 15-bit
unidirectional address buses, and several control signals.

— TheSysAddOutClk_L clock is free-running and is derived from the internal
GCLK. The period oBysAddOutClk_L is a programmable multiple of
GCLK.

— TheSysAddInCIk_L clock is a turned-around copy 8§sAddOutClk_L.

Figure 4-1 shows a simplified view of the external interface. The function and purpose
of each signal is described in Chapter 3.

4-2 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Introduction to the External Interfaces

Figure 4-1 21264/EV67 System and Bcache Interfaces

SysAddIn_L[14:0]
SysAddInClk_L
SysAddOut_L[14:0]
SysAddOutClk_L
SysVref
SysData_L[63:0]
SysCheck_L[7:0]
SysDatalnClk_H[7:0]
SysDataOutClk_L[7:0]
SysDatalnValid_L
SysDataOutValid_L

AA

Yy

Yy

\ A A A

[Y

Yy

SyskFillvalid_L
BeAdd_H[23:4] [23:4] ¥ [23:6] ¥ [23:6] ¥
21264 | Data | | Tag | | Status | System
AAA AAA A A AA AAAAAA
BcLoad_L

BcData_H[127:0]
BcCheck_H[15:0]
BcDatalnClk_H[7:0]
BcDataOutClk_ x[3:0]
BcDataOE_L
BcDataWr_L
BcTag_H[42:20]
BcTagInClk_H
BcTagOutClk_ x
BcVref
BcTagWr_L
BcTagOE_L
BcTagValid_H
BcTagDirty H
BcTagShared_H
BcTagParity_H
IRQ_H[5:0]

AAAA / AA 1 AA

FM-05818B-EV67

4.1.1 System Interface

This section introduces the system (external) bus interface. The system interface is
made up of two unidirectional 15-bit address buses, 64 bidirectional data lines, eight
bidirectional check hits, two single-ended unidirectional clocks, and afew control pins.
The 15-bit address buses provide time-shared address/command/ID in two or four
GCLK cycles. The Chox controls the system interface.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-3

Physical Address Considerations

4.1.1.1 Commands and Addresses

The system sends probe and data movement commands to the 21264/EV 67. The 21264/
EV67 can hold up to eight probe commands from the system. The system controls the
number of outstanding probe commands and must ensure that the 21264/EV67 8-entry
probe queue does not overflow.

The Cbox contains an 8-entry miss buffer (MAF) and an 8-entry victim buffer (VAF).

A miss occurs when the 21264/EV 67 probes the Bcache but does not find the addressed
block. The 21264/EV 67 can queue eight cache misses to the system inits MAF.

4.1.2 Second-Level Cache (Bcache) Interface

The 21264/EV 67 Cbox provides control signals and an interface for a second-level
cache, the Bcache. The 21264/EV 67 supports a Bcache from 1MB to 16MB, with 64-
byte blocks. A 128-bit data busis used for transfers between the 21264/EV 67 and the
Bcache. The Bcache must be comprised of synchronous static RAMs (SSRAMs) and
must contain either one, two, or three internal registers. All Bcache control and address
pins are clocked synchronously on Bcache cycle boundaries. The Bcache clock rate
varies as amultiple of the CPU clock cycle in half-cycle increments from 1.5 to 4.0,
and in full-cycle increments of 5, 6, 7, and 8 times the CPU clock cycle. The 1.5 multi-
pleisonly available in dual-data mode.

4.2 Physical Address Considerations

The 21264/EV 67 supports a 44-bit physical address space that is divided equally
between memory space and 1/0 space. Memory space resides in the lower half of the
physical address space (PA[43] = 0) and 1/O space residesin the upper half of the phys-
ical address space (PA[43] = 1). The 21264/EV 67 recognizes these spaces internally.

The 21264/EV 67-generated external references to memory space are always of afixed
64-byte size, though the internal access granularity is byte, word, longword, or quad-
word. All 21264/EV 67-generated external referencesto memory or 1/O space are phys-
ical addresses that are either successfully translated from avirtual address or produced
by PALcode. Speculative execution may cause a reference to nonexistent memory. Sys-
tems must check the range of all addresses and report nonexistent addresses to the
21264/EV67.

Table 4-1 describes the translation of internal references to external interface refer-
ences. The first column lists the instructions used by the programmer, including load
(LDx) and store (STx) instructions of several sizes. The column headings are described
here:

e DcHit (block was found in the Dcache)
e DcW (block was found in awritable state in the Dcache)
* BcHit (block was found in the Bcache)
* BcW (block was found in awritable state in the Bcache)

e Status and Action (status at end of instruction and action performed by the 21264/
EV67)

4-4 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Physical Address Considerations

Prefetches (LDL, LDF, LDG LDT, LDBU, LDWU) to R31 use the LDx flow, and
prefetch with modify intent (LDS) usesthe STx flow. If the prefetch target is addressed
to 1/0 space, the upper address bit is cleared, converting the address to memory space
(PA[42:6]). Notesfollow the table.

Table 4-1 Translation of Internal References to External Interface Reference

Instruction DcHit DcW BcHit BcW Status and Action

LDx Memory 1 X X Dcache hit, done.

LDx Memory 0 1 X Bcache hit, done.

LDx Memory 0 X 0 X Miss, generate RdBIk command.

LDx 1/O X X X X RdBytes, RALWSs, or RdAQWSs based on size.

Istream Memory 1 X X X Dcache hit, Istream serviced from Dcache.

Istream Memory O X 1 X Bcache hit, Istream serviced from Bcache.

Istream Memory 0O X 0 X Miss, generate RdBIKkI command.

STx Memory 1 1 X X Store Dcache hit and writable, done.

STx Memory 1 0 X X Store hit and not writable, set dirty flow (note 1).

STx Memory 0 X 1 1 Store Beache hit and writable, done.

STx Memory 0 X 1 0 Store hit and not writable, set-dirty flow (note 1).

STx Memory 0 X 0 X Miss, generate RdBIkMod command.

STx /0 X X X X WrBytes, WrLWs, or WrQWs based on size.

STx_C Memory 0 X X X Fail STx_C.

STx_C Memory 1 0 X X STx_C hit and not writable, set dirty flow (note 1).

STx_CI1/O X X X X Always succeed and WrQws or WrLws are generated,
based on the size.

WH64 Memory 1 1 X X Hit, done.

WH64 Memory 1 0 X X WH64 hit not writable, set dirty flow (note 1).

WH64 Memory 0 X 1 1 WH64 hit dirty, done.

WH64 Memory 0 X 1 0 WH64 hit not writable, set dirty flow (note 1).

WH64 Memory 0 X 0 X Miss, generate Inval ToDirty command (note 2).

WH64 1/0 X X X X NOP the instruction. WH64 is UNDEFINED for I/O
space.

ECB Memory X X X X Generate evict command (note 3).

ECB 1/0 X X X X NOP the instruction. ECB instruction is UNDEFINED
for 1/O space.

MB/WMB X X X X Generate MB command (note 4). See Section 2.12.1.

TB Fill Flows

Alpha 21264/EV67 Hardware Reference Manual

Cache and External Interfaces 4-5

Physical Address Considerations

Table 4-1 notes:

1. Set Dirty Flow: Based on the Cbox CSR SET_DIRTY_ENABLEJ[2:0], SetDirty
requests can be either internally acknowledged (called a SetModify) or sent to the
system environment for processing. When externally acknowledged, the shared sta-
tus information for the cache block is also broadcast. The commands sent exter-
nally are SharedToDirty or CleanToDirty. Based on the Cbox CSR
ENABLE_STC_COMMANDI|0], the external system can be informed of a STx_C
generating a SetDirty using the STCChangeToDirty command. See Table 4-16 for
more information.

2. InvalToDirty: Based on the Cbox CSR INVAL_TO_DIRTY_ENABLE[1:0], Inval-
ToDirty requests can be either internally acknowledged or sent to the system envi-
ronment as InvalToDirty commands. This Cbox CSR provides the ability to convert
WH64 instructions to RdModx operations. See Table 4—-15 for more information.

3. Evict: There are two aspects to the commands that are generated by an ECB
instruction: first, those commands that are generated to notify the system of an evict
being performed; second, those commands that are generated by any victim that is
created by servicing the ECB.

— If Cbox CSR ENABLE_EVICTI[O0] is clear, no command is issued by the
21264/EV67 on the external interface to notify the system of an evict being
performed. If Cbox CSR ENABLE_EVICT[0] is set, the 21264/EV67 issues an
Evict command on the system interface only if a Bcache index match to the
ECB address is found in the 21264/EV67 cache system.

Note that whenever ENABLE_EVICT][0] is true (in the write-many chain),
BC_CLEAN_VICTIM must also be true (in the write-once chain). Otherwise,

the 21264/EV67 could respond miss to a probe, rather than hit, before an Evict
command has been sent off chip, but after the Evict command has removed a
(clean) block from the internal caches and the Bcache. That behavior might
cause systems that maintain an external duplicate copy of the Bcache tags to
become confused, because the system could receive the probe response indicat-
ing the miss before it receives the Evict command.

— The 21264/EV67 can issue the commands CleanVictimBlk and WrVictimBlk
for a victim that is created by an ECB. CleanVictimBIKk is issued only if Cbox
CSR BC_CLEAN_VICTIM is set and there is a Bcache index match valid but
not dirty in the 21264/EV67 cache system. WrVictimBIk is issued for any
Bcache match of the ECB address that is dirty in the 21264/EV67 cache sys-
tem.

4, MB: Based on the Cbhox CSR SYSBUS MB_ENABLE, the MB command can be
sent to the pins.

Each of these CSRs is programmed appropriately, based on the cache coherence proto-
col used by the system environment. For example, uniprocessor systems would prefer
to internally acknowledge most of these transactions. In contrast, multiprocessor sys-
tems may require notification and control of any change in cache state. The 21264/
EV67 and the external system must cooperate to maintain cache coherence. Section 4.5
explains the 21264/EV67 part of the cache coherency protocol.

4-6 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Structure

4.3 Bcache Structure

The 21264/EV 67 Chox provides control signals and an interface for a second-level
cache (Bcache).

The 21264/EV 67 supports a Bcache from 1MB to 16MB, with 64-byte blocks. A 128-
bit bidirectional data busisused for transfers between the 21264/EV 67 and the Bcache.
The Bcache is fully synchronous and the synchronous static RAMs (SSRAMSs) must
contain either one, two, or three internal registers. All Bcache control and address pins
are clocked synchronously on Bcache cycle boundaries. The Bcache clock rate varies as
amultiple of the CPU clock cyclein half-cycle increments from 1.5 to 4.0, and in full-
cycleincrements of 5, 6, 7, and 8 times the CPU clock cycle. The 1.5 multiple is only
available in dual-data mode.

4.3.1 Bcache Interface Signals

Figure 4-2 shows the 21264/EV67 system interface signals.

Figure 4-2 21264/EV67 Bcache Interface Signals

BcData_H[127:0]

21264 BcCheck_H[15:0]

__ BcDatalnClk_H[7:0]

B BcDataOutClk_p3:0]
BcDataOE_L
BcDataWr_L
BcAdd_H[23:4]
BcTag_H[42:20]

__ BcTagInClk_H

- BcTagOutClk_x

__ BcVref

D BcTagDirty_H
BcTagParity_H
BcTagShared_H
BcTagValid_H
BcTagOE_L
BcTagWr_L
BcLoad_L

YYVYY

Y

YvYy

FM-05650-EV67

4.3.2 System Duplicate Tag Stores

The 21264/EV 67 provides Bcache state support for systems with and without duplicate
tag stores, and will take different actions on this basis. The system sets the Cbox CSR
DUP_TAG_ENAJ(Q], indicating that it has a duplicate tag store for the Bcache. Systems
using the DUP_TAG_ENAJQ] bit must also use the Cbox CSR
BC_CLEAN_VICTIMIQ] bit to avoid deadlock situations.

Systems using a Bcache duplicate tag store can accelerate system performance by:

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-7

Victim Data Buffer

* Issuing probes and SysDc fill commands to the 21264/EV 67 out-of-order with
respect to their order at the system serialization point

e Filtering out al probe misses from the 21264/EV 67 cache system

If aprobe misses in the 21264/EV 67 cache system (Bcache miss and VAF miss), the
21264/EV 67 stalls probe processing with the expectation that a SysDc fill will allocate
this block. Because of this, in duplicate tag mode, the 21264/EV 67 can never generate a
probe miss response.

When Chox CSR DUP_TAG_ENA[Q] equals 0, the 21264/EV 67 delivers amiss
response for probes that do not hit in its cache system.

4.4 Victim Data Buffer

The 21264/EV 67 has eight victim data buffers (VDBS). They have the following prop-
erties:

* TheVDBsare used for both victims (fills that are replacing dirty cache blocks) and
for system probes that require data movement. The CleanVictimBIk command
(optional) assigns and uses aVDB.

e Each VDB hastwo valid bits that indicate the buffer is valid for avictim or valid
for a probe or valid for both avictim and a probe. Probe commands that match the
address of avictim address file (VAF) entry with an asserted probe-valid bit (P)
will stall the 21264/EV 67 probe queue. No ProbeResponses will be returned until
the P bit is clear.

* Therelease victim buffer (RVB) bit, when asserted, causes the victim valid bit, on
the victim data buffer (VDB) specified in the ID field, to be cleared. The RVB bit
will also clear the IOWB when systems move data on I/O write transactions. In this
case, ID[3] equals one.

* Therelease probe buffer (RPB) bit, when asserted (with aWriteData or Release-
Buffer SysDc command), clears the P bit in the victim buffer entry specified in the
ID field.

¢ Read data commands and victim write commands use |Ds 0-7, while IDs 8-11 are
used to address the four I/O write buffers.

4.5 Cache Coherency

This section describes the basics and protocols of the 21264/EV 67 cache coherency
scheme.

4.5.1 Cache Coherency Basics

The 21264/EV67 systems maintain the cache hierarchy shown in Figure 4-3.

4-8 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Cache Coherency

Figure 4-3 Cache Subset Hierarchy

System

Main Memory

Bcache

FM-05824.A14

The following tasks must be performed to maintain cache coherency:

Istream data from memory spaces may be cached in the Icache and Bcache. |cache
coherence is not maintained by hardware—it must be maintained by software using
the CALL_PAL IMB instruction.

The 21264/EV 67 maintains the Dcache as a subset of the Bcache. The Dcacheis
set-associative but is kept a subset of the larger externally implemented direct-
mapped Bcache.

System logic must help the 21264/EV 67 to keep the Bcache coherent with main
memory and other caches in the system.

The 21264/EV 67 requires the system to allow only one changeto ablock at atime.
This meansthat if the 21264/EV 67 gains the bus to read or write a block, no other
node on the bus should be allowed to access that block until the data has been
moved.

The 21264/EV 67 provides hardware mechanisms to support several cache coher-
ency protocols. The protocols can be separated into two classes: write invalidate
cache coherency protocol and flush cache coherency protocol.

4.5.2 Cache Block States
Table 4-2 lists the cache block states supported by the 21264/EV67.

Table 4-2 21264/EV67-Supported Cache Block States (Sheet 1 of 2)
State Name Description
Invalid The 21264/EV 67 does not have a copy of the block.

Clean

This 21264/EV 67 holds aread-only copy of the block, and no other agent in the system holds
acopy. Upon eviction, the block is not written to memory.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-9

Cache Coherency

Table 4-2 21264/EV67-Supported Cache Block States (Sheet 2 of 2)

State Name Description

Clean/Shared This 21264/EV 67 holds aread-only copy of the block, and at least one other agent in the sys-
tem may hold a copy of the block. Upon eviction, the block is not written to memory.

Dirty This 21264/EV 67 holds aread-write copy of the block, and must writeit to memory after itis
evicted from the cache. No other agent in the system holds a copy of the block.

Dirty/Shared This 21264/EV 67 holds aread-only copy of the dirty block, which may be shared with
another agent. The block must be written back to memory when it is evicted.

45.3 Cache Block State Transitions

Cache block state transitions are reflected by 21264/EV 67-generated commands to the

system. Cache block state transitions can also be caused by system-generated com-

mands to the 21264/EV 67 (probes). Probes control the next state for the cache block.

The next state can be based on the previous state of the cache block. Table 4-3 lists the
next state for the cache block.

Table 4-3 Cache Block State Transitions

Next State Action Based on Probe Hit

No change Do not update cache state. Useful for DMA transactions that sample data but
do not want to update tag state.

Clean Independent of previous state, update next state to Clean.

Clean/Shared Independent of previous state, update next state to Clean/Shared. This transac-
tion is useful for systems that update memory on probe hits.

TL: Based on the dirty bit, make the block clean or dirty shared. This transaction

Clean O Clean/Shared isuseful for systems that do not update memory on probe hits.

Dirty O Dirty/Shared

T3: If the block is Clean or Dirty/Shared, change to Clean/Shared. If the block is

Clean 0 Clean/Shared Dirty, change to Invalid. Thistransaction is useful for systems that use the

Dirty O Invalid Dirty/Shared state as an exclusive state.

Dirty/Shared O Clean/Shared

The cache state transitions caused by 21264/EV67-generated commands are under the
full control of the system environment using the SysDc (system data control) com-
mands. Table 4—4 lists these commands.

Table 4-4 System Responses to 21264/EV67 Commands

Response Type 21264/EV67 Action

SysDc ReadData Fill block with the associated data and update tag with clean cache status.
SysDc ReadDataDirty Fill block with the associated data and update tag with dirty cache status.
SysDc ReadDataShared Fill block with the associated data and update tag with shared cache status.
SysDc ReadDataShared/Dirty Fill block with the associated data and update tag with dirty/shared status.
SysDc ReadDataError Fill block with all-ones reference pattern and update tag with invalid status.

SysDc ChangeToDirtySuccess Unconditionally update block with dirty cache status.
SysDc ChangeToDirtyFail Do not update cache status and fail any associated STx_C instructions.

4-10 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Cache Coherency

4.5.4 Using SysDc Commands

Note the following:

* The conventional response for RdBIk commandsis SysDc ReadData or ReadD-
ataShared.

* The conventional response for a RdBIkMod command is SysDc ReadDataDirty.

e The conventional response for ChangeToDirty commandsis
ChangeToDirtySuccess or ChangeToDirtyFail.

However, the system environment is not limited to these responses. Table 4-5 shows all
21264/EV67 commands, system responses, and the 21264/EV67 reaction. The 21264/

EV67 commands are described in the following list:
* Rdx commands are generated by load or |stream references.
¢ RdBIkModx commands are generated by store references.

e The ChxToDirty command group includes CleanToDirty, SharedToDirty, and STC-
ChangeToDirty commands, which are generated by store references that hit in the
21264/EV 67 cache system.

* InvalToDirty commands are generated by WH64 instructions that missin the
21264/EV 67 cache system.

e FetchBlk and FetchBlkSpec are noncached references to memory space that have
missed in the 21264/EV 67 cache system.

¢ Rdiox commands are noncached references to 1/O address space.

¢ Evict and STCChangeToDirty commands are generated by ECB and STx_C
instructions, respectively.

Table 4-5 shows the system responses to 21264/EV67 commands and 21264/EV67
reactions.

Table 4-5 System Responses to 21264/EV67 Commands and 21264/EV67 Reactions

21264/EV67

CMD SysDc 21264/EV67 Action

Rdx ReadData Thisisanormal fill. The cache block is filled and marked clean or

ReadDataShared shared based on SysDc.

Rdx ReadDataShared/Dirty The cache block isfilled and marked dirty/shared. Succeeding store
commands cannot update the block without external reference.

Rdx ReadDataDirty The cache block isfilled and marked dirty.

Rdx ReadDataError The cache block accesswasto NXM address space. The 21264/EV 67
delivers an al-ones pattern to any load command and evicts the block
from the cache (with associated victim processing). The cache block
ismarked invalid.

Rdx ChangeToDirtySuccess Both SysDc responses areillegal for read commands.

ChangeToDirtyFail

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-11

Cache Coherency

Table 4-5 System Responses to 21264/EV67 Commands and 21264/EV67 Reactions (Continued)

21264/EV67

CMD SysDc 21264/EV67 Action

RdBIkM odx ReadData The cache block is filled and marked with a nonwritable status. If the
ReadDataShared store instruction that generated the RdBIkModx command is still
ReadDataShared/Dirty active (not killed), the 21264/EV 67 will retry the instruction, generat-

ing the appropriate ChangeToDirty command. Succeeding store com-
mands cannot update the block without external reference.

RdBIkM odx ReadDataDirty The 21264/EV 67 performs anormal fill response, and the cache block
becomes writable.

RdBIkModx ChangeToDirtySuccess Both SysDc responses are illegal for read/modify commands.

ChangeToDirtyFail

RdBIkModx ReadDataError The cache block command was to NXM address space. The 21264/
EV67 delivers an all-ones pattern to any dependent load command,
forces afail action on any pending store commands to this block, and
any store to thisblock is not retried. The Chox evicts the cache block
from the cache system (with associated victim processing). The cache
block is marked invalid.

ChxToDirty ReadData The original datain the Dcache is replaced with thefilled data. The
ReadDataShared block is not writable, so the 21264/EV 67 will retry the store instruc-
ReadDataShared/Dirty tion and generate another ChxToDirty class command. To avoid a

potential livelock situation, the STC_ENABLE CSR bit must be set.
Any STx_C instruction to this block isforced to fail. In addition, a
Shared/Dirty response causes the 21264/EV 67 to generate avictim
for this block upon eviction.

ChxToDirty ReadDataDirty The datain the Dcache is replaced with the filled data. The block is
writable, so the store instruction that generated the original command
can update this block. Any STx_C instruction to this block is forced
tofail. Inaddition, the 21264/EV 67 generates a victim for this block
upon eviction.

ChxToDirty ReadDataError Impossible situation. The block must be cached to generate a ChxTo-
Dirty command. Caching the block is not possible because all NXM
fillsarefilled noncached.

ChToDirty ChangeToDirtySuccess Normal response. ChangeToDirtySuccess makes the block writable.
The 21264/EV 67 retries the store instruction and updates the Dcache.
Any STx_C instruction associated with this block is alowed to suc-
ceed.

ChxToDirty ChangeToDirtyFail The MAF entry isretired. Any STx_C instruction associated with the
block isforced to fail. If a STx instruction generated this block, the
21264/EV 67 retries and generates either a RdBIkModx (because the
reference that failed the ChangeToDirty also invalidated the cache by
way of an invalidating probe) or another ChxToDirty command.

InvalToDirty ReadData The block is not writable, so the 21264/EV 67 will retry the WH64
ReadDataShared instruction and generate a ChxToDirty command.
ReadDataShared/Dirty

InvalToDirty ReadDataError The 21264/EV67 doesn'’t send InvalToDirty commands offchip spec-
ulatively. This NXM condition is a hard error. Systems should per-
form a machine check.

InvalToDirty =~ ReadDataDirty The block is writable. Done.

ChangeToDirtySuccess

4-12 Cache and External Interfaces

Alpha 21264/EV67 Hardware Reference Manual

Cache Coherency

Table 4-5 System Responses to 21264/EV67 Commands and 21264/EV67 Reactions (Continued)

21264/EV67

CMD SysDc 21264/EV67 Action

InvalToDirty ChangeToDirtyFail Illegal. Inval ToDirty instructions must provide a cache block.

Fetchx ReadData The 21264/EV 67 delivers the data block, independent of its

Rdiox ReadDataShared status, to waiting load instructions and does not cache the block in the

ReadDataShared/Dirty 21264/EV 67 cache system.
ReadDataDirty

Fetchx ReadDataError The cache block address was to an NXM address space. The 21264/
EV67 deliversthe all-ones patternsto any dependent load instructions
and does not cache the block in the 21264/EV 67 cache system.

Rdiox ReadDataError The cache block access wasto NXM address space. The 21264/EV 67
delivers an all-ones pattern to any load command and does not cache
the block in the 21264/EV 67 cache system.

Evict ChangeToDirtyFail Retiring the MAF entry isthe only legal response.

STCChangeTo ReadDataX All fill and ChangeToDirtyFail responses will fail the STx_C require-

Dirty ChangeToDirtyFail ments.

STCChangeTo ChangeToDirtySuccess The STx_C instruction succeeds.

Dirty

MB MBDone Acknowledgment for MB.

The 21264/EV 67 sends a WrVictimBIk command to the system when it evicts a Dirty
or Dirty/Shared cache block. The 21264/EV 67 may be configured to send a CleanVic-
timBIk to the system (by way of the Cbox CSR BC_CLEAN_VICTIM[Q]) when evict-
ing aclean or shared block. Both commands allocate buffersin the VAF (victim address
file). Thisbuffer isacoherent part of the 21264/EV 67 cache system. Write data control
and deallocation of the VAF can be directly controlled by using the SysDc WriteData
and ReleaseBuffer commands.

455 Dcache States and Duplicate Tags

Each Dcache block contains an extra state bit (modified bit), beyond those required to
support the cache protocol. If set, this bit indicates that the associated block should be
written to the Bcache when it is evicted from the Dcache. The modified bit is set in two
cases:

1. Whenablock isfilled into the Dcache from memory its modified bit is set, ensur-
ing that it also gets written back into the Bcache at some future time.

2. When the processor writesto adirty Dcache block the modified bit is set, indicating
it should be written to the Bcache when evicted.

The contents of the modified bit are functionally invisible to the external cache environ-
ment, but knowledge of the bits function is useful to programmers optimizing the
scheduling of the Bcache data bus.

The Cbox contains a duplicate copy of the Dcache tag array. In contrast to the Dcache
tag array (DTAG), which isvirtually indexed, the Chox copy of the Dcache tag array
(CTAG) is physically-indexed. The Cbox uses the CTAG array entriesin the following
situations.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-13

Lock Mechanism

1. When the Mbox requests a Dcachefill, the Cbox usesthe CTAG array entry to find
if the Dcache already contains the requested physical addressin another virtually-
indexed Dcacheline. If it does, the Cbox invalidates that cache line after first writ-
ing the data back to the Bcache if it was in the modified state. The Cbox also checks
to see if the Dcache contains an address different from the requested address, but
maps to the same Bcache line. If it does, the Dcache lineisevicted in order to keep
the Dcache a subset of the Bcache.

2. When the Ibox requests an I cachefill, the Cbox usesthe CTAG array entriesto find
if the Dcache contains the requested physical address in the modified state. If it
does, the Cbox forces the line to be written back to the Bcache before servicing the
Icache fill request. The Chox also checksto see if the Dcache contains an address
different from the requested address but which maps to the same Bcacheline. In
this case the I stream request will miss the Bcache, and the Cbox will
service the request by launching a noncached Fetch command to the system port
and will not put the Istream block into the Bcache. This mechanism allows the
21264/EV 67 to use a cache resident lock flag for LDx_L/STx_C instructions.

3. The Chox usesthe CTAG array entriesto find whether probe addresses are held in
the Dcache without interrupting load/store instruction processing in the processor
core.

4.6 Lock Mechanism

The 21264/EV 67 does not contain a dedicated lock register, nor are system components
required to do so.

When aload-lock (LDx_L) instruction executes, data is accessed from the Dcache or
Bcache. If thereis a cache miss, datais accessed from memory with a RdBIk command.
Its associated cache lineisfilled into the Dcache in the clean state, if it is not already
there.

When the store-conditional (STx_C) instruction executes, it is allowed to succeed if its
associated cache lineis still present in the Dcache and can be made writable; otherwise,
it fails.

Thisalgorithm is successful because another agent in the system writing to the cache

line between the load-lock and the store-conditional cache line would make the cache
line invalid. This mechanism’s coherence is based on the following four items:

1. LDx_L instructions are processed in-order in relation to the associated STx_C.

2. Once a block is locked by way of an LDx_L instruction, no internal agent can evict
the block from the Dcache as a side-effect of its processing.

3. Any external agent that intends to update the contents of the stored block must use
an invalidating probe command to inform the 21264/EV67.

4, The system is the only agent with sufficient information to manage the tasks of fair-
ness and liveness. However, to enable these tasks, the 21264/EV67 only generates
external commands for nonspeculative STx_C instructions, and once given a suc-
cess indication from the system, must faithfully update the Dcache with the STx_C
value.

The system is entirely responsible for item number three. The 21264/EV67 plays an
active role in items one, two, and four.

4-14 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Lock Mechanism

4.6.1 In-Order Processing of LDx_L/STx_C Instructions

The 21264/EV 67 uses the stWait logic in the IQ to ensure that LDx_L/STx_C pairs are
issued in order. The stWait logic treats an Ldx_L instruction like Stx instructions.
STx_C instructions are always loaded into the |Q with their associate stWait bit set.
Thus, aSTx_C instruction is not issued until the older LDx_L is out of the |Q.

4.6.2 Internal Eviction of LDx_L Blocks

The 21264/EV 67 prevents the eviction of cache blocks in the Dcache due to either of
the following references:

| stream references with a Bcache index that matches the Dcache block and a
Bcache tag that mismatches the Dcache block.

To avoid evictions of LDx_L blocks, Istream references that match the index of a
block in the Dcache are converted to noncached references.

Ldx or Stx references with a Dcache index that matches the block.

In the Alpha architecture, Dstream references between aLDx_L/STx_C pair force
the value of the STx_C success flag to be UNPREDICTABLE. The 21264/EV 67
forcesall STx_C instructions that interrupt an LDx_L/STx_C pair to fail in pro-
gram order.

There should be no Dstream references between LDx_L/STx_C pairs; however, the
out-of-order nature of the 21264/EV 67 can introduce Dstream references between
LDx_L/STx_C pairs. To prevent load or store instructions older than the LDx_L
from evicting the LDx_L cache block, the Mbox invokes a replay trap on the
incoming load or store instruction, which also abortsthe LDx_L. Theseinstructions
areissued in program order in the next iteration of the trap retry down the pipeline.
To prevent newer load or store instructions from evicting the locked cache line, the
Ibox ensuresthat a STx_C isissued before any newer load or store instruction by
placing the STx_C into the |Q and stalling all subsequent instructions in the map
stage of the pipe until the 1Q is empty.

Branch instructions between the LDx_L/STx_C pair may be mispredicted, intro-
ducing load and store instructions that evict the locked cache block. To prevent that
from happening, thereisabit in the instruction fetcher that is set for aLDx_L refer-
ence and cleared on any other memory reference. When this bit is set, the branch
predictor predicts all branches to fall through.

4.6.3 Liveness and Fairness

To prevent alivelock condition, the 21264/EV 67 processes the STx_C asfollows:

1.

If a STx_C misses the Dcache, then no system port transaction is started and the
STx_Cfails.

If aSTx_C hitsablock that is not dirty, then a ChangeToDirty (Shared or Clean) is
launched after the STx_C retires and all older store queue entries are in the writable
state. This ensures that once the ChangeToDirty command is launched on behalf of
the STx_C, the STx_C will be executed to completion if the ChangeToDirty com-
mand succeeds.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-15

System Port

If the ChangeToDirty command succeeds, the STx_C enters the writable state, and the
Mbox locks the Dcache line. The Mbox does not release the Dcache line until the
STx_C datais transferred to the Dcache. This ensures that no other agent, by way of a
probe, can take the block before the STx_C can update the locked block.

4.6.4 Managing Speculative Store Issues with Multiprocessor Systems

The 21264/EV 67 provides two mechanisms to manage an inherent potential side effect

of speculative execution with multiprocessor systems — a livelock condition caused by
a speculative store that misses in one processor affecting the execution of a LDx_L/
STx_C pair in another processor. The potential livelock condition in multiprocessor
systems can be effectively controlled by placing processors in a conservative mode,
where speculative store MAFs are blocked. The 21264/EV67 manages conservative
mode with the Mbox IPR, M_CTL[SMC], described in Table 5-19.

e M_CTL[SMC] can be set to place the 21264/EV 67 in full-time conservative mode.

e M_CTL[SMC] can be set to place the 21264/EV 67 in periodic conservative mode,
timed by two counters: an 8-hit primary counter that tracks branch mispredicts and
conditional branch retires, and a backup counter that places the 21264/EV67 in
conservative mode for a period of 16K cycles every 2 million cycles.

The 8-bit counter is enabled by placing M_CTL[SMC] in periodic conservative
mode. The backup counter takes effect whenever the 8-bit counter is enabled. Fur-
ther, the backup counter can be reset to 0 by clearing apreviously set
M_CTL[SM(], alowing synchronization between processors.

4.7 System Port

The system port is the 21264/EV67’s connection to either a memory or 1/O controller or
to a shared multiprocessor system controller. System port interface signals are shown in
Figure 4—4.

The system port supports transactions between the 21264/EV67 and the system. Sys-
tems must receive and drive signals that are asserted low. Transaction commands are
communicated on signal lin&ysAddOut_L [14:0] (21264/EV67-to-system) and
SysAddin_L[14:0] (system-to-21264/EV67). Transaction data is transferred on a bidi-
rectional data bus over pil8ysData_L[63:0] with ECC on pinsSysCheck_L[7:0].

4-16 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

Figure 4-4 System Interface Signals

21264

~_ SysAddIn_L[14:0]
__ SysAddInCIk_L

SysAddOut_L[14:0]

SysAddOutClk_L

Yy

__ SysVref

SysData_L[63:0]
SysCheck_L[7:0]
__ SysDatalnCIk_H[7:0]

SysDataOutClk_L[7:0]

| SysDatalnValid_L

__ SysDataOutValid_L

_ SyskFillvalid_L

-

IRQ_H[5:0]

-

4.7.1 System Port Pins

FM-05652-EV67

Table 3—1 defines the 21264/EV67 signal types referred to in this section. Table 4-6
lists the system port pin groups along with their type, number, and functional descrip-

tion.

Table 4-6 System Port Pins

Pin Name Type Count Description

IRQ_HI[5:0Q] |_DA 6 These six interrupt signal lines may be asserted by the sys-
tem.

SysAddin_L[14:0] |_ DA 15 Time-multiplexed SysAddin, system-to-21264/EV67.

SysAddInClk_L |_DA 1 Single-ended forwarded clock from system for
SysAddin_L[14:0] and SysFillValid_L.

SysAddOut_L [14:Q] O _OD 15 Time-multiplexed SysAddOut, 21264/EV 67-to-system.

SysAddOutClk_L O_OD 1 Single-ended forwarded clock.

SysVref | DC REF 1 System interface reference voltage.

SysCheck_L[7:0] B_ DA _ OD 8 Quadword ECC check bitsfor SysData_L [63:0].

SysData L[63:0] B DA _ OD 64 Data bus for memory and 1/0O data.

SysDatalnClk_H[7:0] I|_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDatal nValid_L I_DA 1 When asserted, marks avalid data cycle for data transfers to
the 21264/EV67.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV 67-generated clocks for clock for-
warded output system data.

SysDataOutValid_L |_DA 1 When asserted, marks avalid data cycle for data transfers
from the 21264/EV 67.

SysFillvalid_L |_DA 1 Validation for fill given in previous SysDc command.

Alpha 21264/EV67 Hardware Reference Manual

Cache and External Interfaces 4-17

System Port

4.7.2 Programming the System Interface Clocks

The system forwarded clocks are free running and derived from the 21264/EV 67
GCLK. The period of the system forwarded clocks is controlled by three Cbox CSRs,
based on the bit-rate ratio (similar to the Bcache bit-rate ratio) except that all transfers
are dual-data.

¢ SYS CLK_LD_VECTOR[15:0]
¢ SYS BPHASE LD _VECTOR[3:0]
« SYS FDBK_EN[7:0]

Table 4-7 lists the programming values used to program the system interface clocks.

Table 4—7 Programming Values for System Interface Clocks

System Transfer SYS_CLK_LD_VECTOR! SYS BPHASE_LD VECTOR! SYS FDBK_EN!
1.5X-DD 9249 5 02
2.0X-DD 3333 0 01
2.5X-DD 8C63 5 02
3.0X-DD 71C7 0 10
3.5X-DD C387 A 04
4.0X-DD OFOF 0 01
5.0X-DD 7CIF 0 40
6.0X-DD FO3F 0 10
7.0X-DD CO7F 0 04
8.0X-DD OOFF 0 01

1 These are hexadecimal values.

In addition to programming of the clock CSRs, the data-sample/drive Cbox CSRs at the
pads have to be set appropriately. Table 4-8 shows the programmed values for these
system CSRs. In Table 4-8, each system forwarded clock is the inversion of the low-
assertion signal at the corresponding pin.

Table 4-8 Program Values for Data-Sample/Drive CSRs

CBOX CSR Description

SYS DDM_FALL_EN[O] Enables the update of 21264/EV 67 system outputs based on the falling edge
of the system forwarded clock. (Always asserted)

SYS DDM_RISE _EN[O0] Enables the update of 21264/EV 67 system outputs based on the rising edge

of the system forwarded clock. (Always asserted)

SYS DDM_RD_FALL_EN[0] Enablesthe sampling of incoming data on the falling edge of the incoming
forwarded clock. (Always asserted)

4-18 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

Table 4-8 Program Values for Data-Sample/Drive CSRs (Continued)

CBOX CSR

Description

SYS DDM_RD_RISE EN[O] Enables the sampling of incoming data on the rising edge of the incoming

forwarded clock. (Always asserted)

SYS DDMF_ENABLE Enables the falling edge of the system forwarded clock. (Always asserted)
SYS DDMR_ENABLE Enables the rising edge of the system forwarded clock. (Always asserted)

Table 4-9 lists the program values for CSR SYS_FRAME_LD_ VECTOR[4:0] that set
the ratio between the forwarded clocks and the frame clock.

Table 4-9 Forwarded Clocks and Frame Clock Ratio

Clock Ratio Transfer Mode Value!
11 All 00
2:1 3.0X, 3.5X, 8.0X 1E
2:1 1.5X, 2.0X, 2.5X 4.0X, 5.0X, 6.0X 7.0X 1F
4:1 8X 15
4:1 1.5X, 4.0X, 5.0X, 6.0X, 7.0X 0B
4:1 3.0X, 3.5X 14
4:1 2.0X, 2.5X 0A

1 These are hexadecimal values.

4.7.3 21264/EV67-t0-System Commands

This section describes the 21264/EV67-to-system commands format and operation. The
command, address, ID, and mask bits are transmitted in four consecutive cycles on
SysAddOut_L[14:0]. The 21264/EV67 sends the command information in one of the
two following modes as selected by the Cbox CSR bit.

e Bank interleave on cache block boundary mode—SYSBUS FORMAT[0] = 0
* Page hit mode—SYSBUS_FORMAT[0] =1

The physical address (PA) bits arrangements for the two modes is shown in Tables 4-10
and 4-11. The purpose of the two modes is to give the system the PA bits that allow it to
select the memory bank and drive the RAS address as soon as possible.

4.7.3.1 Bank Interleave on Cache Block Boundary Mode

Table 4-10 shows the command format for the bank interleave on cache block bound-
ary mode of operation (21264/EV67-to-system).

Table 4-10 Bank Interleave on Cache Block Boundary Mode of Operation

SysAddOut_L[14:2] SysAddOut_L[1] | SysAddOut_L[0O]

Cyclel

M1

Command[4:0] \ PA[34:28] PA[36] PA[38]

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-19

System Port

Table 4-10 Bank Interleave on Cache Block Boundary Mode of Operation (Continued)

SysAddOut_L[14:2] SysAddOut_L[1] | SysAddOut_L[O]
Cycle2 PA[27:22], PA[12:6] PA[35] PA[37]
Cycle3 (M2 Mask[7:0] CH ID[2:0] PA[40] PA[42]
Cycle4 |RV PA[21:13], PA[5:3] PA[39] PA[41]

4.7.3.2 Page Hit Mode

Table 4-11 shows the command format for page hit mode (21264/EV67-to-system).

Table 4-11 Page Hit Mode of Operation

SysAddOut_L[14:2] SysAddOut_L[1] | SysAddOut_L[O]
Cyclel (M1 Command[4:0] PA[31:25] PA[32] PA[33]
Cycle2 PA[24:12] PA[11] PA[34]
Cycle3 (M2 Mask[7:0] CH ID[2:0] PA[35] PA[37]
Cycle4 |RV PA[34:32], PA[11:3] PA[36] PA[38]

Table 4-12 describes the field definitions for Tables 4-10 and 4-11.

Table 4-12 21264/EV67-to-System Command Fields Definitions

SysAddOut Field

Definition

M1

Command[4:0]

SysAddOut[1:0]

M2

ID[2:0]
RV

Mask][7:0]
CH

When set, reports a miss to the system for the oldest probe.
When clear, has no meaning.

The 5-bit command field is defined in Table 4—-14.

This field is needed for systems with greater than 32GB of memory, up to a maximum of 8
Terabyte (8TB). Cost-focused systems can tie these bits high and use a 13-bit command/
address field.

When set, reports that the oldest probe has missed in cache. Also, this bit is set for system-
t0-21264/EV67 probe commands that hit but have no data movement (see the CH bit,
below).

When clear, has no meaning.

M1 and M2 are not asserted simultaneously. Reporting probe results as soon as possible is
critical to high-speed operation, so when a result is known the 21264/EV67 uses the earli-
est opportunity to send an M signal to the system. M bit assertion can occur either in a
valid command or a NZNOP.

The ID number for the MAF, VDB, or WIOB associated with the command.

If set, validates this command.

In speculative read mode (optional), RV = 1 validates the command and RV = 0 indicates
a NOP.

For all nonspeculative commands RV = 1.

The byte, LW, or QW mask field for the corresponding I/O commands.

The cache hit bit is asserted, along with M2, when probes with no data movement hit in
the Dcache or Bcache. This response can be generated by a probe that explicitly indicates
no data movement or a ReadlfDirty command that hits on a valid but clean or shared
block.

4-20 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

System designers can minimize pin count for systems with a small memory by config-

uring both the bank interleave on cache block boundary mode and the page hit mode

formats into ashort bus format. The pin SysAddOut_L[1] and/or SysAddOut_L[Q]

are not used (selected by Cbox CSR SYS_BUS_SIZE[1:0]). Table 4-13 lists the values
for SYSBUS_ FORMAT and SYS_BUS_SIZE[1:0] and shows the maximum physical
memory size.

Table 4-13 Maximum Physical Address for Short Bus Format

SYSBUS_ SYSBUS
FORMAT SIZE[1:0] Maximum PA Comment

0 00 42 Bank interleave + full address

0 01 36 Bank interleave + SysAddOut_L [0] unused

0 10 lllega I1legal combination

0 11 34 Bank interleave + both SysAddOut_L [1:0] are used for I/O
1 00 38 Page hit mode + full address

1 01 36 Page hit mode + SysAddOut_L [0] unused

1 10 lllega I1legal combination

1 11 34 Page hit mode + both SysAddOut_L[1:0] are unused

Because addresses above the maximum PA are not visible to the external system, any
memory transaction generated to addresses above the maximum PA are detected and
converted to transactions to NXM (nonexistent memory) and processed internally by
the 21264/EV67.

4.7.4 21264/EV67-t0-System Commands Descriptions
Table 4-14 describes the 21264/EV67-to-system commands.

Table 4-14 21264/EV67-to-System Commands Descriptions

Command

Command [4:0] Function

NOP 00000 The 21264/EV 67 drives this command on idle cycles during reset. After
the clock forward reset period, the first NZNOP is generated and this
command is no longer generated.

ProbeResponse 00001 Returns probe status and ID number of the VDB entry holding the
requested cache block.

NZNOP 00010 This nonzero NOP helps to parse the command packet.

VDBFushRequest 00011 VDB flush request. The 21264/EV 67 sends this command to the system
when an internally generated transaction Bcache index matches a Becache
victim or probein the VDB. The system should flush VDB entries
associated with all probe and WrVictimBIk transactions that occurred
before this command.

mB! 00111 Indicates an MB was issued, optional when Cbox CSR
SYSBUS MB_ENA[Q] isset.

ReadBlk 10000 Memory read.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-21

System Port

Table 4-14 21264/EV67-to-System Commands Descriptions (Continued)

Command
Command [4:0] Function
ReadBlkMod 10001 Memory read with modify intent.
ReadBIKI 10010 Memory read for Istream.
FetchBlk 10011 Noncached memory read.
ReadBIkSpec? 10100 Specul ative memory read (optional).
ReadBIkM odSpec? 10101 Speculative memory read with modify intent (optional).
ReadBIkSpecl? 10110 Memory read for Istream (optional).
FetchBl kSpec2 10111 Specul ative memory noncached ReadBlk (optional).
ReadBIkVic® 11000 Memory read with avictim (optional).
ReadBlkModVic® 11001 Memory read with modify intent, with avictim (optional).
ReadBIkVicl® 11010 Memory read for Istream with avictim (optional).
WrVictimBIk 00100 Write-back of dirty block.
CleanVictimBlk 00101 Address of aclean victim (optional).
Evict* 00110 Invalidate evicted block at the given Bcache index (optional).
ReadBytes 01000 1/O read, byte mask.
ReadlLWs 01001 1/O read, longword mask.
ReadQWs 01010 1/O read, quadword mask.
WrBytes 01100 1/0O write, byte mask.
WrLWs 01101 I/O write, longword mask.
WrQWs 01110 1/O write, quadword mask.
CleanToDi rty6 11100 Sets a block dirty that was previously clean (optional for duplicate tags).
SharedToDi rty6 11101 Sets ablock dirty that was previously shared (optional for multiprocessor
systems).
STCChangeToDirty® 11110 Sets a block dirty that was previously clean or shared for aSTx_C
instruction (optional for multiprocessor systems).
InvalToDirtyVic>® 11011 Invalid to dirty with avictim (optional).
Inval ToDirty® 11111 WH64 Acts like a ReadBIkM od without the fill cycles (optional).

4-22 Cache and External Interfaces

Alpha 21264/EV67 Hardware Reference Manual

System Port

Table 4-14 footnotes:

1.

Systems can optionally enable MB instructions to the external system by asserting
Cbox CSR SYSBUS MB_ENABLE. This mode is described in Section 2.12.1.

To minimize load-to-use memory latency, systems can optionally enable specula-
tive transactions to memory space by asserting the Cbox CSR
SPEC_READ_ENABLE]OQ]. If the Cbox system command queue is empty, a

bypass between the Bcache interface and the system interface is enabled (in combi-
nation with this mode). When the next new transaction is delivered by the Mbox,

the Cbox starts MAF memory references to the system interface before the results
of Bcache hit is known. The RV bit is deasserted on a Bcache hit, or in
BC_RDVICTIM[0] mode (see footnote 3, below), and for Bcache miss transactions
that generate a victim (clean or dirty). Otherwise, the RV bit is asserted.

Systems can optionally enable RdBIkVic, RdBIkModVic, and InvalToDirtyVic
commands using Cbox CSR BC_RDVICTIMIO]. In this mode of operation
RdBIkxVic command cycles are always followed immediately by the WrVictimBIk
commands. Also, when CleanVictimBlk commands are enabled, they
immediately follow RdBIkVic, RdBIkModVic, and InvalToDirtyVic commands.

Systems can optionally enable Evict commands by asserting the Cbox CSR
ENABLE_EVICT. In this mode, all ECB instructions will generate an Evict com-
mand, and in combination with BC_RDVICTIM[0] mode, the WriteVictim or
CleanVictim (when Cbox CSR BC_CLEAN_VICTIMIO] is asserted) is associated
with the Evict command is atomically sent after the Evict command.

Optionally, systems can enable InvalToDirty commands by programming Cbox
CSR INVAL_TO_DIRTY_ENABLE[1:0]. Table 4-15 shows how to program
INVAL_TO_DIRTY_ENABLEJ[1:0].

Optionally, systems can enable CleanToDirty or SharedToDirty commands by
using Chbox CSR SET_DIRTY_ENABLE[2:0]. These three bits control the Chox
action upon a block that was hit in the Dcache with a status of dirty/shared, clean/
shared, or clean respectively.

Table 4-15 Programming INVAL_TO_DIRTY_ENABLE[1:0]

INVAL_TO_DIRTY_ENABLE[1:0] Cbox Action

X0

01

1

WHG64 instructions are converted to RdModx commands at the interface.
Beyond this point, no other agent sees the WH64 instruction. Thismodeis
useful for microprocessors that do not want to support Inval ToDirty transac-
tions.

WH64 instructions are enabled, but they are acknowledged within the
21264/EV67.

WH64 instructions are enabled, and generate Inva ToDirty transactions at
the 21264/EV 67 pins.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-23

System Port

Table 4-16 Programming SET_DIRTY_ENABLE[2:0]

SET_DIRTY_ENABLE

[2,0] (DS,CS,C) Cbox Action

000 Everything acknowledged internally (uniprocessor).

001 Only clean blocks generate external acknowledge (CleanToDirty commands only).

010 Only clean/shared blocks generate external acknowledge (SharedToDirty command
only).

011 Clean and clean/shared blocks generate external acknowledge.

100 Only dirty/shared blocks generate external acknowledge (SharedToDirty commands
only).

101 Only dirty/shared and clean blocks generate external acknowledge.

110 Only dirty/shared and clean/shared blocks generate external acknowledge.

111 All transactions generate external acknowledge.

4.7.5 ProbeResponse Commands (Command[4:0] = 00001)

The 21264/EV 67 responds to system probes that did not miss with a4-cycle transfer on
SysAddOut_L [14:0]. As shown in Table 4-14, the Command[4:0] field for a ProbeRe-
sponse command equals 00001. Table 4-17 shows the format of the 21264/EV67 Prob-

Systems that require an explicit indication of ChangeToDirty status changes initi-
ated by STx_C instructions can assert Cbox CSR STC_ENABLE[0]. When this
register field = 000, CleanToDirty and SharedToDirty commands are used. The dis-
tinction between a ChangeToDirty command generated by a STx_C instruction and
one generated by a STx instruction isimportant to systems that want to service
ChangeToDirty commands with dirty data from a source processor. In this case, the
distinction between alocked exclusive instruction and a normal instruction is criti-

cal to avoid livelock for aLDx_L/STx_C sequence.

eResponse command.

Table 4-17 21264/EV67 ProbeResponse Command

SysAddOut_L[14:2] SysAddOut_L[1] | SysAddOut_L[O]
Cyclel |O 00001 |Statug[1:Q] DM |VS |VDB (X X
[2:0]
Cycle2 0 MS |MAF | X X
[2:0]
Cycle3 |0 X X X
Cycle4 X X X

4-24 Cache and External Interfaces

Alpha 21264/EV67 Hardware Reference Manual

System Port

Table 4-18 describes the ProbeResponse command fields.

Table 4-18 ProbeResponse Fields Descriptions

ProbeResponse Field Description

Command[4:0]
DM

VS

VDB[2:0]

MS
MAF[2:0]

Statug[1:0]

The value 00001 identifies the command as a ProbeResponse.
Indicates that data movement should occur (copy of probe valid bit). See Section 4.4.
Write victim sent bit.

ID number of the VDB entry containing the requested cache block. Thisfield isvalid
when either the DM bit or the VS bit equals 1.

MAF address sent.

Thisfield indicates the SharedToDirty, CleanToDirty, or
STCChangetoDirty MAF entry that matched the full probe address.

Result of probe:
Satug1:0] Probe state
00

HitClean
01 HitShared
10 HitDirty
11 HitSharedDirty

The system uses the SysDc signal lines to retrieve data for probes that requested a cache
block from the 21264/EV67. See Section 4.7.7.2 for more information about 2-cycle

data transfer commands. Probes that respond with M1, M2, or CH=1 will not be
reported to the system in a probe response command.

4.7.6 SysAck and 21264/EV67-to-System Commands Flow Control

Controlling the flow of 21264/EV67-to-system commands is a joint task of the 21264/
EV67 and the system. The flow is controlled using the A bit, which is asserted by the
system, and the Cbox CSR SYSBUS_ACK_LIMIT[4:0] counter. The counter has the

following properties:

The 21264/EV 67 increments its command-outstanding counter when it sends a
command to the system. The 21264/EV 67 decrements the counter by one each time
the A bit (SysAddin_L[14]) isasserted in asystem-to-21264/EV 67 command. The
A hit istransmitted during cycle four of a probe mode command or during cycle
two of a SysDc command.

The 21264/EV 67 stops sending new commands when the counter hits the maxi-
mum count specified by Cbox CSR SYSBUS ACK_LIMIT[4:0]. When this
counter is programmed to zero, the CMD_ACK count isignored (unlimited com-
mands are allowed in-flight).

Because RdBIkxVic and WrVictimBlk commands are atomic when the CSR
BC_RDVICTIM[Q] isset, the 21264/EV 67 does not send a RdBIkxVic command if
the SYSBUS ACK_LIMIT[4:0] isequal to onelessthan the maximum outstanding
count. The limit cannot be programmed with a value of one when RdBIkxVic com-
mands are enabled unless the Cbox CSR RDVIC_ACK_INHIBIT command isalso
asserted (see Table 5-24).

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-25

System Port

There isno mechanism for the system to reject a21264/EV 67-to-system command.
ProbeResponse, VDBFlushReg, NOP, NZNOP, and RdBIkxSpec (with a clear RV
bit) commands do not require a response from the system. Systems must provide
adequate resources for responses to all probes sent to the 21264/EV 67.

Systems that program the Cbox CSR BC_RDVICTIM][0] to immediately follow
victim write transactions with read transactions and allocate combined resources
for the pair, may find it useful to increment the SYSBUS _ACK_LIMIT[4:0]
counter only once for the pair. These systems may assert Cbox CSR
RDVIC_ACK_INHIBIT, which does not increment the

SYSBUS ACK_LIMIT[4:Q] count for RdBIkVic, RdBIkModVic, and RdBIkVicl
commands.

Systems that maintain victim data buffers may find it useful to limit the number of
outstanding WrVictimBlk commands. This can be accomplished by using the Cbox
CSR SYSBUS VIC_LIMIT[2:0]. When the number of outstanding WrVictim
commands or CleanVictim commands reaches this programmed limit, the Cbox
stops generating victim commands on the system port. Because victim and read
commands are atomic when BC_RDVICTIMI[0] = 1, the RdBIkxVic commands are
stalled when the victim limit is reached. Programming the
SYSBUS VIC _LIMIT[2:0] to zero disables this limit.

4.7.7 System-t0-21264/EV67 Commands

The system can send either probes (4-cycle) or data movement (2-cycle) commands to
the 21264/EV67. Signal pin SysAddlin_L[14] inthe first command cycle indicates the
type of command being sent (1 = probe, 0 = data transfer). Sections 4.7.7.1 and 4.7.7.2
describe the formats of the two types of commands.

4.7.7.1 Probe Commands (Four Cycles)

Probes are always 4-cycle commands that contain afield to indicate avalid SysDc com-
mand. The format of the 4-cycle command is shown below.

Note: The SysAddin_L[1:0] signal lines are optiona and are used for memory

designs greater than 32GB. The position of the address bits matches the
selected format of the SysAddOut bus. The example below shows the bank
interleave format.

Table 4-19 shows the format of the system-to-21264/EV67 probe commands.

Table 4-19 System-to-21264/EV67 Probe Commands

SysAddIn_L[14:2] SysAddIn_L[1] | SysAddIn_L[0]
Cyclel |1 Probe[4:0] PA[34:28] PA[36] PA[38]
Cycle2 PA[27:22], PA[12:6] PA[35] PA[37]
Cycle3 |0 SysDc[4:0] |RvB RPB A |ID[3:0] [|PA[40] PA[42]
Cycle4 |C PA[21:13], PA[5:3] PA[39)] PA[41]

4-26 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

Table 4-20 describes the system-to-21264/EV67 probe commands fields descriptions.

Table 4-20 System-t0-21264/EV67 Probe Commands Fields Descriptions

SysAddin_L[14:0]
Field

Description

Probe[4:0]
SysDc[4:0]

RvVB
RPB
A

ID[3:0]

Probe type and next tag state (see Tables 4-21 and 4-22).

Controls data movement in and out of the 21264/EV67. See Table 4—-24 for a list of data
movement types.

Clears the victim or 1/0O write buffer (IOWB) valid bit specified in ID[3:0].
Clears probe valid bit specified in ID[2:0].

Command acknowledge. When set, the 21264/EV67 decrements its command outstand-
ing counter (SYSBUS_ACK_LIMIT[4:0]).

Identifies the victim data buffer (VDB) number or the 1/0 write buffer (IOWB) number.
Bit [3] is only asserted for the IOWB.

Commit bit. This bit decrements the uncommitted event counter (MB_CNTR) used for
MB acknowledge.

The probe command field Probe[4:0] has two sections, Probe[4:3] and Probe[2:0].

Table 4-21 lists the data movement selected by Probe[4:3].

Table 4-21 Data Movement Selection by Probe[4:3]

Probe[4:3] Data Movement Function

00 NOP

01 Read if hit, supply datato system if block isvalid.

10 Read if dirty, supply datato system if block is valid/dirty.
11 Read anyway, supply data to the system at index of probe.

Table 4-22 lists the next cache block state selected by Probe[2:0].

Table 4-22 Next Cache Block State Selection by Probe[2:0]

Probe[2:0] Next Tag State

000 NOP

001 Clean

010 Clean/Shared

011 Transition3%: Clean O Clean/Shared
Dirty O Invalid
Dirty/Shared O Clean/Shared

100 Dirty/Shared

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-27

System Port

Table 4—-22 Next Cache Block State Selection by Probe[2:0] (Continued)

Probe[2:0] Next Tag State
101 Invalid
110 Transition1% Clean O Clean/Shared

Dirty O Dirty/Shared
111 Reserved

1 Transition3isuseful in nonduplicate tag systems that want to give writable status to the reader and do
not know if the block is clean or dirty.

2 Transitionl is useful in nonduplicate tag systems that do not update memory on ReadBIk hitsto a
dirty block in another processor.

The 21264/EV 67 holds pending probe commands in a 8-entry deep probe queue. The
system must count the number of probes that have been sent and ensure that the probes
do not overrun the 21264/EV 67 queue. The 21264/EV 67 removes probes from the
internal probe queue when the probe response is sent.

The 21264/EV 67 expectsto hit in cache on a probe response, so it ways fetches a
cache block from the Bcache on system probes. This can become a performance prob-
lem for systemsthat do not monitor the Bcache tags, so the 21264/EV 67 provides Cbox
CSR PRB_TAG_ONLY[0], which only accesses Bcache tags for system probes. For a
Bcache hit, the 21264/EV 67 retries the probe reference to get the associated data. In
this mode, the 21264/EV 67 has a cache-hit counter that maintains some history of past
cache hitsin order to fetch the data with the tag in the cases where streamed transac-
tions are being performed to the host processor.

4.7.7.2 Data Transfer Commands (Two Cycles)

Datatransfer commands use a 2-cycle format on SysAddin_L[14:0]. The SysDc[4:0]
field indicates success or failure for ChangeToDirty and MB commands, and error con-
ditions as shown in Table 4-24.

The pattern of data is controlled by BesDatalnValid_L andSysDataOutValid_L
signals. These signals are valid each cycle of data transfer, indicating any gaps in the
data cycle pattern. THgysDatal nValid_L andSysDataOutValid_L signals are

described in Section 4.7.8.4. Table 4-23 shows the format of the data transfer com-
mand.

Table 4-23 Data Transfer Command Format

SysAddIn_L[14:2] SysAddIn_L[1] | SysAddIn_L[0]
Cyclel |O SysDc[4:0] RVB |RPB |A ID[3:0] [X X
Cycle2 |C X X X

4-28 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

Table 4-24 describes the SysDc[4:0] field.

Table 4-24 SysDc[4:0] Field Description

SysDc[4:0] Command SysDc[4:0]

Description

NOP 00000
ReadDataError 00001

ChangeToDirtySuccess 00100

ChangeToDirtyFail 00101
MBDone 00110
ReleaseBuffer 00111
ReadData 100xx
(System Wrap)
ReadDataDirty 101xx
(System Wrap)
ReadDataShared 110xx
(System Wrap)

ReadDataShared/Dirty 111xx
(System Wrap)

WriteData 010xx

NOP, SysDatais ignored by the 21264/EV 67.

Datais returned for read commands. The system drives the SysData
bus, 1/0, or memory NXM.

No data. SysDataisignored by the 21264/EV67. This command is
also used for the Inval ToDirty response.

No data. SysDatais ignored by the 21264/EV67. This command is
also used for the Evict response.

Memory barrier operation compl eted.

Command to alert the 21264/EV 67 that the RVB, RPB, and ID field
arevalid.

Data returned for read commands. The system drives SysData. The
system uses SysDc[1:0] to control the wrap order. See Section
4.7.8.6 for adescription of the data wrapping scheme.

Datais returned for Rdx and RdModx commands. The ending tag
statusis dirty. The system uses SysDc[1:0] to define the wrap order.

Dataisreturned for read commands. The system drivesthe data. The
tag is marked shared. The system uses SysDc[1:0] to control the
wrap order.

Datais returned for the RdBIk command. The ending tag statusis
Shared/Dirty. The system uses SysDc[1:0] to control the wrap order.

Datais sent for 21264/EV 67 write commands or system probes. The
21264/EV 67 drives during the SysData cycles. The lower two bits of
the command specify the octaword address around which the 21264/
EV67 wraps the data.

The A bit in the first cycle indicates that the command is acknowledged. When A = 1, the
21264/EV67 decrements its command outstanding counter, but the A bit is not neces-

sarily related to the current SysDc command.

Probe commands can combine a SysDc command along with MBDone. In that event,
the probe is considered ahead of the SysDc command. If the SysDc command allows
the 21264/EV67 to retire an instruction before an MB, or allows the 21264/EV67 itself
to retire an MB (SysDc is MBDone), that MB will not complete until the probe is exe-

cuted.

The system can select the ending cache status for a cache fill operation by specifying

the status in one of the following SysDc commands:
ReadData (Clean) ReadDataShared (Clean/Shared)
ReadDataDirty (Dirty) ReadDataShared/Dirty (Shared/Dirty)

The system returns ReadDataShared or ReadData for ReadBlk commands, and ReadD-
ataDirty for a ReadMod command. However, other combinations are possible, but

should be used only after a careful study of the situation.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-29

System Port

The ChangeToDirtySuccess and ChangeToDirtyFail commands cannot be issued in the
shadow of SysDc cache fill commands (ReadDataError, ReadData, ReadDataDirty,
ReadDataShared, and ReadDataShared/Dirty). Each cache fill command all ocates eight
cycles on the SysData bus. Systems are required to ensure that any future SysDc com-
mands do not cause conflicts with those eight SysData bus cycles. In addition, the sys-
tem must not issue ChangeToDirtySuccess or ChangeToDirtyFail commandsin the six
SysAddrin cycles after any of the ReadDatax commands because doing so will over-
load internal MAF resources in the 21264/EV 67.

Because of an internal 21264/EV 67 constraint, a minimum memory latency of
4 x BCACHE_CLK_PERIOD isimposed. Thislatency is measured from A3 of the out-
going command (the last cycle) to the delivery of the SysDc command to the processor.

4.7.8 Data Movement In and Out of the 21264/EV67

There are two modes of operation for data movement in and out of the 21264/EV 67:

fast mode and fast mode disable. The datamovement mode is selected using Cbox CSR
FAST_MODE_DISABLE[OQ]. Fast data mode allows movement of datafrom the
21264/EV67 to bypass protocol and achieve the lowest possible latency for probe’s
data, write victim data, and I/O write data. Rules and conditions for the two modes are
listed and described in Sections 4.7.8.2 and 4.7.8.3. Before discussing data movement
operation, 21264/EV67 clock basics are described in Section 4.7.8.1.

4.7.8.1 21264/EV67 Clock Basics

The 21264/EV67 uses a clock forwarding technique to achieve very high bandwidth on
its pin interfaces. The clock forwarding technique has three main principles:

1. Local point-to-point transfers can be made safely, and at very high bandwidth, if the
sender can provide the receiver with a forward clock (FWD_CLK) to latch the
transmitted data at the receiver.

— TheSysAddOutClk_L andSysDataOutClk_L[7:0] pins provide the forward-
ing clocks for transfers out of the 21264/EV67.

— TheSysAddInCIlk_L andSysDatalnClk_H[7:0] pins provide the forwarding
clocks for transfers into the 21264/EV67.

2. If only one state element was used to capture the transmitted data, and the skew

between the two clock systems was greater then the bit-rate of the transfer, the data

valid time of the transmitted data would not be sufficient to safely transfer the
latched data into the receivers clock domain. In order to avoid this problem, the
receiver provides a queue that is manipulated in the transmitter’s time domain.
Using this queue, the data valid window of the transmitted data is extended (to an
arbitrary size based on the queue size), and the transfer to the receiver’s clock
domain can be safely made by delaying the unloading of this queue element beyond
the skew between the two clock domains. The internal clock that unloads this queue
is labelled INT_FWD_CLK. INT_FWD_CLK is timed at both the rising and fall-
ing edges of the external clock, thus appearing to run at twice the external clock’s
frequency.

3. The first two points provide the steady state basis for clock forwarded transfers;
however, both the sender and receiver must be correctly initialized to enable coher-
ent and predictable transfers. This clock initialization is performed during system
initialization using theClkFwdRst_ H andFrameClk_H signals.

4-30 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

If both the sender and the receiver are sampling at the same rate, these three principles
are sufficient to safely make point-to-point transfers using clock forwarding. However,
it is often desirable for systemsto align clock-forwarded transactions on a slower

SY SCLK that isthe basis of all non-processor system transactions.

The 21264/EV 67 supports three ratios for SYSCLK to INT_FWD_CLK:

one-to-one (1-1), two-to-one (2-1), and four-to-one (4-1). Using one of these ratios, the
21264/EV 67 dtartstransactions on SY SCLK boundaries. Thisratio is programmed into
the 21264/EV 67 using the Cbox CSR SYS FRAME_LD_VECTORJ[4:0]. Thisratio is
independent of the frequency of FrameClk_H.

For data movement, the 21264/EV 67 reacts to SysDc commands when they are

resolved into the 21264/EV67’s clock domain. This occurs when the 21264/EV67’s
INT_FWD_CLK unloads the SysDc command from the clock forwarding queue. This
moment is determined by the amount of delay programmed into the clock forwarding
silo (by way of Cbox CSR SYS_RCV_MUX_CNT_PRESET[1:0]). Thus, all the tim-
ing relationships are relative to this unload point in time, which will be referred to as
the point the command is perceived by 21264/EV67.

4.7.8.2 Fast Data Mode

The 21264/EV67 is the default driver of the bidirectional SysDath Bssthe 21264/
EV67 is processing WrVictim, ProbeResponse (only the hit case), and IOWB com-
mands to the system, accompanying data is made available at the clock-forwarded bus.

Because there is a bandwidth difference between address (4 cycles) and data (8 cycles)
transfers, the 21264/EV67 tries to fully use fast data mode by delaying the next
SysAddOut write command until a fast data mode slot is available on the SysDataOut
bus.

SysDc commands (cache fill or explicit write commands) that collide with the fast data
on the SysData bus have higher priority, and so may interrupt the successful completion
of the fast transfer. Systems are responsible for detecting and replaying all interrupted
fast transfers. There are no gaps in a fast transfer and no data wrapping (the first cycle
contains QWO0, addressed by PA[5:3] = 000).

The system must release victim buffers, and probe buffers and IOWB entries by send-
ing a SysDc command with the appropriate RVB/RPB bit for both successful fast data
transfers and for transfers that have been replayed. Fast data transfers have two parts:

1. SysAddOut command with the probe response, WrVictim, or Wr(l/O)
2. Data

1 The SysData bus contains SysData_L [63:0] and SysCheck_L[7:0].

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-31

System Port

The command precedes data by at least one SYSCLK period. Table 4-25 shows the
number of SYSCLK cycles between SysAddOut and SysData for all system clock
ratios (clock forwarded bit times) and system framing clock multiples.

Table 4-25 SYSCLK Cycles Between SysAddOut and SysData

GCLK/INT_FWD_CLK (Data Rate Ratio)
System framing clock ratio | 1.5X 20X 25X 3.0X 35X 4.0X 50X 6.0X 7.0X 8.0X

1 4 3 2 2 2 2 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1

Figure 4-5 show a simple example of a fast transfer. The data rate ratio is 1.5X with a
4:1 SYSCLK to INT_FWD_CLK ratio.

Figure 4-5 Fast Transfer Timing Example
\ \ \ \

SysAddOut_L[14:0] :XProbe e X

ssaggomck L/ N/ N_/ "/ M/ W/

INT_FWD_CLK||||||I||||||||||||||||

\ [[\ | [[\

FM05822B.Al4

In fast data mode, movement of data into the 21264/EV 67 requires turning around the

SysData bus that is being actively driven by the 21264/EV 67. Given a SysDc fill com-

mand (ReadDataError, ReadData, ReadDataShared, ReadDataShared/Dirty, ReadData-
Dirty), the 21264/EV 67 responds as follows:

1. Three GCLK cycles after perceiving the SysDc fill command, the 21264/EV 67
turns off its drivers, interrupting any ongoing fast data write transactions.

2. The21264/EV67 drivers stay off until the last piece of fill dataisreceived, or anew
SysDc write command overrides the current SysDc fill command. It isthe responsi-
bility of the external system to schedule SysDc fill or write commands so that there
is no conflict on the SysData bus.

3. The 21264/EV67 samplesfill datain the GCLK clock domain, 10 +
SYSDC_DELAY GCLK cycles after perceiving the SysDc fill command. The
Chox CSR SYSDC_DELAY[4:0] provides GCLK granularity for precisely placing
fillsinto the processor pipeline discussed in Section 2.2.

4-32 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

Table 4-26 shows four example configurations and shows their use of the
SYSDC_DELAY[4:0].

Table 4-26 Cbox CSR SYSDC_DELAY[4:0] Examples

System Bit Rate System Framing Clock Ratio! SYSDC_DELAY

System 1 15X 4:1 5 (3 SYSCLK cycles)
System 2 2.0X 21 2 (3SYSCLK cycles)
System 3 2.5X 21 0 (2 SYSCLK cycles)
System 4 4X 21 6 (2 SYSCLK cycles)

1 The system framing clock ratio is the number of INT_FWD_CLK cycles per
SYSCLK cycles.

System 1 has six GCLKs to every SYSCLK and only sends 4-cycle commands to the
21264/EV67. Thus, a period of three SYSCLKs between the SysDc command and data
leaves a period of 15 GCLKs between SysDc and data (SysDc is in the middle of the 4-
cycle command). A SYSDC_DELAY[4:0] of five would align sampling and receipt of
SysData.

System 2 has four GCLKs in every SYSCLK, so leading data by three SYSCLK cycles,
and programming the SYSDC_DELAY[4:0] to two, aligns sampling and receiving.

Timing for systems 3 and 4 is derived in a similar manner.

Note: The maximum valid value for SYSDC_DELAY must be less than the min-
imum number of GCLK cycles between two consecutive SYSDC com-
mands to the 21264/EV67.

If a fast data transfer is interrupted and fails to complete, the system must use the con-
ventional protocol to send a SysDc WriteData command to the 21264/EV67, removing
the desired data buffer. Section 4.7.8.3 describes the timing events for transferring data
from the 21264/EV67 to the system.

4.7.8.3 Fast Data Disable Mode

The system controls all data movement to and from the 21264/EV67. Movement of data
into and out of the 21264/EV67 is preceded by a SysDc command. The 21264/EV67
drivers are only enabled for the duration of an 8-cycle transfer of data from the 21264/
EV67 to the system. Systems must ensure that there is no overlap of enabled drivers
and that there is adequate settle time on the SysData bus.

Given a SysDc fill command, the 21264/EV67 samples data 10 + SYSDC_DELAY
GCLK cycles after the command is perceived within the 21264/EV67 clock domain.
Because there is no linkage with the output driver, fills into the 21264/EV67 are not
affected by the SYS_RCV_MUX_PRESET][1:0] value.

In both modes, given a SysDc write command, the 21264/EV67 looks for the next
SYSCLK edge 8.5 cycles after perceiving the SysDc write command in its clock
domain. Because the SysDc write command must be perceived before its use, SysDc
write commands are dependent upon the amount of delay introduced by Chox CSR
SYS_RCV_MUX_CNT_PRESETI[1:0].

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-33

System Port

Table 4-27 lists information for the four timing examples. In Table 4-27, note the fol-
lowing:

e SysDc write commands are not affected by the SYSDC _DELAY parameter.

e TheSYS RCV_MUX_ PRESET addsdelay at therate of oneINT_FWD_CLK ata
time. For example, adding the delay of one bit time to system 1 adds 1.5 GCLK
cyclesto the delay and drives the SysDc write command-to-data relationship from
oneto two SY SCLKs.

* For write transfers, the 21264/EV 67 drivers are enabled on the preceding GCLK
BPHASE, beforethe start of awrite transfer, and disabled on the succeeding GCLK
BPHASE at the end of the write transfer. The write datais enveloped by the 21264/
EV67 drivers to guarantee that every datatransfer has the same data valid window.

Table 4-27 Four Timing Examples

System Bit Rate System Framing Clock Ratio?l Write Data

System 1 1.5X 4:1 2SYSCLKs
System 2 2.0X 2:1 3SYSCLKs
System 3 2.5X 2.1 2 SYSCLKs
System 4 4X 2:1 2 SYSCLKs

1 The system framing clock ratio is the number of INT_FWD_CLK cycles per
SYSCLK cycles.

The four examples described here assume no skew for the 2.0X and 4.0X cases and one
bit time of skew for the 1.5X and 2.5X cases.

For system 1, the distance between SysDc and the first SY SCLK isnine GCLK cycles
but the additional delay of one bit time (1.5 GCLKSs) puts the actual delay after perceiv-
ing the SysDc command to 7.5 GCLK'S, which misses the 8.5 cycle constraint. There-
fore, the 21264/EV 67 drives data two SY SCLK s after receiving the SysDc write
command.

For system 2, the distance between SysDc and the second SY SCLK is eight GCLK
cycles, which also missesthe 8.5 cycle constraint, so the 21264/EV 67 drives data three
SY SCLK cycles after receiving the SysDc write command (12 cycles).

The other two cases are derived in asimilar manner.
4.7.8.4 SysDatalnValid_L and SysDataOutValid_L

The SysDatavalid signals (SysDatal nValid_L and SysDataOutValid_L) aredriven by
the system and control the rate of data delivery to and from the 21264/EV 67.

SysDatalnValid_L

The SysDatalnValid_L signal controlsthe flow of datainto the 21264/EV 67, and may
be used to introduce an arbitrary number of cycles between octaword transfersinto the
21264/EV67. Therulesfor using SysDatalnValid_L follow:

4-34 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

1. The SysDatalnValid_L signa must be asserted for both cycles of a SysDc fill
command, and two quadwords of data must be delivered to the 21264/EV 67 in suc-
ceeding bit-clock cycles with the appropriate timing in reference to the SysDc fill
command (SYSDC_DELAY + 10 CPU cycles).

2. Any number of bubble cycles can be introduced within the fill by deasserting
SysDatalnValid_L between octaword transfers.

3. Thetransfer of fill data can continue by asserting SysDatalnValid_L for at |east
two bit-clock cycles, and delivering data SYSDC_DELAY + 10 CPU cycles after
the assertion of SysDatalnValid_L.

4. The 21264/EV67 must see SysDatalnValid_L asserted for eight datacyclesin
order to complete afill. When the eighth cycle of an asserted SysDatalnValid_L is
perceived by the 21264/EV 67, the transfer is complete.

5. Systemsthat do not use SysDatalnValid_L may tiethe pin to the asserted state.

If SYSDC_DELAY isgreater than the bit-time of atransfer, the SysDatalnValid_L
signal must be internally pipelined. To enable the correct sampling of
SysDatalnValid_L , the 21264/EV 67 provides a delay, with Cbox CSR
DATA_VALID_DELAY[1:0], that isequal to SYSDC_DELAY[4:0]/bit-time. For
example, consider system 1 in Table 4-26, which has a SYSDC_DELAY of five
GCLKs. Running at a bit-time of 1.5X, the DATA_ VALID_DELAY[1,0] is pro-
grammed with a value of three.

SysDataOutValid_L

Systems that use a ratio of 1:1 for SYSCLK:INT_FWD_CLK may control the flow of
data out of the 21264/EV67 by usiSgsDataOutValid_L as follows:

1. TheSysDataOutValid L pin must be asserted for at least the first cycle of the
SysDc write command that initiates a write transfer.

2. Any number of bubble cycles may be introduced between quadword transfers by
deassertingysDataOutValid_L.

3. The 21264/EV67 must see tBgsDataOutValid_L signal asserted for eight data
cycles to complete a write transaction, and when the eighth cycle of an asserted
SysDataOutValid_L is perceived by the 21264/EV67, the transfer is complete.

4.7.8.5 SysFillvalid_L

TheSysFillvalid_L pin, when asserted, validates the current memory and 1/O data
transfer into the 21264/EV67. The system designer may tie this pin to the asserted state
(validating all fills), or use it to enable or cancel fills as they progress. The 21264/EV67
samplesSysFillvalid_L at D1 time (when the 21264/EV67 samples the second data
cycle).

If SysFillvalid_L is asserted at D1 time, the fill will continue uninterrupted. If it is not
asserted, the 21264/EV67 cancels the fill, but expects all eight QWs of data to arrive at
its system bus before continuing to the next fill. Also, the 21264/EV67 maintains the
state of the MAF, expecting another valid fill to the same MAF entry. Figure 4—6 illus-
tratesSysFillVvalid_L timing.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-35

System Port

Figure 4—-6 SysFillvValid_L Timing
SysAddin_L[14:0] :XSysDcX)K X X X X

> Transport Delay on Address
| |

\
\ \
\ \ | \ \ \
Command Receiver ——— { T3 /) \ \
\ [\ \ \ \ \ \
\ \ | | | | | |
SysFillvalid L | \ \ \ \ [[\ / \
\ [\ \ \ \ [\ \ \ \ [
\ \ [[[[\ \ \ \ \ \
SysData_L[63:0] X oo X b1 X b2 X D3 X D4)
\ \

FM-05823B.FH8

4.7.8.6 Data Wrapping

All data movement between the 21264/EV 67 and the system is composed of 64 bytesin
eight cycles on the data bus. All 64 bytes of memory data are valid. This appliesto
memory read transactions, memory write transactions, and system probe read transac-
tions. The wrap order isinterleaved. The internal data bus, which delivers datato the
functional units and the Dcache, is 16 bytes wide, and so, no transfers happen until two
datacycles occur on the interface.

Table 4-28 lists the rules for data wrapping. I/0O read and write addresses on the
SysAddOut bus point to the desired byte, word, LW, or QW, with a combination of
SysAddOut_L [5:3] and the mask field [7:0].

Table 4-28 Data Wrapping Rules

Significant Address Mask

Command Bits Type Rules

ReadQW and SysAddOut L[5:3] QW SysAddOut_L [5:3] contains the exact PA bits of the first

WrQw LDQ or STQ to the block. The mask hits point to the valid
QWs merged in ascending order.

ReadLW and SysAddOut_L[5:3] LW SysAddOut_L [5:3] contain the exact PA bits of the first

WrLW LDL or STL to the block. The mask bits point to the valid

LWs merged in ascending order within one hexword.

LDByte/Word SysAddOut_L[5:3] Byte SysAddOut_L [5:3] contain the exact QW PA bits of the
and L DByte/Word or STByte/Word instruction. The mask bits
STByte/Word point to the valid byte in the QW.

The order in which data is provided to the 21264/EV67 (for a memory or 1/O fill) or
moved from the 21264/EV67 (write victims or probe reads) can be determined by the
system. The system chooses to reflect back the same low-order address bits and the cor-
responding octaword found in the SysAddOut field or the system chooses any other
starting point within the block.

SysDc commands for the ReadData, ReadDataShared, and WriteData groups require
that systems define the position of the first QW by inserting the appropriate value of
SysAddOut_L[5:3] into bits [1:0] of the command field. The recommended starting

4-36 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

point isthe QW pointed to by the 21264/EV 67; however, some systems may find it
more beneficia to begin the transfer elsewhere. The system must always indicate the
starting point to the 21264/EV67. The wrap order for subsequent QWSsis interleaved.

Table 4-29 defines the method for systems to specify wrap and deliver data.

Table 4-29 System Wrap and Deliver Data

Source/

Destination SysDc[4:2] SysDc[1:0] Size Rules
Memory 100 (ReadData) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 101(ReadDataDirty) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 110 (ReadDataShared) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 111(Read DataShared/Dirty) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 010 (WriteData) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
/O 100 (ReadData) SysAddOut_L[5:4] QW (8-64 Bytes) See Note 1
1/O 100 (ReadData) SysAddOut_L[4:3] LW(4-32 Bytes) See Note 2
/O 100 (ReadData) SysAddOut_L[4:3] Byte/Word See Note 2
1/O 010 (WriteData) SysAddOut_L[5:4] QW (8-64 Bytes) See Note 1
/O 010 (WriteData) SysAddOut_L [5:4] LW(4-32 Bytes) See Note 1
/O 010 (WriteData) SysAddOut_L[5:4] Byte/Word See Note 1

Note 1: Transfers to and from the 21264/EV67 have eight data cycles for a total of

eight quadwords. The starting point is defined by the system. The preferred
starting point is the one pointed to by SysAddOut_L[5:4]. Systems can
insert the SysAddOut_L[5:4] into the SysDc[1:0] field of the command.
See Table 4-30 for the wrap order.

Note 2: LW and byte/word read transfers differ from all other transfers. The system
unloads only four QWs of data into eight data cycles by sending each QW
twice (referred to as double-pumped data transfer). The first QW returned
is determined byysAddOut_L [4:3]. The system again may elect to
choose its own starting point for the transfer and insert that value into

SysDc[1:0]. See Table 4-31 for the wrap order.

Table 4-30 defines the interleaved scheme for the wrap order.

Table 4-30 Wrap Interleave Order

PA Bits [5:3] of Transferred QW

First quadword 000 010 100 110
Second quadword 001 o1 101 111
Third quadword 010 000 110 100
Fourth quadword on 001 m 101
Fifth quadword 100 110 000 010

Alpha 21264/EV67 Hardware Reference Manual

Cache and External Interfaces 4-37

System Port

Table 4-30 Wrap Interleave Order (Continued)

PA Bits [5:3] of Transferred QW

Sixth quadword 101 111 001 on
Seventh quadword 110 100 010 000
Eighth quadword 111 101 011 001

Table 4-31 defines the wrap order for double-pumped data transfers.

Table 4-31 Wrap Order for Double-Pumped Data Transfers

PA [5:3] of Transferred QW

First quadword x00 x01 x10 x11
Second quadword x00 x01 x10 x11
Third quadword x01 x00 x11 x10
Fourth quadword x01 x00 x11 x10
Fifth quadword x10 x11 x00 x01
Sixth quadword x10 x11 x00 x01
Seventh quadword x11 x10 x01 x00
Eighth quadword x11 x10 x01 x00

4.7.9 Nonexistent Memory Processing

Like its predecessors, the 21264/EV67 can generate references to nonexistent (NXM)
memory or I/O space. However, unlike the earlier Alpha microprocessor implementa-
tions, the 21264/EV67 can generate speculative references to memory space. To accom-
modate the speculative nature of the 21264/EV67, the system must not generate or lock
error registers because of speculative references. The 21264/EV67 translates all mem-
ory references through the translation lookaside buffer (TLB) and, in some cases, the
21264/EV67 may generate speculative references (instruction execution down mispre-
dicted paths) to NXM space. In these cases, the system sends a SysDc ReadDataError
and the 21264/EV67 does the following:

e Déliversan all-ones pattern to all load instructions to the NXM address

* Forcefalsall store instructions to the NXM address (much likea STx_C
failure)

e |nvalidates the cache block at the same index by way of an atomic Evict
command

4-38 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

Table 4-32 shows each 21264/EV67 command, with NXM addresses, and the appropri-
ate system response.

Table 4-32 21264/EV67 Commands with NXM Addresses and System Response

21264/EV67

Command NXM

Address System/21264/EV67 Response

ProbeResponse Probe responses for addressesto NXM space are of UNPREDICTABLE status. Although
thefinal status of aReadDataError is Invalid, the 21264/EV 67 fills the block Valid/Clean
and uses an atomic Evict command to invalidate the block. Systems that send probesto
NXM space to the 21264/EV 67 must disregard the probe result.

RdBIk Load references to NXM space can be speculative. In this case, systems should respond

RdBIkSpec with a SysDc ReadDataError fill that the 21264/EV 67 uses to service the original load/

RdBIkVic Istream command. If the original load command was speculative, the 21264/EV 67 will
remove the load instruction that generated the NXM command, and start processing
instructions down the correctly predicted path. If the command was not specul ative, there
must be an error in the operating system mapping of avirtual addressto anillegal physi-
cal address, and the 21264/EV 67 provides an all ones pattern as a signature for this bug.
The NXM block is not cached in the Dcache or Bcache.

RdBIkl Istream referencesto NXM space can be speculative. In this case, systems should respond

RdBIkSpecl with a SysDc ReadDataError fill, which the 21264/EV 67 will use to service and execute

RdBlkVicl the original Istream reference. If the original Istream reference was speculative, the
21264/EV67 will remove the instructions started after the mispredicted instruction that
generated the NXM reference, and start instruction processing down the correctly pre-
dicted path. If the reference was not speculative, there must be an error in the operating
system mapping of avirtual addressto anillegal physical address, and the 21264/EV 67
provides an al ones pattern as a signature for this bug. The NXM block is not cached in
the Bcache, but can be cached in the Icache.

RdBIkMod Store instructions to NXM space initiate RdBIkMod commands. Again, speculative store

RdBIkM odSpec instructions are removed. Nonspeculative store instructions are forced to fail, much like

RdBIkModVic STx_C instructions that fail. The NXM block is not cached in the Dcache or Becache.

WrVictimBIk Dirty Victimsto NXM space are illegal. Systems should perform a machine check, with
the 21264/EV 67 indicating a severe error.

CleanVictimBIk The 21264/EV 67 can generate CleanVictimBlk commands to NXM space if the Cbox
CSR BC_CLEAN_VICTIM[OQ] bit is asserted and a SysDc ReadDataError has been gen-
erated. Systems that use clean victims must faithfully deallocate the CleanVictim VAF
entry.

Evict If the Cbox CSR ENABLE_EVICT isasserted, the 21264/EV 67 will generate Evict com-
mands to NXM space. Systems may use this command to invalidate their duplicate tags.
Systems must respond with SysDc ChangeToDirtyFail to retire the NXM MAF entry.

RdBytes Load instructionsto 1/O space are not speculative, so an I/O reference to NXM space is

RdLWs an error. Systems must respond with ReadDataError and should generate a machine

RdQWs check to indicate an operating system error.

WrBytes Store instructions to 1/O space are not speculative, so an /O reference to NXM spaceis

WrLWs an error. Systems must respond by deall ocating the appropriate |OWB entries, and should

WrQWs generate a machine check to indicate an operating system error.

FetchBlk L oads to noncached memory in NXM space may be speculative. Systems must respond

FetchBlkSpec with a SysDc ReadDataError to retire the MAF entry.

Alpha 21264/EV67 Hardware Reference Manual

Cache and External Interfaces 4-39

System Port

Table 4-32 21264/EV67 Commands with NXM Addresses and System Response (Continued)

21264/EV67

Command NXM

Address System/21264/EV67 Response

CleanToDirty ChangeToDirty commandsto NXM space are impossible in the 21264/EV 67 because all
SharedToDirty NXM references to memory space are atomically filled with an Invalid cache status.
STCChangeToDirty

Inval ToDirty Inval ToDirty commands are not speculative, so Inval ToDirty commandsto NXM space

Inval ToDirtyVic

indicate an operating system error. Systems should respond with a SysDc ReadDataError,
and should generate a machine check to indicate error.

4.7.10 Ordering of System Port Transactions

This section describes ordering of system port transactions. The two classes of transac-
tions are listed here:

21264/EV 67 commands and system probes
System probes and SysDc transfers

4.7.10.1 21264/EV67 Commands and System Probes

This section describes the interaction of 21264/EV 67-generated commands and system-
generated probes that reference the same cache block. Some definitions are presented
here:

ProbeResponses generated by the 21264/EV 67 respond to all system-generated
probe commands. System-generated data transfer commands respond to all 21264/
EV67-generated data transfer commands.

Thevictim addressfile (VAF) and victim data buffer (V DB) entries each have inde-
pendent valid bits for both a victim and a probe.

Probe results indicate a hit on a VAF/VDB and when a WrVictim command has
been sent to the system. Systems can decide whether to move the buffer once or
twice.

ProbeResponses are issued in the order that the system-generated probes were
received; however, there is no requirement for the system to retain order when issu-
ing release buffer commands.

Probe processing can stall inside the 21264/EV 67 when the probe entry index
matches PA[19:6] of aprevious probe entry in the VAF.

The 21264/EV 67 reserves one VAF entry for probe processing, so that VAF-full
conditions cannot stall the processing of probes at the head of the queue.

Table 4-33 lists all interactions between pending internal 21264/EV67 commands and
the Probe[2:0] command field, Next Cache Block State, described in Table 4-22.

Table 4-33 shows the 21264/EV67 response to system probe and in-flight command
interaction. In the table, note the following:

ReadBlkVic and ReadBIkModVic commands do not appear in Table 4-33. If there
is interaction between the probe and the victim, it is the same as a WrVictimBIk
command.

4-40 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

System Port

Probesthat invalidate locked blocks do not generate a ReadBIkM od command. The
21264/EV 67 failsthe STx_C instruction as defined in the Alpha Architecture
Handbook, Version 4.

All read commands (RdBIk, RdBIkMod, Fetch, Inval ToDirty) do not interact

because the 21264/EV 67 does not yet own the block.

Table 4-33 21264/EV67 Response to System Probe and In-Flight Command Interaction

Pending Internal

21264/EV67

Command 21264/EV67 Response to System Probe and In-Flight Command Interaction

ReadBlk This case assumes that a WrVictimBlk command has been sent to the system and another

ReadBlkMod agent has performed aload/store instruction to the same address. The 21264/EV 67 pro-

FetchBlk vides VAF hit information with the probe response so that the system can manage the race

Inval ToDirty condition between the WrVictimBIk command from this processor and a possible WrVic-

WrVictimBIk timBIk command from the probing processor. This race condition can be managed by
either forcing the completion of the WrVictimBlk command to memory before allowing
the progress by the probing processor, or by killing the WrVictimBlk command in this
processor.

CleanToDirty This case assumes that a SetDirty command has been sent to the system environment

SharedToDirty because of astore instruction that hit in the 21264/EV 67 caches and that another processor

STCChangeToDirty

has performed a load/store instruction to the same address. The 21264/EV 67 provides
MAF hit information so that the system can correctly respond to the Set/Dirty command.
If the next state of the probe was Invalid (the other processor performed a store instruc-
tion), and the probe reached the system serialization point before the Set/Dirty command,
the system must either fail the Set/Dirty command or provide the updated data from the
other processor.

This caseissimilar to case 2, except that the initiating instruction for the Set/Dirty com-
mand isa STx_C. An address match with an invalidating probe must fail the Set/Dirty
command. Delivering the updated data from the other processor is not an option because
of the requirements of the LDx_L/STx_C instruction pair.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-41

Bcache Port

4.7.10.2 System Probes and SysDc Commands

Ordering of cache transactions at the system serialization point must be reflected inthe
21264/EV67 cache system. Table 4-34 shows the rules that a system must follow to
control the order of cache status update within the 21264/EV67 cache structures
(including the VAF) at the 21264/EV67 pins.

Table 4-34 Rules for System Control of Cache Status Update Order

First

Second Rule

Probe

Probe

Probe
SysDc MAF

SysDc MAF

SysDc MAF

SysDc VAF

SysDc VAF

SysDc VAF

Probe To control the sequence of cache status updates between probes, systems
can present the probes in order to the 21264/EV 67, and the 21264/EV 67
will update the appropriate cache state (including the VAF) in order.

SysDc MAF To ensure that a probe updates the internal cache status before a SysDc
MAF transaction (including fills and ChangeToDirtySuccess commands),
systems must wait for the probe response before presenting the SysDc
MAF command to the 21264/EV 67. To ensure that a probe updates a VAF
entry before a SysDc VAF (release buffer), systems must wait for the
probe response.

SysDc VAF Same as Probe/SysDc MAF, above.

Probe To ensure that a SysDc MAF command updates the 21264/EV 67 cache
system before a probe to the same address, systems must deliver the D1
(the second QW of data delivered to the 21264/EV 67) before or in the
same cycle as the A3 of the probe (the last cycle of the 4-cycle probe com-
mand). Thisrule also applies to ChangeToDirtySuccess commands that
have avirtual DO and D1 transaction.

SysDc MAF SysDc MAF transactions can be ordered into the 21264/EV 67 by ordering
them appropriately at the 21264/EV 67 interface.

SysDc VAF SysDc MAF transactions and SysDc VAF transactions cannot interact
within the 21264/EV 67 because the 21264/EV 67 does not generate MAF
transactions to the same address as existing VAF transactions.

Probe To ensure that a SysDc VAF invalidates a VAF entry before a probe to the
same address, the SysDc VAF command must precede thefirst cycle of the
4-cycle probe command.

SysDc MAF SysDc MAF transactions and SysDc VAF transactions cannot interact
within the 21264/EV 67 because the 21264/EV 67 does not generate MAF
transactions to the same address as existing VAF transactions.

SysDc VAF SysDc VAF transactions can be ordered into the 21264/EV 67 by ordering
them appropriately at the 21264/EV 67 interface.

4.8 Bcache Port

The 21264/EV67 supports a second-level cache (Bcache) with 64-byte blocks. The
Bcache size can be 1MB, 2MB, 4MB, 8MB, or 16MB. The Bcache port has a 144-bit
data bus that is used for data transfers between the 21264/EV67 and the Bcache. All
Bcache control and address signal lines are clocked synchronously on Bcache clock cycle
boundaries.

4-42 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

The Bcache supports the following multiples of the GCLK period: 1.5X (dual-data

mode only), 2X, 2.5X, 3X, 3.5X, 4X, 5X, 6X, 7X, and 8X. However, the 21264/EV 67
imposes a maximum Bcache clock period based on the SYSCLK ratio. Table 4-35 lists
the range of maximum Bcache clock periods. Section 4.7.8.2 describes fast mode.

Table 4-35 Range of Maximum Bcache Clock Ratios

Bcache Clock Ratio with Fast Mode Bcache Clock Ratio with Fast Mode
SYSCLK Ratio Enabled Disabled
1.5X 4.0X 7.0X
2.0X 4.0X 7.0X
2.5X 5.0X 8.0X
3.0X 6.0X 8.0X
3.5X 7.0X 8.0X
4.0X 7.0X 8.0X
5.0X 8.0X 8.0X
6.0X 8.0X 8.0X
7.0X 8.0X 8.0X
8.0X 8.0X 8.0X

The 21264/EV67 provides a range of programmable Cbox CSRs to manipulate the
Bcache port pins so that a variety of industry-standard SSRAMs can communicate effi-
ciently with the 21264/EV67. The following SSRAMSs can be used:.

¢ Nonburst mode Reg/Reg late-write SSRAMs
e Burst mode Reg/Reg late-write dual-data SSRAMs

4.8.1 Bcache Port Pins

Table 3-1 defines the 21264/EV67 signal types referred to in this section. Table 4-36
lists the Bcache port pin groups along with their type, number, reference clock, and
functional description.

Table 4-36 Bcache Port Pins

Pin Name Type Count Reference Clock Description
BcAdd_H[23:4] O PP 20 Int_Index_BcClk Bcache index
BcCheck _H[15:0] B DA PP 16 Int_Data BcClk O output ECC check bits for BcData
BcDatalnClk_H O input
BcData H[127:0] B DA PP 128 Int_Data BcClk O output Bcache data
BcDatalnClk_H O input
BcDatalnClk_H[7:0] | DA 8 NA Bcache datainput clocks
BcDataOE_L O PP 1 Int_Index_BcClk Bcache data output enable/chip
select
BcDataOutClk_H[3:0] O _PP 8 NA Bcache data clocks— high and low
BcDataOutClk_L[3:0] version

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-43

Bcache Port

Table 4-36 Bcache Port Pins (Continued)

Pin Name Type Count Reference Clock Description

BcDatawr_L O PP 1 Int_Index_BcClk Bcache datawrite enable

BcLoad L O PP 1 Int_Index_BcClk Bcache burst enable

BcTag H[42:20] B_DA PP 23 Int_Data BcClk O output Bcachetag data
BcTagInClk_H O input

BcTagDirty H B DA PP 1 Int_Data BcClk O output Bcachetag dirty bit
BcTagInClk_H O input

BcTaglnClk_H |_DA 1 NA Tag input data reference clock

BcTagOE_L O PP 1 Int_Index_BcClk Bcache tag output enable/chip

select

BcTagOutClk_H O PP 2 NA Bcache tag clock— high and low

BcTagOutClk_L versions

BcTagParity H B DA PP 1 Int_Data_BcCIkl output Bcache tag parity bit
BcTagInClk_HO input

BcTagShared H B DA PP 1 Int_Data_BcCIkl output Bcache tag shared bit
BcTagInClk_HO input

BcTagvalid_H B DA PP 1 Int_Data_BcCIkl output Bcache tag valid bit
BcTagInClk_HO input

BcVref | DC_REF 1 NA Input reference voltage for tag data

BcTagWr_L O_PP 1 Int_Index_BcClk Bcache data write enable

4.8.2 Bcache Clocking

For clocking, the Bcache port pins can be divided into three groups.

1. TheBcacheindex pins (address and control) are referenced to Int_Add _BcClk, an
internal version of the Bcache forwarded clock. The index pins are valid for the
whole period of the Int_Add_BcCIk. The index pins are:

BcAdd_H[23:4]
BcDataOE L
BcDataWr_L
BcLoad L
BcTagOE_L
BcTagWr_L

2. Thedatapins, when driven as outputs, are referenced to Int_Data BcClk, another
internal version of the Bcache forwarded clock. The data pins, when used as inputs,
can be referenced to the incoming Bcache clocks, BcDatalnClk_H[7:0] and
BcTaginClk_H. Int_Data BcClk can be delayed relativeto Int._ Add_BcClk from
0to 3 GCLK cyclesby using Cbox CSR BC_CPU_CLK_DELAY[1:0]. The data
pins are:

BcCheck _H[15:0]
BcData H[127:0]
BcTag H[42:20]
BcTagDirty H
BcTagParity H

4-44 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

BcTagShared_H
BcTagvalid_H

3. TheBcache clock pins (BcDataOutClk_x[3:0] and BcTagOutClk_x) clock the
index and data pins at the SSRAMs. These clocks can be delayed from
Int_Data BcClk from 0to 2 GCLK phases (haf cycles) using Cbox CSR
BC_CPU_CLK_DELAY[1:0].

Table 4-37 provides the BC_CPU_CLK_DELAY[1:0] values, which is the delay
from BC_ADDRESS to BC_WRITE_DATA (and BC_CLOCK_OUT) in GCLK
cycles.

Table 4-37 BC_CPU_CLK_DELAY[1:0] Values

BC_CPU_CLK_DELAY[1:0] Value GCLK Cycles of Delay
0 0

1 1
2 2
3 3

In the 21264/EV67 topology, the index pins are loaded by all the SSRAMs, while the
clock and data pins see a limit load. This arrangement requires a relatively large amount
of delay between the index pins and the Bcache clock pins to meet the setup constraints
at the SSRAMSs. The 21264/EV67 Cbox CSRs can provide a programmable amount of
delay between the index and clock pins by using Cbox CSRs
BC_CPU_CLK_DELAY[1:0] and BC_CLK_DELAY[1:0].

Table 4-38 provides the BC_CLK_DELAY[1:0] values, which is the delay from
BC_WRITE_DATA to BC_CLOCK_OUT, in GCLK phases.

Table 4-38 BC_CLK_DELAY[1:0] Values
BC_CLK_DELAY[1:0] Value GCLK Phases

0 Invalid (turns off BC_CLOCK_OUT)
1 0
2 1
3 2

With BC_CPU_CLK_DELAY[1:0] and BC_CLK_DELAY[1:0], a 500-MHz 21264/
EV67 can provide up to 8 ns K2 + 2) of delay between the index and the outgoing
forwarded clocks. The relative loading difference between the data and the clock is
minimal, so Cbox CSR BC_CLK_DELAY[1:0] alone is sufficient to provide the delay
needed for the setup constraint at the Bcache data register.

4.8.2.1 Setting the Period of the Cache Clock

The free running Bcache clocks are derived from the 21264/EV67 GCLK. The period
of the Bcache clocks is programmed using the following three Cbox CSRs:

1. BC_CLK_LD_VECTOR[15:0]
2. BC_BPHASE_LD_VECTORI[3:0]

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-45

Bcache Port

3. BC_FDBK_EN[7:0]

To program these three CSRs, the programmer must know the bit-rate of the Bcache
data, and whether only the rising edge or both edges of the clock are used to latch data.
For example, a 200-MHz late-write SSRAM has a data period of 5 ns. For a2-ns
GCLK, the READCLK_RATIO must be set to 2.5X. Thispart is called a2.5X SD (sin-
gle-data part).

Table 4-39 shows how the three CSRs are programmed for single-data devices.

Table 4-39 Program Values to Set the Cache Clock Period (Single-Data)

Bcache Transfer ~BC_CLK_LD_VECTOR! BC_BPHASE_LD VECTOR! BC_FDBK_EN!

2.0X-SD
2.5X-SD
3.0X-SD
3.5X-SD
4.0X-SD
5.0X-SD
6.0X-SD
7.0X-SD
8.0X-SD

5555 0 01
94A5 3 02
9249 A 02
4C99 Cc 04
3333 0 01
8C63 5 02
71C7 0 10
C387 A 04
OFOF 0 01

1 These are hexadecimal values.

With the exception of the 2.5X-SD and 3.5X-SD cases, the clock waveform generated
by the 21264/EV67 for the forwarded clocks has a 50-50 duty cycle. In the 2.5X-SD
case, the 21264/EV67 produces an asymmetric clock that is high for two GCLK phases
and low for three phases. Likewise, for the 3.5X-SD case, the 21264/EV67 produces an
asymmetric clock that is high for three GCLK phases and low for four GCLK phases.
Also, for both of these cases, the 21264/EV67 will only start transactions on the rising
edge of the GCLK and the Bcache clock. The 1.5X-SD case is not supported.

A dual-data rate (DDR) SSRAM'’s data rate is derived in a similar manner, except that
because both edges of the clock are used, the SSRAM clock generated is 2X the period
of the data. This part is called a 2.5X DDR SSRAM.

Table 4-40 shows how the three CSRs are programmed for dual-data devices.

Table 4-40 Program Values to Set the Cache Clock Period (Dual-Data Rate)

Bcache

Transfer BC_CLK_LD VECTOR! BC BPHASE_LD VECTOR! BC_FDBK_EN!

1.5X-DD 9249 A 02

2.0X-DD 3333 0
2.5X-DD 8C63 5
3.0X-DD 71C7 0 10
3.5X-DD C387 A

01
02

04

4-46 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

Table 4-40 Program Values to Set the Cache Clock Period (Dual-Data Rate) (Continued)

Ercaicsher BC _CLK_LD VECTOR! BC BPHASE LD VECTOR! BC FDBK_EN!
4.0X-DD OFOF 0 01
5.0X-DD 7CIF 0 40
6.0X-DD FO3F 0 10
7.0X-DD CO7F 0 04
8.0X-DD OOFF 0 01

1 These are hexadecimal values.

In addition to programming the clock CSRs, the data-sample/drive Cbox CSRs, at the
pads, must be set appropriately. Table 4—41 lists these CSRs and provides their pro-
grammed value.

Table 4-41 Data-Sample/Drive Cbox CSRs

CBOX CSR Description

BC_DDM_FALL_ENIQ] Enables the update of the 21264/EV67’s Bcache outputs referenced to the
falling edge of the Bcache forwarded clock. Dual-data RAMs assert this
CSR.

BC_TAG_DDM_FALL _EN[0] Enables the update of the 21264/EV67’s Bcache tag outputs referenced to the
falling edge of the Bcache forwarded clock. Alway deasserted.

BC_DDM_RISE_ENIJO0] Enables the update of the 21264/EV67’s Bcache outputs referenced to the ris-
ing edge of the Bcache forwarded clock. Always asserted.

BC_TAG_DDM_RISE_ENI[0] Enables the update of the 21264/EV67's Bcache tag outputs referenced to the
rising edge of the Bcache forwarded clock. Always asserted.

BC_DDMF_ENABLEJ0] Enables the rising edge of the Bcache forwarded clock. Always asserted.
BC_DDMR_ENABLE[0] Enables the falling edge of the Bcache forwarded clock. Always asserted.
BC_FRM_CLK]JO0] Forces the 21264/EV67 to only start Bcache transactions on the rising edge

of Bcache clocks that also coincide with the rising edge of GCLK. Must be
asserted for all dual-data parts and single-data parts at 2.5X and 3.5X.

BC_CLKFWD_ENABLE[0] Enables clock forward enable. Always asserted.

4.8.3 Bcache Transactions

The Cbox uses the programmed clock values to start data read, tag read, data write, and
tag write transactions on the rising edge of a Bcache clock. The Cbox can also be con-
figured to introduce a programmable number of bubbles when changing between write
and read commands. The following three sections describe these Bcache transactions.

4.8.3.1 Bcache Data Read and Tag Read Transactions

The 21264/EV67 always reads four pieces of data (64 bytes) from the Bcache during a
data read transaction, and always interrogates the tag array on the first cycle. Once
started, data read transactions are never cancelled. Assuming that the appropriate values

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-47

Bcache Port

have been programmed for the Bcache clock period, and with satisfactory delay param-
eters for the SSRAM setup/hold Bcache address latch requirements, a Bcache read
command proceeds through the 21264/EV 67 Cbox as follows:

1. Whenthe 21264/EV 67 clocks out the first address value on the Bcache index pins
with the appropriate Int_ Add_BcClk value, the Cbox loads the values of Cbox CSR
BC_LAT_DATA_PATTERN[31:0] and Cbox CSR
BC _LAT_TAG_PATTERN[23:0] into two shift registers, which shift during every
GCLK cycle.

2. Theaddress and control pins are latched into the SSRAMs. During the next cycle,
the SSRAMs provide data and tag information to the 21264/EV 67.

3. Using thereturning forwarded clocks (BcDatalnClk_H[7:0], BcTaginClk_H), the
dataltag information is loaded into the 21264/EV 67 clock forwarding queue for the
Bcache.

4. Based onthevalue of BC_ RCY_MUX_PRESET_CNT[1,0] (the unload pointer),
the result of a Bcache write command is loaded into a 21264/EV 67 GCLK
(BPHASE) register.

5. TheCbox CSR BC_LAT_DATA_PATTERN[31:0] and
BC LAT _TAG_PATTERN[23:0] contain the GCLK frequency at which the output
of the clock forward FIFO can be consumed by the processor. This provides GCLK
granularity for the Bcache interface, so that the 21264/EV 67 can minimize latency
to the Bcache. When the values based on these Cbox CSRs are shifted down to the
bottom of the shift register, the processor samples the Bcache dataand deliversit to
the consumers of load data in the 21264/EV 67 functional units.

For example, when a 2.5X-SD SSRAM has alatency of eight GCLK cycles from
BcAdd_H[23:4] to the output of Bcache FIFO, Cbhox CSR
BC_LAT_DATA_PATTERNI[31:0] is programmed to 948,¢ and Cbox CSR
BC_LAT_TAG_PATTERN[23:0] is programmed to 8,¢. The data pattern contains the
placement for four pieces of data and the aggregate rate of the datais 2.5X. In addition,
bit one of the BC_LAT_DATA_PATTERN is placed at a GCLK latency of six GCLK
cycles, which is the minimum latency supported by the 21264/EV67. The

BC LAT _TAG_PATTERN contains the placement of the tag data to the 21264/EV 67.

A shift of oneto the left increases the latency of the Bcache transfer to nine GCLK
cycles, and ashift to the right reducesthe latency of the Bcache transfer to seven GCLK
cycles.

The Chox performsisolated tag read transactions in response to system probe com-
mands. In addition, when using burst-mode SSRAMs, the Cbox can combine a separate
tag read transaction with the tail end of a dataread transaction, thus optimizing Bcache
bandwidth. A Bcache tag read transaction proceeds exactly like a Bcache dataread
transaction, except that only the BC_LAT _TAG PATTERN is used to update the tag
shift register.

4.8.3.2 Bcache Data Write Transactions

During a data write transaction, the 21264/EV 67 always writes four pieces of data (64
bytes of dataand 8 bytes of ECC) to the Bcache, and always writes the tag array during
thefirst cycle. Once started, data write operations are never cancelled. Given the appro-

4-48 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

priate programming of the Bcache clock period and delay parametersto satisfy SSRAM
setup/hold requirements of the Bcache address latch, a Bcache write transaction pro-
ceeds through the Cbox as follows:

1. The Cbox transmits the index and write control signals during an Int_Adr_BcClk
edge.

2. Thedatais placed on Bcache data, tag, and tag status pins on the appropriate
Int_Data BcClk edge from 0 to 7 Becache bit-times later, based on the Cbox CSR
BC_LATE WRITE_NUM[2:0]. TheBC_LATE_WRITE_NUM[2:0] supports the
late-write SSRAM, which optimize Bcache data bus bandwidth by minimizing
bubbles between read and write transactions. For example, single-data late-write
SSRAMs would need this CSR programmed to a value of one, and dual-data late-
write SSRAMs would need this CSR programmed to a va ue of two.

3. Thedifference between the data delivery (Int_Data BcClk) and forwarded clocks
out provides the setup for the data at the Bcache data flip-flop.

4. For Bcache writes, the 21264/EV 67 drivers are enabled on the GCLK BPHASE
preceding the start of awrite transfer, and disabled on the succeeding GCLK
BPHASE at the end of awrite transfer. Thus, the write datais enveloped by the
21264/EV 67 drivers to guarantee that every data transfer has the same data-valid
window.

4.8.3.3 Bubbles on the Bcache Data Bus

When changing between read and write transactions on the bidirectional bus, it is often
necessary to introduce NOP cycles (bubbles) to allow the busto settle and to drain the
Bcache read pipeline. The Cbox providestwo CSRS, BC_ RD_ WR _BUBBLES[5:0]
and BC_WR_RD_BUBBLES[3:0], to help control the bubbles between read and write
transactions.

The optimum parameters for these CSRs are determined by formulas that include the
following terms:

Term Description

bcfrm Bcache frame clock.
* |ndual-data mode, bcfrm istwice the ratio.
* Insingle-datamode, the value for bcfrm is determined by whether
theratio is even or odd:
— When the ratio is even, bcfrm is equal to the ratio.
— When the ratio is odd, bcfrm is twice the ratio.

For example, in single-data mode:

Ratio Bcfrm
2 2
25 5

GCLK The processor clock.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-49

Bcache Port

Term Description

Ratio The number of GCLK cycles per peak Bcache bandwidth transfer. For example, a
ratio of 2.5 means the peak Bcache bandwidth is 16 bytes for every 2.5 GCLK
cycles.

rd_wr The minimum spacing required between the read and write indices at the data/tag
pins, expressed as GCLK cycles.

wr_rd The minimum spacing required between the write and read indices at the data/tag
pins, expressed as GCLK cycles.

4-50 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

The Relationship Between Write-to-Read — BC_WR_RD_BUBBLES and wr_rd

The following formulas calculate the relationship between the Cbox CSR
BC_WR_RD_BUBBLES and wr_rd:

wr_rd=(BC_WR_RD_BUBBLES 1) * bcfm

or

BC_WR_RD_BUBBLES = ((wr_rd + bcfrm — 1) / befrm) + 1

Thereisnever aneed to use avalue of 0 or 1 for BC_WR_RD_BUBBLES.

Ifw _rd = 4*rati o, then value 3 would be the minimum
BC WR_RD BUBBLESvauewhenbcfrm = 2*rati o, and value 5 would be the
minimum BC_WR_RD BUBBLESvauewhenbcfrm = rati o.

Thereisaspecia caseforrati o = 2. 0 insingle-data mode. In this case, the for-
mulais:

wr_rd=(BC_WR_RD_BUBBLES —2) * bcfm

The Relationship Between Read-to-Write — BC_RD_WR_BUBBLES and rd_wr

Use the following formulato calculate the value for the Cbox CSR
BC_RD_WR_BUBBLES that produces the minimum rd_wr restriction:
BC_RD_WR_BUBBLES =rd_ wr—6

Note that avalue for BC_RD_WR_BUBBLES of zero really means 64 GCLK cycles.
In that case, amend the formula. For example, itisimpossibleto haverd_wr = 6 in
the 1.5x dual-data rate mode case.

4.8.4 Pin Descriptions

This section describes the characteristics of the Bcache interface pins.

4.8.4.1 BcAdd_H[23:4]

The BcAdd_H[23:4] pinsare high drive outputs that provides the index for the Bcache.
The 21264/EV 67 supports Bcache sizes of IMB, 2MB, 4MB, 8MB, and 16MB. Table
4-42 lists the values to be programmed into Cbox CSRs BC_ENABLE[0] and
BC_SIZE[3:0] to support each size of the Bcache.

Table 4-42 Programming the Bcache to Support Each Size of the Bcache

BC_ENABLE[0] BC_SIZE[3:0] Bcache Size
1 0000 1IMB

1 0001 2MB

1 0011 4AMB

1 0111 8MB

1 11 16MB

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-51

Bcache Port

When the Chox CSR BC_BANK_ENABLEJ[Q] is not set, the unused BcAdd_H[23:4]
pins are tied to zero. For example, when configured as a4MB cache, the 21264/EV 67
never changes BcAdd H[23:22] from logic zero, and when BC_BANK_ENABLE[Q]
is asserted, the 21264/EV 67 drives the complement of the MSB index on the next
higher BcAdd_H pin.

4.8.4.2 Bcache Control Pins

The Bcache control pins (BcLoad L, BcDataWr_L, BecDataOE_L, BcTagWr L,
BcTagOE_L) are controlled using Cbox CSRsBC BURST _MODE_ENABLE[0] and
BC_PENTIUM_MODEI0].

Table 4-43 shows the four combinations of Bcache control pin behavior obtained using
the two CSRs.

Table 4-43 Programming the Bcache Control Pins

BC_PENTIUM_MODE BC_BURST MODE_ENABLE RAM_TYPE
0 0 RAM_TYPEA
0 1 RAM_TYPEB
1 0 Unsupported
1 1 Unsupported

Table 4-44 lists the combination of control pin assertioRfav_TYPE A.

Table 4-44 Control Pin Assertion for RAM_TYPE A

TYPE_A NOP RAO RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H H H H H H H H H H H H
BcDataOE_L H L L L L H H L L L L H
BcDatawr_L H H H H H H H L L L L H
BcTagOE_L H L H H H H H L H H H H
BcTagWr_L H H H H H H H L H H H H

Table 4-45 lists the combination of control pin assertion for RAM_TYPE B.

Table 4-45 Control Pin Assertion for RAM_TYPE B

TYPE_B NOP RAO RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H L H H H H H L H H H H
BcDataOE_L H L L L L H H L L L L H
BcDataWr_L L H H H H L L L L L L L
BcTagOE_L H L H H H H H L H H H H
BcTagWr_L H H H H H H H L H H H H

4-52 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

Bcache Port

Table 4-46 lists the combination of control pin assertion for RAM_TYPE C.

Table 4-46 Control Pin Assertion for RAM_TYPE C

TYPE_C NOP RAO RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H H H H H H H H H H H
BcDataOE_L H H L L L L L H H H H H
BcDataWr_L H H H H H H H L L L L H
BcTagOE_L H L L H H H H H H H H H
BcTagWr_L H H H H H H H L H H H H

Table 4-47 lists the combination of control pin assertion for RAM_TYPE D.

Table 4-47 Control Pin Assertion for RAM_TYPE D

TYPE_D NOP RAO RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H L H H H H H L H H H H
BcDataOE_L H H L L L L L H H H H H
BcDatawr_L H H H H H H H L L L L H
BcTagOE_L H H L L H H H H H H H H
BcTagWr_L H H H H H H H L H H H H

Notes:

1. The NOP condition for RAM_TYPE B is consistent with bursting nonPentium
style SSRAMs.

2. In bothRAM_TYPE A and RAM_TYPE B, the pinBcDataOE_L and BcTagOE_L
function changes from output-enable control to chip-select control.

3. Inboth RAM_TYPE C and RAM_TYPE D SSRAMs, the pBt®ataOE_L and
BcTagOE_L function as an asynchronous output enable that envelopes the Bcache
read data by providing an extra cycle of output enable.

Using these Cbox CSRs, late-write nonbursting and dual-data rate SSRAMSs can be
connected to the 21264/EV67 as described in Appendix E.

4.8.4.3 BcDatalnClk_H and BcTagInClk_H

TheBcDatalnClk_H[7:0] andBcTaglnClk_H pins are used to capture tag data and

data from the Bcache data and tag RAMs respectively. Dual-data rate SSRAMSs provide
a clock output with the data output pins to minimize skew between the data and clock,
thus allowing maximum bandwidth. The 21264/EV67 internally synchronizes the data
to its GCLK with clock forward receive circuitry similar to that in the system interface.
For nonDDR SSRAMs, systems can connect the Bcache data and tag output clock pins
to the Bcache data and tag input clock pins.

Alpha 21264/EV67 Hardware Reference Manual Cache and External Interfaces 4-53

Interrupts

4.8.5 Bcache Banking

Bcache banking is possible by decoding the index MSB (as determined by Cbox CSR
BC_SIZE[3:0]) and asserting Cbox CSR BC_BANK_ENABLE[Q]. To facilitate bank-
ing, the 21264/EV 67 provides the complement of the MSB bit in the next higher
unused index bit. For example, when configured as an 8MB cache with banking
enabled, the 21264/EV 67 drives the inversion of PA[22] on BcAdd_H[23] for useasa
chip enablein abanked configuration. Because thereis no higher index bit available for
16MB caches, this scheme only works for cache sizes of 1IMB, 2MB, 4MB, and 8MB.

Setting BC_RD_RD_BUBBLE to 1 introduces one Bcache clock cycle of delay
between consecutive read transactions, regardless of whether or not they are read trans-
actions to the same bank.

Setting BC_WR_WR_BUBBLE to 1 introduces one Bcache clock cycle of delay
between consecutive write transactions, regardless of whether or not they are write
transactions to the same bank.

Setting BC_SJ BANK_ENABLE to 1 introduces one Bcache clock cycle of delay
between consecutive read transactions to a different bank (based on the MSB of the
index), evenif BC_RD _RD_BUBBLE isset to 0. No additional delay isinserted
between consecutive read transactions to the same bank or between consecutive write
transactions.

4.8.6 Disabling the Bcache for Debugging

The Bcache is arequired component for a 21264/EV 67-based system. However, for
debug purposes, the 21264/EV 67 can be operated with the Bcache disabled. The
Bcache can be disabled by clearing all of the BC_ENABLE hitsin the Cbox
WRITE_MANY CSR. When disabling the Bcache, the following additional steps must
be taken:

1. Thevarious Bcache control bitsin the Cbox WRITE_ONCE chain must be pro-
grammed to avalid combination (normally the same settings that would be used if
the Bcache were enabled).

2. TheBcache must still be initialized (using BC_INIT mode) during the reset PAL
flow, after which the Bcache should be left disabled.

3. Error Detection and Correction should be disabled by clearing DC_DAT _ERR_EN
(bit 7 of the DC_CTL IPR), or the following bitsin the Cbox WRITE_ONCE chain
must be programmed to the indicated values.

BC QLK DELAY[1: 0] = 0x1
BC CPU O.K _DELAY 1: 0] = ox1
BC CPU LATE WR TE NUM 1: 0] = Ox1
BC LATE WR TE_NUM 2: 0] = 0x0
BC LATE VR TE_UPPER =0
DUP_TAG ENABLE =0

4.9 Interrupts

The system may request interrupts by way of the IRQ_H[5:0] pins. These six interrupt
sources are identical. They may be asynchronous, are level sensitive, and can be indi-
vidually masked by way of the EIE field of the CM_IER IPR. The system designer
determines how these signals are used and selects their relative priority.

4-54 Cache and External Interfaces Alpha 21264/EV67 Hardware Reference Manual

5

Internal Processor Registers

This chapter describes 21264/EV 67 internal processor registers (IPRs). They are sepa-
rated into the following circuit logic groups. Ebox, Ibox, Mbox, and Cbox.

The gray areasin register figures indicate reserved fields. Bit ranges that are coupled

with the field name specify those bits in that named field that are included in the IPR.

For example, in Figure 5-2, the field named COUNTER][31:4] contains bits 31 through
4 of the COUNTER field from Section 5.1.1. The bit range of COUNTER][31:4] in the
IPR is also listed in the coluntixtent in Table 5-2. In many cases, such as this one, the

bit ranges correspond. However, the bit range of the named field need not always corre-
spond to thé&xtent in the IPR. For example, in Figure 5-14, the field VA[47:13] resides

in IPR IVA_FORM][37:3] under the stated conditions.

The register contents after initialization are listed in Section 7.8.
Table 5-1 lists the 21264/EV67 internal processor registers.

Table 5-1 Internal Processor Registers

MT/MF Latency
Score- Issued for
Index Board from Ebox MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Ebox IPRs
Cycle counter CcC 11000000 5 RW 1L 1
Cycle counter control CC_CTL 11000001 5 WO 1L —
Virtual address VA 1100 0010 4,5,6,7 RO 1L 1
Virtual address control VA _CTL 1100 0100 5 WO 1L —
Virtual address format VA_FORM 11000011 4,5,6,7 RO 1L 1
Ibox IPRs
ITB tag array write ITB_TAG 0000 0000 6 WO oL —
ITB PTE array write ITB_PTE 0000 0001 4,0 WO oL —
ITB invalidate all process (ASM=0) ITB_IAP 00000010 4 WO oL —
ITB invalidate all ITB_IA 0000 0011 4 WO oL —
ITB invalidate single ITB_IS 00000100 4,6 WO oL —
ProfileMePC PMPC 0000 0101 — RO — —
Exception address EXC_ADDR 0000 0110 — RO oL 3

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-1

Table 5-1 Internal Processor Registers (Continued)

MT/MF Latency
Score- Issued for

Index Board from Ebox MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Instruction VA format IVA_FORM 00000111 5 RO OL 3
Current mode CM 00001001 4 RW oL 3
Interrupt enable IER 00001010 4 RwW oL 3
Interrupt enable and current mode IER_CM 0000 10xx 4 RwW oL 3
Software interrupt request SIRR 00001100 4 RwW oL 3
Interrupt summary ISUM 00001101 — RO — —
Hardware interrupt clear HW_INT_CLR 00001110 4 WO oL —
Exception summary EXC_SUM 0000 1111 — RO oL 3
PAL base address PAL_BASE 0001 0000 4 RW oL 3
Ibox control I_CTL 00010001 4 RW oL 3
Ibox status |_STAT 0001 0110 4 RW oL 3
Icache flush IC_FLUSH 00010011 4 W oL —
Icache flush ASM IC_FLUSH_ASM 00010010 4 WO oL —
Clear virtual-to-physical map CLR_MAP 00010101 4,5,6,7 WO oL —
Sleep mode SLEEP 00010111 4,5,6,7 WO oL —
Process context register PCTX obonn® 4 w oL 3
Process context register PCTX O01xx Xxxx 4 R oL 3
Performance counter control PCTR_CTL 0001 0100 4 RW oL 3
Mbox IPRs
DTB tag array write 0 DTB_TAGO 00100000 2,6 WO oL —
DTB tag array write 1 DTB_TAG1 10100000 1,5 WO 1L —
DTB PTE array write O DTB_PTEO 00100001 0,4 WO oL —
DTB PTE array write 1 DTB_PTE1l 10100001 3,7 WO oL —
DTB alternate processor mode DTB_ALTMODE 00100110 6 WO 1L —
DTB invalidate all process (ASM =0) DTB_IAP 10100010 7 WO 1L —
DTB invalidate all DTB_IA 10100011 7 WO 1L —
DTB invalidate single (array 0) DTB_ISO 00100100 6 WO oL —
DTB invalidate single (array 1) DTB_IS1 10100100 7 WO 1L —
DTB address space number 0 DTB_ASNO 00100101 4 WO oL —
DTB address space number 1 DTB_ASN1 10100101 7 WO 1L —
Memory management status MM_STAT 0010 0111 — RO oL 3
Mbox control M_CTL 00101000 6 WO oL —
Dcache control DC_CTL 00101001 6 WO oL —
Dcache status DC_STAT 00101010 6 RW oL 3

5-2

Internal Processor Registers

Alpha 21264/EV67 Hardware Reference Manual

Ebox IPRs

Table 5-1 Internal Processor Registers (Continued)

MT/MF Latency
Score- Issued for
Index Board from Ebox MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Cbox IPRs
Cbox data C_DATA 00101011 6 RW oL 3
Chox shift control C_SHFT 00101100 6 WO oL o]

Iwhenn equals 1, that process context field is selected (FPE, PPCE, ASTRR, ASTER, ASN).

5.1 Ebox IPRs

This section describes the internal processor registers that control Ebox functions.

5.1.1 Cycle Counter Register — CC

The cycle counter register (CC) is aread-write register. The lower half of CCisa
counter that, when enabled by way of CC_CTL[32], increments once each CPU cycle.
The upper half of the register is 32 bits of register storage that may be used as a counter
offset as described in the Alpha Architecture Handbook, Version 4 under Processor Cycle
Counter (PCC) Register.

A HW_MTPR instruction to the CC writes the upper half of the register and leaves the
lower half unchanged. The RPCC instruction returnsthe full 64-bit value of the register.
Figure 5-1 shows the cycle counter register.

Figure 5-1 Cycle Counter Register

63 3231 0

OFFSET
COUNTER LK99-0008A

5.1.2 Cycle Counter Control Register — CC_CTL

The cycle counter control register (CC_CTL) isawrite-only register through which the
lower half of the CC register may be written and its associated counter enabled and dis-
abled. Figure 5-2 shows the cycle counter control register.

Figure 5-2 Cycle Counter Control Register

63 333231 4 3 0

CC_ENA
COUNTER[31:4] LK99-0009A

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-3

Ebox IPRs

Table 5-2 describes the CC_CTL register fields.

Table 5-2 Cycle Counter Control Register Fields Description

Name Extent Type Description
Reserved [63:33] — —
CC_ENA [32] WO Counter Enable.
When set, this bit allows the cycle counter to increment.
COUNTER([31:4] [31:4] WO CC[31:4] may be written by way of this field. Write transactions

to CC_CTL result in CCJ[3:0] being cleared.
Reserved [3:0] — —

5.1.3 Virtual Address Register — VA

The virtual address register (VA) isaread-only register. When a DTB miss or fault

occurs, the associated effective virtual address is written into the VA register. VA is not

written when a LD_VPTE gets a DTB miss or Dstream fault. Figure 5-3 shows the vir-
tual address register.

Figure 5-3 Virtual Address Register

63

VA[63:0]

LK99-0010A

5.1.4 Virtual Address Control Register — VA _CTL

The virtual address control register (VA_CTL) isawrite-only register that controls the
way in which the faulting virtual address stored in the VA register is formatted when it
isread by way of the VA_FORM register. It aso contains control bits that affect the
behavior of the memory pipe virtual address sign extension checkers and the behavior

of the Ebox extract, insert, and mask instructions. Figure 5—4 shows the virtual address
control register.

Figure 5-4 Virtual Address Control Register

63 3029 3210

VPTB[63:30]
VA_FORM_32
VA_48
B_ENDIAN

LK99-0014A

5-4 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ebox IPRs

Table 5-3 describes the virtual address control register fields.

Table 5-3 Virtual Address Control Register Fields Description

Name Extent Type Description

VPTB[63:30] [63:30] WO Virtual Page Table Base.

See the VA_FORM register section for details.

Reserved [29:3] — —

VA _FORM_32 [2] WO,0 This bit is used to control address formatting when reading the
VA _FORM register. See the section on the VA_FORM register for
details.

VA 48 [1] WO,0 This bit controls the format applied to effective virtual addresses

by the VA_FORM register and the memory pipe virtual address
sign extension checkers. When VA 48 is clear, the 43-bit virtual
address format is used, and when VA_48 is set, the 48-bit virtual
address format is used.

When VA_48 is set, the sign extension checkers generate an
access control violation (ACV) if VA[63:G4 SEXT (VA[47:0]).
When VA 48 is clear, the sign extension checkers generate an
ACV if VA[63:0] # SEXT(VA[42:0]).

B_ENDIAN [0] WO,0 Big Endian Mode.

When set, the shift amount (Rbv[2:0]) is inverted for EXTxx,
INSxx, and MSKxx instructions. The lower bits of the physical
address for Dstream accesses are inverted based upon the length
of the reference as follows:

Byte: Invert bits [2:0]

Word: Invert bits [2:1]

Longword: Inverts bit [2]

5.1.5 Virtual Address Format Register — VA_FORM

The virtual address format register (VA_FORM) is aread-only register. It contains the
virtual page table entry address derived from the faulting virtual address stored in the
VA register. It a'so containsthe virtual page table base and associated control bits stored
inthe VA_CTL register.

Figure 5-5 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA_CTL(VA_FORM_32) equals 0.

Figure 5-5 Virtual Address Format Register (VA_48 =0, VA_FORM_32 =0)

63 3332 32 0

VPTBI[63:33]
VA[42:13] LK99-0011A

Figure 5—6 shows VA_FORM when VA_CTL(VA_48) equals 1 and
VA_CTL(VA_FORM_32) equals 0.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-5

Ibox IPRs

Figure 5-6 Virtual Address Format Register (VA _48 =1, VA FORM_32 =0)

63 4342 3837 32 0

VPTBI[63:43]
SEXT(VA[47])
VA[47:13] LK99-0012A

Figure 5—7 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA_CTL(VA_FORM_32) equals 1.

Figure 5—7 Virtual Address Format Register (VA_48 =0, VA_FORM_32 =1)

63 3029 2221 3 2 0

VPTBI[63:30]
VA[31:13] LK99-0013A

5.2 Ibox IPRs

This section describes the internal processor registers that control 1box functions.

5.2.1 ITB Tag Array Write Register — ITB_TAG

The ITB tag array write register (ITB_TAG) isawrite-only register. The ITB tag array
iswritten by way of this register. A write transaction to ITB_TAG writes a register out-
sidethe ITB array. When awriteto the ITB_PTE register isretired, the contents of both

the ITB_TAG and ITB_PTE registers are written into the ITB entry. The specific ITB

entry that iswritten is determined by a round-robin algorithm; the algorithm writes to

entry number 0 as the first entry after the 21264/EV67 is reset. Figure 5-8 shows the
ITB tag array write register.

Figure 5-8 ITB Tag Array Write Register

63 4847 1312 0

VA[47:13] LK99-0015A

5.2.2 ITB PTE Array Write Register — ITB_PTE

ThelTB PTE array writeregister (ITB_PTE) isawrite-only register through which the
ITB PTE array iswritten. A round-robin allocation algorithm is used. A write to the
ITB_PTE array, when retired, resultsin both the ITB_TAG and ITB_PTE arrays being
written. The specific entry that is written is chosen by the round-robin algorithm
described above. Figure 5-9 shows the ITB PTE array write register.

5-6 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

Figure 5-9 ITB PTE Array Write Register

63

4443 13121110 9 8 7 6 5 4 3 0

PFN[43:13]

URE

SRE

ERE

KRE
GHI1:0]

ASM

LK99-0016A

5.2.3 ITB Invalidate All Process (ASM=0) Register — ITB_IAP

TheITB invalidate all process register (ITB_IAP) isa pseudo register that, when writ-
ten to, invalidates all ITB entries whose ASM hit is clear. An explicit writeto
IC_FLUSH_ASM isrequired to flush the Icache of blocks with ASM equal to zero.

5.2.4 ITB Invalidate All Register — ITB_IA

TheITB invalidate all register (ITB_IA) is apseudo register that, when written to,
invalidates all ITB entries and resets the allocation pointer to itsinitial state. An
explicit writeto IC_FLUSH isrequired to flush the Icache.

5.2.5 ITB Invalidate Single Register — ITB_IS

TheITB invalidate singleregister (ITB_1S) isawrite-only register. Writing a virtual
page number to thisregister invalidates any I TB entry that meets one of the following
criteria:

* The ITB entry’s virtual page number matches ITB_1S[47:13] (or fewer bits if gran-
ularity hint bits are set in the ITB entry) and its ASN field matches the address
space number supplied in PCTX[46:39].

* The ITB entry’s virtual page number matches ITB_IS[47:13] and its ASM bit is set.

Figure 5-10 shows the ITB invalidate single register.

Figure 5-10 ITB Invalidate Single Register

63

4847 1312 0

INVAL_ITB[47:13]

LK99-0017A

Note: Because the Icacheis virtually indexed and tagged, it is nhormally not nec-
essary to flush the | cache when paging. Therefore, awriteto ITB_ISwill
not flush the Icache.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-7

Ibox IPRs

5.2.6 ProfileMe PC Register — PMPC

The ProfileMe PC register (PMPC) is aread-only register that contains the PC of the
last profiled instruction. Additional information is available in the | _STAT and
PCTR_CTL register descriptions.

Usage of PMPC in performance monitoring is described in Section 6.10.
Figure 5-11 shows the ProfileMe PC register.

Figure 5-11 ProfileMe PC Register

63 210

PC[63:2]
PAL

LK99-0018A

Table 5—-4 describes the ProfileMe PC register fields.

Table 5-4 ProfileMe PC Fields Description

Name Extent Type Description

PC[63:2] [63:2] RO Address of the profiled instruction

Reserved [1] RO Read as zero

PAL [Q] RO g;(él cates that the PC field contains a physical-mode PALmode
ress

5.2.7 Exception Address Register — EXC_ADDR

The exception address register (EXC_ADDR) isaread-only register that is updated by
hardware when it encounters an exception or interrupt.

EXC_ADDR[0] isset if the associated exception occurred in PALmaode. The exception
actions are listed here:

* If the exception was afault or a synchronoustrap, EXC_ADDR containsthe PC of
the instruction that triggered the fault or trap.

* If the exception was an interrupt, EXC_ADDR contains the PC of the next instruc-
tion that would have executed if the interrupt had not occurred.

Figure 5-12 shows the exception address register.

Figure 5-12 Exception Address Register

63 210

PC[63:2]
PAL

LK99-0018A

5-8 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

5.2.8 Instruction Virtual Address Format Register — IVA_FORM

Theinstruction virtual address format register (IVA_FORM) isaread-only register. It
contains the virtual PTE address derived from the faulting virtual address stored in the
EXC_ADDR register, and from the virtual page table base, VA_48 and VA_FORM_32
bits, stored inthe | _CTL register.

Figure 5-13 shows IVA_FORM when |_CTL(VA_48) equals 0 and
|_CTL(VA_FORM_32) equals O.

Figure 5-13 Instruction Virtual Address Format Register (VA 48 =0, VA_FORM_32 =0)

63 3332 32 0

VPTB[63:33] — |
VA[42:13]

LK99-0019A

Figure 5-14 shows IVA_FORM when |_CTL(VA_48) equals 1 and
|_CTL(VA_FORM_32) equals 0.

Figure 5-14 Instruction Virtual Address Format Register (VA 48 =1, VA FORM_32 =0)

63 4342 3837 32 0

VPTB[63:43] —
SEXT(VA[47])
VA[47:13]

LK99-0020A

Figure 5-15 shows IVA_FORM when |_CTL(VA_48) equals 0 and
|_CTL(VA_FORM_32) equals 1.

Figure 5-15 Instruction Virtual Address Format Register (VA_48 =0, VA_FORM_32 =1)

63 3029 2221 32 0

VPTB[63:30]
VA[31:13]

LK99-0021A

5.2.9 Interrupt Enable and Current Processor Mode Register — IER_CM

The interrupt enable and current processor mode register (IER_CM) contains the inter-
rupt enable and current processor mode bit fields. These bit fields can be written either
individually or together with asingle HW_MTPR instruction. When bits[7:2] of the
IPR index field of aHW_MTPR instruction contain the value 000010,, this register is
selected. Bits[1:0] of the IPR index indicate which bit fields are to be written: bit[1]
corresponds to the |ER field and bit[0] corresponds to the processor mode field. A
HW_MFPR instruction to this register returns the values in both fields. Figure 5-16
shows the interrupt enable and current processor mode register.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-9

Ibox IPRs

Figure 5-16 Interrupt Enable and Current Processor Mode Register

63 3938 333231302928 141312 5432 0

EIEN[5:0]
SLEN
CREN
PCENI[1:0]
SIEN[15:1]
ASTEN
CM[1:0]

LK99-0022A

Table 5-5 describes the interrupt enable and current processor mode register fields.

Table 5-5 IER_CM Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EIEN[5:0] [38:33] RW External Interrupt Enable

SLEN [32] RW Serial Line Interrupt Enable

CREN [31] RW Corrected Read Error Interrupt Enable
PCENJ1:0] [30:29] RW Performance Counter Interrupt Enables
SIEN[15:1] [28:14] RW Software Interrupt Enables

ASTEN [13] RW AST Interrupt Enable

When set, enables those AST interrupt requests that are also
enabled by the value in ASTER.

Reserved [12:5] — —
CM[1:0] [4:3] RW Current Mode
00 Kernel
01 Executive
10 Supervisor
11 User
Reserved [2:0] — —

5.2.10 Software Interrupt Request Register — SIRR

The software interrupt request register (SIRR) is aread-write register containing bitsto
request software interrupts. To generate a particular software interrupt, its correspond-

ing bitsin SIRR and |ER[SIER] must both be set. Figure 5-17 shows the software

interrupt request register.

5-10 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

Figure 5-17 Software Interrupt Request Register

63 2928 1413 0

SIR[15:1] LK99-0023A

Table 5-6 describes the software interrupt request register fields.

Table 5-6 Software Interrupt Request Register Fields Description

Name Extent Type Description

Reserved [63:29] — —

SIR[15:1] [28:14] RW Software Interrupt Requests
Reserved [13:0] — —

5.2.11 Interrupt Summary Register — ISUM

The interrupt summary register (ISUM) is aread-only register that records all pending
hardware, software, and AST interrupt requeststhat have their corresponding enable bit
Set.

If anew interrupt (hardware, serial line, crd, or performance counters) occurs simulta
neously with an ISUM read, the ISUM read returns zeros. That condition is normally
assumed to be a passive release condition. The interrupt is signaled again when the
PAL code returns to native mode. The effects of this condition can be minimized by
reading ISUM twice and ORing the results.

Usage of ISUM in performance monitoring is described in Section 6.10. Figure 5-18
shows the interrupt summary register.

Figure 5-18 Interrupt Summary Register

63 3938 333231302928 1413 11109 8 5432 0

EI[5:0]
sL

CR
PC[1:0]
SI[15:1]
ASTU
ASTS
ASTE
ASTK

LK99-0024A

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-11

Ibox IPRs

Table 5-7 describes the interrupt summary register fields.

Table 5-7 Interrupt Summary Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EI[5:0] [38:33] RO External Interrupts

SL [32] RO Serial Line Interrupt

CR [31] RO Corrected Read Error Interrupts
PC[1:0] [30:29] RO Performance Counter Interrupts

PCO when PCJ[0] is set.
PC1 when PC[1] is set.

SI[15:1] [28:14] RO Software Interrupts
Reserved [13:11] — —
ASTU, ASTS [10],]9] RO AST Interrupts

For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in the
IER_CM register is greater than or equal to the value for the

mode.

Reserved [8:5] — —

ASTE, ASTK [41,[3] RO AST Interrupts
For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in the
IER_CM register is greater than or equal to the value for the
mode.

Reserved [2:0] — —

5.2.12 Hardware Interrupt Clear Register — HW_INT_CLR

The hardware interrupt clear register (HW_INT_CLR) isawrite-only register used to

clear edge-sensitive interrupt requests. See Section D.31 for more information about the
PALcode restriction concerning this register. Figure 5-19 shows the hardware interrupt
clear register.

Figure 5-19 Hardware Interrupt Clear Register

63 3332313029 28272625 0

sL
CR
PC[1:0]
MCHK_D
FBTP

LK99-0025A

5-12 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

Table 5-8 describes the hardware interrupt clear register fields.

Table 5-8 Hardware Interrupt Clear Register Fields Description

Name Extent Type Description

Reserved [63:33] — —

SL [32] wicC Clears serial line interrupt request

CR [31] wicC Clears corrected read error interrupt request

PC[1:0] [30:29] wicC Clears performance counter interrupt requests

MCHK_D [28] wicC Clears Dstream machine check interrupt request

Reserved [27] — —

FBTP [26] W1S Forces the next Bcache hit that fills the Icache to generate bad
Icache fill parity

Reserved [25:0] — —

5.2.13 Exception Summary Register —- EXC_SUM

Alpha 21264/EV67 Hardware Reference Manual

The exception summary register (EXC_SUM) is aread-only register that contains
information about instructions that have triggered traps. The register is updated at trap
delivery time. Its contents are valid only if it isread (by way of aHW_MFPR) in the
first fetch block of the exception handler. There are three types of traps for which this
register captures related information:

e Arithmetic traps. The instruction generated an exceptional condition that should be
reported to the operating system, and/or the FPCR status bit associated with this
condition is clear and should be set by PALcode. Additionally, the REG field con-
tains the register number of the destination specifier for the instruction that trig-

gered the trap.

* Istream ACV: The BAD_IVA bit of this register indicates whether the offending
Istream virtual addressis latched into the EXC_ADDR register or the VA register.

e Dstream exceptions: The REG field contains the register number of either the
source specifier (for stores) or the destination specifier (for loads) of the instruction

that triggered the trap.

Figure 5—-20 shows the exception summary register.

Internal Processor Registers 5-13

Ibox IPRs

Figure 5-20 Exception Summary Register

63 4847 46 45 44 43 4241 40 141312 876543210

SEXT(SET_IOV)
SET_lOV
SET_INE

SET_UNF
SET_OVF
SET_DZE
SET_INV
PC_OVFL
BAD_IVA
REG[4:0]
INT

oV

INE

UNF

FOV

DZE

INV

swc

LK99-0026A

Table 5-9 describes the exception summary register fields.

Table 5-9 Exception Summary Register Fields Description

Name Extent Type Description

SEXT(SET_IOV) [63:48] RO,0 Sign-extended value of bit 47, SET_10OV.

SET IOV [47] RO PAL code should set FPCR[IOV].

SET_INE [46] RO PA L code should set FPCR[INE].

SET_UNF [45] RO PAL code should set FPCR[UNF].

SET _OVF [44] RO PAL code should set FPCR[OVF].

SET DZE [43] RO PAL code should set FPCR[DZE].

SET_INV [42] RO PA L code should set FPCR[INV].

PC OVFL [41] RO Indicates that EXC_ADDR was improperly sign extended for 48-
bit mode over/underflow IACV.

Reserved [40:14] RO,0 Reserved for Compag.

BAD_IVA [13] RO Bad Istream VA.

This bit should be used by the IACV PALcode routine to deter-
mine whether the offending I-stream virtual addressis latched in
theEXC_ADDR register or the VA register. If BAD_IVA isclear,
EXC_ADDR contains the address; if BAD_IVA is set, VA con-
tains the address.

5-14 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

Table 5-9 Exception Summary Register Fields Description (Continued)

Name Extent Type Description

REG[4:0] [12:8] RO Destination register of load or operate instruction that triggered
the trap OR source register of store that triggered the trap. These
bits may contain the Rc field of an operate instruction or the Ra
field of aload or goreingtruction. Thevaueis UNPREDICTABLE
if the trap was triggered by an ITB miss, interrupt, OPCDEC, or
other non load/st/operate.

INT [7] RO Set to indicate Ebox integer overflow trap, clear to indicate Fbox
trap condition.

(o) [6] RO Indicates Fbox convert-to-integer overflow or Ebox integer over-
flow trap.

INE [5] RO Indicates floating-point inexact error trap.

UNF [4] RO Indicates floating-point underflow trap.

FOV [3] RO Indicates floating-point overflow trap.

DZE [2] RO Indicates divide by zero trap.

INV [1] RO Indicatesinvalid operation trap.

SWC Q] RO Indicates software completion possible. This bit is set if the

instruction that triggered the trap contained the /S modifier.

5.2.14 PAL Base Register — PAL_BASE

The PAL baseregister (PAL_BASE) isaread-write register that contains the base phys-

ical address for PAL code. Its contents are cleared by chip reset but are not cleared after
waking up from sleep mode or from fault reset. Figure 5-21 shows the PAL base regis-
ter.

Figure 5-21 PAL Base Register

63 4443 1514 0

PAL_BASE[43:15] LK99-0027A

Table 5-10 describes the PAL base register fields.

Table 5-10 PAL Base Register Fields Description

Name Extent Type Description

Reserved [63:44] RO, 0 Reserved for Compag.

PAL BASE[43:15] [43:15] RwW Base physical address for PAL code.
Reserved [14:0] RO, 0 Reserved for Compag.

5.2.15 Ibox Control Register —1_CTL

The Ibox control register (I_CTL) is aread-write register that controls various | box
functions. Its contents are cleared by chip reset. Figure 5-22 shows the Ibox control
register.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-15

Ibox IPRs

Figure 5-22 Ibox Control Register

63

3029 2423222120191817161514131211109 8 7 6 5 3210

SEXT(VPTB[47]) —

VPTB[47:30]

CHIP_ID[5:0]
BIST_FAIL

TB_MB_EN

MCHK_EN
ST_WAIT_64K

PCT1_EN

PCTO_EN

SINGLE_ISSUE_H

VA_FORM_32

VA 48
SL_RCV

SL_XMIT
HWE

BP_MODE[1:0]
SBE[1:0]

SDE[1:0]
SPE[2:0]

IC_EN[1:0]
SPCE

LK99-0029A

Table 5-11 describes the Ibox control register fields.

Table 5-11 Ibox Control Register Fields Description

Name Type Description
SEXT(VPTB[47]) Rw,0 Sign extended VPTB[47].
VPTB[47:30] RwW,0 Virtual Page Table Base. See Section 5.1.5 for details.
CHIP_ID[5:Q] RO Thisisaread-only field that suppliesthe revision ID number
for the 21264/EV 67 part.
21264/EV67 pass 2.2.2 1D is 001110,.
21264/EV67 pass 2.2.3 1D is 001111,
21264/EV67 pass 2.4 1D is001100,.
21264/EV67 pass2.5 1D is000111,.
BIST_FAIL RO,0 Indicates the status of BiST (clear = pass, set = fail),
described in Section 11.5.1.
TB_MB_EN RwW,0 When set, the hardware ensures that the virtual-mode |oads

5-16 Internal Processor Registers

in DTB and I TB fill flows that access the page table and the
subsequent virtual mode load or store that isbeing retried are
‘ordered’ relative to another processor’s stores. This must be
set for multiprocessor systems in which no MB instruction is
present in the TB fill flow, unless there are other mecha-
nisms present that ensure coherency.

Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

Table 5-11 Ibox Control Register Fields Description (Continued)

Name Extent Type

Description

MCHK_EN [21] RW,0
ST_WAIT_64K [20] RW,0

PCT1_EN [19] RW,0

PCTO_EN [18] RW,0

SINGLE_ISSUE_H [17] RW,0

VA_FORM_32 [16] RW,0

VA 48 [15] RW,0

SL_RCV [14] RO
SL_XMIT [13] WO
HWE [12] RW,0

BP_MODE[1:0] [11:10] RW,0

Machine check enable — set to enable machine checks.

The stWait table is used to reduce load/store order traps.
When set, the stWait table is cleared after 64K cycles. When
clear, the stWait table is cleared after 16K cycles. See Sec-
tion 2.11.

Enable performance counter #1. If this bit is one, the perfor-
mance counter will count if either the system (SPCE) or pro-
cess (PPCE) performance counter enable is asserted.

Enable performance counter #0. If this bit is one, the perfor-
mance counter will count if EITHER the system (SPCE) or
process (PPCE) performance counter enable is set.

When set, this bit forces instructions to issue only from the
bottom-most entries of the 1Q and FQ.

This bit controls address formatting on a read of the
IVA_FORM register.

This bit controls the format applied to effective virtual
addresses by the IVA_FORM register and the Ibox virtual
address sign extension checkers. When VA_48 is clear, 43-
bit virtual address format is used, and when VA_48 is set,
48-bit virtual address format is used. The effect of this bit on
the IVA_FORM register is identical to the effect of

VA CTL[VA_48] on the VA_FORM register. See Section
5.1.5.

When VA_48 is set, the sign extension checkers generate an
ACV if va[63:0] # SEXT(va[47:0]). When VA_48 is clear,

the sign extension checkers generate an ACV if va[63:0]
SEXT(va[42:0]).

This bit also affects DTB_DOUBLE traps. If set, the DTB
double miss traps vector to the DTB_DOUBLE_4 entry
point.

DTB_DOUBLE PALcode flow selection is not affected by
VA_CTL[VA_48].

See Section 11.2.
When set, drives a value @nomClk_H. See Section 11.2.

If set, allow PALRES intructions to be executed in kernel
mode. Note that modification of the ITB while in kernel
mode/native mode may cause UNPREDICTABLE behavior.

Branch Prediction Mode Selection.

BP_MODE([1], if set, forces all branches to be predicted to
fall through. If clear, the dynamic branch predictor is chosen.
BP_MODE]O0]. If set, the dynamic branch predictor chooses
local history prediction. If clear, the dynamic branch predic-
tor chooses local or global prediction based on the state of
the chooser.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-17

Ibox IPRs

Table 5-11 Ibox Control Register Fields Description (Continued)

Name Extent Type Description

SBE[1:0] [9:8] RwW,0 Stream Buffer Enable.

The value in this bit field specifies the number of Istream
buffer prefetches (besides the demand-fill) that are launched
after an Icache miss. If the valueis zero, only demand
reguests are launched.

SDE[1:0] [7:6] RwW,0 PA L shadow Register Enable.

Enables access to the PAL shadow registers. If SDE[1] is set,
R4-R7 and R20-R23 are used as PAL shadow registers.
SDEJ[Q] does not affect 21264/EV 67 operation.

SPE[2:0] [5:3] RwW,0 Super Page Mode Enable.
Identical to the SPE bitsinthe Mbox M_CTL SPE[2:0]. See
Section 5.3.9.

IC_EN[1:0] [2:1] RW,3 Icache Set Enable.

At least one set must be enabled. The entire cache may be
enabled by setting both bits. Zero, one, or two Icache sets
can be enabled.
This bit does not clear the Icache, but only disablesfillsto
the affected set.

SPCE [Q] RW,0 System Performance Counting Enable.

Enabl es performance counting for the entire system if indi-
vidual counters (PCTRO or PCTR1) are enabled by setting
PCTO_EN or PCT1 _EN, respectively.

Performance counting for individual processes can be
enabled by setting PCTX[PPCE]. See Section 5.2.21 for
more information.

See Section 6.10 for information about performance count-
ing.

5.2.16 Ibox Status Register — |_STAT

The Ibox statusregister (I_STAT) is aread/write-1-to-clear register that contains Ibox
status information.

Usage of |_STAT in performance monitoring is described in Section 6.10.

Figure 5—-23 shows the Ibox status register.

5-18 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Figure 5-23 Ibox Status Register

63

Ibox IPRs

4140393837 343332 302928 0

TRAP TYPE[3:0]

OVRI[2:0]

MIS
TRP

LSO

ICM

PAR

LK99-0031A

Table 5-12 describes the Ibox status register fields.

Table 5-12 Ibox Status Register Fields Description

Name Extent Type Description

Reserved [63:41] RO Reserved for Compag.

MIS [40] RO ProfileMe Mispredict Trap.
If the |l _STAT[TRP] bit is set, this bit indicates that the profiled instruc-
tion caused a mispredict trap. JISR/IMP/RET/COR or HW_JSR/
HW_JMP/HW_RET/HW_COR mispredicts do not set this bit but can be
recognized by the presence of one of these instructions at the PMPC loca-
tionwith thel STAT[TRP] bit set. Thisidentification isexact in all cases
except error condition traps. Hardware corrected |cache parity or Dcache
ECC errors, and machine check traps can occur on any instruction in the
pipeline.

TRP [39] RO ProfileMe Trap.
This bit indicates that the profiled instruction caused atrap. The trap type
field, PMPC register, and instruction at the PMPC location are needed to
distinguish al trap types.

LSO [38] RO ProfileMe Load-Store Order Trap.

Alpha 21264/EV67 Hardware Reference Manual

If the profiled instruction caused a replay trap, this bit indicates that the
precise trap cause was an Mbox load-store order replay trap.
If clear, this bit indicates that the replay trap was any one of the follow-
ing:
Mbox |oad-load order
Mbox load queue full
Mbox store queue full
Mbox wrong size trap (such as, STL - LDQ)
Mbox Bcache alias (2 physical addresses map to same Bcache line)
Mbox Dcache dias (2 physical addresses map to same Dcache line)
|cache parity error
Dcache ECC error

Internal Processor Registers 5-19

Ibox IPRs

Table 5-12 lbox Status Register Fields Description (Continued)

Name

Extent Type

Description

TRAP

[37:34] RO

TYPE[3:0]

ICM

[33] RO

OVR[20] [3230] RO

ProfileMe Trap Types.
If the profiled instruction caused atrap (indicated by |_STAT[TRP)), this
field indicates the trap type as listed here:
Value Trap Type
Replay
Invalid (unused)
DTB Double miss (3 level page tables)
DTB Double miss (4 level page tables)
Floating point disabled
Unaligned Load/Store
DTB Single miss
Dstream Fault
OPCDEC
Invalid (use PMPC, described below)

10 Machine Check

11 Invalid (use PMPC, described below)

12 Arithmetic

13 Invalid (use PMPC, described below)

14 MT_FPCR

15 Reset
Traps dueto I TB miss, Istream access violation, or interrupts are not
reported in the trap type field because they do not cause pipeline aborts.
Instead, these traps cause pipeline redirection and can be distinguished by
examining the PMPC value for the presence of the corresponding PAL-
code entry offset addresses indicated below. In these cases, the ProfileMe
interrupt will normally be delivered when exiting the trap PALcode flow
and the EXC_ADDR register will contain the original PC that encoun-
tered the redirect trap.
PMPC[14:0] Trap

0581 ITB miss

0481 Istream Access Violation

0681 Interrupt

cCo~NOOOTh~,WNEFO

ProfileMe Icache Miss.
This bit indicates that the profiled instruction was contained in an aigned
4-instruction Icache fetch block that requested a new Icache fill stream.

ProfileMe Counter O Overcount.

Thisbit indicates avalue (0-7) that must be subtracted from the counter O
result to obtain an accurate count of the number of instructions retired in
the interval beginning three cycles after the profiled instruction reaches
pipeline stage 2 and ending four cycles after the profiled instruction is
retired.

|cache Parity Error.

Thisbit indicates that the |cache encountered a parity error on instruction
fetch. When a parity error is detected, the Icache is flushed, areplay trap
back to the address of the error instruction is generated, and a correctable
read interrupt is requested.

Reserved for Compag.

PAR [29] wicC
Reserved [28:0] RO
5-20 Internal Processor Registers

Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

5.2.17 Icache Flush Register — IC_FLUSH

The Icache flush register (IC_FLUSH) is a pseudo register. Writing to this register
invalidates all Icache blocks. The cache is flushed when the next HW_RET/STALL
instruction is retired. See Section D.20 for more information.

5.2.18 Icache Flush ASM Register — IC_FLUSH_ASM

The Icache flush ASM register (IC_FLUSH_ASM) is a pseudo register. Writing to this
register invalidates all 1cache blocks with their ASM bit clear.

5.2.19 Clear Virtual-to-Physical Map Register - CLR_MAP

The clear virtual-to-physical map register (CLR_MAP) is a pseudo register that, when
written, results in the clearing of the current map of virtual to physical registers. This
register must only be written after there are no register-borne dependencies present and
there are no unretired instructions. See an example in the PALcode restrictions.

5.2.20 Sleep Mode Register — SLEEP

The sleep mode register (SLEEP) is a pseudo register that, when written, resultsin the
PLL speed being reduced and the chip entering a low-power mode. This register must

only be written after a sequence of code has been run which saves all necessary state to
DRAM, flushesthe caches, and unmasks certain interrupts so the chip can be woken up.
See Section 7.3 for details.

5.2.21 Process Context Register — PCTX

The process context register (PCTX) contains information associated with the context
of a process. Any combination of the bit fields within this register may be written with
asingle HW_MTPR instruction. When bits [7:6] of the IPR index field of a
HW_MTPR instruction contain the value 01,, this register is selected. Bits[4:0] of the
IPR index indicate which bit fields are to be written. Usage of PCTX in performance
monitoring is described in Section 6.10.

Table 5-13 lists the correspondence between IPR index bits and register fields.

Table 5-13 IPR Index Bits and Register Fields

IPR Index Bit Register Field

0 ASN
1 ASTER
2 ASTRR
3 PPCE
4 FPE

A HW_MFPR from this register returns the values in all of its component bit fields.

Figure 5—24 shows the process context register.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-21

Ibox IPRs

Figure 5-24 Process Context Register

63

4746 3938

1312 9 8 543210

ASN[7:0]

ASTRR[3:0]

ASTER[3:0]

FPE

PPCE

LK99-0032A

Table 5-14 describes the process context register fields.

Table 5-14 Process Context Register Fields Description

Name

Extent Type

Description

Reserved
ASNI[7:0]
Reserved
ASTRR][3:0]

ASTERI[3:0]

Reserved

[63:47] —

[46:39] RW
[38:13] —

[12:9] RW

[8:5] RW

[4:3] —

5-22 Internal Processor Registers

Address space number.

AST request register—used to request AST interrupts in
each of the four processor modes.
To generate a particular AST interrupt, its corresponding
bits in ASTRR and ASTER must be set, along with the
ASTE bitin IER.
Further, the value of the current mode bits in the PS register
must be equal to or higher than the value of the mode associ-
ated with the AST request.
The bit order with this field is:

User Mode 12

Supervisor Mode 11

Executive Mode 10

Kernel Mode 9

AST enable register—used to individually enable each of
the four AST interrupt requests.
The bit order with this field is:

User Mode 8

Supervisor Mode 7

Executive Mode 6

Kernel Mode 5

Alpha 21264/EV67 Hardware Reference Manual

Ibox IPRs

Table 5-14 Process Context Register Fields Description (Continued)

Name Extent

Type

Description

FPE [2]

PPCE [1]

Reserved

[0]

Rw,1

RW

Floating-point enable—if clear, floating-point instructions
generate FEN exceptions. This bit is set by hardware on
reset.

Process performance counting enable.

Enables performance counting for an individual process
with counters PCTRO or PCTR1, which are enabled by set-
ting PCTO_EN or PCT1_EN, respectively.

Performance counting for the entire system can be enabled
by setting |_CTL[SPCE]. See Section 5.2.15 for more infor-
mation.

See Section 6.10 for information about performance count-
ing.

5.2.22 Performance Counter Control Register - PCTR_CTL

The performance counter control register (PCTR_CTL) is aread-write register that
controls the function of the performance counters for either aggregate counting or Pro-

fileMe sampling counting.

Usage of PCTR_CTL in performance monitoring is described in Section 6.10.

Figure 5-25 shows the performance counter control register.

Figure 5-25 Performance Counter Control Register

63

4847

28272625 6543210

SEXT(PCTRO_CTL[47])

PCTRO[19:0]
PM_STALLED

PM_KILLED_BM
PCTR1[19:0]

SLO
SL1[1:0]

VAL
TAK

Alpha 21264/EV67 Hardware Reference Manual

LK99-0034A

Internal Processor Registers 5-23

Ibox IPRs

Table 5-15 describes the performance counter control register fields.

Table 5-15 Performance Counter Control Register Fields Description

Name

Extent Type Description

SEXT(PCTRO_CTL[47]) [63:48] RO

PCTRO0[19:0] [47:28] RW
PM_STALLED [27] RO
PM_KILLED_BM [26] RO
PCTR1[19:0] [25:6] RW
Reserved [5] RO
SLo [4] RW
SL1[1:0] [3:2] RW
5-24 Internal Processor Registers

When read, thisfield is sign extended from PCTR_CTL[47]. Writes
tothisfield areignored.

Performance counter O.
PCTROisenabledby | _CTL[PCTO_EN] and either |_CTL[SPCE] or
PCTX[PPCE].

In Aggregate mode:

When enabled, PCTRO isincremented at each cycle by the selected
input. (See Section 6.10.2 for more information.)

On overflow, if enabled by IER_CM[PCENQ],

ISUM[PCQ] is set and an interrupt is triggered.

In ProfileMe mode:

On overflow, a count window is opened and PCTRO is incremented

asdescribed in Section 6.10.3. When the count window overflows, if
enabled by IER_CM[PCENQ], ISUM[PCQ] is set and an interrupt is
triggered.

See Table 5-16 for counter modes.

The profiled instruction stalled for at least one cycle between the
fetch and map stages of the pipeline.

The profiled instruction was killed during or before the cycle in
which it was mapped.

Performance counter 1.

PCTRL1is enabled by | CTL[PCT1_EN] and either |_CTL[SPCE] or
PCTX[PPCE].

In Aggregate mode:

When enabled, PCTR1 is incremented at each cycle by the selected
input. (See Section 6.10.2 for more information.)

On overflow, if enabled by IER_CM[PCEN1], ISUM[PC1] is set and
an interrupt is triggered.

In ProfileMe mode, how PCTR1 is incremented is described in Sec-
tion 6.10.3.

In either case, PCTR1 is incremented no more than 1 per cycle.

See Table 5-16 for counter modes.
Reads to this field return zero. Writes to this field are ignored.

Selector 0.

0 = Aggregate counting mode

1 = ProfileMe mode

See Table 5-16 for more information.

Selector 1.
Selects counter PCTRO and PCTR1 modes. See Table 5-16 for more
information.

Alpha 21264/EV67 Hardware Reference Manual

Mbox IPRs

Table 5-15 Performance Counter Control Register Fields Description (Continued)

Name Extent Type Description

VAL [1 RO Profiled instruction valid.
When set, indicates a nontrapping profiled instruction retired valid.
When clear, indicates that a nontrapping profiled instruction was
killed after the cyclein which it was mapped. Valid retire/abort status
for atrapping profiled instruction is determined by the trap type (see
|_STAT[TRAP_TYPE]).

TAK [Q] RO ProfileMe conditional branch taken.

Indicates program branch direction, if the profiled instruction is a
conditional branch.

Table 5-16 Performance Counter Control Register Input Select Fields

SLO[4] SL1[3:2] Mode

PCTRO

PCTR1

0 00 Aggregate Retired instructions Cycle counting
0 01 Aggregate Cycle counting Not defined
0 10 Aggregate Retired instructions Bcache miss or long latency probes
0 1 Aggregate Cycle counting Mbox replay traps
1 00 ProfileMe Retired instructions Cycle counting
1 01 ProfileMe Cycle counting Inum retire delay
1 10 ProfileMe Retired instructions Bcache miss or long latency probes
1 1 ProfileMe Cycle counting Mbox replay traps
5.3 Mbox IPRs

This section describes the internal processor registers that control Mbox functions.

5.3.1 DTB Tag Array Write Registers 0 and 1 — DTB_TAGO, DTB_TAG1

The DTB tag array write registers0 and 1 (DTB_TAGO and DTB_TAGL) are write-
only registers through which the two memory pipe DTB tag arrays are written. Write
transactionsto DTB_TAGO and DTB_TAG1 write data to registers outside the DTB
arrays. When write transactions to the corresponding DTB_PTE registers are retired,
the contents of both the DTB_TAG and DTB_PTE registers are written into their
respective DTB arrays, at locations determined by the round-robin allocation algorithm.
Figure 5-26 shows the DTB tag array write registers 0 and 1.

Figure 5-26 DTB Tag Array Write Registers 0 and 1

63

4847

1312 0

VA[47:13]

Alpha 21264/EV67 Hardware Reference Manual

LK99-0035A

Internal Processor Registers 5-25

Mbox IPRs

5.3.2 DTB PTE Array Write Registers 0 and 1 — DTB_PTEO, DTB_PTE1

The DTB PTE array writeregistersOand 1 (DTB_PTEO and DTB_PTEL) areregisters
through which the DTB PTE arrays are written. The entries to be written are chosen by
around-robin allocation scheme. Write transactions to the DTB_PTE registers, when
retired, result in both the DTB_TAG and DTB_PTE arrays being written. Figure 5-27
shows the DTB PTE array write registers 0 and 1.

Figure 5-27 DTB PTE Array Write Registers 0 and 1

6362 3231 16151413121110 9 8 7 6 54 3 2 1 0

PA[43:13]
UWE
SWE
EWE
KWE
URE
SRE
ERE
KRE

GH[1:0]
ASM
FOW
FOR

5.3.3 DTB Alternate Processor Mode Register - DTB_ALTMODE

The DTB alternate processor mode register (DTB_ALTMODE) is awrite-only register
whose contents specify the alternate processor mode used by some HW_LD and
HW_ST instructions. Figure 5-28 shows the DTB alternate processor mode register.

Figure 5-28 DTB Alternate Processor Mode Register

63

ALT_MODE[1:0]

LK99-0037A

5-26 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Mbox IPRs

Table 5-17 describes the DTB_ALTMODE register fields.

Table 5-17 DTB Alternate Processor Mode Register Fields Description

Name Extent Type Description
Reserved [63:2] — —
ALT_MODE[1:0] [1:0] WO Alt_Mode:
ALT_MODE[1:0] Mode
00 Kernel
01 Executive
10 Supervisor
11 User

5.3.4 Dstream TB Invalidate All Process (ASM=0) Register — DTB_IAP

The Dstream translation buffer invalidate all process (ASM=0) register (DTB_IAP) isa
write-only pseudo register. Write transactions to thisregister invalidate all DTB entries
in which the address space match (ASM) bit is clear.

5.3.5 Dstream TB Invalidate All Register — DTB_IA

The Dstream trand ation buffer invalidate all register (DTB_IA) isawrite-only pseudo
register. Write transactions to thisregister invalidate all DTB entries and reset the DTB
not-last-used pointer to itsinitial state.

5.3.6 Dstream TB Invalidate Single Registers 0 and 1 — DTB_IS0,1

The Dstream tranglation buffer invalidate singleregisters (DTB_1SOand DTB_IS1) are

write-only pseudo registers through which software may invalidate asingle entry in the

DTB arrays. Writing avirtua page number to one of these registers invalidates any

DTB entry in the corresponding memory pipeline which meets one of the following cri-

teria

e The DTB entry’s virtual page number matches DTB_1S[47:13] and its ASN field
matches DTB_ASN[63:56].

* The DTB entry’s virtual page humber matches DTB_1S[47:13] and its ASM bit is
set.

Figure 5-29 shows the Dstream translation buffer invalidate single registers.

Figure 5-29 Dstream Translation Buffer Invalidate Single Registers

63

4847 1312 0

VA[47:13]

LK99-0015A

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-27

Mbox IPRs

5.3.7 Dstream TB Address Space Number Registers 0 and 1 — DTB_ASNO,1

The Dstream trand ation buffer address space number registers (DTB_ASNO and
DTB_ASN1) are write-only registers that should be written with the address space

number (ASN) of the current process. Figure 5-30 shows the Dstream translation buffer
address space number registers 0 and 1.

Figure 5-30 Dstream Translation Buffer Address Space Number Registers 0 and 1

63 56 55 0

ASN[7:0]J

5.3.8 Memory Management Status Register —- MM_STAT

LK99-0038A

The memory management status register (MM _STAT) is aread-only register.

When a Dstream TB miss or fault occurs, information about the error islatched in
MM_STAT. MM_STAT is not updated whenalLD_VPTE getsaDTB missinstruction.
Figure 5-31 shows the memory management status register.

Figure 5-31 Memory Management Status Register

63 1110 9 43210

DC_TAG_PERR
OPCODE[5:0]
FOW

FOR

ACV

WR

LK99-0039A
Table 5-18 describes the memory management status register fields.

Table 5-18 Memory Management Status Register Fields Description

Name Extent Type Description
Reserved [63:11] — —
DC_TAG_PERR [10] RO This bit is set when a Dcache tag parity error occurred during the

initial tag probe of a load or store instruction. The error created a
synchronous fault to the D_FAULT PALcode entry point and is
correctable. The virtual address associated with the error is avail-
able in the VA register.

OPCODEJ5:0] [9:4] RO Opcode of the instruction that caused the error.
HW_LD is displayed as 3 and HW_ST is displayed as 7.

FOW [3] RO This bit is set when a fault-on-write error occurs during a write
transaction and PTE[FOW] was set.

5-28 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Mbox IPRs

Table 5-18 Memory Management Status Register Fields Description (Continued)

Name Extent Type Description
FOR [2] RO Thisbit is set when afault-on-read error occurs during a read
transaction and PTE[FOR] was set.
ACV [1 RO Thishit is set when an access violation occurs during a transac-
tion. Access violations include a bad virtual address.
WR [Q] RO Thisbit is set when an error occurs during a write transaction.
Note: The Rafield of the instruction that triggered the error can be abtained from

the lbox EXC_SUM register.

5.3.9 Mbox Control Register — M_CTL

The Mbox control register (M_CTL) isawrite-only register. Its contents are cleared by
chip reset. Figure 5—-32 shows the Mbox control register.

Figure 5-32 Mbox Control Register

63 65 43 10

SMC[1:0]
SPE[2:0]

LK99-0040A

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-29

Mbox IPRs

Table 5-19 describes the Mbox control register fields.

Table 5-19 Mbox Control Register Fields Description

Name Extent Type Description
Reserved [63:6] — —
SMC[1:0] [5:4] WO,0 Speculative miss control (see Section 4.6.4).

Bits Meaning When Set
00 Allow full-time speculation.

01 Force full-time conservative mode. Make retries wait until retire,
force all new stores that do not hit dirty to retry, and cause prefetches
with modify intent (see Section 2.6.2) to behave like normal
prefetches.

10 Place 21264/EV67 in periodic conservative mode by using an 8-bit
counter to add by 4 each time a branch mispredict happens and sub-
tract by one each time a conditional branch retires. Enter conserva-
tive mode if the MSB of the counter is set.

11 Place 21264/EV67 in periodic conservative mode by using an 8-bit
countner to add by 8 each time a branch mispredict happens and sub-
tract by one each time a conditional branch retires. Enter conserva-
tive mode if the MSB of the counter is set.

SPE[2:0] [3:1] WO,0 Superpage mode enables.

SPE[2], when set, enables superpage mapping when VA[47:46] = 2. In this
mode, VA[43:13] are mapped directly to PA[43:13] and VA[45:44] are
ignored.

SPE[1], when set, enables superpage mapping when VA[47:41]s=IRE
this mode, VA[40:13] are mapped directly to PA[40:13] and PA[43:41] are
copies of PA[40] (sign extension).

SPE[0], when set, enables superpage mapping when VA[47:30] = 3&FFE
In this mode, VA[29:13] are mapped directly to PA[29:13] and PA[43:30] are
cleared.

Reserved [0] — —

Note: Superpage accesses are only allowed in kernel mode. Non-kernel mode ref-
erences to superpages result in access violations.

5.3.10 Dcache Control Register — DC_CTL

The Dcache control register (DC_CTL) isawrite-only register that controls Dcache
activity. The contents of DC_CTL are initialized by chip reset as indicated. Figure 5-33
shows the Dcache control register.

5-30 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Mbox IPRs

Figure 5-33 Dcache Control Register

63 876543210

DCDAT_ERR_EN
DCTAG_PAR_EN
F_BAD_DECC
F_BAD_TPAR
F_HIT
SET_EN[1.0]

LK99-0041A

Table 5-20 describes the Dcache control register fields.

Table 5—-20 Dcache Control Register Fields Description

Name Extent Type Description

Reserved [63:8] — —

DCDAT_ERR_EN [7] WO,0 Dcache data ECC and parity error enable.
DCTAG_PAR_EN [6] WO,0 Dcache tag parity enable.

F_BAD_DECC [5] WQO,0 Force Bad Data ECC. When set, ECC datat isritten into

the cache along with the block that is loaded by a fill or store.
Writing data that is different from that already in the block will
cause bad ECC to be present. Since the old ECC value will
remain, the ECC will bbad.

F BAD_TPAR [4] WO,0 Force Bad Tag Parity. When set, this bit causes bad tag parity to
be put into the Dcache tag array during Dcache fill operations.

Reserved [3] — —

F HIT [2] WO,0 Force Hit. When set, this bit causes all memory space load and
store instructions to hit in the Dcache, independent of the
Dcache tag address compare. F_HIT does not force the status of
the block to register as DIRTY (the tag status bits are still con-
sulted), so stores may still generate offchip activity.
In this mode, only one of the two sets may be enabled, and tag
parity checking must be disabled (set DCTAG_PER_EN to
zero).

SET_ENJ[1:0] [1:0] WO,3 Dcache Set Enable. At least one set must be enabled.

5.3.11 Dcache Status Register — DC_STAT

The Dcache status register (DC_STAT) is aread-write register. If a Dcache tag parity
error or data ECC error occurs, information about the error is latched in this register.
Figure 5-34 shows the Dcache status register.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-31

Cbox CSRs and IPRs

Figure 5-34 Dcache Status Register

63 543210

SEO
ECC_ERR_LD
ECC_ERR_ST
TPERR_P1
TPERR_PO

LK99-0042A

Table 5-21 describes the Dcache status register fields.

Table 5-21 Dcache Status Register Fields Description

Name Extent Type Description
Reserved [63:5] — —
SEO [4] Wi1cC Second error occurred. When set, this bit indicates that a second

Dcache store ECC error occurred within 6 cycles of the previous
Dcache store ECC error.

ECC_ERR LD [3] wicC ECC error on load. When set, this bit indicates that a single-bit ECC
error occurred while processing a load from the Dcache or any fill.
ECC ERR ST [2] wicC ECC error on store. When set, this bit indicates that an ECC error

occurred while processing a store.

TPERR_P1 [1] wicC Tag parity error — pipe 1. When set, this bit indicates that a Dcache
tag probe from pipe 1 resulted in a tag parity error. The error is uncor-
rectable and results in a machine check.

TPERR_PO [0] wicC Tag parity error — pipe 0. When set, this bit indicates that a Dcache
tag probe from pipe O resulted in a tag parity error. The error is uncor-
rectable and results in a machine check.

5.4 Cbox CSRs and IPRs

This section describes the Cbox CSRs and IPRs.
The Cbox configuration registers are split into three shift register chains:

* The hardware alocates 367 bits for the WRITE_ONCE chain, of which the 21264/
EV67 uses 304 bits. During hardware reset (after BiST), 367 bits are always
shifted into the WRITE_ONCE chain from the SROM, M SB first, so that the
unused bits are shifted out the end of the WRITE_ONCE chain.

e A 36-hit WRITE_MANY chainthat isloaded using MTPR instructionsto the Cbox
dataregister. Six bits of information are shifted into the WRITE_MANY chain dur-
ing each write transaction to the Cbox data register.

* A 60-bit Chox ERROR_REG chain that is read by using MFFR instructions from
the Cbox dataregister in combination with MTPR instructions to the Chox shift
register. Each write transaction to the Cbox shift register destructively shifts six bits
of information out of the Cbox error register.

5-32 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs

5.4.1 Cbox Data Register — C_DATA

Figure 5-35 shows the Cbox data register.

Figure 5-35 Chox Data Register

63 6 5 0

C_DATA[5:0]

LK99-0043A

Table 5-22 describes the Cbox data register fields.

Table 5-22 Cbox Data Register Fields Description

Name Extent Type Description
Reserved [63:6] — —

C_DATA[5:0] [5:0] RW Cbox data register. A HW_MTPR instruction to this register causes six
bits of data to be placed into a serial shift register. When the
HW_MTPR instruction is retired, the data is shifted into the Chox. After
the Cbox shift register has been accessed, performing a HW_MFPR
instruction to this register will return six bits of data.

5.4.2 Chox Shift Register — C_SHFT
Figure 5—-36 shows the Cbox shift register.

Figure 5-36 Cbox Shift Register

63 10

C_SHIFT

LK99-0044A

Table 5-23 describes the Cbox shift register fields.

Table 5-23 Cbox Shift Register Fields Description

Name Extent Type Description
Reserved [63:1] — —
C_SHIFT [0] w1 Writing a 1 to this register bit causes six bits of Cbox IPR data to shift into

the Cbox data register. Software can then use a HW_MFPR read operation
to the Cbox data register to read the six bits of data.

5.4.3 Cbox WRITE_ONCE Chain Description

The WRITE_ONCE chain order is contained in Table 5-24. In the table:

e Many CSRs are duplicated for ease of hardware implementation. These CSRs are
indicated initalics. They must be written with valuesthat are identical to the values
written to the original CSRs.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-33

Cbox CSRs and IPRs

* Only abrief description of each CSR is given. The functional description of these
CSRsis contained in Chapter 4.

e The order of multibit vectorsis [MSB:LSB], so the LSB isfirst bit in the Cbox

chain.

Table 5-24 describes the Cbox WRITE_ONCE chain order from LSB to MSB.

Table 5-24 Cbox WRITE_ONCE Chain Order

Cbox WRITE_ONCE Chain

Description

32 BYTE_IO[0]
SKEWED_FILL_MODEI0]
SKEWED_FILL_MODE[0]
DCVIC_THRESHOLD[7:0]

BC_CLEAN_VICTIM[0]
SYS BUS SIZE[1:0]
SYS_BUS FORMATIO]
SYS CLK_RATIO[4:1]

DUP_TAG_ENABLE[0]
PRB_TAG_ONLY|[0]
FAST_MODE_DISABLE[0]
BC_RDVICTIMI[0]
BC_CLEAN_VICTIM[0]
RDVIC_ACK_INHIBIT

SYSBUS MB_ENABLE
SYSBUS ACK_LIMIT[0:4]
SYSBUS VIC_LIMIT[0:2]
BC_CLEAN_VICTIM[0]
BC_WR_WR_BUBBLEJ0]
BC_RD_WR_BUBBLES[0:5]
BC_RD_RD_BUBBLE[0]
BC_SJ BANK_ENABLE
BC_WR_RD_BUBBLES[0:3]

5-34 Internal Processor Registers

Enable 32 BYTE I/O mode.
Asserted when Bcache is at 1.5X ratio.
Duplicate of prior bit.

Threshold of the number of Dcache victims that will accumulate
before streamed write transactions to the Bcache are initiated. The
Cbox can accumulate up to six victims for streamed Dcache pro-
cessing. Thisregister is programmed with the decoded value of the
threshold count.

Enable clean victims to the system interface.
Size of SysAddOut and SysAddOut buses.
Indicates system bus format.

Speed of system bus.
Code Multiplier
0001 1.5X
0010 2.0X
0100 2.5X
1000 3.0X

Enable duplicate tag mode in the 21264/EV 67.
Enable probe-tag only mode in the 21264/EV 67.
When asserted, disables fast data movement mode.
Enables RdVictim mode on the pins.

Duplicate CSR.

Enable inhibition of incrementing acknowledge counter for RdVic
commands.

Enable MB commands offchip.

Sysbus acknowledge limit CSR.

Limit for victims.

Duplicate CSR.

Write to write GCLK bubble.

Read to write GCLK bubbles for the Bcache interface.
Read to read GCLK bubble for banked Bcaches.
Enable bank mode for Bcache.

Write to read GCLK bubbles.

Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs

Table 5-24 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain Description

DUP_TAG_ENABLE Duplicate CSR.
SKEWED_FILL_MODE Duplicate CSR.
BC_RDVICTIM Duplicate CSR.
SKEWED_FILL_MODE Duplicate CSR.
BC_RDVICTIM Duplicate CSR.
BC_CLEAN_VICTIM Duplicate CSR.
DUP_TAG_MODE Duplicate CSR.
SKEWED_FILL_MODE Duplicate CSR.

ENABLE_PROBE_CHECK
SPEC_READ_ENABLEI0]
SKEWED_FILL_MODE
SKEWED_FILL_MODE
MBOX_BC_PRB_STALL

BC_LAT_DATA_PATTERN[0:31]
BC_LAT _TAG_PATTERN[0:23]
BC_RDVICTIM
ENABLE_STC_COMMANDI0]
BC_LATE_WRITE_NUM[0:2]

BC_CPU_LATE_WRITE_NUM[0:1]

BC_BURST_MODE_ENABLE[0]
BC_PENTIUM_MODE[(]
SKEWED_FILL_MODE
BC_FRM_CLK][0]

BC_CLK_DELAY[0:1]
BC_DDMR_ENABLE[0]

BC_DDMF_ENABLE[Q]

BC_LATE_WRITE_UPPER[0]

BC_TAG_DDM_FALL_EN[0]

Alpha 21264/EV67 Hardware Reference Manual

Enable error checking during probe processing.
Enable speculative references to the system port.
Duplicate CSR.

Duplicate CSR.

Must be asserted when BC_RATIO = 4.0X, 5.0X, 6.0X, 7.0X, or
8.0X.

Bcache data latency pattern.

Bcache tag latency pattern.

Duplicate CSR.

Enable STx_C instructions to the pins.

Number of Bcache clocks to delay the data for Bcache write com-
mands.

Number of GCLK cyclesto delay the Bcache clock/data from
index.

Burst mode enable signal.
Enable Pentium mode RAM behavior.
Duplicate CSR.

Force all Bcache transactionsto start on rising edges of the A phase
of aGCLK.

Delay of Bcache clock for 0,0,1,2 GCLK phases.

Enables the rising edge of the Bcache forwarded clock (always
enabled).

Enable the falling edge of the Bcache forwarded clock. (always
enabled).

Asserted when (BC_LATE_WRITE_NUM > 3) or
((BC_LATE_ WRITE_NUM = 3) and
(BC_CPU_LATE_WRITE_NUM > 1)).

Enables the update of the 21264/EV 67 Bcache tag outputs based on
the falling edge of the forwarded clock.

Internal Processor Registers 5-35

Cbox CSRs and IPRs

Table 5-24 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

BC_TAG_DDM_RISE_EN[0]

BC_CLKFWD_ENABLE[0]
BC_RCV_MUX_CNT_PRESET[0:1]
BC_LATE_WRITE_UPPER[0]

SYS DDM_FALL_EN[O]

SYS DDM_RISE_EN[0]

SYS CLKFWD_ENABLEI0]
SYS RCV_MUX_CNT_PRESET[0:1]
SYS CLK_DELAY[0:1]

SYS DDMR_ENABLEI(]

SYS DDMF_ENABLE[0]

BC_DDM_FALL_EN[O]

BC_DDM_RISE_EN[O]

BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[0:1]
BC_CLK_DELAY[0:1]

BC_DDMR _ENABLE
BC_DDMF_ENABLE

SYS DDM_FALL_EN

SYS DDM_RISE_EN

SYS CLKFWD_ENABLE

SYS RCV_MUX_CNT_PRESET[0:1]
SYS CLK_DELAY[0:1]

SYS DDMR _ENABLE

SYS DDMF_ENABLE
BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[0:1]

5-36 Internal Processor Registers

Enables the update of the 21264/EV 67 Bcache tag outputs based on
the rising edge of the forwarded clock.

Enable clock forwarding on the Bcache interface.
Initial value for the Bcache clock forwarding unload pointer FIFO.
Duplicate CSR.

Enables the update of the 21264/EV 67 system outputs based on the
falling edge of the system forwarded clock.

Enables the update of the 21264/EV 67 system outputs based on the
rising edge of the system forwarded clock.

Enables clock forwarding on the system interface.
Initial value for the system clock forwarding unload pointer FIFO.

Delay of 0 to 2 phases between the forwarded clock out and
address/data.

Enables the rising edge of the system forwarded clock (always
enabled).

Enables the falling edge of the system forwarded clock (always
enabled).

Enables update of data/address on the rising edge of the system for-
warded clock.

Enables the update of data/address on the falling edge of the system
forwarded clock.

Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.

Alpha 21264/EV67 Hardware Reference Manual

Table 5-24 Cbox WRITE_ONCE Chain Order (Continued)

Cbox CSRs and IPRs

Cbox WRITE_ONCE Chain Description

SYS DDM_FALL_EN Duplicate CSR.
SYS DDM_RISE _EN Duplicate CSR.
SYS CLKFWD_ENABLE Duplicate CSR.
SYS RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.
SYS CLK_DELAY[0:1] Duplicate CSR.
SYS DDMR_ENABLE Duplicate CSR.
SYS DDMF_ENABLE Duplicate CSR.
BC_DDM_FALL_EN Duplicate CSR.
BC_DDM_RISE_EN Duplicate CSR.
BC_CLKFWD_ENABLE Duplicate CSR.
BC_RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.
BC_CLK_DELAY[0:1] Duplicate CSR.
BC_DDMR_ENABLE Duplicate CSR.
BC_DDMF_ENABLE Duplicate CSR.
SYS DDM_FALL_EN Duplicate CSR.
SYS DDM_RISE_EN Duplicate CSR.
SYS CLKFWD_ENABLE Duplicate CSR.
SYS RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.
SYS CLK_DELAY[1:0] Duplicate CSR.
SYS DDMR_ENABLE Duplicate CSR.
SYS DDMF_ENABLE Duplicate CSR.
BC_DDM_FALL_EN Duplicate CSR.
BC_DDM_RISE_EN Duplicate CSR.
BC_CLKFWD_ENABLE Duplicate CSR.
BC_RCV_MUX_CNT_PRESET[1:0] Duplicate CSR.
SYS CLK_DELAY[0:1] Duplicate CSR.
SYS DDMR_ENABLE Duplicate CSR.
SYS DDMF_ENABLE Duplicate CSR.
SYS DDM_FALL_EN Duplicate CSR.
SYS DDM_RISE_EN Duplicate CSR.
SYS CLKFWD_ENABLE Duplicate CSR.
SYS RCV_MUX_CNT_PRESET[0:1] Duplicate CSR.

CFR_GCLK_DELAY[0:3]
CFR_EV6CLK_DELAY[0:2]

Number of GCLK cyclesto delay internal CIkFwdRst.
Number of EV6CIk_x cyclesto delay internal ClkFwdRst.

Alpha 21264/EV67 Hardware Reference Manual

Internal Processor Registers 5-37

Cbox CSRs and IPRs

Table 5-24 Cbox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

CFR_FRMCLK_DELAY[0:1]
BC_LATE_WRITE_NUM[0:2]

BC_CPU_LATE_WRITE_NUM[1:0]

JTTER_CMDI0]
FAST_MODE_DISABLE[0]
SYSDC_DELAY([3:0]

DATA_VALID_DLY[1:Q]

BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CPU_CLK_DELAY[0:1]
BC_FDBK_EN[0:7]

BC_CLK_LD_VECTOR[0:15]

BC_BPHASE_LD_VECTOR[0:3]
SYS DDM_FALL_EN

SYS DDM_RISE_EN

SYS CPU_CLK_DELAY[0:1]

SYS_FDBK_EN[0:7]

SYS CLK_LD_VECTORJ[0:15]

SYS BPHASE_LD_VECTOR[0:3]
SYS FRAME_LD_VECTOR][0:4]

SYSDC_DELAY[4]

Number of FrameClk_x cyclesto delay internal CIkFwdRst.
Duplicate CSR.

Duplicate CSR.

Add one GCLK cycle to the SY SDC write path.

Duplicate CSR.

Number of GCLK cyclesto delay SysDc fill commands before
action by the Chox.

Number of Bcache clock cyclesto delay signal SysDatalnValid
before sample by the Cbox.

Duplicate CSR.
Duplicate CSR.
Delay of Bcache clock for 0, 1, 2, 3 GCLK cycles.

CSR to program the Bcache forwarded clock shift register feedback
points.

CSR to program the Bcache forwarded clock shift register load val-
ues.

CSR to program the Bcache forwarded clock b-phase enables.
Duplicate CSR.
Duplicate CSR.

Delay of 0..3 GCLK cycles between the forwarded clock out and
address/data.

CSR to program the system forwarded clock shift register feedback
points.

CSR to program the system forwarded clock shift register load val-
ues.

CSR to program the system forwarded clock b-phase enables.

CSR to program the ratio between frame clock and system for-
warded clock.

Fifth SYSDC_DELAY hit.

5.4.4 Cbox WRITE_MANY Chain Description
The WRITE_MANY chain order is contained in Table 5-25. Note the following:

e Many CSRsareduplicated for ease of hardware implementation. These CSR names
areindicated in italics and have two leading asterisks.

* Only abrief description of each CSR is given. The functional description of these
CSRsiscontained in Chapter 3.

e Theorder of multibit vectorsis [MSB:LSB], so the LSB isfirst bit in the Cbox

chain.

5-38

Internal Processor Registers

Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs

Table 5-25 describes the Cbox WRITE_MANY chain order from LSB to MSB.

Table 5-25 Cbox WRITE_MANY Chain Order

Cbox WRITE_MANY Chain Description For Information:
BC_ENABLE[0] Enable the Bcache Table 4—42
INIT_MODE]0] Enable initialize mode Section 7.6
BC_SIZE[3:0] Bcache size Table 4-42
BC _ENABLE Duplicate CSR Table 4—42
BC _ENABLE Duplicate CSR Table 4—42
BC SZE[0:3] Duplicate CSR Table 4—42
BC_ENABLE! Duplicate CSR Table 4-42
BC_ENABLE! Duplicate CSR Table 4-42
BC_ENABLE! Duplicate CSR Table 4-42
INVAL_TO_DIRTY_ENABLEJ[1] WH64 acknowledges Table 4-15
ENABLE_EVICT Enable issue evict Table 4-1
BC_ENABLE Duplicate CSR Table 4-42
INVAL_TO_DIRTY_ENABLE[0] WH64 acknowledges Table 4-15
BC_ENABLE Duplicate CSR Table 4-42
BC_ENABLE Duplicate CSR Table 4-42
BC_ENABLE Duplicate CSR Table 4-42
SET_DIRTY_ENABLE[O] SetDirty acknowledge programming Table 4-16
INVAL_TO_DIRTY_ENABLE[0] Duplicate CSR Table 4-15
SET_DIRTY_ENABLE[2:1] SetDirty acknowledge programming Table 4-16
BC_BANK_ENABLEJ0] Enable bank mode for Bcache Section 4.8.5
BC_SZE[0:3] Duplicate CSR Table 4-42
INIT_MODE Duplicate CSR Section 7.6

BC_WRT_STS[0:3]

Write status for Bcache in initialize-mode Section 7.6

(Valid, Dirty, Shared, Parity)

1 MBZ during initialization mode; see Section 7.6 for information.

Figure 5-37 shows an example of PALcode used to write to the WRITE_MANY chain.

Figure 5-37 WRITE_MANY Chain Write Transaction Example

Alpha 21264/EV67 Hardware Reference Manual

Initialize the Bcache configuration in the Chox

Internal Processor Registers 5-39

Cbox CSRs and IPRs

; SET_DI RTY_ENABLE = 6
BC_BANK_ENABLE = 1

BC WRT_STS = 0
The value for the write_many chain is based on Table 5-25.

; The value is sampled from MSB, 6 bits at a time, as it is written

; to EV6__DATA. Therefore, before the value can be shifted in, it must be
; inverted on a by 6 basis. The code then writes out 6 bits at a time,

; shifting right by 6 after each write.

; So the following transformation is done on the write_many value:

[35:30]][29:24]|[23:18]|[17:12][11:06]|[05:00] =>
[05:00][11:06]|[17:12]|[23:18]|[29:24]|[35:30]

WRITE_MANY chain = 0x07FBFFFFD
value to be shifted in = OXxF7FFEFFC1

Before the chain can be written, |_CTL[SBE] must be disabled,
; and the code must be forced into the Icache.

ALIGN_CACHE_BLOCK <x47FF041F>; align with nops

mb ; wait for MEM-OP’s to complete

Ida r0, ~x0086(r31) ;load |_CTL.....

hw_mtpr r0, EV6__|_CTL ;SDE=2, IC_EN=3, SBE=0

br ro, . : create dest address

addq rO, #17,10 ; finish computing dest address

hw_mtpr r31, EV6__IC_FLUSH ; flush the Icache

bne r31,. ; separate retires

hw_jmp_stall (r0) ; force flush

ALIGN_CACHE_BLOCK <"x47FF041F> ; align with nops
bc_config:

mb ; pull this block in Icache

Ida rl, ~XFFC1(r31) ; data[15:00] = OXFFC1

Idah r0, ~X7FFE(r31) ; data[31:16] = Ox7FFE

zap rl, #'x0c, r1 ; clear out bits [31:16]

bis r1, ro, r1 ; orin bits [31:16]

addq r31, #6, r0 ; shift in 6 x 6 bits
bc_config_shift_in:

hw_mtpr rl, EV6__DATA ; shift in 6 bits

subq r0, #1, r0 ; decrement RO

beq r0, bc_config_done ; done if RO is zero

srl rl, #6, rl ; align next 6 bits

br r31, bc_config_shift_in ; continue shifting
bc_config_done:

hw_mtpr r31, <EV6__MM_STAT ! 64> ; wait until last shift

beq r31, bc_config_end ; predicts fall thru

br r31, -4 ; predict infinite loop

bis r31, r31, r31 ; nop

bis r31,r31, r31 ; nop

bc_config_end:

5-40 Internal Processor Registers Alpha 21264/EV67 Hardware Reference Manual

Cbox CSRs and IPRs

5.4.5 Cbox Read Register (IPR) Description

The Cbhox read register is read 6 bits at a time. Table 5-26 shows the ordering from LSB

to MSB.

Table 5-26 Cbox Read IPR Fields Description

Name Description
C_SYNDROME _1[7:0] If CMD is ChxToDirty, then C_SYNDROME _1is X; otherwise, is syndrome for
upper QW in OW of victim that was scrubbed.
C_SYNDROME Q[7:0] If CMD is ChxToDirty, then C_SYNDROME_0is X; otherwise, is syndrome for
lower QW in OW of victim that was scrubbed.
C_STAT[4:.0] Bits Error Status
00000 Either no error, or error on a speculative load, or a Bcache vic-
tim read due to a Dcache/Bcache miss
00001 BC_PERR (Bcache tag parity error)
00010 DC_PERR (duplicate tag parity error)
00011 DSTREAM_MEM_ERR
00100 DSTREAM_BC_ERR
00101 DSTREAM_DC_ERR
0011X PROBE_BC ERR
01000 Reserved
01001 Reserved
01010 Reserved
01011 ISTREAM_MEM_ERR
01100 ISTREAM_BC_ERR
01101 Reserved
0111X Reserved
10011 DSTREAM_MEM_DBL*
10100 DSTREAM_BC DBL?
11011 ISTREAM_MEM_DBL?
11100 ISTREAM_BC_DBL?

1 Error status as specified only when Cbox WRITE_ONCE chain bit
SKEWED_FILL_MODE[Q] is clear; otherwise, error statusis
generic DOUBLE_BIT_ERROR (1XXXX).

C_ST93:.0] If C_STAT equalsxxx_ MEM_ERR or xxx_ BC_ERR, then C_STS contains the
status of the block as follows; otherwise, the value of C_STSis X:

Bit Value Status of Block
74 Reserved
3 Parity
2 Valid
1 Dirty
0 Shared
C_ADDR[6:42] Address of last reported ECC or parity error. If C_STAT valueis

DSTREAM_DC _ERR, only bits 6:19 arevalid. If C_STAT valueis
DOUBLE_BIT_ERROR and SKEWED_FILL_MODE[0] is set, then C_ADDR

isX.

Alpha 21264/EV67 Hardware Reference Manual Internal Processor Registers 5-41

6

Privileged Architecture Library Code

This chapter describesthe 21264/EV 67 privileged architecture library code (PALcode).
The chapter is organized as follows:

e PALcode description

* PALmode environment

¢ Required PALcode function codes

e Opcodes reserved for PALcode

* Internal processor register access mechanisms
* PALshadow registers

* PALcode emulation of FPCR

e PALcode entry points

e Trandation buffer fill flows

» Performance counter support

6.1 PALcode Description

PAL code is macrocode that provides an architecturally-defined, operating-system-spe-
cific programming interface that is common across all Alpha microprocessors. The
actual implementation of PAL code differs for each operating system. PALcode runs
with privileges enabled, instruction stream (Istream) mapping disabled, and interrupts
disabled. PAL code has privilege to use five special opcodesthat allow functions such as
physical data stream (Dstream) references and internal processor register (IPR) manip-
ulation.

PAL code can be invoked by the following events:

* Resat

e System hardware exceptions (MCHK, ARITH)
* Memory-management exceptions

* Interrupts

e CALL_PAL instructions

PAL code has characteristics that make it appear to be a combination of microcode,
ROM BIOS, and system service routines, though the analogy to any of these other
itemsis not exact. PALcode exists for several major reasons.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-1

PALmMode Environment

* There are some necessary support functions that are too complex to implement
directly in a processor chip’s hardware, but that cannot be handled by a normal
operating system software routine. Routines to fill the translation buffer (TB),
acknowledge interrupts, and dispatch exceptions are some examples. In some archi-
tectures, these functions are handled by microcode, but the Alpha architecture is
careful not to mandate the use of microcode so as to allow reasonable chip imple-
mentations.

* Therearefunctionsthat must run atomically, yet involve long sequences of instruc-
tions that may need complete access to all of the underlying computer hardware.
An example of thisisthe sequence that returns from an exception or interrupt.

e Thereare someinstructions that are necessary for backward compatibility or ease
of programming; however, these are not used often enough to dedicate them to
hardware, or are so complex that they would jeopardize the overall performance of
the computer. For example, an instruction that does a VAX style interlocked mem-
ory access might be familiar to someone used to programming on a Cl SC machine,
but is not included in the Alpha architecture. Another example is the emulation of
an instruction that has no direct hardware support in a particular chip implementa-
tion.

In each of these cases, PAL code routines are used to provide the function. The routines
are nothing more than programs invoked at specified times, and read in as | stream code
in the same way that all other Alpha codeisread. Once invoked, however, PALcode
runsin a special mode called PALmode.

6.2 PALmode Environment
PALcoderunsin aspecial environment called PALmode, defined as follows:

e |stream memory mapping is disabled. Because the PALcodeis used to implement
tranglation buffer fill routines, |stream mapping clearly cannot be enabled. Dstream
mapping is still enabled.

* The program has privileged access to all of the computer hardware. Most of the

functions handled by PAL code are privileged and need control of the lowest
levels of the system.

* Interrupts are disabled. If along sequence of instructions need to be executed
atomically, interrupts cannot be allowed.

An important aspect of PALcode isthat it uses normal Alphainstructionsfor most of its
operations; that is, the same instruction set that nonprivileged Alpha programmers use.
There are afew extrainstructions that are only available in PALmode, and will cause a
dispatch to the OPCDEC PAL code entry point if attempted while not in PALmode. The
Alphaarchitecture allows someflexibility in what these special PALmode instructions do.
In the 21264/EV 67, the special PALmode-only ingtructions perform the following func-
tions:

* Read or write interna processor registers (HW_MFPR, HW_MTPR)

e Peform memory load or store operations without invoking the normal memory-
management routines (HW_LD, HW_ST)

e Return from an exception or interrupt (HW_RET)

6-2 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Required PALcode Function Codes

When executing in PALmode, there are certain restrictions for using the privileged
instructions because PALmode gives the programmer complete access to many of the
internal details of the 21264/EV 67. Refer to Section 6.4 for information on these spe-
cial PALmode instructions.

Caution: Itispossibleto cause unintended side effects by writing what appears to be
perfectly acceptable PAL code. As such, PALcode is not something that
many users will want to change. Before writing PALcode, at least become
familiar with the information in Appendix D.

6.3 Required PALcode Function Codes

Table 6-1 lists opcodes required for all Alpha implementations. The notation used is
oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bit
function code.

Table 6-1 Required PALcode Function Codes

Mnemonic Type Function Code
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged 00.0086

6.4 Opcodes Reserved for PALcode

Table 6-2 lists the opcodes reserved by the Alpha architecture for implementation-spe-
cific use. These opcodes are privileged and are only available in PALmode.

Table 6—2 Opcodes Reserved for PALcode

Architecture

Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Dstream load instruction

HW_ST 1F PAL1F Dstream store instruction

HW_RET 1E PAL1E Return from PAL code routine

HW_MFPR 19 PAL19 Copiesthe value of an IPR into an integer GPR
HW_MTPR 1D PAL1D Writes the value of an integer GPR into an IPR

These instructions generally produce an OPCDEC exception if executed while the pro-
cessor is not in PALmode. If |_CTL[HWE] is set, these instructions can also be exe-
cuted in kernel mode. Software that uses these instructions must adhere to the PALcode
restrictions listed in this section.

6.4.1 HW_LD Instruction

PALcode uses the HW_LD instruction to access memory outside the realm of normal
Alpha memory management and to perform special Dstream load transactions. Data
alignment traps are disabled for the HW_LD instruction.

Figure 6—1 shows the HW_LD instruction format.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-3

Opcodes Reserved for PALcode

Figure 6-1 HW_LD Instruction Format

TYPE

16 15 1312 11 0

LEN

FM-05654.A14

Table 6-3 describes the HW_LD instruction fields.

Table 6—-3 HW_LD Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1B44 The opcode value.

[25:21] RA — Destination register number.

[20:16] RB — Base register for memory address.

[15:13] TYPE 009 Physical — The effective address for the HW_LD instruction is physical.

001, Physical/Lock — The effective address for the HW_LD instruction is
physical. It is the load lock version of the HW_LD instruction.

010, Virtual/VVPTE — Flags a virtual PTE fetch (LD_VPTE). Used by trap logic
to distinguish a single TB miss from a double TB miss. Kernel mode access
checks are performed.

100, Virtual — The effective address for the HW_LD instruction is virtual.

10%, Virtual/WrChk — The effective address for the HW_LD instruction is
virtual. Access checks for fault-on-read (FOR), fault-on-write (FOW), read
and write protection.

110, Virtual/Alt — The effective address for the HW_LD instruction is virtual.
Access checks use DTB_ALT_MODE IPR.

111, Virtual/WrChk/Alt — The effective address for the HW_LD instruction is
virtual. Access checks for FOR, FOW, read and write protection. Access
checks use DTB_ ALT_MODE IPR.

[12] LEN 0 Access length is longword.

1 Access length is quadword.

[11:0] DISP — Holds a 12-bit signed byte displacement.

6.4.2 HW_ST Instruction

PALcode uses the HW_ST instruction to access memory outside the realm of normal
Alpha memory management and to do special forms of Dstream store instructions. Data
alignment traps are inhibited for HW_ST instructions. Figure 6-2 shows the HW_ST
instruction format.

Figure 6-2 HW_ST Instruction Format

16 15
T L

1312 11 0

TYPE
LEN

FM-05654.A14

6-4 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Opcodes Reserved for PALcode

Table 6—4 describes the HW_ST instruction fields.

Table 6-4 HW_ST Instruction Fields Descriptions

Extent Mnemonic Value Description
[31:26] OPCODE 1F4 The opcode value.
[25:21] RA — Write data register number.
[20:16] RB — Base register for memory address.
[15:13] TYPE 009 Physical — The effective address for the HW_ST instruction is physical.
001, Physical/Cond — The effective address for the HW_ST instruction is
physical. Store conditional version of the HW_ST instruction. The lock
flag is returned in RA. Refer to PALcode restrictions for correct use of this
function.
010, Virtual — The effective address for the HW_ST instruction is virtual.
110, Virtual/Alt — The effective address for the HW_ST instruction is virtual.
Access checks use DTB_ ALT_MODE IPR.
All others Unused.
[12] LEN 0 Access length is longword.
1 Access length is quadword.
[11:0] DISP — Holds a 12-bit signed byte displacement.

6.4.3 HW_RET Instruction

The HW_RET instruction is used to return instruction flow to a specified PC. The RB
field of the HW_RET instruction specifies an integer GPR, which holds the new value
of the PC. Bit [0] of this register provides the new value of PALmode after the
HW_RET instruction is executed. Bits [15:14] of the instruction determine the stack
action.

Normally the HW_RET instruction succeeds a CALL_PAL instruction, or a trap han-
dler that pushed its PC onto the prediction stack. In this mode, the HINT should be set
to ‘10’ to pop the PC and generate a predicted target address for the HW_RET instruc-
tion.

In some conditions, the HW_RET instruction is used in the middle of a PALcode flow
to cause a group of instructions to retire. In these cases, if the HW_RET instruction
does not have a corresponding instruction that pushed a PC onto the stack, the HINT
field should be set to ‘00’ to keep the stack from being modified.

In the rare circumstance that the HW_RET instruction might be used like a JSR or
JSR_COROUTINE, the stack can be managed by setting the HINT bits accordingly.

See Section D.25 for more information about the HW_RET instruction.

Figure 6-3 shows the HW_RET instruction format.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-5

Opcodes Reserved for PALcode

Figure 6-3 HW_RET Instruction Format

HINT

STALL

FM-05656.A14

Table 6-5 describes the HW_RET instruction fields.

Table 6-5 HW_RET Instruction Fields Descriptions

Extent

Mnemonic Value

Description

[31:26]
[25:21]
[20:16]

[15:14]

[13]

[12:0]

OPCODE
RA
RB

1E46

The opcode value.

Register number. It should be R31.

Target PC of the HW_RET instruction. Bit [0] of the register’s contents
determines the new value of PALmode.

HINT 00 HW_JMP — The PC is not pushed onto the prediction stack. The predicted

target is PC + (4*DISP[12:0]).

HW_JSR — The PC is pushed onto the prediction stack. The predicted
target is PC + (4*DISP[12:0]).

HW_RET — The prediction is popped off the stack and used as the target.

HW_COROUTINE — The prediction is popped off the stack and used as
the target. The PC is pushed onto the stack.

01

10
11

STALL If set, the fetcher is stalled until the HW_RET instruction is retired or

aborted. The 21264/EV67 will:
* Forceamispredict
¢ Kill instructions that were fetched beyond the HW_RET instruction
¢ Refetch the target of the HW_RET instruction
e Stal until the HW_RET instruction is retired or aborted

If instructions beyond the HW_RET have been issued out of order, they
will be killed and refetched.

DISP Holds a 13-bit signed longword displacement.

6.4.4 HW_MFPR and HW_MTPR Instructions

6-6

The HW_MFPR and HW_MTPR instructions are used to access internal processor reg-
isters. The HW_MFPR instruction reads the value from the specified IPR into the inte-
ger register specified by the RA field of the instruction. The HW_MTPR instruction
writes the value from the integer GPR, specified by the RB field of the instruction, into
the specified IPR. Figure 6—4 shows the HW_MFPR and HW_MTPR instructions for-
mat.

Figure 6-4 HW_MFPR and HW_MTPR Instructions Format

16 15) 8 7 0

L L I ; UL
\S(\:B\D M\AS\K\

Privileged Architecture Library Code

FM-05657.Al4

Alpha 21264/EV67 Hardware Reference Manual

Internal Processor Register Access Mechanisms

Table 6-6 describes the HW_MFPR and HW_MTPR instructions fields.

Table 6-6 HW_MFPR and HW_MTPR Instructions Fields Descriptions

Extent Mnemonic Value Description
[31:26] OPCODE 1946 The opcode value for the HW_MFPR instruction.
1Dqg The opcode value for the HW_MTPR instruction.

[25:21] RA — Destination register for the HW_MFPR instruction. It should be R31
for the HW_MTPR instruction.

[20:16] RB — Source register for the HW_MTPR instruction. It should be R31 for the
HW_MFPR instruction.

[15:8] INDEX — IPR index.

[7:0] SCBD_MASK — Specifies which IPR scoreboard bits in the IQ are to be applied to this

instruction. If a mask bit is set, it indicates that the corresponding IPR
scoreboard bit should be applied to this instruction.

6.5 Internal Processor Register Access Mechanisms

This section describes the hardware and software access mechanisms that are used for
the 21264s IPRs.

Because the Ibox reorders and executes instructions speculatively, extra hardware is
required to provide software with the correct view of the architecturally-defined state.
The Alpha architecture defines two classes of state: general-purpose registers and
memory. Register renaming is used to provide architecturally-correct register file
behavior. The Ibox and Mbox each have dedicated hardware that provides correct mem-
ory behavior to the programmer. Because the internal processor registers are implemen-
tation-specific, and their state is not defined by the Alpha architecture, access
mechanisms for these registers may be defined that impose restrictions and limitations
on the software that uses them.

For every IPR, each instruction type can be classified by how it affects and is affected
by the value held by that IPR.

e Explicit readers are HW_MFPR instructions that explicitly read the value of the
IPR.

e Implicit readers are instructions whose behavior is affected by the value of the IPR.
For example, each load instruction is an implicit reader of the DTB.

* Explicit writers are HW_MTPR instructions that explicitly write avalue into the
IPR.

e Implicit writers are instructions that may write avalueinto the IPR as a side effect
of execution. For example, aload instruction that generates an access violation is
an implicit writer of the VA, MM_STAT, and EXC_ADDR IPRs. In the 21264/
EV67, only instructions that generate an exception will act asimplicit PR writers.

Only certain IPRs, such as those with write-one-to-clear bits, are both implicitly and
explicitly written. The read-write semantics of these IPRs is controlled by software.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-7

Internal Processor Register Access Mechanisms

6.5.1 IPR Scoreboard Bits

In previous Alphaimplementations, IPR registers were not scoreboarded in hardware.
Software was required to schedule HW_MTPR and HW_MFPR instructions for each
machine’s pipeline organization in order to ensure correct behavior. This software
scheduling task is more difficult in the 21264/EV67 because the Ibox performs
dynamic scheduling. Hence, eight extra scoreboard bits are used within the IQ to help
maintain correct IPR access order. The HW_MTPR and HW_MFPR instruction for-
mats contain an 8-bit field that is used as an IPR scoreboard bit mask to specify which
of the eight IPR scoreboard bits are to be applied to the instruction.

If any of the unmasked scoreboard bits are set when an instruction is about to enter the
IQ, then the instruction, and those behind it, are stalled outside the IQ until all the
unmasked scoreboard bits are clear and the queue does not contain any implicit or
explicit readers that were dependent on those bits when they entered the queue. When
all the unmasked scoreboard bits are clear, and the queue does not contain any of those
readers, the instruction enters the IQ and the unmasked scoreboard bits are set.

HW_MFPR instructions are stalled in the 1Q until all their unmasked IPR scoreboard
bits are clear.

When scoreboard bits [3:0] and [7:4] are set, their effect on other instructions is differ-
ent, and they are cleared in a different manner.

If any of scoreboard bits [3:0] are set when a load or store instruction enters the 1Q, that
load or store instruction will not be issued from the 1Q until those scoreboard bits are
clear.

Scoreboard bits [3:0] are cleared when the HW_MTPR instructions that set them are
issued (or are aborted). Bits [7:4] are cleared when the HW_MTPR instructions that set
them are retired (or are aborted).

Bits [3:0] are used for the DTB_TAG and DTB_PTE register pairs within the DTB fill
flows. These bits can be used to order writes to the DTB for load and store instructions.
See Sections 5.3.1 and 6.9.1.

Bit [0] is used in both DTB and ITB fill flows to trigger, in hardware, a lightweight
memory barrier (TB-MB) to be inserted between a LD_VPTE and the corresponding
virtual-mode load instruction that missed in the TB.

6.5.2 Hardware Structure of Explicitly Written IPRs

IPRs that are written by software are physically implemented as two registers. When
the HW_MTPR instruction that writes the IPR executes, it writes its value fivghe
register. When the HW_MTPR instruction is retired, the contents difrheegister are
written into thesecond register. Instructions that either implicitly or explicitly read the
value of the IPR access theeond register. Read-after-write and write-after-write
dependencies are managed using the IPR scoreboard bits. To avoid write-after-read
conflicts, thesecond register is not written until the writer is retired. The writer will not

be retired until the previous reader is retired, and the reader is retired after it has read its
value from thesecond register.

Some groups of IPRs are built using a single shiwrgidegister. To prevent write-
after-write conflicts, IPRs that shardiest register also share scoreboard bits.

6-8 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Internal Processor Register Access Mechanisms

6.5.3 Hardware Structure of Implicitly Written IPRs

Implicitly written IPRs are physically built using only asingle level of register, how-
ever the PR has two hardware states associated with it:

1. Default State—The contents of the register may be written when an instruction gen-
erates an exception. If an exception occurs, write a new value into the IPR and go to
state 2.

2. Locked State—The contents of the register may only be overwritten by an except-
ing instruction that is older than the instruction associated with the contents of the
IPR. If such an exception occurs, overwrite the value of the IPR. When the trigger-
ing instruction, or instruction that is older than the triggering instruction, is killed
by the Ibox, go to state 1.

6.5.4 IPR Access Ordering

IPR access mechanisms must allow values to be passed through each IPR from a pro-
ducer to its intended consumers.

Table 6-7 lists all of the paired instruction orderings between instructions of the four
IPR access types. It specifies whether access order must be maintained, and if so, the
mechanisms used to ensure correct ordering.

Table 6—7 Paired Instruction Fetch Order

Second
Instruction First Instruction
Implicit Reader |Implicit Writer Explicit Reader Explicit Writer
Implicit Read transac- [No IPRsin thisclass. | Read transactions can | A variety of mechanisms are
Reader tions can be be reordered. used to ensure order:
reordered. scoreboard bits to stall issue of
reader; HW_RET STALL to
stall reader; double write plus
buffer blocks to force retire and
allow for propagation delay.
Implicit No IPRsinthis | The hardware struc- [1PR-specific PALcode |No IPRsin thisclass.
Writer class. ture of implicitly restrictions are
written IPRs handles | required for this case.
this case. Aninterlock mecha-
nism must be placed
between the explicit
reader and the implicit
writer (aread transac-
tion).
Explicit Read transac- | If thereader isinthe |Read transactions can | Scoreboard bits stall issue of
Reader tions can be PALcode routine be reordered. reader until writer is retired.
reordered. invoked by the
exception associated
with the writer, then
ordering is guaran-
teed.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-9

Internal Processor Register Access Mechanisms

Table 6—7 Paired Instruction Fetch Order (Continued)

Second
Instruction First Instruction
Explicit Reader reads Write-one-to-clear Reader reads second | Scoreboard bits stall second
Writer second register. | bits, or performance | register. Writer cannot | writer in map stage until first
Writer cannot | counter special case. |write second register | writer isretired.
write second For example, perfor- |until it isretired.
register until it | mance counter incre-
isretired. ments are typically

not scoreboarded
against read transac-
tions.

For convenience of implementation, there isno IPR scoreboard bit checking within the
same fetch block (octaword-aligned octaword).

* Within one fetch block, there can be only one explicit writer (HW_MTPR) to an
IPR in a particular scoreboard group.

e Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an explicit reader (HW_MFPR) to an IPR
in that same scoreboard group.

* Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an implicit reader to an IPR in that score-
board group. This case coverswritesto DTB_PTE or DTB_TAG followed by a
LD, ST, or any memory operation, including HW_RETs without the ‘stall’ bit set.

6.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers

6-10 Privileged Architecture Library Code

Across fetch blocks, the correct ordering of the explicit write of the DTB_PTE or
DTB_TAG followed by an implicit reader (memory operation) is guaranteed using the
IPR scoreboard bits.

However, there are cases where correct ordering of explicit writers followed by implicit

readers cannot be guaranteed using the IPR scoreboard mechanism. If the instruction
that implicitly reads the IPR does so before the issue stage of the pipeline, the score-

board mechanism is not sufficient.

For example, modification of the ITB affects instructions before the issue state of the
pipeline. In this case, PALcode must contain a HW_RET instruction, with its stall bit
set, before any instruction that implicitly reads the IPR(S) in question. This prevents
instructions that are newer than the HW_RET instruction from being successfully
fetched, issued, and retired until after the HW_RET instruction is retired (or aborted).

There are also cases when the HW_RET with the STALL bit mechanism is not suffi-
cient. There may be additional propagation delay past the retirement of the HW_RET
instruction. In these cases, instead of using a HW_RET, a suggested method of ensur-
ing the ordering is coding a group of 5 fetch blocks, where the first contains the
HW_MTPR to the IPR, the second contains a HW_MTPR to the same IPR or one in the
same scoreboard group, and where the following 3 fetch blocks each contain at least
one non-NOP instruction. See Appendix D for a listing of cases where this method is
recommended.

Alpha 21264/EV67 Hardware Reference Manual

PALshadow Registers

6.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers

Certain IPRs that are updated as a result of faulting memory operations require PAL-
code assistance to maintain ordering against newer instructions. Consider the following
code sequence:

HV MFPR | PR_MM STAT
LDQ rx, (ry)
It istypically the case that these instructions would issue in-order:

e The MFPR isdata-ready and both instructions use alower subcluster. However, the
HW_MFPRs (and HW_MTPRS) respond to certain resource-busy indications and
do not issue when the MBOX informs the IBOX that a certain set of resources
(store bubbles) are busy.

e The LDsrespond to adifferent set of resource-busy indications (load-bubbles) and
could issue around the HW_MFPR in the presence of the former. PALcode assis-
tance is required to enforce the issue order.

Onetotally reliable method isto insert an MB (memory barrier) instruction before the
first load that occurs after the HW_MFPR MM _STAT. Another method would be to
force aregister dependency between the HW_MFPR and the LD.

6.6 PALshadow Registers

The 21264/EV 67 contains eight extra virtual integer registers, called shadow registers,
which are avail able to PAL code for use as scratch space and storage for commonly used
values. These registers are made available under the control of the SDE[1] field of the
|_CTL IPR. These shadow registers overlay R4 through R7 and R20 through R23,
when the CPU isin PALmode and SDE[1] is set.

PAL code generally runs with shadow mode enabled. Any PAL code that supports
CALL_PAL instructions must run in that mode because the hardware writes a
PA L shadow register with the return address of CALL_PAL instructions.

PAL code may occasionally be required to toggle shadow mode to obtain access to the
overlayed registers. See the PALcode restriction, Updating |_CTL[SDE], in Section
D.32.

6.7 PALcode Emulation of the FPCR

The FPCR register contains status and control bits. They are accessed by way of the
MT_FPCR and MF_FPCR instructions. The register is physicaly implemented like an
explicitly written IPR. It may be written with avalue from the floating-point register
file by way of the MT_FPCR instruction. Architecturally-compliant FPCR behavior
requires PAL code assistance. The FPCR register must operate as listed here:

1. Correct operation of the status bits, which must be set when a floating-point
instruction encounters an exceptional condition, independent of whether atrap for
the condition is enabled.

2. Correct values must be returned when the FPCR isread by way of aMF_FPCR
instruction.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-11

PALcode Entry Points

3. Correct actions must occur when the FPCR is written by way of aMT_FPCR
instruction.

6.7.1 Status Flags

The FPCR status bits in the 21264/EV 67 are set with PAL code assistance. Floating-
point exceptions, for which the associated FPCR status bit is clear or for which the
associated trap isenabled, result in ahardware trap to the ARITH PALcode routine. The
EXC_SUM register contains information to alow this routine to update the FPCR
appropriately, and to decide whether to report the exception to the operating system.

6.7.2 MF_FPCR

The MF_FPCR isissued from the floating-point queue and executed by the Fbox. No
PAL code assistance is required.

6.7.3 MT_FPCR

The MT_FPCR instruction is issued from the floating-point queue. Thisinstruction is
implemented as an explicit PR write operation. The valueiswritten into the first latch,
and when the instruction is retired, the value is written into the second latch. Thereisno
IPR scoreboarding mechanism in the floating-point queue, so PALcode assistance is
required to ensure that subsequent readers of the FPCR get the updated val ue.

After writing thefirst latch, the MT_FPCR instruction invokes a synchronous trap to
the MT_FPCR PAL code entry point. The PALcode can return usingaHW_RET
instruction with its STALL bit set. This sequence ensures that the MT_FPCR instruc-
tion will be correctly ordered for subsequent readers of the FPCR.

6.8 PALcode Entry Points

PALcodeisinvoked at specific entry points, of which there are two classes.
CALL_PAL and exceptions.

6.8.1 CALL_PAL Entry Points

CALL_PAL entry points are used whenever the I|box encounters a CALL_PAL instruc-
tion in the Istream. To speed the processing of CALL_PAL instructions, CALL_PAL
instructions do not invoke pipeline aborts but are processed as normal jumps to the off-
set from the contents of the PAL_BA SE register, which is specified by the CALL_PAL
instruction’s function field.

The Ibox fetches a CALL_PAL instruction, bubbles one cycle, and then fetches the
instructions at the CALL_PAL entry point. For convenience of implementation, returns
from CALL_PAL are aided by a linkage register (much like JSRs). PALshadow regis-
ter R23 is used as the linkage register. The Ibox loads the PC of the instruction after the
CALL_PAL instruction, into the linkage register. Bit [0] of the linkage register is set if
the CALL_PAL instruction was executed while the processor was in PALmode.

The Ibox pushes the value of the return PC onto the return prediction stack.
CALL_PAL instructions start at the following offsets:

* Privileged CALL_PAL instructions start at offset 20004.
* Nonprivileged CALL_PAL instructions start at offset 3000,¢.

6-12 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

PALcode Entry Points

Each CALL_PAL instruction includes afunction field that is used to calcul ate the PC of
its associated PAL code entry point. The PALcode OPCDEC exception flow will be
invoked if the CALL_PAL function field satisfies any of the following requirements:

* Isintherange of 40,4 to 7Fg inclusive
* Isgreater than BF ¢

* |Isbetween 00,6 and 3Fg inclusive, and IER_CM[CM] is not equal to the kernel
mode value 0

If none of the conditions above are met, the PALcode entry point PC isasfollows:
e PC[63:15] = PAL_BASE[63:15]

e PC[14]=0

e PC[13]=1

e PC[12] = CALL_PAL function field [7]

e PC[11:6] = CALL_PAL function field [5:0]

e PC[5:1]=0

. PC[0] = 1 (PALmode)

6.8.2 PALcode Exception Entry Points

When hardware encounters an exception, Ibox execution jumps to a PAL code entry
point at a PC determined by the type of exception. The return PC of the instruction that
triggered the exception is placed in the EXC_ADDR register and onto the return predic-
tion stack.

Table 6—8 shows the PALcode exception entry locations and their offset from the
PAL_BASE IPR.

Table 6—-8 PALcode Exception Entry Locations

Entry Name Type Offset;g Description
DTBM_DOUBLE 3 Fault 100 Dstream TB miss on virtual page table entry fetch. Use three-
level flow.
DTBM_DOUBLE 4 Fault 180 Dstream TB miss on virtual page table entry fetch. Use four-
level flow.
FEN Fault 200 Floating point disabled.
UNALIGN Fault 280 Unaligned Dstream reference.
DTBM_SINGLE Fault 300 Dstream TB miss.
DFAULT Fault 380 Dstream fault or virtual address sign check error.
OPCDEC Fault 400 Illegal opcode or function field:
*Opcode 1, 2,3,4,5,60r7
* Opcode 195, 1Byg, 1Dyg, 1E;5 Or 1F6, Not PALmode or
not |_CTL[HWE]
« Extended precision IEEE format
» Unimplemented function field of opcodes;d4r 1Gg
IACV Fault 480 Istream access violation or virtual address sign check error.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-13

Translation Buffer (TB) Fill Flows

Table 6-8 PALcode Exception Entry Locations (Continued)

Entry Name Type Offset;g Description

MCHK Interrupt 500 Machine check.

ITB_MISS Fault 580 Istream TB miss.

ARITH Synch. Trap 600 Arithmetic exception or update to FPCR.
INTERRUPT Interrupt 680 Interrupts: hardware, software, and AST.
MT_FPCR Synch. Trap 700 Invoked when aMT_FPCR instruction is issued.
RESET/WAKEUP Interrupt 780 Chip reset or wake-up from sleep mode.

6.9 Translation Buffer (TB) Fill Flows

This section shows the expected PAL code flows for DTB missand ITB miss. Familiar-
ity with 21264/EV 67 IPRs is assumed.

6.9.1 DTB Fill

Figure 6-5 shows single-miss DTB instructions flow.

Figure 6-5 Single-Miss DTB Instructions Flow Example

Figure 6-5 shows single-miss DTB instructions flow.

hw nf prp23, BV6__ EXC ADDR ; (OL) get exception address
hw nfprp4, EV6_ VA FCRM ; (4-7,1L) get vpte address
hw nfprp5, EV6__ M STAT ; (OL) get miss info

hw nfpr p7, EV6_ EXC SUM ; (OL) get exc_sumfor ra
hw nfpr p6, EV6_ VA ; (4-7,1L) get original va
bi c p7, #1, p7 ; clear double mss flag

xor p4, p6, p4 ; interlock p4 and p6

xor p4, p6, p4 ; restore p4

trap__dtbmsingl e vpte:

hw I da/v p4, (p4) ; (1L) get vpte
blt p msc, trap_ditol ; (xU) <63>=1 => 1-to-1
bl bcp4, trap_invalid dpte ; (xU) invalid => branch
and p4, #"x80, p7 ; isolate nb bit

xor p7, #"x80, p7 ; flip nb bit

ALl GN_FETOH BLAOXK <*x47FF041F>

PVC M QLATE <2> ; ignore scoreboard violation
hw mprp6, EV6_ DIB TAQ ; (286,0L) wite tag0
hw mpr p6, EV6__DIB TAGL ; (185,1L) wite tagl

6-14 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Translation Buffer (TB) Fill Flows

hw nmiprpd4, <BEV6_ DIB PTEO ! ~x44> ; (0,4,2,6) (OL) wite pte0
hw mprp4, <Bv6_ DIB PTEL | ~x22> ; (3,7,1,5 (1L) wite ptel

ASSUME <tb_nb_en + pte_eco> ne 2

.if ne pte_eco

bnep7, trap__dtbmsingl e nb ; branch for nb

hw ret (p23)

; return

trap__dtbmsingl e nb:

nb

hw ret (p23)
Jff

hw ret (p23)

. endc

; return

; return
; (assumes tb_nb_en on mul ti-processors)

The following list presents information about the single-miss DTB code example:

In Figure 6-5, where (x,y) or (y) appear in the commexrdpecifies the scoreboard
bits andy specifies the Ebox subcluster.

r4 —r7 and r20 — r23 are PAL shadow registers.

PAL shadow r22 contains aflag that indicates whether the native code is running
“1-to-1", that is, running in a mode where the physical address should be mapped
1-to—-1 to the virtual address, rather than being taken from a page table.

IPR scoreboard bits [3:0] are used to order the restarted load or store instructions
for the DTB write transactions.

MM _STAT and VA will not be overwritten if the LD_VPTE instruction misses the
DTB. Thereisno issue order constraint.

The code is written to prevent alater execution of the DTB fill instruction from
being issued before a previous execution and corrupting the previous write to the
TB registers. The correct sequence of executions is accomplished by placing code
dependencies on scoreboard bits[7:4] in the path of the successive writers. This
prevents the successive writers from being issued before the previous writers are
retired.

When| _CTL[TB_MB_EN] =1, theissue of MTPR DTB_PTEO triggers, in hard-
ware, alightweight memory barrier (TB-MB). The lightweight memory barrier
enforces read-ordering of store instructions from another processor (1) to this pro-
cessor’s (J) page table and this processor’s virtual memory area such that if this
processor sees the write to the PTE from (1) it will see the new data.

Processor | Processor J

Wr Data LD/ST

MB <tb miss>

Wr PTE LD-PTE, write TB
LD/ST

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-15

Translation Buffer (TB) Fill Flows

* The conditional branch is placed in the code so that al of the MTPR instructions
areissued and retired or none of them areissued and retired. Thisallowsthe TB fill
hardware to update the TB whenever it seesthe retiring of PTEL and to ignore
writesto TAGO/TAGL/PTEO/PTEL in the interim between the issuing of those
writes and aretire of PTEL

e Asandternativetousing| CTL[TB_MB_EN] = 1 to enforce read ordering,
|_CTL[TB_MB_EN] can be set to 0 and the PALcode may use a bit in the PTE to
indicate whether to do an explicit MB.

The flow example in 6-5 shows the code using pte_eco and the code not using
pte_eco. It assumes the following:

— In a multi-processor configuration, if pte_eco is not enabled, it is hecessary to
enable tb_mb_en.

— In a uni-processor configuration, if pte_eco is not enabled, it is not necessary to
enable tb_mb_en.

— At no time should pte_eco and tb_mb_en both be enabled.

e Thevaluein DTB_PTEX]GH] determines whether the scoreboard mechanism alone
is sufficient to guarantee all subsequent load/store instructions (implicit readers of
the DTB) are ordered relative to the creation of anew DTB entry; whether all sub-
sequent loads and stores to the loaded address will hit in the DTB.

— If DTB_PTEGH] is zero, the scoreboard mechanism alone is sufficient.

— If DTB_PTEXGH] is not zero, the scoreboard mechanism alone is not suffi-
cient (although this is not a problem). In this case, the new DTB entry is not
visible to subsequent load/store instructions until after the MTPR DTB_PTE1
retires.

Issuing a HW_RET_STALL instead of a HW_RET would guarantee ordering,
but is not necessary. Code executes correctly without the stall although execu-
tion might result in two passes through the DTB miss flow, rather than one,
because the re-execution of the memory operation after the first DTB miss
might miss again.

This behavior is functionally correct because DTB loads that tag-match an
existing DTB entry are ignored by the 21264/EV67 and the second DTB miss
execution will load exactly the same entry as the first.

6.9.2 ITB Fill

Figure 6—6 shows the ITB miss instructions flow.

Figure 6-6 ITB Miss Instructions Flow Example

hw_nf pr r4, BEV6__ | VA FCRV ; (OL) get vpte address

hw _nf pr r23, EV6_ EXC ADDR ; (OL) get exception address

| da r6, AXOFFF(r 31) ; (xU) create mask for prot

bi s r31, r31, r31 ;o (xU) fill out fetch bl ock
trap__itb nmiss vpte:

hw ldg/v r4, (rd) ; (xL) get vpte

and r4, r6, r5 ; (XL) get prot bits

blt p msc, trap_iltol ; (xU) 1-to-1 => branch

6-16 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Performance Counter Support

sri r4, #CBF PTE_PFN S r6 ; (xU) shift PFNto <0>

sl re, #EV6__ I TB PTE_PFN S, r6 ; (xU) shift PFNinto place
and r4, #<1@oF PTE_FCE S, r7 ; (XL) get FCE bit

bl bc r4, trap_invalid_ipte ; (xU invalid => branch
bne rv, trap_foe ; (xU FCE => branch

srl ra, #7, r7 ; check for nb bit

bi s r5 r6, r6 ; (xL) PTEin ITB fornat
hw_n pr r23, BEV6__ | TB TAG ; (6,0L) wite tag

hw _nt pr re, EV6_ | TB PTE ; (084,0L) wite PTE

ASSUME <tb nb_en

.if ne pte_eco
bl bc r7z, t
hwret stall

+ pte_eco> ne 2

rap__itb_mss_nb ; branch for nb
(r23); (oL)

trap__itbh mss nb:

nb
. endc
hwret stall

(r23) : (0L)

The following list presents information about the ITB miss flow code example:

In Figure 6—6, where (x,y) or (y) appear in the commexrgpecifies the scoreboard
bits andy specifies the Ebox subcluster.

The ITB isonly accessed on |cache misses.
r4 —r7 and r20 — r23 are PALshadow registers.

PA L shadow r22 contains aflag that indicates whether the native code is running
“1-to-1", that is, running in a mode where the physical address should be mapped
1-to—1 to the virtual address, rather than being taken from a page table.

The HW_RET instruction should have its STALL hit set to ensure that the restarted
Istream does not read the I TB until the ITB iswritten.

Asan dternativetousing|_CTL[TB_MB_EN] = 1 to enforce read ordering,

| CTL[TB_MB_EN] can be set to 0 and the PALcode may use abit in the PTE to
indicate whether to do an explicit MB. The flow example in Figure 6—6 assumes
this alternative.

6.10 Performance Counter Support

The 21264/EV67 provides hardware support for two methods of obtaining program
performance feedback information. The two methods do not require program modifica-
tion. Instead, performance monitoring utilities make calls to the PALcode to set up the
counters and contain interrupt handlers that call PALcode to retrieve the collected data.
The first method, Aggregate mode, offers capabilities that are similar to earlier micro-
processor performance counters. This mode counts events when enabled, until it over-
flows, causing an interrupt that can retrieve the collected data. The second method,

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-17

Performance Counter Support

ProfileMe mode, supports a new way of statistically sampling individual instructions
during program execution. This mode counts events triggered by a targeted inflight
instruction.

Counter support uses the hardware registers listed in Table 6-9.

Table 6-9 IPRs Used for Performance Counter Support

Register Name Mnemonic Relevant Fields Described in Section
ProfileMe PC PMPC All fields 526
Interrupt enable and current process |IER_CM PCENJ1:0] 529
sor mode
Interrupt summary ISUM PC[1:0] 5211
Ibox control I_CTL SPCE, PCTO_EN, PCT1_EN 52.15
Ibox status |_STAT OVR, ICM, TRAP-TYPE, 5.2.16
LSO, TRP, MIS
Ibox process context PCTX PPCE 5221
Performance counter support PCTR_CTL Allfields 5.2.22

6.10.1 General Precautions

Initialize both counters, (PCTR_CTL[PCTRO and PCTR1]), to zero in reset PALcode
to avoid spurious interrupts when exiting initial PALcode. Counters must be written
twice during initialization to ensure that the overflow latch has been cleared (see the
PALcode restrictions in Sections D.28 and D.34).

The counters should never be left within one cycle of overflow when disabled because
that can cause some interrupts to be blocked in anticipation of an overflow interrupt
(see PALcode restriction 32).

If a counter is at the overflow threshold and a value is written to that counter, the
counter signals an overflow interrupt upon leaving PALmode, even if that counter is
disabled. To avoid that interrupt, the PALcode should clear the interrupt by writing to
HW_INT_CLR.

Interrupts are disabled in PALmode.

As a quirk of the implementation, while counting is disabled, a read of PCTR_CTL can
yield value+some increment, where value is the actual value in PCTR_CTL, and incre-
ment for PCTRO is in the range 0..4 (retired instructions in that cycle), and increment
for PCTR1 is dependent on SL1.

6.10.2 Aggregate Mode Programming Guidelines

Use the following information to program counters in Aggregate mode.

6.10.2.1 Aggregate Mode Precautions

Counters continue to count after overflow.
Only the counters return useful data. See Table 6-11 for counting modes.

Counters can be read by a PALcode instruction at any time to get the aggregate count.

6-18 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Performance Counter Support

The legal range for PCTRO when writing the IPR is 0:(2** 20-16).
The legal range for PCTR1 when writing the IPR is 0:(2** 20-4).
6.10.2.2 Operation
1. Setup
The following IPRs need to be set up by PAL code instructions.

IPR Name Relevant Fields Meaning
IER_ CM PCENJ[1:0] Enable Interrupts.
PCTX PPCE Enable Process Performance Counting or use | _CTL[SPCE].
PCTR_CTL SLO Selects Aggregate or ProfileMe mode; set to O for Aggregate mode.
SL1 Selgcts PCTRO and PCTR1 counting modes. See Table 6-11 for more infor-
mation.
PCTRO0[19:0] Set counter 0 starting value [0:(2**20-16)]. See Section 6.10.1 for setup
precautions.
PCTR1[19:0] Set counter 1 starting value [0:(2**20-4)]. See Section 6.10.1 for setup pre-
cautions.
|_CTL SPCE Enable System Performance Counting or use PCTX[PPCE].
PCTO_EN Enable performance counter 0.
PCT1_EN Enable performance counter 1.
2. Count
If PCTRO and PCTR1 are enabled, will increment according to modes selected by
SLOand SL1.
3. Overflow

If PCEN[1:0] isenabled, PC[1.0] is set when PCTRO or PCTR1 overflows.
4. Hardware interrrupt

When PC[1:0] is set, the PALcode interrupt routine is entered. Interrupt is acknowl-
edged and PAL code generates an interrupt to the operating system performance
monitoring utility.

5. Operating system interrupt handler

The handler should read the IPR PCTR_CTL, as shown in Table 6-10, to note
which counter overflowed in the handler's data structures. The handler may read the
counter to see how many events have happened since the overflow.

The handler may also choose to write the counters to control the frequency of inter-
rupts.

Table 6-10 Aggregate Mode Returned IPR Contents

IPR Field Contents
PCTR_CTL PCTRO[19:0] Counter #0 value
PCTR1[19:0] Counter #1 value

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-19

Performance Counter Support

6.10.2.3 Aggregate Counting Mode Description
6.10.2.3.1 Cycle counting
Counts cycles.
PCTRO isincremented by the number of cycles counted, that is, 1.
6.10.2.3.2 Retired instructions cycles

PCTRO isincremented by up to 8 retired instructions per cycle when enabled via
|_CTL[PCTO_EN] and either |_CTL[SPCE] or PCTX[PPCE]. On overflow, an inter-
rupt istriggered as ISUM[PCQ] if enabled vialER_CM[PCENQO].

The 21264/EV 67 can retire up to 11 instructions per cycle, which exceeds PCTRO's
maximum increment of 8 per cycle. However, no retires go uncounted because the
21264/EV 67 cannot sustain 11 retires per cycle, and the 21264/EV 67 corrects PCTRO
in subsequent cycles.

A sguashed instruction does not count as aretire.
6.10.2.3.3 Bcache miss or long latency probes cycles
Thisinput counts the number of times the Bcache result was a miss.

Essentially, along latency probe is a data request from other processes that cause
Bcache missesin a system.

This count is phase shifted three cycles early and thus includes events that occurred
three cycles before the start and before the end of the ProfileM e window.

6.10.2.3.4 Mbox replay traps cycles
Thisinput counts Mbox replay traps.

6.10.2.4 Counter Modes for Aggregate Mode

Table 6—11 shows the counter modes that are used with Aggregate mode.

Table 6-11 Aggregate Mode Performance Counter IPR Input Select Fields

SLO[4] SL1[3:2] PCTRO PCTR1

0 00 Retired instructions Cycle counting

0 01 Cycle counting Not defined

0 10 Retired instructions Bcache miss or long latency probes
0 11 Cycle counting Mbox replay traps

6.10.3 ProfileMe Mode Programming Guidelines

Use the following information to program counters in ProfileMe mode.
6.10.3.1 ProfileMe Mode Precautions

Squashed NOPs count as valid fetched instructions.

Counter 1 must be explicitly cleared in the trap handler before each data collection.

6-20 Privileged Architecture Library Code Alpha 21264/EV67 Hardware Reference Manual

Performance Counter Support

The CMOV instruction is decomposed into two valid fetched instructions that, in the
absence of stalls, are fetched in consecutive cycles. See Table 6—12 for more informa-
tion.

Table 6-12 CMOV Decomposed

Instruction New Instructions

CMOV Ra, Rb--> Rc CMOV1 Ra, oldRc —> newRcl

CMOV2 newRcl, Rb ——> newRc2

6.10.3.2 Operation

1.

Setup
The following IPRs need to be set up by using PALcode instructions.

IPR Name Relevant Fields Meaning

IER_ CM PCEN[1:0] Enable Interrupts.

PCTX PPCE Enable Process Performance Counting or use |_CTL[SPCE].
PCTR CTL SLO Selects Aggregate or ProfileMe mode; set to 1 for ProfileMe mode.

SL1 Selects PCTRO and PCTR1 counting modes. See Table 6—14 for more infor-
mation.

PCTRO0[19:0] Set counter 0 value (2**20-N). This selects approximately the Nth valid
fetched instruction as the profiled instruction. Because writes to PCTRO are
incremented by 0..4, the profiled instruction is one of the (N-4)th to Nth valid
fetched instructions. See Section 6.10.1 for more setup precautions.

PCTR1[19:0] Set counter 1 value = 0. See Section 6.10.1 for more setup precautions.

I|_CTL SPCE Enable System Performance Counting or use PCTX[PPCE].

PCTO_EN Enable performance counter 0.

PCT1_EN Enable performance counter 1.

2. Open window

PCTRO accumulates up to 4 valid fetched instructions per cycle when enabled via
|_CTL[PCTO_EN] and either |_CTL[SPCE] or PCTX[PPCE].

The valid fetched instruction that causes PCTRO to overflow opens the window and
becomes therofiled instruction and covers a period of time near to when the
instruction was in flight. The first cycle of the window is the 5th cycle after the
instruction was fetched. A residual count of up to 7 valid fetched instructions is
accumulated in PCTRO in the two cycles between overflow and the start of the Pro-
fileMe window. This residual count is returned in |_STAT[overcount(2,0)].

Count

If PCTRO and PCTR1 are enabled, they increment according to modes selected by
SLO & SL1.

End window

The last cycle of the window depends on whether the instruction traps, retires,
aborts, and/or is squashed by the fetcher.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-21

Performance Counter Support

For instructions that cause atrap, the last cycle in the window isthe 2nd cycle after
the trap. Mispredicted branches are included in this category.

For nontrapping instructions that retire, the last cycle in the window isthe 2nd
cycle after the instruction retires.

For instructions that abort, the last cyclein the window is the 2nd cycle after the

trap that caused the abort.

For instructionsthat are squashed (such as TRAPB), the last cyclein the window is
approximately the 2nd cycle after the squashed instruction would have aborted or

retired.

Every non-squashed valid fetched instruction either aborts or retires, but not both.
In either case, the instruction may also trap.

PCTRO is disabled from counting until PCTR_CTL is next written.

5. Interrupt PALcode

When ISUM field PC[1:0] is set, execution of PCTRO’s or PCTR1's interrupt PAL-

code is performed.

6. Operating system interrupt handler

The handler should first read the IPRs in Table 6—-13 and then write PCTR_CTL to set

up the next interrupt.

Table 6—-13 ProfileMe Mode Returned IPR Contents

IPR Name Relevant Fields Meaning
PMPC[63:0] All Profiled PC.
|_STAT ICM Instruction was in anew Icache fill stream.
TRP Instruction cau$d atrap ar!d was not in the shadow of
ayounger trapping instruction.
MIS Conditional branch mispredict.
TRAPTYPE Exception type code.
LSO L oad-store order replay trap.
OVR Counter 0 overcount.
PCTR CTL VAL Instruction retired valid.
TAK Branch direction if instruction is a conditional branch.
PM_STALLED Instruction stalled for at least one cycle between fetch

PM_KILLED_BM

PCTRO[19:0]
PCTR1[19:0]

and map stages of pipeline.

Instruction killed during or before cycle in which it
was mapped.

Counter 0 value.

Counter 1 value.

6-22 Privileged Architecture Library Code

Alpha 21264/EV67 Hardware Reference Manual

Performance Counter Support

6.10.3.3 ProfileMe Counting Mode Description

6.10.3.3.1 Cycle counting

In ProfileMe mode, either counter counts cycles during the window of the profiled
instruction.

6.10.3.3.2 Inum retire delay cycles

Thisinput is used to measure alower bound on the inum retire delay of the profiled
instruction. The maximum final value of PCTR1 isthelength of the ProfileM e window
minus 2.

Counts cycles that a profiled instruction delayed the retire pointer advance during the
ProfileMe window. The 21264/EV 67 tracks instructions in the pipeline by alocating
them "inums' near the front of the pipeline. All inumsareretired in the order in which
they were allocated at the end of the pipeline.

Inums are allocated in batches of four, so there may be more inums all ocated than there
are program instructionsin flight. Every inum isretired in order, including those for
aborted instructions.

The "retire pointer" points to the next inum to be retired. Aninum retiresin the cycle
that the retire pointer advances past the inum.

Let X and Y be consecutive inumsin the allocation order. The "inum retire delay" of Y
is[(cycleinwhich Y retired) — (cycle in which X retired)]. A large inum retire delay
indicates a possible performance bottleneck (for example, an instruction stalled on a
data cache miss).

6.10.3.3.3 Retired instructions cycles

When counting retired instructions in ProfileMe mode, the final count in PCTRO may
include instructions that retired before the ProfileMe window and may exclude instruc-
tions that retired near the end of the ProfileMe window. These discrepancies are caused
by a variable delay between the time that an instruction retires and the time that PCTRO
is incremented for that retire. This discrepancy is in the range of plus or minus 4 retired
instructions.

6.10.3.3.4 Bcache miss or long latency probes cycles
This input counts the number of times the Bcache result was a miss.

Essentially, a long latency probe is a data request from other processes that cause
Bcache misses in a system.

This count is phase shifted three cycles early and thus includes events that occurred
three cycles before the start and before the end of the ProfileMe window.

6.10.3.3.5 Mbox replay traps cycles
This input counts Mbox replay traps.

PCTR1 is enabled to count Mbox replay traps that occur during a window that is the
ProfileMe window phase-shifted one cycle later. The first replay trap counted would be
the 7th cycle after the instruction is fetched.

Alpha 21264/EV67 Hardware Reference Manual Privileged Architecture Library Code 6-23

Performance Counter Support

6.10.3.4 Counter Modes for ProfileMe Mode

Table 6-14 shows the counter modes that are used with ProfileMe mode.

Table 6-14 ProfileMe Mode PCTR_CTL Input Select Fields

SLO[4] SL1[3:2] PCTRO PCTR1

1 00 Retired instructions Cycle counting

1 01 Cycle counting Inum retire delay

1 10 Retired instructions Bcache miss or long latency probes
1 11 Cycle counting Mbox replay traps

6-24 Privileged Architecture Library Code

Alpha 21264/EV67 Hardware Reference Manual

v

Initialization and Configuration

This chapter provides information on 21264/EV 67-specific microprocessor system ini-
tialization and configuration. It is organized as follows:

e Power-up reset flow
e Fault reset flow
* Energy star certification and sleep mode flow
* Warm reset flow
e Array initialization
e Initialization mode processing
e External interfaceinitialization
* Internal processor register (IPR) reset state
¢ |EEE 1149.1 test port reset
* Reset state machine state transitions
e Phase-locked loop (PLL) functional description
Initialization is controlled by the reset state machine, which is responsible for four
major operations. Table 7—1 describes the four major operations.

Table 7-1 21264/EV67 Reset State Machine Major Operations

Operation Function

Ramp up Sequence the PLL input and output dividers (X, and Zg;,) to gradually raise the internal
GCLK fregquency and generate time intervals for the PLL to re-establish lock.

BiST/SROM Receive a synchronous transfer on the CIkFwdRst_H pinin order to start built-in self-test and
SROM load at a predictable GCLK cycle.

Clock forward Receive a synchronous transfer on the CIkFwdRst_H pin in order to initialize the clock for-
interface warding interface.

Ramp down Sequence the PLL input and output dividers (X, and Zg;,) to gradually lower the internal
GCLK frequency during sleep mode.

7.1 Power-Up Reset Flow and the Reset L and DCOK_H Pins

The 21264/EV67 reset sequence is triggered using the two input $kpsaisl. and
DCOK _H in a sequence that is described in Section 7.1.1. Résat_L is deasserted,
the following sequence of operations takes place:

Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration — 7-1

Power-Up Reset Flow and the Reset L and DCOK_H Pins

1. Theclock forwarding and system clock ratio configuration information is loaded
onto the 21264/EV 67. See Section 7.1.2.

2. Theinternal PLL isramped up to operating frequency.

3. Theinternal arrays built-in self-test (BiST) is run, followed by Icache initialization
using an external serial ROM (SROM) interface.

The 21264/EV 67 systems, unlike the Alpha 21064 and 21164 microprocessor sys-
tems, are required to have an SROM. The SROM provides the only means to con-
figure the system port, and the SROM pins can be used as a software-controlled
UART.

The Icache must contain PAL code that starts at location 0x780. This codeis used to
configure the 21264/EV 67 | PRs as necessary before causing any offchip read or
write commands. This allows the 21264/EV 67 to be configured to match the exter-
nal system implementation.

4. After configuring the 21264/EV 67, control can be transferred to code anywherein
memory, including the noncacheable regions. The Icache can be flushed by awrite
operation to the ITB invalidate-all register after control istransferred. This transfer
of control should be to addresses not loaded in the |cache by the SROM interface or
the Icache may provide unexpected instructions.

5. Typically, any state required by the PALcode isinitialized and then the consoleis
started (switching out of PALmode and into native mode). The console code initial-
izes and configures the system and boots an operating system from an 1/O device
such as adisk or the network.

Figure 7-1 shows the sequence of events at power-up, or cold reset. In Figure 7-1, note
the following symbols for constraints and information:

Constraints:

A Setup (A0) and hold (A1) for IRQ’s to be latched by DCOK (2 ns for each).

B Enough time foReset_L to propagate through 5 stages of RESET synchronizer (clocked by the inter-
nal framing clock, which is driven dgV6CIk_x). Worst case through Pass 3 of the 21264/EV67
would be 5x8x8 = 320 GCLK cycles, becausg, Yalues above 8 are out of range.

C Min =1 FrameCIk cycle.

Information:

8 GCLK cycles from DCOK assertion to first “re&lV6Clk_x cycle.

Approximately 525 GCLK cycles for external framing clock to be sampled and captured.
1FrameClk_x cycle.

3FrameClk_x cycles.

Approximately 264 GCLK cycles to prevent first command from appearing too early.

Approximately 700,000 GCLK cycles for BiST + approximately 100,000 GCLK cycles fixed time +
approximately 50,000 GCLK cycles per line of Icache for SROM load.

g 16 GCLK cycles.

- O QO O T 9

7-2 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Figure 7-1 Power-Up Timing Sequence

—>|A0|Al}e—
IRQ_H |
DCOK_H /
—| a |<—
Reset_L /
_>| B | Je—— f———]
state WAIT SETTLE _ XWAIT NOMINALX RAMP1L X RAMP2 X WAIT Cikfwdrsto X WAIT BiST X WAIT_CIkFwdRstL X RUN
|Je—b—| —cje—
[e— & —>|
SromOE_L \ /\
CIkFWdRSt_H no min _/ no min _
—»| C | —| d |
internal CIkFwdRst
N
TestStat_H M\, —-—"f[-—~—~————-
— g -—
external Clks A /T
|

End of BiST

7.1.1 Power Sequencing and Reset State for Signal Pins

BIST Fails

BiST Passes
FM-06486B.FH8

Power sequencing and avoiding potential failure mechanismsis described in Section

9.3.

The reset state for the signal pinsislisted in Table 7-2.

Table 7-2 Signal Pin Reset State

Signal Reset State Signal Reset State

Bcache

BcAdd_H[23:4] Tristated

BcCheck H[15:0] Tristated BcTaglnClk_H NA (input)

BcData H[127:0] Tristated BcTagOE_L Tristated

BcDatalnClk_H[7:0] NA (input) BcTagOutClk_x Tristated

BcDataOE_L Tristated BcTagParity H Tristated

BcDataOutClk_x[3:0] Tristated BcTagShared H Tristated

BcDataWr_L Tristated BcTagvalid H Tristated

BcLoad L Tristated BcTagWr_L Tristated

BcTag H[42:20] Tristated BcVref NA
(I_DC_REF)

BcTagDirty H Tristated

System Interface

IRQ_HI[5:0] NA (input) SysDatalnClk_H[7:0] NA (input)

SysAddin_L[14:0] NA (input) SysDatal nValid_L NA (input)

SysAddInClk_L NA (input) SysDataOutClk_L[7:0] Tristated

Alpha 21264/EV67 Hardware Reference Manual

Initialization and Configuration

7-3

Power-Up Reset Flow and the Reset L and DCOK_H Pins

Table 7-2 Signal Pin Reset State (Continued)

Signal Reset State Signal Reset State
SysAddOut_L [14:0] Initially, during power-up reset, state SysDataOutValid_L NA (input)

is not defined. If not during power-

up, preserves previous state. Then,

after the clock forward reset period

(asthe external clocks start), signal

driven to NZNOP until the reset

state machine enters RUN, when it

isdriven to NOP.
SysAddOutClk_L Tristated SysFillvalid_L NA (input)
SysCheck _L[7:0] Tristated SysVref NA

(I_DC_REF)

SysData L[63:0] Tristated
Clocks
ClkFwdRst_H NA (input) FrameClk_x NA (input)
Clkln_H NA (input) PLL VDD NA
ClkIn_L (I_DC_REF)
EV6CIk_H NA (input)
EV6CIk_L
Miscellaneous
DCOK_H Must be deasserted until dc voltage Tck_H NA (input)

reaches proper operating level.
PlIBypass H NA (input) Tdi_H NA (input)
Reset L NA (input) Tdo H Unspecified
SromClk_H Tristated TestSat H Tristated
SromData H NA (input) Tms H NA (input)
SromOE_L Tristated Trst L NA (input)

In addition, as power is being ramped, Reset_L must be asserted — this allows the
21264/EV67 to reset internal state. Once the target voltage levels are attained, systems
should asselPCOK _H. This indicates to the 21264/EV67 that internal logic functions

can be evaluated correctly and that the power-up sequence should be continued. Prior to
DCOK _H being asserted, the logic internal to the 21264/EV67 is being reset and the
internal clock network is running (either clocked by the PLL VCO, which is at a nomi-
nal speed, or bZlkIn_H, if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

7.1.2 Clock Forwarding and System Clock Ratio Configuration

7-4 Initialization and Configuration

WhenDCOK _H is asserted, the 21264/EV67 samples several pins and latches in some
initialization state, including the value of the PLIyydivisor, which specifies the

ratio of the system clock to the internal clock (see Section 7.11.2.3), and enables the
charge pump on the phase-locked loop.

Alpha 21264/EV67 Hardware Reference Manual

Power-Up Reset Flow and the Reset L and DCOK_H Pins

Table 7—-3 summarizes the pins and the suggested/required initialization state. Most of
this information is supplied by placing (switch-selectable or hardwired) weak pull-ups
or pull-downs on théRQ_H pins. ThdRQ_H pins are sampled on the rising edge of
DCOK _H, during which time the 21264/EV67 is in reset and is not generating any sys-
tem activity. During normal operation, tHeQ_H pins supply interrupt requests to the
21264/EV67.

It is possible to disable the 21264/EV67 PLL and source GCLK directly@iéim_x.

This mode is selected vRlIBypass H. The 21264/EV67 still produces a divided-
down clock orEV6CIk_x; this output clock, which tracks GCLK, can be used in a
feedback loop to generate a locked input clock via an external PLL. The input clock
can be locked against a slower speed system reference clock.

Table 7-3 Pin Signal Names and Initialization State

Signal Name Sample Time Function Value
PlIBypass H Continuousinput Select Clkin_x onto GCLK instead of internal 0 Bypass®
PLL. 1 UsePLL
ClkFwdRst_ H Sampling method — —
according to
IRQ_H[4]
Reset L Continuous input — —
IRQ_HI[5] Rising edge of Select 1:1 FrameClk mode. 0 Sample with
DCOK_H Internal FrameClk can be generated two ways: FrameClk_H

1 Use a copy of

1 By samplingFrameClk_H. Used if EV6CIKk H

FrameClk_H is slower tharClkin_H.

2 As adirect copy dEV6CIk_H. Used if
FrameClk_H is the same frequency as
ClkIn_H oris DC.

IRQ_HI[4] Rising edge of Select method of samplir@kFwdRst_H to 0 Sample with Exter-

DCOK_H produce internal CIkFwdRst — either with nal FrameClk_x
external or internal copy &frameClk_x. 1 Sample with Inter-
nal Frameclk
IRQ_HI[3:0] Rising edge of Select Y, divisor value. This is the divide- IRQ_H[3:0] Divisor
DCOK_H down factor between GCLK ariElV6Clk_x.
0011 3
When the PLL is in use and the 21264/EV67 {3100 4
ramped-up to full speed, the VCO adjusts in Oﬁ)(l) g
order to phase-align (and rate-matEN)6CIk_X 111 7
to ClkIn_x. When the PLL is not in use, and 0000 8
ClkIn_x is bypassed onto GCLKEV6CIK_x is %882 1%

slower tharClkIn_x by the divisor Y.

1010 11
1011 12
1100 13
1101 14
1110 15
1111 16

Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7-5

Power-Up Reset Flow and the Reset L and DCOK_H Pins

Table 7-3 Pin Signal Names and Initialization State (Continued)

Signal Name

Sample Time Function Value

DCOK_H

Continuousinput When deasserted, initializes the internal 21264/ —
EV67 reset state machine and keeps the PLL
internal oscillator running at a nominal speed.
Assertion, which implies power to the 21264/
EV67 isgood, causes configuration information
to be sampled.

1 The maximum permissible instantaneous changgikihn_x frequency is 333 MHz (to prevent cur-
rent spikes).

7.1.3 PLL Ramp Up

After the configuration is loaded through the IRQ_H pins, the next phase in the power

up flow istheinternal PLL ramp up sequence. Ramping up of the PLL isrequired to
guarantee that the dynamic change in frequency will not cause the supply on the 21264/
EV67 to fall due to the supply loop inductance. Clock control circuitry steps GCLK

from power-up/reset clocking to /161 operating frequency, to % operating frequency,
and finally normal operating frequency.

After the assertion dCOK _H, the 21264/EV67 waits for the deassertiofRe$et L

from the system while the PLL attempts to achieve a lock. The PLL internal ramp
dividers are set to divide down the input clock by 16 and the PLL attempts to achieve
lock against an effective input frequencyG@kin_x/16. Once lock is achieved, the
actual internal frequency (GCLK) &lkIn_x*(Y g, divisor value)/16. There should be

a minimum delay of 100 ms between the assertidd@®K_H and the deassertion of
Reset_L to allow for this locking The reset state machine is in the WAIT_NOMINAL
state.

After the deassertion &eset_L, the reset state machine goes into the RAMP1 state.
The 21264/EV67 ramps the internal frequency, by changing the effective input fre-
guency of the PLL t&lkln_x/2 for a sufficient lock interval (about 2). The state
machine then goes into the RAMP?2 state, changing the effective input frequency to
ClkIn/1 for an additional lock interval (about P8). The lock periods are generated by
the internal duration counter, which is driven by GCLK. The counter counts 4108
GCLK cycles during th€lkIn_x/2 lock interval. Note that GCLK is produced by the
output of the PLL, which is locking to an input clock which is 1/2 of the operating fre-
quency — therefore, the 4108 cycle interval constitutes a 3% 2®@erval when the
operating frequency is 400—-666 MHz. Then, the counter counts 8205 GCLK cycles
during theClkIn_x/1 lock interval.

7.1.4 BiST and SROM Load and the TestStat_H Pin

The 21264/EV67 uses the deassertio@léfFwdRst H (which must beleasserted for

a minimum of ond-rameClk_H cycle and then reasserted) to begin built-in self-test
(BiST). The reset state machine goes into the WAIT_BIiST state. Details on BiST are
given in Chapter 11. The power-up BiST lasts approximately 700,000 cycles. The result
of the self-test is made available on TfestStat_H pin. The pin is forced low by the
system reset. It is then forced high during BiST.

7-6 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Power-Up Reset Flow and the Reset L and DCOK_H Pins

AsBIiST completes, the TestSat_H pinisheldlow for 16 GCLK cycles. Then, if BiST
succeeds, the pin remains low. Otherwise, it is asserted. After successfully completing
BiST, the 21264/EV 67 then performs the SROM load sequence (described in Chapter
11). After the SROM load sequence is finished, the 21264/EV 67 deasserts SromOE_L.

7.1.5 Clock Forward Reset and System Interface Initialization

After the deassertion of SromOE_L , the reset state machine enters the
WAIT_CIkFwdRst1 state, where the 21264/EV 67 waits for the system to deassert
ClkFwdReset_H. The 21264/EV 67 samples the deasserting edge of CIkFwdReset H
to take synchronous actions. It uses this synchronous event to reset the clock forward-
ing interface, start the outgoing clocks, and deassert internal reset. The chip then waits
264 cycles before issuing commands. The reset state machine isthen in RUN and the
21264/EV 67 begins fetching code at address 0x780.

Table 7-4 lists signals relevant to the power-up flow, provides a short description of
each, and any relevant constraints.

Table 7-4 Power-Up Flow Signals and Their Constraints

Signal Name

Description Constraint

Clkln_x

PLL_VDD
VDD

DCOK_H

Reset L

ClkFwdRst_H
Deassertion #1

ClkFwdRst_H
Deassertion #2

Differential clocksthat are Clocks must be running before DCOK _H is
inputsto PLL or are asserted.

bypassed onto GCLK

directly

VDD supply to PLL PLL_VDD must lead VDD.

VDD supply to the 21264/ —
EV67 chip logic (except
PLL)

Logic signal to the 21264/ —
EV67 that the VDD supply
is good

RESET pin asserted by Reset_L must be asserted prior itCOK_H and

SYSTEM to the 21264/ must remain asserted for at least 100 ms after

EV67 DCOK_H is asserted. This allows for PLL settling
time. Deassertion dReset_L causes the 21264/
EV67 to ramp divisors to their final value and begin
BiST.

Signal asserted by SYS- ClkFwdRst_H must be deasserted after PLL has

TEM to synchronously achieved its lock in its final divisor value (about 20

commence built-in self-tesius). The deassertion causes built-in self-test to

and SROM load begin on an internal clock cycle that corresponds to
one framing clock cycle aft@€@lkFwdRst_H is
deassertedCIkFwdRst_H can be asserted after
one frame clock cycle. See Figure 7-1.

Signal asserted by SYS- ClkFwdRst_H must be deasserted when the Cbhox

TEM to initialize and reset has loaded configuration information. This occurs

clock forwarding interfacesas the first part of the serial ROM load, after BiST
is run. OnceClkFwdRst_H is deasserted, the
interface is initialized and can receive probe
requests from the 21264/EV67.

Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7-7

Fault Reset Flow

7.2 Fault Reset Flow

The fault reset sequence of operation istriggered by the assertion of the CIkFwdRst_H
signal line. Figure 7—2 shows the fault reset sequence of operation. The reset state
machine is initially in RUN stat€CIlkFwdRst_H is asserted by the system, which
causes the state machine to transition to the WAIT_FAULT _RESET state.

The 21264/EV67 internally resets a minimum amount of internal state. Note the effects
of that reset on the IPRs in Table 7-5

Table 7-5 Effect on IPRs After Fault Reset

IPR After Reset
PAL BASE Maintained (not reset)
| CTL Bit value = 3 (both I caches are enabled)

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chainisinitialized and the Bcacheis
turned off.)

EXC_ADDR Set to an address that is close to the PC

The 21264/EV67 then waits f@lkFwdRst_H to deassert twice:

* Onedeassert to transition directly to the WAIT_ClkFwdRst1 state without perform-
ing any BiST

e Onedeassert to initialize the clock forwarding interface
The 21264/EV 67 then begins fetching code at PAL_BASE + 0x780.

Figure 7-2 shows the fault reset sequence of operation. In Figure 7-2, note the follow-
ing symbols for constraints and information:

Constraints:

A Min=1FrameClk_xcycle
Information:

Approximately 264 GCLK cycles

Approximately 525 GCLK cycles for externa framing clock to be sampled and captured
1 FrameClk_x cycle plus 2 GCLK cycles

Next FrameClk_x rising edge

3 FrameClk_x cycles

Approximately 264 GCLK cyclesto prevent first command from appearing too early

Q ™~ o O T 9

7-8 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Energy Star Certification and Sleep Mode Flow

Figure 7-2 Fault Reset Sequence of Operation

* internal clks aligned

> |=e
state RUN X_WAIT FAULT RESET X WAIT_CIkFwdRstO X WAIT ClkFwdRst1 X RUN
| a } b—>] -— c —>| |— g —>|
SromOE_L \;r_/\
ClkFwdRst_H / o\ / o\
—| A |=— —>| |-
internal ClkFwdRst / \
external Clks \ /

FM-06488B.Al4

7.3 Energy Star Certification and Sleep Mode Flow

The 21264/EV 67 is Energy Star compliant. Energy Star is a program administered by
the Environmental Protection Agency to reduce energy consumption. For compliance,
acomputer must automatically enter alow power sleep mode using 30 watts or less
after a specified period of inactivity. When the system is awakened, the user shall be
returned automatically to the same situation that existed prior to entering sleep mode.

During normal operation, the 21264/EV 67 encounters inactive periods and enters a
mode that saves the entire active processor state to memory.

The PALcode isresponsible for saving all necessary state to DRAM and flushing the
caches.

The sleep mode sequence of operationsistriggered by the PALcode twice performing a
HW_MTPR to the Ibox SLEEP IPR. The first write prevents the assertion of
ClkFwdRst_H from fault-resetting the chip.

The PAL code then informs the system, in an implementation-dependent way, that it
may assert CIkFwdRst_H.

On the second HW_MTPR to the SLEEP IPR, the PLL beginsto ramp down and the
21264/EV 67 can then respond to the CIKFwdRst_H that was asserted by the system,
causing the outgoing clocks from the 21264/EV 67 to stop.

The PLL ramp-down sequence takes exactly the same amount of time as the ramp up
sequence described in Section 7.1.3. The sameinternal duration counter is used and the
reset state machine transitions through the DOWN1, DOWN2, and DOWN3 states
which have similar PLL divisor ratios and clock speeds to the RAMP2, RAMPL, and
WAIT_NOMINAL states.

Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7-9

Energy Star Certification and Sleep Mode Flow

After the PLL has finished ramping down, the reset state machine enters the
WAIT_INTERRUPT state. Note the effects of the entry into that state on the 1PRs
listed in Table 7—-6.

Table 7—6 Effect on IPRs After Transition Through Sleep Mode

IPR Effects After Transition Through Sleep Mode
PAL_BASE Maintained (not reset)
| CTL Bit value = 3 (both Icaches are enabled)

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chainisinitialized and the Bcache is
turned off.)

Note that Interrupt enables are maintained during sleep mode, enabling the 21264/
EV67 to wake up. The 21264/EV67 waits for either an unmasked clock interrupt or an
unmasked device interrupt from the system.

When an enabled interrupt occurs, the PLL ramps back to full frequency. Subsequent to
that, the 21264/EV67 performs a built-in self-initialization (BiSl), a shortened built-in
self-test, which initializes the internal arrayed structures. The SROM is not reloaded.
Instead, the 21264/EV67 begins fetching code from the system at address PAL_BASE
+ 0x780.

Figure 7-3 shows the sleep mode sequence of operations. In Figure 7-3, note the fol-
lowing constraint and informational symbols:

Congtraints:
A Min=1FrameClk_xcycle
Informational symbols:

Approximately 525 GCLK cyclesfor external framing clock to be sampled and captured
Next FrameClk_x rising edge

1 FrameClk_x cycle

3 FrameClk_x cycles

Approximately 264 GCLK cyclesto prevent first command from appearing too early
Approximately 8192 GCLK cyclesfor BiSl

16 GCLK cycles

Q 0 Q O T 9

7-10 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Warm Reset Flow

Figure 7-3 Sleep Mode Sequence of Operation

vmema\ clks
—| |=b | |
state RUN X DOWN1 X DOWN2 X DOWN3 XWAIT INTR RAMP1 RAMP2 WAIT_CIkFwdRst0 xWA\T Bls\x WAIT CIkFwdRstl x RUN
a —1
SLEEPIPR _/___ /\ I | ° e
Wake-up interrupt /\
SromOE_L \ [
ClkFwdRst_H / / no min / nomin\
—| A |e——] d |
TestStat_H /\
internal CIkFwdRst / \
external Clks \ /

FM-06487A.Al4
Table 7—7 describes each signal and constraint for the sleep mode sequence.

Table 7—7 Signals and Constraints for the Sleep Mode Sequence

Signal Name Description Constraint
ClkFwdRst_H Signal asserted by the system to ClkFwdRst_H must be asserted by the system
initialize and reset clock forwarding when entering sleep mode. The system deasserts
interfaces ClkFwdRst_H no sooner than one FrameClk_H
cycle after sourcing an interrupt to the 21264/
EV67.
Forwarded clocks Bit clocks forwarded to/fromthe Clocks stop running under CIkFwdRst_H.
21264/EV 67
System interrupt Asynchronous interrupt which —
causesthe 21264/EV 67 to exit sleep
mode

7.4 Warm Reset Flow

The warm reset sequence of operation is triggered by the assertiorRebthd_ sig-

nal line. The reset state machine is initially in RUN state. The 21264/EV67 then, by
default, ramps down the PLL (similar to the sleep flow sequence) and the reset state
machine ends up in the WAIT_RESET state.

Note the effects of entry into that state on the IPRs listed in Table 7-8

Table 7-8 Effect on IPRs After Warm Reset

IPR Effects After Warm Reset
PAL BASE Cleared
| CTL Cleared

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chainisinitialized and the Bcacheis
turned off.)

Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7-11

Array Initialization

The 21264/EV 67 waits until Reset_L is deasserted before transitioning from the
WAIT_RESET state. The 21264/EV 67 ramps up the PLL until the state machine enters
the WAIT_CIkFwdRstO state. Note that the system must assert CIkFwdRst_H before
the state machine enters the WAIT_CIkFwdRstO state. Then, similarly to the other
flows, SromOE_L is asserted and the system waits for the deassertion of
ClkFwdRst_H.

On the deassertion of CIkFwdRst_H, the 21264/EV 67 performs BiST and the SROM
loading procedure.

After BiST and SROM loading have completed, SromOE_L deasserts and the 21264/
EV67 waitsfor CIkFwdRst_H to deassert before starting the external clocks and, like
the other flows, waits for 264 cycles before starting instructions.

7.5 Array Initialization

The following arrays are initialized by BiST:

* Icache and Icachetag
* Dcache, Dcachetag, and Duplicate Dcache tag
e Branch history table

The external second-level cache (Bcache) isdisabled by Reset L.
The Bcache must be initialized by PALcode beforeit is enabled.

7.6 Initialization Mode Processing

Theinitialization mode alows the 21264/EV 67 to generate and manipulate cache
blocks before the system interface has been initialized. Within the 21264/EV 67, the
Chox configuration registers are divided into the WRITE_ONCE and the
WRITE_MANY shift register chains (see Sections 5.4.3 and 5.4.4). The
WRITE_ONCE chain is loaded from the SROM during reset processing, and contains
information such as the clock forwarding setup values. The WRITE_MANY chain can
be written many times using MTPR instructions.

The WRITE_MANY chain contains the following CSRs that are important to initializa-
tion mode, which must be set to the values in Table 7-9 to initialize the Bcache.

Table 7-9 WRITE_MANY Chain CSR Values for Bcache Initialization

WRITE_MANY Chain CSRs Required Value at Initialization Mode

BC_ENABLE 1
The duplicate bits for BC_ENABLE in [14:12] must
be 0 during initialization mode.

BC_SIZE[3:0] The exact size or maximum size of the Bcache.
INVAL_TO DIRTY_ENABLE[1:0] 1
SET_DIRTY_ENABLE[2:0] 0
INIT_MODE 1

7-12 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Initialization Mode Processing

Table 7-9 WRITE_MANY Chain CSR Values for Bcache Initialization

WRITE_MANY Chain CSRs Required Value at Initialization Mode
EVICT_ENABLE 0
BC_WRT_STS[3:0] 0
BC_BANK_ENABLE 0

Except for INIT_MODE, al the CSR registers have been described in earlier sections.
When asserted, INIT_MODE has the following behavior:

. Cache block updates to the Dcache set the block to the Clean state.
. Updates to the Bcache use the BC_WRT_STS[3:0] bits.
e WrVictimBlk command generation to the system interface are squashed.

Using the INVAL_TO _DIRTY_ENABLE and INIT_MODE registers, initialization

code loaded from the SROM can generate and delete blocks inside the 21264/EV 67
without system interaction. This behavior is very useful for initialization and startup
processing, when the system interfaces are not fully functional. Figure 7—4 shows a
code example for initializing Bcache.

Figure 7-4 Example for Initializing Bcache

Reset chip and | oad | cache with this code

set init_node ;now all WMictins are ignored
;bc_enabl e_a 1
; zerobl k_enabl e_a
;set_dirty enable_a
;init_node a
;enable_evict_a
;bc_wt_sts a
; bc_bank_enabl e_a
;bc_size a 15

O O o+r ok

;now all wites to Bcache actually invalidate
;the Bcache. (if space was needed for scratch
;pad, the status hits could just as

;wel | be Valid)

for 2 X bc_si ze ; This | oop generates | egal ECC data, and
{ W4 address } ;invalidate tags which are witten to the
:Bcache for all but the final 64KB of address.

turn_of f _bcache: ; bc_enabl e_a
;init_node a
;bc_size a
;zerobl k_enabl e a
;enabl e _evict_a
;set_dirty enable_a
; bc_bank_enabl e_a
;bc_wt_sts_a

O O O O kr OO0 o

Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7-13

External Interface Initialization

ShaeepMenor y:

turn_on_bcache:

for 2 X bc_size
{ W4 address }

for 2 X dcache size
{ ECB address }
(done)

;Wite good parity/ecc to nenory by

; witing aall nenory locations. This is
; done by W4 of nenory addr esses

;bc_enabl e_a 0

;bc_size a Actual Bcache size
;zerobl k_enabl e a
;set_dirty enable_a
;init_node a

;enabl e_evict_a
;bc_wt _sts a

; bc_bank_enabl e_a 0

;This | oop generates | egal ECC data, and

O O O o Ww

;invalidate tags which are witten to the

;Bcache for all but the final 64KB of address.

;and cl eans up the Dcache al so.

In addition to initialization, the dynamic programming ability of the WRITE_MANY
chain providesthe basic tool s to build various other software flows such as dynamically
changing the Bcache enable/size parameters for performance testing.

7.7 External Interface Initialization

After reset, the system interfaceisin the default configuration dictated by the reset state
of the IPR bits that select the configuration options.

The response to system interface commands and internally generated memory accesses
is determined by this default configuration. System environments that are not compati-
ble with the default configuration must use the SROM |cache load feature to initially
load and execute a PAL code program to configure the external system interface unit

|PRs as needed.

7.8 Internal Processor Register Power-Up Reset State

Many IPR bits are not initialized by reset. They are located in error-reporting registers

and other IPR states. They must be initialized by initialization PALcode. Tables 7-5,
7-6, and 7-8, list the effects on IPRs by fault reset, transition through sleep mode, and
warm reset, respectively. Table 7-10 lists the state of all internal processor registers
(IPRs) immediately following power-up reset. The table also specifies which registers
need to be initialized by power-up PALcode.

Table 7-10 Internal Processor Registers at Power-Up Reset State

Mnemonic Register Name Reset State Comments
Ibox IPRs

ITB_TAG ITB tag array write X —
ITB_PTE ITB PTE array write X —

7-14 Initialization and Configuration

Alpha 21264/EV67 Hardware Reference Manual

Internal Processor Register Power-Up Reset State

Table 7-10 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments
ITB_IAP ITB invaidate-all (ASM=0) X —
ITB_IA ITB invalidate all X Must be written to in PALcode.
ITB_IS ITB invalidate single X —
PMPC ProfileMePC X —
EXC_ADDR Exception address X —
IVA_FORM Instruction VA format X —
IER_CM Interrupt enable current mode X Must be written to in PALcode.
SIRR Software interrupt request —
ISUM Interrupt summary X —
HW_INT_CLR Hardware interrupt clear X Must be cleared in PALcode.
EXC_SUM Exception summary X —
PAL BASE PAL base address Cleared —
| CTL Ibox control IC_EN =3 All other bits are cleared on reset.
|_STAT Ibox status X Must be cleared in PALcode.
IC_FLUSH Icache flush X —
CLR_MAP Clear virtual-to-physical map X —
SLEEP Sleep mode X —
PCTX Ibox process context PCTX[FPE] is set. All other bits are cleared.
PCTR_CTL Performance counter control X Must be cleared in PALcode.
Ebox IPRs
CcC Cycle counter X Must be cleared in PALcode.
CC_CTL Cycle counter control X Must be cleared in PALcode.
VA Virtual address X —
VA_FORM Virtual address format X —
VA _CTL Virtual address control X Must be cleared in PALcode.
Mbox IPRs
DTB_TAGO DTB tag array write O Cleared —
DTB_TAG1 DTB tag array write 1 Cleared —
DTB_PTEO DTB PTE array write 0 Cleared —
DTB_PTE1 DTB PTE array write 1 Cleared —
DTB_ALTMODE DTB alternate processor mode X PALcode must initialize.
DTB_IAP DTB invalidate all process X —

ASM =0
DTB_IA DTB invalidate all process X Must be written to in PALcode.

Alpha 21264/EV67 Hardware Reference Manual

Initialization and Configuration 7-15

IEEE 1149.1 Test Port Reset

Table 7-10 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments

DTB_ISO DTB invalidate single (array 0) X —

DTB_IS1 DTB invalidate single (array 1) X —

DTB_ASNO DTB address space number O Cleared —

DTB_ASN1 DTB address space number 1 Cleared —

MM_STAT Memory management status X —

M_CTL Mbox control Cleared —

DC_CTL Dcache control DC_CTLJ[7:2] are cleared at reset.
DC_CTLJ[1:0] are set at power up.

DC_STAT Dcache status X Must be cleared in PALcode.

Cbox IPRs

C_DATA Cbox data X Must be read in PALcode.

C_SHFT Cbox shift control X —

7.9 |EEE 1149.1 Test Port Reset

Signal Trst_L must be asserted when powering up the 21264/EV67. Trst_L must not
be deasserted prior to assertion of DCOK_H. Trst_L can remain asserted during nor-
mal operation of the 21264/EV 67.

7.10 Reset State Machine

The state diagram in Figure 7-5 summarizes how the 21264/EV67 transitions into run-
ning code. Each state is described in Table 7-11. Table 7-11 describes outputs and
approximate state transition equations. Note that there are implicit transitions from
each state to an appropriate down-ramp state Rlesgt_L is asserted.

7-16 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Reset State Machine

Figure 7-5 21264/EV67 Reset State Machine State Diagram

PLL Ramp Up
Reset_L RAMP1 Counter
deasserted [2,41f finished
WAIT
DCOK_H NOMINAL Counter
asserted [16,32]1 finished
WAIT_CIkFwd
Rst0
Counter
finished ClkFwdRst_H Out of
Reset_L Reset L deasserted Sleep
asserted deasserted Mode

Enabled Out of
Interrupt RESET*
Reset_L BiST BiSI
WAIT asserted finished finished
INTERRUPT
ClkFwdRst_H
asserted WAIT_ClkFwd
f Numbers in "[|]" are Rstl
Xdiv and Zdiv divisors,
respectively
Counter Counter *No BiST/BiS! ClkFwdRst_H
finished & finished & on recovery from Fault deasserted
Sleep Mode not Sleep Mode Reset
PLL Ramp Down
Counter Counter
DOWNS; finished finished Sleep Mode
[16,32] or Reset_L

asserted

LKG-10982A-98WF

Table 7-11 21264/EV67 Reset State Machine State Descriptions

State Name Description

COLD Chip cold. Transitioned to WAIT_SETTLE with assertion of Reset L, PLL_VDD, and
VDD.

WAIT_SETTLE PLL_VDD asserted; PLL at minimum frequency.

WAIT_NOMINAL Triggered by assertion of DCOK _H. PLL achievesalock at X, and Z;,, divisors equal
16 and 32, respectively.

RAMP1 Triggered by Reset_L deassertion; Xy, and Zg;, divisors are changed to 2 and 4, respec-
tively, increasing the internal GCLK frequency. Aninternal duration counter isinitial-
ized to count 4108 GCLK cycles.

Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7-17

Reset State Machine

Table 7-11 21264/EV67 Reset State Machine State Descriptions (Continued)

State Name

Description

RAMP2

WAIT_CIKFwdRst0

WAIT_BiST

WAIT_BiSl

WAIT_ClkFwdRst1

RUN

WAIT_RESET

FAULT_RESET

DOWN1

Triggered by the duration counter reaching 4108 cycles, the X, and Z;, divisors are
changed to 1 and 2, respectively, and the frequency isincreased. The duration counter is
reloaded to count 8205-cycles.

Triggered by the duration counter reaching 8205 cycles (or by the deassertion of
Reset_L whileinthe WAIT_RESET state). 21264/EV67 asserts SromOE_L and waits
for SYSTEM to deassert CIkFwdReset_H. The deassertion must be synchronousto a
falling edge of FrameClk_H. 21264/EV 67 uses this deassertion to begin BiST and
SROM load at a predictable time. 21264/EV 67 samples and generates an internal,
aligned copy of FrameClk_H, and, inturn, usesthisclock to sample CIkFwdReset H.

BiST and SROM load is started. The SROM first loads the Write-once chain and then
reads the number of bits of |cache data to load.

This state is entered when 'waking up’ from sleep mode. 21264/EV 67 receives an exter-
nal interrupt, ramps the PLL, synchronously samples atransition on ClkFwdReset_H,
and runs built-in self-initialization to clear the internal caches. Built-in self-test is not
performed and the SROM is not loaded.

Entered when the appropriate amount of BiST and SROM |oading has been completed.
21264/EV 67 deasserts SromOE_L and waitsfor SYSTEM to deassert
ClkFwdReset_H. The deassertion must be synchronous to arising edge of
FrameClk_H. 21264/EV 67 uses this synchronous event to reset the clock forwarding
interface and deassert internal reset. 21264/EV 67 subsequently begins running code
(either preloaded in the SROM or located in memory) and begins system transactions.

Chipis running software, interface is reset, and system transactions can be processed.
From power-up, the Icache sets are enabled and contain bootstrap code loaded from the
SROM; 21264/EV 67 executes code from Icache. From wake-up, the Icache sets are dis-
abled and 21264/EV 67 fetches and executes code from DRAM.

Triggered by duration counter reaching 264 cycles, or when Reset_L isasserted whenin
WAIT_INTERRUPT state. 21264/EV 67 waitsin this state until Reset_L is deasserted,
at which point, the PLL startsto ramp up again.

ClkFwdReset is asserted while the 21264/EV67 isrunning. The 21264/EV67 internally
resets a minimum amount of internal state, waitsfor clock forward reset deassertion, and
begins fetching code at PAL_BASE + 0x780.

21264/EV67 was in a state in which GCLK was at its highest speed and Reset_L was
asserted. Internal chip functionsarereset and the internal duration counter isset to 8205
cycles. The purpose of this sequenceisto down-ramp the clocksin anticipation of power
being removed. If power isnot removed (that is, reset is being toggled), 21264/EV 67
ramps the clocks back to the original speed.

This state is also entered when software writesthe|_CTL internal processor register to
sleep mode.

7-18 Initialization and Configuration Alpha 21264/EV67 Hardware Reference Manual

Phase-Lock Loop (PLL) Functional Description

Table 7-11 21264/EV67 Reset State Machine State Descriptions (Continued)

State Name Description

DOWN2 Triggered by duration counter reaching 8205 cycles, the PLL ramps GCLK frequency
down by the first divider ratio (X, and Z;, equal 2 and 4, respectively). Thishasthe
effect of halving the GCLK frequency. The duration counter is set to 4108 cycles.

DOWNS3 Triggered by duration counter reaching 4108 cycles, the PLL ramps frequency down by
the second divider ratio (X, and Zg;, equal 16 and 32, respectively). This hasthe
effect of reducing the frequency by afactor of 16 (of the original frequency). Theinter-
nal counter is set to 264 cycles.

WAIT_INTERRUPT Triggered by duration counter reaching 264 cycles, the 21264/EV 67 waits for either an
unmasked clock interrupt or unmasked device interrupt from system. The interrupts are
wired to the interrupt request and enable internal registers. When an enabled interrupt
occurs, the PLL ramps back to full frequency. Subsequent to that, the built-in self-init
(BiSl) initializes arrayed structures. The SROM is not rel oaded; instead, the 21264/
EV67 beginsfetching code from the SY STEM.

7.11 Phase-Lock Loop (PLL) Functional Description

The PLL multiplies the clock frequency of adifferentia input reference clock and
aignsthe phase of its output to that differential input clock. Thus, the 21264/EV 67 can
communicate synchronously on clock boundarieswith clock periodsthat are defined by
the system.

7.11.1 Differential Reference Clocks

A skew-controlled, ac-coupled differential clock is provided to the PLL by way of
Clkin_x . Clkln_x areinput signalsto a differential amplifier. The frequency of
ClkIn_x can range from 80 MHz to 200 MHz. ClkIn_x can be sourced by avariety of
components that include PECL fanout parts or system PLLs. Clkin_x are also the pri-
mary clock source for the 21264/EV 67 when in PLL bypass mode.

7.11.2 PLL Output Clocks

The following sections summarize the PLL output clocks.
7.11.2.1 GCLK

The PLL provides an output clock, GCLK, with afrequency that can range from 400
MHz to 833.3 MHz under full-speed conditions. GCLK is the nhominal onchip clock
that is distributed to the entire 21264/EV 67 chip.

7.11.2.2 Differential 21264/EV67 Clocks

The EV6CIk_x output pads provide an external test point to measure the PLL phase
aignment. They do not provide a clock source. EV6CIk X are square-wave signals
that drive rail-to-rail continually from 0 to 2.1 volts.

7.11.2.3 Nominal Operating Frequency

Under normal operating conditions, the frequency of the PLL output clock, GCLK, isa
smple function of the Y ;, divider value.

Alpha 21264/EV67 Hardware Reference Manual Initialization and Configuration 7-19

Phase-Lock Loop (PLL) Functional Description

Table 7-12 shows the allowaliliékln_x frequencies for a given operating frequency
of the 21264/EV67 and theyy, divider. For example, to set the 21264/EV67 GCLK
frequency to 500 MHz with &lkln_x frequency of 166.7 MHz, the system must select

a Yy divider of 3 by placing the value 001an pinslRQ_H[3:0].

Table 7-12 Differential Reference Clock Frequencies in Full-Speed Lock

GCLK Reference Clock Frequency (MHz) for Y gy Dividers?!

Period (ns) Frequency (MHz) 23 4 5 6 7 8 9 10 11
25 400 133.3 100 80 — — — — — —
2.4 416.7 1389 1042 833 — — — — — —
2.3 434.8 1449 108.7 87.0 — — — — — —
2.2 454.5 151.2 1136 909 — — — — — —
2.1 476.2 158.7 1190 952 — — — — — —
2.0 500 166.7 125.0 100 833 — — — — —
1.9 526.3 175.4 131.6 1053 87.7 — — — — —
1.8 555.6 185.2 1389 1111 926 — — — — —
1.7 588.2 196.1 1471 1176 98.0 84.0 — — — —
1.6 625 — 156.3 125.0 104.2 89.3 — — — —
15 666.7 — 166.7 133.3 111.1 952 833 — — —
1.4 714.3 — 178.6 1429 119.1 102.0 89.3 — — —
1.3 769.2 — 192.3 153.8 128.2 109.9 96.2 855 — —
1.2 833.3 — — 166.7 138.9 119.0 1042 926 833 —

1 Dividers 11 through 16 are out of range for the 21264/EV 67 and reserved for future use. Valid refer-
ence clock (Clkln_x) frequencies for the 21264/EV 67 are specified in the range from 80 to 200.
Divider values that are out of that range are displayed as a dash “—".

2 Dividers of 1 and 2 are to be used only in a PLL test mode.

7.11.2.4 Power-Up/Reset Clocking

7-20

During the power-up/reset sequence, when not in PLL bypass maode, there may be a
period of timewhen CIkIn_x isnot yet running, but thereisavoltageon PLL_VDD.
The signa DCOK _H isdeasserted until power is good throughout the system. The
10% to 90% rise time of DCOK _H should be less than 2 ns. The deasserted state of
DCOK _H and the presence of PLL_VDD causesthe PLL to generate a global clock
that is distributed throughout the 21264/EV 67 with a frequency range of 1 MHz to 500
MHz. The presence of the global clock during this period avoids permanent damage to

the 21264/EV67.

Initialization and Configuration

Alpha 21264/EV67 Hardware Reference Manual

8

Error Detection and Error Handling

This chapter gives an overview of the 21264/EV 67 error detection and error handling
mechanisms, and is organized as follows.

* Dataerror correction code

* |cache data or tag parity error

* Dcachetag parity error

* Dcache data correctable ECC error

e Dcache store second error

e Dcache duplicate tag parity error

* Bcachetag parity error

* Bcache data correctable ECC error

* Memory/system port data correctable ECC error
e Bcache data correctable ECC error on a probe

e Double-bit fill errors

e Error case summary

Table 8-1 summarizes the 21264/EV67 error detection.

Table 8-1 21264/EV67 Error Detection Mechanisms

Component Error Detection Mechanism
Bcache tag Parity protected.

Bcache data array Quadword-ECC protected.
Dcache tag array Parity protected.

Dcacheduplicatetag array ~ Parity protected.

Dcache data array Quadword-ECC protected, however this mode of operation is
only supported in systems that have ECC enabled on both the
system and Bcache ports.

Icache tag array Parity protected.
|cache data array Parity protected.
System port data bus Quadword-ECC protected.

Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8-1

Data Error Correction Code

8.1 Data Error Correction Code

The 21264/EV 67 supports a quadword error correction code (ECC) for the system data
bus. ECC is generated by the 21264/EV 67 for all memory write transactions
(WrVictimBlk) emitted from the 21264/EV 67 and for all probe data. ECC isaso
checked on every memory read transaction for single-bit correction and double-bit error
detection. Bcache datais checked for fills to the Dcache and |cache, and for Bcache-to-
system transfers that are initiated by a probe (if enabled by the CSR
ENABLE_PROBE_CHECK).

The 21264/EV 67 ECC implementation corrects single-bit errorsin hardware.

I/0O write transaction data will not have avalid ECC (the ECC bits must be ignored by
the system). Also, ECC checking is not performed on I/O read data.

Error detection and correction can be enabled/disabled by way of Mbox IPR
DC_CTL[DCDAT_ERR_EN].

Table 8-2 shows the ECC code.

Table 8-2 64-Bit Data and Check Bit ECC Code

0123 4567
CB0 0111 0100
CBl 1110 1010
CB2 1001 1001
CB3 1100 0111
CcB4 0011 1111
CB5 0000 0000
CcB6 1111 1111
cB7 1111 1111

11 1111 1111 2222 2222 2233 3333 3333 4444 4444 4455 5555 5555 6666 CCOC COCC
8901 2345 6789 0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 0123 4567

1101 0010 0111 0100 1101 0010 1000 1011 0010 1101 1000 1011 0010 1101 1000 0000
1010 1000 1110 1010 1010 1000 1110 1010 1010 1000 1110 1010 1010 1000 0100 0000
0110 0101 1001 1001 0110 0101 1001 1001 0110 0101 1001 1001 0110 0101 0010 0000
0001 1100 1100 0111 0001 1100 1100 0111 0001 1100 1100 0111 0001 1100 0001 0000
0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0011 1111 0000 0011 0000 1000
1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0100
0000 0000 0000 0000 1111 1111 1111 1111 0000 0000 0000 0000 1111 1111 0000 0010
0000 0000 0000 0000 1111 1111 0000 0000 1111 1111 1111 1111 0000 0000 0000 0001

8.2 Icache Data or Tag Parity Error

The following actions are performed when an Icache data or tag parity error occurs.

1. When the hardware detects an error during an Icache read transaction, it traps and
replays the instructions that were fetched during the error, then flushes the entire
Icache so the re-fetched instructions do not come directly from the Icache.

|_STAT[PAR] is set.
3. A corrected read data (CRD) interrupt is posted, when enabled. (Pass 3 only)

8.3 Dcache Tag Parity Error

The primary copies of the Dcache tags are used only when servicing 21264/EV67-gener-
ated load and store instructions.There are correctable and uncorrectable forms of this
error. If an issued load or store instruction detects a Dcache tag parity error, the following
actions are performed:

1. MM_STAT[DC_TAG_PERR]is set.
2. A Dstream fault (DFAULT) is taken.

8-2 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Dcache Data Single-Bit Correctable ECC Error

3. Thevirtual address associated with the error is available in the VA register.

4. The PALcode flushes the error block by temporarily disabling
DC_CTL[DCTAG_PAR_EN] and evicting the block using two HW_L D instruc-
tions. The onchip duplicate tag provides the correct victim address and cache
coherence state.

If aretried load instruction detects the Dcache tag parity error, the memory reference
may have aready been retired, so the EXC_ADDR is not available. In this case, the
error is uncorrectable and the Mbox performs the following actions:

e Either DC_STAT[TPERR_PQ] or DC_STAT[TPERR_P1] is set, indicating the
source of the error.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.4 Dcache Data Single-Bit Correctable ECC Error

The following operations may cause Dcache data ECC errors:
e Loadinstructions

e Stores of less than quadword length

e Dcache victim read transactions

The hardware flow used for Dcache data ECC errors depends on the event that
caused the error.

8.4.1 Load Instruction

L oads that read data from the Dcache may do so either in the same cycle as the Dcache
tag probe (typical case) or in some subsequent cycle (load-queue retry). The hardware
functional flows for these two error cases differ dightly.

When aload instruction reads the Dcache data array in the same cycle as the tag array,
if an ECC error occurs on the LSD ECC error detectors, then the Ibox stops retiring
instructions and does not resume retiring until after hardware recovers from the error.

If an ECC error occurs on the LSD ECC error detectors, when aload instruction reads
the Dcache tag array before it reads the Dcache data array, then the load instruction may
have already been retired. In either case:

* The incorrect data is written into the load instruction’s destination register;
however, the load queue retains the state associated with the load instruction.

e A consumer of the load instruction’s data may be issued before the error is
recognized; however, the Ibox will invoke a replay trap at an instruction that is
older than (or equal to) any instruction that consumes the load instruction’s data,
and then stalls the replayed Istream in the map stage of the pipeline until the error is
corrected.

e GivenaREAD_ERR read-type from the Mbox for the error load instruction, the
Chox scrubs the block in the Dcache by evicting the block into the victim buffer
(thereby scrubbing it) and writing it back into the Dcache as follows:

— C_STAT[DSTREAM_DC_ERR] s set.

Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8-3

Dcache Store Second Error

C_ADDR contains bits [19:6] of the Dcache address of the block that contains
the error (bits [42:20] of the physical address are not updated).

— DC_STAT[ECC_ERR_LD] is set.
— The load queue retries the load and rewrites the register.
— A corrected read data (CRD) error interrupt is posted, when enabled.

Note: Errors in speculative load instructions cause a CRD error interrupt
to be posted but the data is not scrubbed by hardware. The PALcode
cannot perform a scrub because C_STAT is zero and C_ADDR does not
contain the address of the error.

8.4.2 Store Instruction (Quadword or Smaller)

A store instruction that is a quadword or smaller could invoke a Dcache ECC error,
since the original quadword must be read to calculate the new check bits.

e The Mbox scrubs the original quadword and replays the write transaction.
* DC_STAT[ECC_ERR_ST] isset.
* A corrected read data (CRD) error interrupt is posted, when enabl ed.

8.4.3 Dcache Victim Extracts

e Dcache victims with an ECC error are scrubbed as they are written into the
victim data buffer.

* No gatusislogged.
* No exception is posted.

8.5 Dcache Store Second Error

A second store instruction error islogged when it occurs close behind the first.
Neither error is corrected.

« DC_STAT[ECC_ERR_ST] is set.
« DC_STAT[SEQ] is st.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.6 Dcache Duplicate Tag Parity Error

The Dcache duplicate tag has the correct version of the Dcache coherence state for the
21264/EV67, dlowing it to be used for correct tag/status data when the Dcache tags
generate a parity error. These tags are parity protected also; however, the Dcache dupli-
cate tag cell is designed to be much more tolerant of soft errors. The parity generators
for the duplicate tags are enabled whenever the Cbox performs a physically-indexed
read transaction of eight locationsin thetag array. If an error is generated, the following
actions are taken:

e Dcache duplicate tag parity errors are not recoverable.

8-4 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Bcache Tag Parity Error

« C_STAT[DC_PERR] is st.

* C_ADDR contains bits[42:6] of the Dcache duplicate tag address of the block that
contains the error.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.7 Bcache Tag Parity Error
The Bcache tag parity is checked on all Becache tag references, including references
invoked by system probes. If an error is detected, the following actions are taken:
* Bcachetag parity errors are not recoverable.
* C_STAT[BC_PERR] isset.

e C_ADDR contains bits [42:6] of the Bcache address of the block that contains the
error.

¢ When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.8 Bcache Data Single-Bit Correctable ECC Error

The following actions may trigger Bcache data ECC errors:

* Icachefill, data possibly used by Icache

e Dcachefill, data possibly used by load instruction

e Bcache victim during an ECB instruction or during a Dcache/Bcache miss
The recovery mechanism depends on the action that triggered the error.

8.8.1 Icache Fill from Bcache

For an Icachefill, the LSD ECC checkers detect the error, and bad | cache data parity is
generated for the octaword that contains the quadword in error. If an error is detected,
the following actions are taken:

* The hardware flushes the Icache.

e C_STAT[ISTREAM_BC _ERR] isset.

e C_ADDR contains hits[42:6] of the Bcache fill address of the block that contains
the error.

e C _SYNDROME_Q[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the error.

* A machine check (MCHK) is posted and taken immediately. The PAL code machine
check handler performs a scrubbing operation as described in Section D.36 to
ensure that the origination point of the error is corrected.

Note: A corrected read data (CRD) error interrupt is also posted in case this error
isin a speculative path and the MCHK isremoved. The CRD PALcode
reads the status, to detect this condition, and scrubsthe block. In the normal
MCHK flow, the PAL code clears the pending CRD error.

Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8-5

Bcache Data Single-Bit Correctable ECC Error

8.8.2 Dcache Fill from Bcache

If the quadword in error is not used to satisfy aload instruction, a hardware recovery
flow is not invoked. The quadword in error, and its associated check bits, are written
into the Dcache. However, statusislogged as shown in the bulleted list below, and a
corrected read data (CRD) error interrupt is posted, when enabled. PAL code may el ect
to correct the error by scrubbing the block. If the error is not corrected by PAL code
when it occurs, the error will be detected and corrected by a later load/victim operation.

If the quadword in error is used to satisfy aload instruction, then the flow is very simi-
lar to that used for a Dcache ECC error. The LSD ECC checker detectsthe error and the
21264/EV 67 performs the following actions:

* The load instruction’s destination register is written with incorrect data; however,
the load queue will retain the state associated with the load instruction.

e A consumer of the load instruction’s data may be issued before the error is
recognized. The Ibox will invoke a replay trap at an instruction that is older than (or
equal to) any instruction that consumes the load instruction’s data. The 21264/
EV67 then stalls the replayed Istream in the map stage of the pipeline, until the
error is corrected.

* WithaREAD_ERR read type from the Mbox for the load instruction in error, the
Chox scrubs the block in the Dcache by evicting the block into the victim buffer
and writing it back into the Dcache.

+ C_STAT[DSTREAM_BC_ERR] is set.

* C_ADDR contains hits[42:6] of the Bcache fill address of the block that contains
the error.

e C _SYNDROME_Q[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the error.

e Theload queue retries the load instruction and rewrites the register.

e DC_STAT[ECC_ERR_LD] isset.

* A corrected read data (CRD) error interrupt is posted, when enabl ed.

Note: Errorsin speculative load instructions cause a CRD error to be posted but
the datais not scrubbed by hardware. The PAL code cannot perform a scrub

operation because C_STAT is zero and C_ADDR does not contain the
address of the block in error.

8.8.3 Bcache Victim Read

A victim from the Bcache is written directly to the system port, without correction. The
ECC parity checker on the LSD detects the error and posts a corrected read data (CRD)
error interrupt. The Cbox error register is not updated.

8.8.3.1 Bcache Victim Read During a Dcache/Bcache Miss

While the Bcache is servicing a Dcache miss and that Bcache accessis also amiss, and
an error occurs during that Bcache data access, the Cbox does not latch the error infor-
mation. However, the Mbox correction state machine is activated and it invokes a CRD
error despite the fact that no correction is performed.

8-6 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Memory/System Port Single-Bit Data Correctable ECC Error

The Bcache access error is written out to memory and is subsequently detected and cor-
rected by the next consumer of the data.

* No correction is made.

* No statusislogged (C_STAT =0).

e A CRD error interrupt is posted, when enabled.
8.8.3.2 Bcache Victim Read During an ECB Instruction

A victim from the Bcache that occurs while an ECB instruction is being executed is
written directly to the system port without correction. No Cbox registers are set and no
exception is taken.

8.9 Memory/System Port Single-Bit Data Correctable ECC Error

The following actions may cause memory/system port data ECC errors.
* Icache fill-data possibly used by Icache
* Dcache fill-data possibly used by a load instruction

The recovery mechanism depends on the event that caused the error.

8.9.1 Icache Fill from Memory

For an Icache fill the LSD ECC generators detect the error, and bad Icache data
parity is generated for the octaword that contains the quadword in error.

¢ The hardware flushes the | cache.
e C _STAT[ISTREAM_MEM_ERR] is set.

e C_ADDR contains bits[42:6] of the system memory fill address of the block that
contains the error.

e C _SYNDROME _Q[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
guadword 0 and 1, respectively, of the octaword subblock that contains the error.

* A machine check (MCHK) is posted and taken immediately. The PAL code machine
check handler performs a scrubbing operation as described in Section D.36 to
ensure that the origination point of the error is corrected.

Note: Also, a corrected read data (CRD) error is posted, when enabled, in case
this error isin a speculative path and the MCHK is removed. The CRD
error PAL code reads the status to detect this condition and scrubs the block.
In the normal MCHK flow, the PAL code clears the pending CRD error.

8.9.2 Dcache Fill from Memory

If the quadword in error is not used to satisfy aload instruction, no hardware

recovery flow isinvoked. The quadword in error, and its associated check bits, are writ-
ten into the Dcache. However, statusislogged as shown in the bulleted list below and a
corrected read data (CRD) error interrupt is posted, when enabled. PAL code may
choose to correct the error by scrubbing the block. If the error is not corrected by PAL-
code at the time, the error will be detected and corrected by aload/victim operation.

Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8-7

Bcache Data Single-Bit Correctable ECC Error on a Probe

If the quadword in error is used to satisfy aload instruction, then the flow is very simi-
lar to that used for a Dcache ECC error:

e The load instruction’s destination register is written with incorrect data; however,
the load queue will retain the state associated with the load instruction.

e A consumer of the load instruction’s data may be issued before the error is
recognized; however, the Ibox will invoke a replay trap at an instruction that is
older than (or equal to) any instruction that consumes the load instruction’s data.
The Ibox stalls the replayed Istream in the map stage of the pipeline until the error
is corrected.

* WithaREAD_ERR read type from the Mbox for the load instruction in error, the
Chox scrubs the block in the Dcache by evicting the block into the victim buffer
and writing it back into the Dcache.

« C_STAT[DSTREAM_MEM_ERR] is st.

e C_ADDR contains hits[42:6] of the system memory fill address of the block that
contains the error.

e C _SYNDROME Q[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the error.

* Theload queueretries the load instruction and rewrites the register.
* DC _STAT[ECC_ERR _LD] isset.
A corrected read data (CRD) error interrupt is posted, when enabled.

Note: Errorsin speculative load instructions cause a CRD error to be posted but
the data is not scrubbed by hardware. The PAL code cannot scrub the data
because C_STAT is zero, and C_ADDR does not have the address of the
block with the error.

8.10 Bcache Data Single-Bit Correctable ECC Error on a Probe

The probed processor extracts the block from its Bcache, signaling a corrected read
data(CRD) error and latching error information. The single-bit ECC detected error data
is not corrected by the probed processor, but is forwarded to the requesting processor.
The requesting processor then detects arelated system fill error as aresult of this sys-
tem probe transaction.

* No hardware correction is performed.
* C_STAT[PROBE_BC _ERR] is set.

e C_ADDR contains bit [42:6] of the Bcache address of the block that contains the
error.

e C _SYNDROME_Q[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
quadword 0 and 1, respectively, of the octaword subblock that contains the error.

e A CRD error interrupt is posted, when enabled.

* The PALcode on the probed processor may choose to scrub the error, though it will
probably be scrubbed by the requesting processor.

8-8 Error Detection and Error Handling Alpha 21264/EV67 Hardware Reference Manual

Double-Bit Fill Errors

8.11 Double-Bit Fill Errors

8.12 Error

Double-bit errors for fills are detected, but not corrected, in the 21264/EV 67. The fol-
lowing events may cause adouble-hit fill error:

* Icachefill from Bcache

e Dcachefill from Bcache

¢ |cachefill from memory

e Dcachefill from memory

If an error is detected, the following actions are taken:

e C_STAT isset to one of the following:
ISTREAM_BC DBL (Icachefill from Bcache)
DSTEAM_BC DBL (Dcachefill from Bcache)
ISTREAM_MEM_DBL (lcachefill from memory)
DSTREAM_MEM_DBL (Dcachefill from memory)

e C_ADDR contains bits[42:6] of the system memory fill address of the block that
contains the error.

¢ When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

* A double-hit fill error from memory, marked by the data's corresponding ECC,
when written to cache, also writes the corresponding ECC to cache. Any consumer
of that error (such as another CPU) also consumes the corresponding ECC value.

Note: C_ADDR may beinaccurate in heavy traffic conditions. C_STAT is accu-
rate.
Case Summary

Table 8—3 summarizes the various error cases and their ramifications.

Table 8-3 Error Case Summary

Hardware
Error Exception Status Action PALcode Action
|cache data or tag CRD ISTAT[PAR] Icache flushed LogasCRD
parity error
Dcache tag parity DFAULT MM_STAT[DC TAG_PERR] — Evict with two
error (on issue) VA[address)] HW_LDs and log as

CRD

Dcache tag parity MCHK! DC_STAT[TPERR_PO] or — Log as MCHK
error (on retry) DC_STAT[TPERR_P1]
Dcache single-bit CRD DC_STAT[ECC_ERR_LD] Corrected and Log as CRD
ECC error on load C_STAT[DSTREAM_DC_ ERR] scrubbed

C_ADDR([bits [19:6] of the error
address. [42:20] not updated.]

Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8-9

Error Case Summary

Table 8-3 Error Case Summary (Continued)

Hardware

Error Exception Status Action PALcode Action

Dcache single-hit CRD DC_STAT[ECC _ERR_LD] None Log as CRD

ECC error on C_STAT contains zero

speculative load

Dcache single-hit CRD DC_STAT[ECC_ERR_ST] Correctedand Log as CRD

ECC error on small scrubbed

store

Dcache single-bit None None Correctedand None

ECC error on victim scrubbed

read

Dcache second error MCHK! DC_ST. AT[SEQ] No correction Logas MCHK

on store on either store

Dcacheduplicatetag MCHK! C_STAT[DC_PERR] Uncorrectable Log as MCHK

parity error C_ADDR[error address]

Bcache tag parity MCHK! C_STAT[BC_PERR] Uncorrectable Log as MCHK

error C_ADDR[error address]

Bcache single-bit MCHK C_STAT[ISTREAM_BC ERR] Icacheflushed Scruberror asdescribed

error on Icachefill and CRD? C_ADDR[error address] in Section D.36.
C_SYNDROME_O Log as CRD
C_SYNDROME _1

Bcache single-bit CRD DC_STAT[ECC _ERR LD] Corrected and Scrub error asdescribed

error on Dcache fill C _STAT[DSTREAM_BC ERR] scrubbedin in Section D.36.
C_ADDR]error address] Dcache® Log as CRD
C_SYNDROME_O
C_SYNDROME _1

Bcachevictimread CRD DC_STAT[ECC_ERR_LD] None Log as CRD

on Dcache/Bcache C_STAT contains 0

miss

Bcachevictimread None None None None

on ECB

Memory single-bit MCHK C STAT[ISTREAM_MEM_ERR] Icacheflushed Scruberror asdescribed

error on Icachefill and CRD? C_ADDR][error address] in Section D.36.
C_SYNDROME_O Log as CRD
C_SYNDROME _1

Memory single-bit CRD DC STAT[ECC ERR LD] Corrected and ~ Scrub error asdescribed

error on Dcachefill C_STAT[DSTREAM_MEM_ERR] scrubbed in in Section D.36.
C_ADDR[error address] Dcache® Log as CRD
C_SYNDROME_O
C_SYNDROME_1

Bcache single-bit CRD C _STAT[PROBE BC ERR] None May scrub error as

error on aprobe hit C_ADDR]error address]* described in Section
C_SYNDROME_O D.36.
C_SYNDROME _1 Log as CRD

Bcachedouble-bit MCHK! C STAT[ISTREAM_BC DBL] None Log as MCHK

error on lcache fill

8-10 Error Detection and Error Handling

C_ADDR[error addr%s]“

Alpha 21264/EV67 Hardware Reference Manual

Error Case Summary

Table 8-3 Error Case Summary (Continued)

Hardware
Error Exception Status Action PALcode Action
Bcachedouble-bit MCHK! C STAT[DSTREAM_BC DBL] None Log as MCHK
error on Dcache fill C_ADDR[error addrass]_4
Memory double-bit MCHK! C STAT[ISTREAM_MEM DBL] None Log as MCHK
error on Icachefill C_ADDR[error addrass]_4
Memory double-bit MCHK! C STAT[DSTREAM_MEM DBL] None Log as MCHK
error on Dcache fill C_ADDR[error addr&ss]zr

1
2
3

Machine check taken in native mode. It is deferred whilein PALmode.
CRD error posted in case the machine check is down a speculative path.

For a single-bit error on a non-target quadword, the error is not corrected in hardware,
but is corrected by PAL code during the scrub operation.

The contents of C_ADDR may not be accurate when there is heavy cachefill traffic.

Alpha 21264/EV67 Hardware Reference Manual Error Detection and Error Handling 8-11

9

Electrical Data

This chapter describes the dectrical characteristics of the 21264/EV 67 and itsinterface
pins. The chapter contains both ac and dc electrical characteristics and power supply
considerations, and is organized as follows:

¢ Electrical characteristics
e DC characteristics
* Power supply sequencing

e AC characteristics

9.1 Electrical Characteristics
Table 9-1 lists the maximum electrical ratings for the 21264/EV67.

Table 9-1 Maximum Electrical Ratings

Characteristics Ratings

Storage temperature 55 Cto +125 C (67 Fto 257 F)

Junction temperature °‘Ctol00C 32 Fto212F)

Maximum dc voltage on signal pins VDD + 400 mV

Minimum dc voltage on signal pins VSS- 400 mV

Maximum power @indicatedvDD

for the following frequencies: Frequency Peak Power
600 MHz W@ 21V
667 MHz 8OW@ 21V
700 MHz 85W@ 21V
733 MHz 88W@21V
750 MHz dW@21V

Notes: Stresses above those listed under the given maximum electrical ratings may

cause permanent device failure. Functionality at or above these
limits is not implied. Exposure to these limits for extended periods of time
may affect device reliability.

Power data is preliminary and based on measurements from a limited set of
material.

Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9-1

DC Characteristics

9.2 DC Characteristics

This section contains the dc characteristics for the 21264/EV 67. The 21264/EV 67 pins
can be divided into 10 distinct electrical signal types. The mapping between these sig-
nal types and the package pins is shown in Chapter 3. Table 9-2 shows the signal types.

Table 9-2 Signal Types

Signal Type Description

| DC_POWER Supply voltage pins (VDD/PLL_VDD)

| DC _REF Input dc reference pin

|_DA Input differential amplifier receiver

| DA _CLK Input differential amplifier clock receiver

O_OD Open-drain output driver

O _OD_TP Open-drain driver for test pins

O_PP Push-pull output driver

O_PP _CLK Push-pull output clock driver

B_DA_OD Bidirectional differential amplifier receiver — open-drain
B_DA_PP Bidirectional differential amplifier receiver — push-pull

Tables 9-3 through 9-12 show the dc switching characteristics of each signal type.
Also, the following notes apply to Tables 9-3 to 9-12.

1. The differential voltage, Vdiff, is the absolute difference between the differential
input pins.
2. Delta \gjas is defined as the open-circuit differential voltage on the appropriate

differential pairs. Test condition for these inputs are to let the input network self
bias and measure the open circuit voltage. The test load mestNd@hm. In nor-
mal operation, these inputs are coupled with a 680-pF capacitor.

3. Functional operation of the 21264/EV67 with less thaW D andV SS pins con-
nected is not implied.

4. The test load is a 50-ohm resistor to VDD/2. The resistor can be connected to the
21264/EV67 pin by a 50-ohm transmission line of any length.

5. DC test conditions set the minimum swing required. These dc limits set the trip
point precision.

6. Input pin capacitance values include 2.0 pF added for package capacitance.

9-2 Electrical Data Alpha 21264/EV67 Hardware Reference Manual

DC Characteristics

Note: Current out of a 21264/EV67 pin is represented by a — symbol while a +
symbol indicates current flowing into a 21264/EV67 pin.

Table 9-3 VDD (I_DC_POWER)

Parameter Symbol Description Test Conditions Minimum Maximum

VDD Processor core supply voltage — 19V 215V

Power (sleep) Processor power required (sleep) @ VDD =2.1V 19 W
Note 3

PLL_VDD PLL supply voltage — 3.135V 3.465Vc

PLL_IDD PLL supply current (running) Freq =600 MHz — 25 mA

1 Power measured at 37.5 MHz while running the “Ebox aliveness test.”

Table 9—-4 Input DC Reference Pin (I_DC_REF)

Parameter
Symbol Description Test Conditions Minimum Maximum
VREF DC input reference voltage — 600 mV VDD - 650 mV

[] Input current VSV <VDD — 150 pA

Table 9-5 Input Differential Amplifier Receiver (I_DA)

Parameter
Symbol Description Test Conditions Minimum Maximum
VL Low-level input voltage Note 5 — VREF - 200 mV
A\ High-level input voltage — VREF + 200 mV —
[] Input current VSV <VDD — 150 pA
Cin Input-pin capacitance Freq=10 MHz — 5.7 pF
Note 6

Table 9-6 Input Differential Amplifier Clock Receiver (I_DA_CLK)

Parameter

Symbol Description Test Conditions Minimum Maximum

V giff Differential input voltage — 200 mv Notel ——

|AVgias| Open-circuit differential E+1pA — 50 mV
Note 2

[] Input current VSV <VDD — 150 pA

CiN Input-pin capacitance Freq =10 MHz — 5.0 pF

Note 6

Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9-3

DC Characteristics

Table 9—7 Pin Type: Open-Drain Output Driver (O_OD)

Parameter Test

Symbol Description Conditions Minimum Maximum

VoL Low-level output voltage loL =70 mA — 400 mV

lloz | High impedance output current 0<V<VDD — 150

Cop Open-drain pin capacitance Freq=10 MHz — 5.7 pF
Note 6

Table 9-8 Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA_OD)

Parameter
Symbol Description Test Conditions Minimum Maximum
VL Low-level input voltage Note 5 — VREF —200 mv
\m High-level input voltage — VREF + 200 mV —
VoL Low-level output voltage dL =70 mA — 400 mV
1] Input current VSIV<VDD — 150 pAl
Cin Input-pin capacitance Freq =10 MHz — 5.7 pF
Note 6
1 Measurement taken with output driver disabled.
Table 9-9 Pin Type: Open-Drain Driver for Test Pins (O_OD_TP)
Parameter Test
Symbol Description Conditions Minimum Maximum
VoL Low-level output voltage lop. =15mA — 400 mV
|loz | High-impedance output current 0<V<VDD — 15a
Cop_TP Pin capacitance Freq=10 MHz — 5.2 pF
Note 6

Table 9-10 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA PP)

Parameter
Symbol Description Test Conditions Minimum Maximum
VL Low-level input voltage — — VREF - 200 mV
\m High-level input voltage — VREF + 200 mV —
VoL Low-level output voltage dL=6mA — 400 mV
Vou High-level output voltage du =—-6 mA VDD -400mV —
1] Input current VSIV<VDD — 150 pAt
Cin Input-pin capacitance Freq =10 MHz — 6.0 pF
Note 6

1 Measurement taken with output driver disabled.

9-4 Electrical Data

Alpha 21264/EV67 Hardware Reference Manual

Power Supply Sequencing and Avoiding Potential Failure Mechanisms

Table 9-11 Push-Pull Output Driver (O_PP)

Parameter Test

Symbol Description Conditions Minimum Maximum

VoL Low-level output voltage lor. =40 mA — 500 mVv

Vo High-level output voltage d.=-40mA VDD-500mV —

|loz | High-impedance output current 0<V<VDD — 15Q

Cop Open-drain pin capacitance Freq=10 MHz — 6.0 pF
Note 6

Table 9-12 Push-Pull Output Clock Driver (O_PP_CLK)

Parameter Test

Symbol Description Conditions Minimum Maximum

VoL Low-level output voltage Note 4 — VDD/2 — 325 mV

Vou High-level output voltage Note 4 VDD/2 +325mV —

lloz | High-impedance output 0<V<VDD — 40 mA
current

1 Measured value includes current from onchip termination structures.

9.3 Power Supply Sequencing and Avoiding Potential Failure Mech-

anisms

Before the power-on sequencing can occur, systems should ensure that DCOK _H is
deasserted and Reset_L is asserted. Then, systems ramp power to the 21264/EV 67
PLL_ VDD @ 3.3V and the 21264/EV 67 power planes (VDD @ 2.0V, not to exceed
2.15V under any circumstances), with PLL_VDD leading VDD. Systems should
supply differential clocks to the 21264/EV67 on Clkin_H and ClkIn_L. The clocks
should be running as power is supplied.

When enabling the power supply inputsin a system, three failure mechanisms must be

avoided:

1. Bidirectiona signal buses must not conflict during power-up. A conflict on these
buses can generate high current conditions, which can compromise thereliability of

the associated chips.

2. Similarly, input receivers should not see intermediate voltage levels that can also
generate high current conditions, which can compromise the reliability of the

receiving chip.

3. Finally, no CMOS chip should see an input voltage that is higher than itsinternal
VDD. In such acondition, areasonable level of charge can be injected into the bulk
of the die. This condition can expose the chip to a positive-feedback latchup

condition.

The 21264/EV 67 addresses those three failure mechanisms by disabling all of its
outputs and bidirectional pins (with three exceptions) until the assertion of DCOK_H.
Thethree exceptionsare Tdo H, EV6CIk L, and EV6CIKk_H. Tdo H isused only in

Alpha 21264/EV67 Hardware Reference Manual

Electrical Data 9-5

AC Characteristics

the tester environment and does not need to be disabled. EV6CIk_L and EV6CIK_H
are outputs that are both generated and consumed by the 21264/EV 67; thus, VDD
tracks for both the producer and consumer.

On the push-pull interfaces:

e Disabling al output drivers leaves the output signal at the DC bias point of the ter-
mination network.

* Disabling the bidirectional driversleavesthe other consumers of the bus as the bus
master.

On the open-drain interfaces:

e Disabling all output driversleaves the output signal at the voltage of the open-drain
pull-up.

* Disabling al bidirectional drivers |eaves the other consumers of the bus as the bus
master.

To avoid failure mechanism number two, systems must sequence and control external
signal flow in such away asto avoid zero differential into the 21264/EV 67 input
receivers (I_DA, | _DA_CLK, B_DA_OD, B_DA_PP, and B_DA_PP). Finally, to
avoid failure mechanism number three, systems must sequence input and bidirectional
pins(I_DA,1_DA_CLK, B_DA_OD, B_DA_PP, and I|_DC_REF) such that the 21264/
EV67 does not see avoltage above its VDD.

In addition, as power is being ramped, Reset_L must be asserted — this allows the
21264/EV67 to reset internal state. Once the target voltage levels are attained, systems
should asselPCOK _H. This indicates to the 21264/EV67 that internal logic functions

can be evaluated correctly and that the power-up sequence should be continued. Prior to
DCOK _H being asserted, the logic internal to the 21264/EV67 is being reset and the
internal clock network is running (either clocked by the VCO, which is at a nominal
speed, or b’ lkin_H, if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

9.4 AC Characteristics

Abbreviations:

The following abbreviations apply to Table 9-13:
e TSU = Setup time

e Duty cycle = Minimum clock duty cycle

e TDH =Holdtime

e Slew rate = referenced to signal edge

AC Test Conditions:

The following conditions apply to the measurements that are listed in Table 9-13:
* VDDisintherange between 1.9V and 2.15 V.
e SysVref isVDD/2 Volts.

* BceVrefis0.75 Volts.

9-6 Electrical Data Alpha 21264/EV67 Hardware Reference Manual

AC Characteristics

* The input voltage swing is Vref + 0.40 \olts.

e All output skew datais based on simulation into a 50-ohm transmission line that is
terminated with 50 ohmsto VDD/2 for Bcache timing, and with 50 ohmsto VDD
for all other timing.

Timings are measured at the pins as follows:

— For open-drain outputs, timing is measured { tW;em)/2. Where Vg, IS
the offchip termination voltage for system signals.

— For non-open-drain outputs, timing is measured gp€W,,)/2.

— For all inputs other than type |_DA_CLK, timing is measured to the point
where the input signal crosses VREF.

— Fortype |_DA CLK inputs, timing is measured when the voltage on the com-
plementary inputs is equal.

Table 9-13 AC Specifications

Signal Name Type Reference Signal TSU! TDH? TSkew Duty Cycle TSlew
SysAddIin_L[14:0 I_DA SysAddInClk_L 400ps 400ps NA NA 1.0V/ns
SysFillvalid_L I_DA SysAddInClk_L 400ps 400ps NA NA 1.0V/ns
SysDatalnValid_L I_DA SysAddInCIk_L 400ps 400ps NA NA 1.0V/ns
SysDataOutValid_L I_DA SysAddInClk_L 400ps 400ps NA NA 1.0V/ns
SysAddInCIlk_L I_DA NA NA NA NA 45-55% 1.0 Vins
SysAddOut_L[14:0] 0 _OoD SysAddoutClk_L NA NA +300pS NA NA
SysAddOutClk_L 0 0D EV6CIk_x NA NA +400ps 45-55% NA
SysData L [63:0] B_DA_OD SysDatalnClk_H[7:0] 400 ps 400ps NA NA 1.0 Vins
SysDataOutClk_L[7:0]* NA NA +300pS NA NA
SysCheck_L[7:0] B_DA_OD SysDatalnClk_H[7:0] 400 ps 400ps NA NA 1.0 Vins
SysDataOutClk_L[7:0]* NA NA +300 pS NA NA
SysDatalnClk_H[7:0] |_DA NA NA NA NA 45-55% 1.0 V/ns
SysDataOutClk_L [7:0] 0 0D EV6CIk_x NA NA +400ps 45-55% NA
BcAdd_H[23:4] O_PP BcTagOutClk_x NA NA + 300 p§'6 NA —
BcDataOE_L O_PP BcDataOutCIk_x[S:O]7 45-55% —
BcLoad_L O_PP 38-63% —
BcDatawr L O_PP 40-60% —
BcData_H[127:0] B_DA PP BcDataOutClk_x[3:0]1° NA NA +300p§ 45-55% 1.0 V/ns
38-639F NA
40-6094 NA
BcDatalnClk_H[7:0] 400 ps 400ps NA NA NA
BcDatalnClk_H[7:0] |_DA NA NA NA NA 45-55%
BcDataOutClk_H[3:0] O_PP EV6CIk_x NA NA + 400 ps
BcDataOutClk_L[3:0] O_PP EV6CIk_x NA NA +400 ps
BcTag H[42:20] B_DA_PP BcTagIinClk_H 400 ps 400ps NA NA 1.0 Vins
BcTagDirty H B_DA_PP BcTagInClk_H 400 ps 400ps NA NA 1.0 Vins
BcTagParity_H B_DA_PP BcTagInClk_H 400 ps 400ps NA NA 1.0 Vins

Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9-7

AC Characteristics

Table 9-13 AC Specifications (Continued)

Signal Name Type Reference Signal TSU! TDHZ TSkew Duty Cycle TSlew

BcTagShared_H B_DA_PP BcTagInClk_H 400ps 400ps NA NA 1.0V/ns

BcTagValid_H B_DA_PP BcTagInClk_H 400ps 400ps NA NA 1.0V/ns

BcTagValid_H B_DA_PP BcTagOutClk_x NA NA + 300 pé 45-55% NA

BcTagDirty H B_DA PP 38-63% NA

BcTagShared H B_DA PP 40-60% NA

BcTagParity H B_DA_PP

BcTagOE_L O_PP

BcTagWr_L O_PP

BcTaginClk_H I_DA NA NA NA NA 45-55%

BcTagOutCIk_x O_PP EV6CIk_x NA NA + 400 ps

IRQ_H[5:0] |_DA DCOK_H 10ns! 10nd! NA NA 100 mV/ns

Reset_L12 |_DA NA NA NA NA 100 mV/ns

DCOK_H® |_DA NA NA NA NA 100 mV/ns

PlIBypass H |_DA NA NA NA NA 100 mV/ns

Clkin_x® |_DA_CLK NA NA NA 40-60%1° 1.0 Vins

FrameClk_x17 |_DA_CLK Clkin_x 400 ps 400ps NA NA 1.0 Vins

EV6CIk_x18 O_PP_CLK ClkIn_x NA NA +1.0 ns YDiv+5% NA

EV(SCIk_x19 Cycle Compression Specification: See Note 19

ClkFwdRst_H I_DA FrameClk_x 400 ps 400ps NA NA 1.0 Vins

SromData_H I_DA SromClk_H 20ns 2.0ns NA 100 mV/ns

SromOE_L O_OD EV6CIk_x NA NA +2.0ns

SromClk_H% 0_OoD EV6CIk_x NA NA +7.0ns

Tms H I_DA Tck_H 20ns 2.0ns NA NA 100 mV/ns

Trst L& |_DA Tek_H NA NA NA NA 100 mV/ns

Tdi_H I_DA Tck_H 20ns 2.0ns NA NA 100 mV/ns

Tdo_H 0 _OoD Tek_H NA NA +70ns NA NA

Tck_H I_DA IEEE 1149.1 Port Freg. =5.0 NA NA NA 45-55% 100 mV/ns
MHz Max.

TestStat_H 0 0D EV6CIk_x NA NA +40ns NA NA

1
2

The TSU specified for all clock-forwarded signal groups is with respect to the associated clock.
The TDH specified for all clock-forwarded signal groups is with respect to the associated clock.

3 The TSkew value appliesonly whenthe SYS_CLK_DELAY[0:1] entry in the Cbox WRITE_ONCE
chain (Table 5-24) is set to zero phases of delay between forwarded clock out and address/data.

The TSkew specified fdBysData L signals is only with respect to the associated clock.

These signals should be referenceBd¢dagOutClk_x when measuring TSkew, provided that
BcTagOutClkl_x andBcDataOutClk_x have no programmed offset.

9-8 Electrical Data Alpha 21264/EV67 Hardware Reference Manual

AC Characteristics

6 The TSkew value applies only when the BC_CLK_DELAY[0:1] entry in the Cbox WRITE_ONCE
chain (Table 5-24) is set to zero phases of delay for Bcache clock.

7 The TSkew specified fd8cAdd_H signals is only with respect to the associated clock.

8 The duty cycle for 2.5X single data mode 2 GCLK phases high and 3 GCLK phases low.
9 The duty cycle for 3.5X single data mode 3 GCLK phases high and 4 GCLK phases low.
10 The TSkew specified fdBcData H signals is only with respect to the associated clock pair.

1 JRQ_HI5:0] must have their TSU and TDH times reference@DK _H during power-up to ensure
the correct Y divider and resultirV6Clk_x duty cycle. When the 21264/EV67 is executing
instructiond RQ_H[5:0] act as normal asynchronous pins to handle interrupts.

12 Reset_L is an asynchronous pin. It may be asserted asynchronously.

13 DCOK_H is an asynchronous pin. Note the minimum slew rate on the assertion edge.

14 plIBypass_H may not switch wheflkIn_x is running. This pin must either be deasserted during
power-up or the 21264/EV67 core power pitDD pins) indicating the 21264/EV67’s internal PLL
will be used. Note that it is illegal to uBEBypass H asserted during power-up unlesSl&ln_x is
present.

15 see Section 7.11.2 for a discussiolCtiIn_x as it relates to operating the 21264/EV67'’s internal
PLL versus running the 21264/EV67 in PLL bypass m@dleln_x has specific input jitter require-
ments to ensure optimum performance of the internal 21264/EV67 PLL.

16 |n PLL bypass mode, duty cycle deviation from 50%—-50% directly degrades device operating fre-
guency.

17 The TSU and TDH oFrameClk_x are referenced to the deasserting edg@liofn_x.

18 This signal is a feedback to the internal PLL and may be monitored for overall 21264/EV67 jitter. It
can also be used as a feedback signal to an external PLL when in PLL bypass mode. Proper termina-
tion of EV6CIk_x is imperative.

18 The cycle or phase cannot be more than 5% shorter than the nominal. Do not confuse this measure-
ment with duty cycle.

20 The period forSromClk_H is 256 GCLK cycles.

21 WhenTrst_L is deasserted;ms H must not change staferst_L is asserted asynchronously but
may be deasserted synchronously.

Alpha 21264/EV67 Hardware Reference Manual Electrical Data 9-9

10

Thermal Management

This chapter describes the 21264/EV 67 therma management and thermal design
considerations, and is organized as follows:

e Operating temperature
* Heat sink specifications

* Thermal design considerations

10.1 Operating Temperature

The 21264/EV 67 is specified to operate when the temperature at the center of the heat

sink (T is as shown in Table 10-1. Temperatyrsifould be measured at the center of

the heat sink, between the two package studs. The GRAFOIL pad is the interface mate-
rial between the package and the heat sink.

Table 10-1 Operating Temperature at Heat Sink Center (T,)

T Frequency

80.2°C 600 MHz

78.1° C 667 MHz

76.9°C 700 MHz

76.0°C 733 MHz

75.4° C 750 MHz

72.7° C 833 MHz

Note: Compaq recommends using the heat sink because it greatly improves the

ambient temperature requirement.

Alpha 21264/EV67 Hardware Reference Manual Thermal Management 10-1

Operating Temperature

Table 10-2 lists the values for the center of heat-sink-to-amiBign)tfor the 21264/
EV67 587-pin PGA. Tables 10-3 through 10-8 show the allowgl{iithout

exceeding J) at various airflows.

Table 10-2 B6.a at Various Airflows for 21264/EV67

Airflow (linear ft/min) 100 200 400 800 1000
B.awith heat sink type 1 (°C/W) 20 12 0.65 0.40 0.37
B.awith heat sink type 2 (°C/W) 14 0.78 0.45 0.33 0.31
B.awith heat sink type 3 (°C/W) —0.38 —
1 Heat sink type 3 has 280 mm x 80 mm x 15 mm fan attached.
Table 10-3 Maximum T , for 21264/EV67 @ 600 MHz and @ 2.0 V with Various Airflows
Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1 (°C) — — 37.3 53.8 55.8
Maximum T, with heat sink type 2°C) — 28.7 50.5 58.4 59.7
Maximum T, with heat sink type 5¢°C) —55.1—
1 Heat sink type 3 has a 80 ma80 mmx 15 mm fan attached.
Table 10-4 Maximum T , for 21264/EV67 @ 667 MHz and @ 2.0 V with Various Airflows
Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1 (°C) — — 30.7 48.9 51.1
Maximum T, with heat sink type 2°C) — 21.2 45.3 54.0 55.5
Maximum T, with heat sink type 5¢°C) —50.4 —
1 Heat sink type 3 has a 80 mn80 mmx 15 mm fan attached.
Table 10-5 Maximum T , for 21264/EV67 @ 700 MHz and @ 2.0 V with Various Airflows
Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1 (°C) — — 26.9 46.1 48.4
Maximum T, with heat sink type 2C) — — 42.2 51.5 53.0
Maximum T, with heat sink type 5¢°C) — 476 —
1 Heat sink type 3 has a 80 mn80 mmx 15 mm fan attached.
Table 10-6 Maximum T , for 21264/EV67 @ 733 MHz and @ 2.0 V with Various Airflows
Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1 (°C) — — 24.0 44.0 46.4
Maximum T, with heat sink type 2°C) — — 40.0 49.6 51.2
Maximum T, with heat sink type 5¢°C) — 45.6 —

1 Heat sink type 3 has a 80 mn80 mmx 15 mm fan attached.

10-2 Thermal Management Alpha 21264/EV67 Hardware Reference Manual

Heat Sink Specifications

Table 10-7 Maximum T , for 21264/EV67 @ 750 MHz and @ 2.0 V with Various Airflows

Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1 (°C) — — 22.1 42.6 45.1
Maximum T, with heat sink type 2C) — — 38.5 48.4 50.0
Maximum T, with heat sink type 13(°C) — 443 —

1 Heat sink type 3 has 280 mm x 80 mm x 15 mm fan attached.
Table 10-8 Maximum T , for 21264/EV67 @ 833 MHz and @ 2.0 V with Various Airflows
Airflow (linear ft/min) 100 200 400 800 1000
Maximum T, with heat sink type 1 (°C) — — — 36.3 39.1
Maximum T, with heat sink type 2C) — — 31.8 42.7 44.5
Maximum T, with heat sink type 5¢°C) —33.8—

1 Heat sink type 3 has a80 mm x 80 mm x 15 mm fan attached.

10.2 Heat Sink Specifications

Three heat sink types are specified. The mounting holes for all three arein line with the

cooling fins.

Figure 10-1 shows the heat sink type 1, along with its approximate dimensions.

Alpha 21264/EV67 Hardware Reference Manual Thermal Management 10-3

Heat Sink Specifications

Figure 10-1 Type 1 Heat Sink

80.5 mm

RN 25.4 mm
(3.17 in) ﬂ (1.01in)

R

32.5 mm
(1.280 in)

FM-06119.A14

10-4 Thermal Management Alpha 21264/EV67 Hardware Reference Manual

Heat Sink Specifications

Figure 10-2 shows the heat sink type 2, along with its approximate dimensions.

Figure 10-2 Type 2 Heat Sink

81.0 mm
(3.191in)

-

81.0 mm
(3.19in)

25.4 mm
(1.0in)

R

44.5 mm
(1.75)

|
VULUUUVUUUUUVUUUULYUUUUUUUUVUY l

FM-06120.A14

Alpha 21264/EV67 Hardware Reference Manual Thermal Management 10-5

Heat Sink Specifications

Figure 10-3 shows heat sink type 3, along with its approximate dimensions.

The cooling fins of heat sink type 3 are cross-cut. Also, an 8&r@hmmx 15 mm
fan is attached to heat sink type 3.

Figure 10-3 Type 3 Heat Sink

- —_—>
(3.151in)
71.5mm
- B
(2.8151in)
o TR AT &
OO0 AR] =
melslifilspi s fagiti st g mmem

OHO

254 mm
(1.0in)

=

40.0 mm
(1.575in)

0HET—
— HEHH s e s |
27.3 mm — slslsls HHHHAHE=
(1.075 in) :: HHHH ::::::ﬁf::
el iminliissa
¢ 80.0 mm 3
(3.151n)
715 mm <« 80mm
- . B
(2.815in) (3.15in)
15 mm
(0.59 in)$ Fan Fan
T4¢ NNNnannnnmannnnnnnnt L B ::gijiiI::E:jliiT
| AT I
| I ‘ 1 1 I
(1.62in) 1 | | | | |
* W
st ik I
I f,};i;;,: I 77777777‘[:{;‘:1::4 717 L:}EE}: 777777777
70.65 mm
(2.815in) FM-06121.Al4

10-6 Thermal Management Alpha 21264/EV67 Hardware Reference Manual

Thermal Design Considerations

10.3 Thermal Design Considerations

Follow these guidelines for printed circuit board (PCB) component placement:

e Orient the 21264/EV 67 on the PCB with the heat sink fins aligned with the airflow
direction.

e Avoid preheating ambient air. Place the 21264/EV 67 on the PCB so that inlet air is
not preheated by any other PCB components.

* Do not place other high power devicesin the vicinity of the 21264/EV 67.

Do not restrict the airflow across the 21264/EV 67 heat sink. Placement of other devices
must allow for maximum system airflow in order to maximize the performance of the
heat sink.

Alpha 21264/EV67 Hardware Reference Manual Thermal Management 10-7

11

Testability and Diagnostics

This chapter describes the 21264/EV 67 user-oriented testability and diagnostic fea-
tures. These features include automatic power-up self-test, Icache initialization from
external serial ROMs, and the serial diagnostic terminal port.

The boundary-scan register, which is another testability and diagnostic feature, islisted
in Appendix B. The boundary-scan register is compatible with |IEEE Standard 1149.1.

This chapter is organized as follows:

e Testpins

e SROM/seria diagnostic terminal port

* |EEE 1149.1 port

e TestStat H pin

* Power-up self-test and initialization

* Noteson |IEEE 1149.1 operation and compliance

The 21264/EV 67 has several manufacturing test features that are used only by the fac-
tory, and they are beyond the scope of this chapter.

11.1 Test Pins

The 21264/EV 67 test access ports include the IEEE 1149.1 test access port, a dual-pur-
pose SROM/Serial diagnostic terminal port, and a test status output pin. Table 11-1 lists
the test access port pins.

Table 11-1 Dedicated Test Port Pins

Pin Name Type Function

Tms H Input |EEE 1149.1 test mode select

Tdi_H Input |EEE 1149.1 test dataiin

Trst L Input |EEE 1149.1 test logic reset

Tck_H Input |EEE 1149.1 test clock

Tdo H Output |EEE 1149.1 test data output

SromData H Input SROM data/Diagnostic terminal datainput

Alpha 21264/EV67 Hardware Reference Manual Testability and Diagnostics 11-1

SROM/Serial Diagnostic Terminal Port

Table 11-1 Dedicated Test Port Pins (Continued)

Pin Name Type Function

SromClk_H Output SROM clock/Diagnostic terminal data output
SromOE_L Output SROM enable/Diagnostic terminal enable
TestStat H Output BiST status/timeout output

11.2 SROM/Serial Diagnostic Terminal Port

This port supports two functions. During power-up, it supports automatic initialization
of the Cbox configuration registers and the | cache from the system serial ROMs. After
power-up, it supports a seria diagnostic terminal.

11.2.1 SROM Load Operation

The following actions are performed while the SROM is |oaded:

e The SromOE_L pin supplies the output enable as well asthe reset to the serial
ROM. (Refer to the serial ROM specificationsfor details.) The 21264/EV 67 asserts
this signal low for the duration of the Icache load from the serial ROM. When the
load has been completed, the signal remains deasserted.

* The SromClk_H pin supplies the clock to the SROM that causes it to advance to
the next bit. Simultaneoudly, it causes the existing data on the SromData_H pinto
be shifted into an internal shift register. The cycletime of thisclock is 256 timesthe
CPU clock rate. (If the FASTROM flag is set, the rate is 16 times the CPU clock
rate.) The hold time on SromData_H is2* CPU cycle time with respect to
SromCIlk_H.

* The SromData_H pin reads datafrom the SROM.
Every data and tag bit in Icache is loaded by that sequence.

11.2.2 Serial Terminal Port

After the SROM dataisloaded into the | cache, the three SROM interface signals can be
used as a software UART and the pins become parallél 1/0 pins that can drive a system
debug or diagnostic terminal by using an interface such as RS422.

The serial lineinterface is automatically enabled if the SromOE_L pin iswired to the
following pins:

* Anactive high enable RS422 (or 26L.S32) driver, driving to SromData H
e Anactive high enable RS422 (or 26L.S31) receiver, driven from SromClk_H

After reset, SromClk_H isdriven from the lbox |_CTL[SL_XMIT]. Thisregister is
cleared during reset, so it startsdriving asa 0, but it can be written by software. The
data becomes available at the pin after the HW_MTPR instruction that wrote

| CTL[SL_XMIT] isretired.

11-2 Testability and Diagnostics Alpha 21264/EV67 Hardware Reference Manual

IEEE 1149.1 Port

On thereceive side, whilein native mode, any transition on the Ibox |_CTL
[SL_RCV], driven from the SromData_H pin, resultsin atrap to the PALcode inter-
rupt handler. When in PALmode, all interrupts are blocked. The interrupt routine then
begins sampling | _CTL [SL_RCV] under a software timing loop to input as much data
as needed, using the chosen serial line protocol.

11.3 |IEEE 1149.1 Port

The IEEE 1149.1 Test Access Port consists of the Tdi_H, Tdo H, Tms H, Tck_H,
and Trst_L pins. These pins access the |EEE 1149.1 mandated public test features as
well as several private chip manufacturing test features.

The port meets all requirements of the standard except that there are no pull-ups on the
Tdi_H, Tms H,and Trst_L pins, as required by the present standard.

The scope of 1149.1 compliant features on the 21264/EV 67 is limited to the board level
assembly verification test. The systemsthat do not intend to drive this port must termi-
nate the port pins as follows: pull-upson Tdi_H and Tms_H, pull-downson Tck_H
and Trst_L.

The port logic consists of the usual standard compliant components, namely, the TAP
Controller State Machine, the Instruction Register, and the Bypass Register.

The Bypass Register provides a short shift path through the chip’s IEEE 1149.1 logic. It
is generally useful at the board level testing. It consists of a 1-bit shift register.

The Instruction Register holds test instructions. On the 21264/EV67, this register is 5
bits wide. Table 11-2 describes the supported instructions. The instruction set supports
several public and private instructions. The public instructions operate and produce
behavior compliant with the standard. The private instructions are used for chip manu-
facturing test and must not be used outside of chip manufacturing.

Table 11-2 IEEE 1149.1 Instructions and Opcodes

Opcode Instruction Operation/Function

00xxx Private Theseinstructions are for factory test use only. The user must
01xxx not load them as they may have a harmful effect on the
10xxx 21264/EV67.

11000 SAMPLE |EEE 1149.1 SAMPLE instruction.

11001 HIGHZ |EEE 1149.1 HIGHZ instruction.

11010 CLAMP |EEE 1149.1 CLAMP instruction.

11011 EXTEST |EEE 1149.1 EXTEST instruction.

11100 Private These instructions are for factory test use only. The user must
11101 not load them as they may have a harmful effect on the
11110 21264/EV67.

11111 BYPASS |EEE 1149.1 BY PASS instruction.

Figure 11-1 shows the TAP controller state machine state diagram. Thelsighad
controls the state transitions that occur with the rising clock edge. TAP state machine
states are decoded and used for initiating various actions for testing.

Alpha 21264/EV67 Hardware Reference Manual Testability and Diagnostics 11-3

TestStat_H Pin

Figure 11-1 TAP Controller State Machine

Test Logic
Reset

‘E Run-Test/Idle 1

4

|

Select-DR-Scan !

Select-IR-Scan

{

Values
shown
are for
TMS.

Scan Sequence Scan Sequence

MK145508.A14

11.4 TestStat H Pin

The TestStat_H pin serves two purposes. During power-up, it indicates BiST pass/fail
status. After power-up, it indicates the 21264/EV 67 timeout event.

The system reset forces TestSat_H to low. Thox forcesit high during theinternal BiST

and array initialization operations. During result extraction (DoResult state), the Thox
drivesit low for 16 cycles. After that, the pin remainslow if the BiST has passes, other-

wise, it is asserted high and remains high until chip is reset again. Figure 11-2 pictori-
ally shows the behavior of the pin during the power-up operations.

Note: A system designer may sample ffestStat_H pin on the first rising edge
of theSromCIlk_H pin to determine BiST results. After the power-up dur-
ing the normal chip operation, whenever the 21264/EV67 does not retire an
instruction for 2K CPU cycles, the pin is asserted high for 3 CPU cycles.

11-4 Testability and Diagnostics Alpha 21264/EV67 Hardware Reference Manual

Power-Up Self-Test and Initialization

Figure 11-2 TestStat H Pin Timing During Power-Up Built-In Self-Test (BiST)

ClkFwdReset L — \ / _/
Thox_Reset_A_L /

TBox Reset Engine Idle X DoBist X_Doresult_ X DoSROM X idle

TestStatus_H / \ / BiSTResult X BiSTResult OR T

LKG-10950A-98WF

Figure 11-3 TestStat H Pin Timing During Built-In Self-Initialization (BiSI)

Thox_Rst_ A L1 /

TBox Reset Enginel Idle X DoMfgSeffinit X idle
TestStatus_H1 / \ / TimeOut
ClkFwdRst_L1 ™\ _/ _/

LKG-10951A-98WF

11.5 Power-Up Self-Test and Initialization

Upon powering up, the 21264/EV 67 automatically performs the self-test of all major
embedded RAM arrays and then loads the Chox configuration registers and the instruc-
tion cache from the system SROM. The chip’s internal logic is held in reset during
these operations. See Chapter 9 for sequencing of power-up operations.

11.5.1 Built-in Self-Test

The power-up self-test is performed on the instruction cache and tag arrays, the data
cache and tag arrays, the triplicate tag arrays, and the various RAM arrays located in the
branch history table logic. The power-up self-test lasts for approximately 700,000 CPU
cycles. The result of self-test is made available as Pass/Fail statusTest8at H

pin (see Section 11.4).

The result of self-test is also available in an IPR bit. Software can read this status
through IPR |_CTL(23) (0 = pass, 1 = fail). See Section 5.2.15.

The power-up BiST leaves all bits in all arrays initialized to zeroes. The instruction
cache and the tag are reinitialized as part of the SROM initialization step. This is
detailed in Section 11.5.2.

11.5.2 SROM Initialization

Power-up initialization on the 21264/EV67 is different from previous generation Alpha
systems in two aspects. First, in the 21264/EV67 systems, the presence of serial
ROMs is mandatory as initialization of several Cbox configuration registers depends on
them. Second, it is possible to skip or partially fill Icache from serial ROMs. Figure 11—
4 shows the map of the data in serial ROMs.

Alpha 21264/EV67 Hardware Reference Manual Testability and Diagnostics 11-5

Power-Up Self-Test and Initialization

In the SROM represented in Figure 11-4, the length for fields Cbox Config
Data(0,n) plus MBZ(m,0) must equal 367 bits. (If Cbox Config Data(0,n) is
(0,366), MBZ would be zero.)

For the 21264/EV67, Cbox Config Data is 304 bits; the valua i®303.
Therefore, the value MBZ field for Pass 3 is:
MBZ(m,0) = 367 minus 304 = 63 = (62,0)

Tables 11-3 and 5—-24 describe the details of the Icache and Cbhox bit fields, respec-
tively. Note that fetch_count(1,0) must be 3, which guarantees that the SROM never
partially loads an Icache block.

Figure 11-4 SROM Content Map

fetch [0](0,192)
(first block)

fetchj-1](0,192)|fetch[j](0,192)

(Iast block)

fetch_count(11,0)|Cbox Config Data(0, n) | MBZ(m,0)

11.5.2.1 Serial Instruction Cache Load Operation

All Icache bits, including each block’s tag, address space number (ASN), address space
match (ASM), and valid and branch history bits are loaded serially from offchip serial
ROMs. Once the serial load has been invoked by the chip reset sequence, the cache is
loaded from the lower to the higher addresses.

The serial Icache fill invoked by the chip reset sequence operates internally at a fre-
GCLK
quency Ofﬁ

Table 11-3 lists the Icache bit fields in an SROM line. Fetch bits are listed in the order
of shift direction (to down and to right). In Table 11-3:

Bit Type Meaning

c Disp_add carry

i Instruction

iq | queue predecodes
tr Trouble bits

dv Degtination valid
ea Ea src

par-MBZ Must be zero

The load occurs at the rate of 1 bit per 256 CPU cycles. The chip outputs a 50% duty
cycle clock on th&romClk_H pin.

The serial ROMs can contain enough Alpha code to complete the configuration of the
external interface (for example, set the timing on the external cache RAMs, and diag-
nose the path between the CPU chip and the real ROM).

11-6 Testability and Diagnostics Alpha 21264/EV67 Hardware Reference Manual

Notes on IEEE 1149.1 Operation and Compliance

The instruction cache lines are loaded in the reverse order. If the fetch_count(9,0) is
zero, then, noinstruction cache linesareloaded. Sincethe valid bits are already cleared
by the BiST operation, the first instruction fetch is missed in the instruction cache and
the chip seeks instructions from the offchip memory.

Table 11-3 Icache Bit Fields in an SROM Line

Fetch Bit Icache Data Fetch Bit Icache Data Fetch Bit Icache Data

0 par-MBZ 86 par-MBZ 172 Ip_train

1 c[3] 87 c[O] 173:175 Ip_src(2:0)

2:27 i[3](25,20,24,19,23,18,22,17 88:113 i[0](25,20,24,19,3,18,22,17, 176:181 Ip_idx(14:9)
,21,16:0) 21,16:0)

28 c[2] 114 c[1] 182:186 Ip_idx(8:4)

29:42 i[2](25,20,24,19, 115:128 i[1] (25,20,24,19, 187 Ip_idx(15)
23,18,22,17,21,16:12) 23,18,22,17,21,16:12)

43 parity 129 parity 188:192 Ip_ssp[4:Q]

44:55 i[2](11:0) 130:141 i[1](12:0) — —

56 dv[3] 142 dv[0] — —

57:59 iq[3](2:0) 143:145 ig[0](2:0) — —

60:65 i[3](26:31) 146:151 i[0](26:31) — —

66,68 ea[3](2:0) 152:154 ea[0](2:0) — —

69 av[2] 155 dv[1] — —

70,72 iq[2](2:0) 156:158 iq[1](2:0) — —

73:78 i[2](26:31) 159:164 i[1](26:31) — —

79:81 eal2](2:0) 165:167 ea[1](2:0) — —

82:85 tr(7:4) 168:171 tr(0:3) — —

Refer to the Alpha Motherboards Software Developer’s Kit (SDK) for example C code
that calculates the predecode values of a serial Icache load.

11.6 Notes on IEEE 1149.1 Operation and Compliance

1. IEEE 1149.1 port pins on the 21264/EV67 are not pulled up or pulled down on the
chip. The necessary pull-up or pull-down function must be implemented on the
board.

2. Tms_H should not change whést_L is being deasserted.
References

IEEE Std. 1149.1-199A& Test Access Port and Boundary Scan Architecture.
See Appendix B for a listing of the Boundary-Scan Register.

Alpha 21264/EV67 Hardware Reference Manual Testability and Diagnostics 11-7

A

Alpha Instruction Set

This appendix provides a summary of the Alphainstruction set and describes the
21264/EV67 |EEE floating-point conformance. It is organized as follows:

e Alphainstruction summary

* Reserved opcodes

* |EEE floating-point instructions

e VAX floating-point instructions

e |ndependent floating-point instructions
e Opcode summary

* Required PAL code function codes

* |EEE floating-point conformance

A.1 Alpha Instruction Summary

This section contains asummary of all Alphaarchitectureinstructions. All valuesarein
hexadecimal radix. Table A-1 describes the contents of the Format and Opcode col-
umns that are in Table A-2.

Table A-1 Instruction Format and Opcode Notation

Format Opcode

Instruction Format Symbol Notation Meaning

Branch Bra 00 00 isthe 6-hit opcode field.

Floating-point F-P oo.fff 00 isthe 6-hit opcode field.
fff is the 11-bit function code field.

Memory Mem 00 00 isthe 6-bit opcode field.

Memory/function code Mfc oo.ffff 00 isthe 6-bit opcode field.
ffff is the 16-bit function code in the displacement
field.

Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A-1

Alpha Instruction Summary

Table A-1 Instruction Format and Opcode Notation (Continued)

Format Opcode
Instruction Format Symbol Notation Meaning
Memory/ branch Mbr 00.h 00 is the 6-bit opcode field.
his the high-order 2 bits of the displacement field.
Operate Opr oo.ff 00 is the 6-bit opcode field.
ff is the 7-bit function code field.
PALcode Pcd 00 00 is the 6-bit opcode field; the particular PAL-

code instruction is specified in the 26-bit function
code field.

Qualifiers for operate instructions are shown in Table A-2. Qualifiers for IEEE and
VAX floating-point instructions are shown in Tables A-5 and A-6, respectively.

Table A—2 Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating
ADDG F-P 15.0A0 Add G _floating
ADDL Opr 10.00 Addlongword
ADDL/NV Opr 1040 Addlongword with integer overflow enable
ADDQ Opr 10.20 Add quadword
ADDQ/V Opr 10.60 Add quadword with integer overflow enable
ADDS F-P 16.080 Add S floating
ADDT F-P 16.0A0 Add T _floating
AMASK Opr 11.61 Architecture mask
AND Opr 11.00 Logical product

BEQ Bra 39 Branch if = zero
BGE Bra 3E Branch if > zero

BGT Bra 3F Branch if > zero

BIC Opr 11.08 Bit clear

BIS Opr 11.20 Logical sum

BLBC Bra 38 Branch if low bit clear
BLBS Bra 3C Branch if low bit set
BLE Bra 3B Branch if <zero

BLT Bra 3A Branch if < zero

BNE Bra 3D Branch if # zero

BR Bra 30 Unconditional branch

A-2 Alpha Instruction Set

Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

BSR Mbr 34 Branch to subroutine

CALL_PAL Pcd 00 Trap to PALcode

CMOVEQ Opr 11.24 CMOVEif = zero

CMOVGE Opr 11.46 CMOVE if = zero

CMOVGT Opr 1166 CMOVEIf > zero

CMOVLBC Opr 11.16 CMOVEIf low bit clear

CMOVLBS Opr 11.14 CMOVEIf low bit set

CMOVLE Opr 11.64 CMOVE if <zero

CMOVLT Opr 11.44 CMOVE if < zero

CMOVNE Opr 11.26 CMOVE f # zero

CMPBGE Opr 10.0F Compare byte

CMPEQ Opr 10.2D Compare signhed quadword equal
CMPGEQ F-P 15.0A5 Compare G_floating equal

CMPGLE F-P 15.0A7 Compare G_floating less than or equal
CMPGLT F-P 15.0A6 Compare G_floating less than
CMPLE Opr 10.6D Compare signed quadword less than or equal
CMPLT Opr 104D Compare signed quadword less than
CMPTEQ F-P 16.0A5 CompareT_floating equal

CMPTLE F-P 16.0A7 CompareT_floating less than or equal
CMPTLT F-P 16.0A6 CompareT_floating lessthan
CMPTUN F-P 16.0A4 Compare T_floating unordered
CMPULE Opr 10.3D Compare unsigned quadword less than or equal
CMPULT Opr 10.1D Compare unsigned quadword less than
CPYS F-P 17.020 Copy sign

CPYSE F-P 17.022 Copy sign and exponent

CPYSN F-P 17.021 Copy sign negate

CTLZ Opr 1C.32 Count leading zero

CTPOP Opr 1C.30 Count population

CTTZ Opr 1C.33 Count trailing zero

CVTDG F-P 15.09E Convert D_floating to G_floating
CVTGD F-P 15.0AD Convert G floating to D_floating
CVTGF F-P 15.0AC Convert G_floating to F_floating

Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Set

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

CVTGQ F-P 15.0AF Convert G_floating to quadword
CVTLQ F-P 17.010 Convert longword to quadword
CVTQF F-P 15.0BC Convert quadword to F_floating
CVTQG F-P 15.0BE Convert quadword to G_floating
CVTQL F-P 17.030 Convert quadword to longword
CVTQs F-P 16.0BC Convert quadwordto S floating
CVTQT F-P 16.0BE Convert quadword to T_floating
CVTST F-P 16.2AC Convert S floatingto T_floating
CVTTQ F-P 16.0AF Convert T_floating to quadword
CVTTS F-P 16.0AC Convert T floatingto S floating
DIVF F-P 15.083 Divide F_floating

DIVG F-P 15.0A3 Divide G_floating

DIVS F-P 16.083 Divide S floating

DIVT F-P 16.0A3 DivideT_floating

ECB Mfc 18.E800 Evict cache block

EQV Opr 11.48 Logical equivalence

EXCB Mfc 18.0400 Exception barrier

EXTBL Opr 12.06 Extract byte low

EXTLH Opr 12.6A Extract longword high

EXTLL Opr 12.26 Extract longword low

EXTQH Opr 12.7A Extract quadword high

EXTQL Opr 12.36 Extract quadword low

EXTWH Opr 125A Extract word high

EXTWL Opr 12.16 Extract word low

FBEQ Bra 31 Floating branch if = zero

FBGE Bra 36 Floating branch if = zero

FBGT Bra 37 Floating branch if > zero

FBLE Bra 33 Floating branch if <zero

FBLT Bra 32 Floating branch if < zero

FBNE Bra 35 Floating branch if # zero
FCMOVEQ F-P 17.02A FCMOVE if =zero

FCMOVGE F-P 17.02D FCMOVE if = zero

A-4 Alpha Instruction Set

Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

FCMOVGT F-P 17.02F FCMOVEif > zero

FCMOVLE F-P 17.02E FCMOVE if <zero

FCMOVLT F-P 17.02C FCMOVEif <zero

FCMOVNE F-P 17.02B FCMOVE if # zero

FETCH Mfc 18.8000 Prefetch data

FETCH_M Mfc 18.A000 Prefetch data, modify intent

FTOIS F-P 1C.78 Foating to integer move, S floating
FTOIT F-P 1C.70 Foating to integer move, T_floating
IMPLVER Opr 11.6C Implementation version

INSBL Opr 12.0B Insert bytelow

INSLH Opr 12.67 Insert longword high

INSLL Opr 12.2B Insert longword low

INSQH Opr 12.77 Insert quadword high

INSQL Opr 12.3B Insert quadword low

INSWH Opr 12,57 Insert word high

INSWL Opr 121B Insert word low

ITOFF F-P 14.014 Integer to floating move, F_floating
ITOFS F-P 14.004 Integer to floating move, S floating
ITOFT F-P 14.024 Integer to floating move, T_floating
JMP Mbr 1A.0 Jump

JSR Mbr 1A.1 Jump to subroutine
JSR_COROUTINE Mbr 1A 3 Jump to subroutine return

LDA Mem 08 Load address

LDAH Mem 09 Load address high

LDBU Mem 0A Load zero-extended byte

LDF Mem 20 Load F_floating

LDG Mem 21 Load G_floating

LDL Mem 28 L oad sign-extended longword
LDL L Mem 2A L oad sign-extended longword locked
LDQ Mem 29 L oad quadword

LDQ L Mem 2B L oad quadword locked

LDQ U Mem 0B L oad unaligned quadword

Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

LDS Mem 22 Load S floating

LDT Mem 23 Load T floating

LDWU Mem 0oC L oad zero-extended word
MAXSBS8 Opr 1C.3E Vector signed byte maximum
MAXSW4 Opr 1C.3F Vector signed word maximum
MAXUBS Opr 1C.3C Vector unsigned byte maximum
MAXUWA4 Opr 1C.3D Vector unsigned word maximum
MB Mfc 18.4000 Memory barrier

MF_FPCR F-P 17.025 Movefrom FPCR

MINSBS8 Opr 1C.38 Vector signed byte minimum
MINSW4 Opr 1C.39 Vector signed word minimum
MINUBS Opr 1C.3A Vector unsigned byte minimum
MINUWA4 Opr 1C.3B Vector unsigned word minimum
MSKBL Opr 12.02 Mask byte low

MSKLH Opr 12.62 Mask longword high

MSKLL Opr 12.22 Mask longword low

MSKQH Opr 12.72 Mask quadword high

MSKQL Opr 12.32 Mask quadword |ow

MSKWH Opr 12,52 Mask word high

MSKWL Opr 12,12 Mask word low

MT_FPCR F-P 17.024 Moveto FPCR

MULF F-P 15.082 Multiply F_floating

MULG F-P 15.0A2 Multiply G_floating

MULL Opr 13.00 Multiply longword

MULL/NV Opr 13.40 Multiply longword with integer overflow enable
MULQ Opr 13.20 Multiply quadword

MULQ/V Opr 13.60 Multiply quadword with integer overflow enable
MULS F-P 16.082 Multiply S floating

MULT F-P 16.0A2 Multiply T_floating

ORNOT Opr 11.28 Logical sum with complement
PERR Opr 1C.31 Pixel error

PKLB Opr 1C.37 Pack longwordsto bytes

A-6 Alpha Instruction Set

Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Summary

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

PKWB Opr 1C.36 Pack wordsto bytes

RC Mfc 18.E000 Read and clear

RET Mbr 1A.2 Return from subroutine
RPCC Mfc 18.C000 Read process cycle counter
RS Mfc 18.FO00 Read and set

SAADDL Opr 10.02 Scaled add longword by 4
SAADDQ Opr 10.22 Scaled add quadword by 4
SASUBL Opr 10.0B Scaled subtract longword by 4
HASUBQ Opr 10.2B Scaled subtract quadword by 4
SBADDL Opr 10.12 Scaled add longword by 8
SBADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8
S8SUBQ Opr 10.3B Scaed subtract quadword by 8
SEXTB Opr 1C.00 Sign extend byte

SEXTW Opr 1C.01 Sign extend word

SLL Opr 12.39 Shift left logical

SQRTF F-P 14.08A Squareroot F_floating
SQRTG F-P 14.0AA Squareroot G_floating
SQRTS F-P 14.08B Squareroot S floating
SORTT F-P 14.0AB Squareroot T_floating

SRA Opr 12.3C Shift right arithmetic

SRL Opr 12.34 Shift right logical

STB Mem OE Store byte

STF Mem 24 Store F_floating

STG Mem 25 Store G_floating

STL Mem 2C Store longword

STL C Mem 2E Store longword conditional
STQ Mem 2D Store quadword

STQ C Mem 2F Store quadword conditional
STQ U Mem OF Store unaligned quadword
STS Mem 26 Store S floating

STT Mem 27 Store T_floating

Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Set

Reserved Opcodes

Table A—2 Architecture Instructions (Continued)

Mnemonic Format Opcode Description

STW Mem oD Store word

SUBF F-P 15.081 Subtract F_floating

SUBG F-P 15.0A1 Subtract G_floating

SUBL Opr 10.09 Subtract longword

SUBL/V Opr 10.49 Subtract longword with integer overflow enable
SUBQ Opr 10.29 Subtract quadword

SUBQ/V Opr 10.69 Subtract quadword with integer overflow enable
SUBS F-P 16.081 Subtract S_floating

SUBT F-P 16.0A1 Subtract T_floating

TRAPB Mfc 18.0000 Trap barrier

UMULH Opr 13.30 Unsigned multiply quadword high

UNPKBL Opr 1C.35 Unpack bytes to longwords

UNPKBW Opr 1C.34 Unpack bytes to words

WH64 Mfc 18.F800 Write hint — 64 bytes

WMB Mfc 18.4400 Write memory barrier

XOR Opr 11.40 Logical difference

ZAP Opr 12.30 Zero bytes

ZAPNOT Opr 12.31 Zero bytes not

A.2 Reserved Opcodes

This section describes the opcodes that are reserved in the Alpha architecture. They can
be reserved for Compaq or for PAL code.

A.2.1 Opcodes Reserved for Compaq

Table A-3 lists opcodes reserved for Compag.

Table A—3 Opcodes Reserved for Compaq

Mnemonic Opcode Mnemonic Opcode
OPCO1 01 OPCO05 05
OPC02 02 OPCO06 06
OPCO03 03 OPCO7 07
OPC04 04 — —

A-8 Alpha Instruction Set

Alpha 21264/EV67 Hardware Reference Manual

IEEE Floating-Point Instructions

A.2.2 Opcodes Reserved for PALcode

Table A—4 lists the 21264/EV67-specific instructions. See Chapter 2 for more
information.

Table A—4 Opcodes Reserved for PALcode

21264/EV67 Architecture

Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Performs Dstream load instructions.

HW_ST 1F PAL1F Performs Dstream store instructions.

HW_REI 1E PAL1E Returnsinstruction flow to the program counter (PC) pointed
to by EXC_ADDR internal processor register (IPR).

HW_MFPR 19 PAL19 Accesses the Ibox, Mbox, and Dcache IPRs.

HW_MTPR 1D PAL1D Accesses the Ibox, Mbox, and Dcache IPRs.

A.3 |IEEE Floating-Point Instructions

Table A-5 lists the hexadecimal value of the 11-bit function code field for the IEEE
floating-point instructions, with and without qualifiers. The opcode for these
instructions is 16;.

Table A-5 |IEEE Floating-Point Instruction Function Codes

Mnemonic None /IC M /D /U /uc /UM /UD
ADDS 080 000 040 0Co 180 100 140 1CO0
ADDT 0A0 020 060 OEO 1A0 120 160 1E0
CMPTEQ 0A5 — — — — — — —
CMPTLT 0A6 — — — — — — —
CMPTLE 0A7 — — — — — — —
CMPTUN 0A4 — — — — — — —
CVTQS 0BC 03C 07C OFC — — — —
CVTQT OBE 03E O7E OFE — — — —

See — — — — — — —
CVTST below

See — — — — — — —
CVTTQ below
CVTTS 0AC 02C 06C OEC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3
DIVT 0A3 023 063 OE3 1A3 123 163 1E3
MULS 082 002 042 0C2 182 102 142 1C2
MULT 0A2 022 062 OE2 1A2 122 162 1E2

Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A-9

IEEE Floating-Point Instructions

Table A-5 |IEEE Floating-Point Instruction Function Codes (Continued)

SQRTS 08B 0oB 04B 0CB 18B 10B 14B 1CB
SQRTT OAB 02B 06B OEB 1AB 12B 16B 1EB
SUBS 081 001 041 0C1 181 101 141 1C1
SUBT OAl 021 061 OE1 1A1 121 161 1E1
Mnemonic /SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID
ADDS 580 500 540 5C0 780 700 740 7CO
ADDT 5A0 520 560 5EO0 7A0 720 760 7EOQ
CMPTEQ 5A5

CMPTLT 5A6

CMPTLE 5A7

CMPTUN 5A4

CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5eEC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 TA2 722 762 TE2
SQRTS 58B 508 548 5CB 78B 70B 74B 7CB
SQRTT 5AB 528 568 5EB 7AB 72B 76B 7EB
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1l 721 761 7E1
Mnemonic None IS

CVTST 2AC 6AC

Mnemonic None /C v IVC ISV /SvC /SVI /SVIC
CVTTQ OAF 02F 1AF 12F 5AF 52F TAF 72F
Mnemonic D VD /ISVD /ISVID ™M NM /ISVM /SVIM
CVTTQ OEF 1EF 5EF TEF 06F 16F 56F 76F

A-10 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

VAX Floating-Point Instructions

Programming Note:

In order to use CMPTxx with software completion trap handling, it is necessary to
specify the/SU |EEE trap mode, even though an underflow trap is not possible. In order
touse CVTQS or CVTQT with software completion trap handling, it is necessary to
specify the /SUI |EEE trap mode, even though an underflow trap is not possible.

A.4 VAX Floating-Point Instructions

Table A-6 lists the hexadecimal value of the 11-bit function code field for the VAX
floating-point instructions. The opcode for these instructions;ig 15

Table A—6 VAX Floating-Point Instruction Function Codes

Mnemonic None IC J /uc /S /sC /SU /suc
ADDF 080 000 180 100 480 400 580 500

ADDG 0AO 020 1A0 120 4A0 420 5A0 520

CMPGEQ 0A5 4A5

CMPGLE 0A7 4A7

CMPGLT OA6 4A6

CVTDG 09E 01E 19 11E 49E 41E 59E 51E

CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D

CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C

CVTGQ See below

CVTQF 0BC 03C

CVTQG OBE 03E

DIVF 083 003 183 103 483 403 583 503
DIVG 0A3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522
SQRTF 08A 00A 18A 10A 48A 40A 58A S50A
SQRTG OAA 02A 1AA 12A 4AA 42A 5AA 52A
SUBF 081 001 181 101 481 401 581 501
SUBG 0Al 021 1A1 121 4A1 421 5A1 521
Mnemonic None /IC N VC /S /SC ISV /ISVC
CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F

A.5 Independent Floating-Point Instructions

Table A-7 lists the hexadecimal value of the 11-bit function code field for the floating-
point instructions that are not directly tied to IEEE or VAX floating point. The opcode
for the following instructions is L¢.

Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A-11

Opcode Summary

Table A—7 Independent Floating-Point Instruction Function Codes

Mnemonic None N ISV
CPYS 020 — —
CPYSE 022 — —
CPYSN 021 — —
CVTLQ 010 — —
cVTQL 030 130 530
FCMOVEQ 02A — —
FCMOVGE 02D — —
FCMOVGT 02F — —
FCMOVLE 02E — —
FCMOVLT 02C — —
MF_FPCR 025 — —
MT_FPCR 024 _ _

A.6 Opcode Summary

Table A-8 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the
table, the column headings that appear over the instructions have a granulagity of 8
The rows beneath the Offset column supply the individual hexadecimal number to
resolve that granularity.

If an instruction column has a 0 in the right (low) hexadecimal digit, replace that 0 with
the number to the left of the backslash (\) in the Offset column on the instruction’s row.
If an instruction column has an 8 in the right (low) hexadecimal digit, replace that 8
with the number to the right of the backslash in the Offset column.

For example, the third row (2/A) under the,d 6olumn contains the symbol INTS*,
representing the all-integer shift instructions. The opcode for those instructions would
then be 125 because the 0 in 10 is replaced by the 2 in the Offset column. Likewise, the
third row under the 18 column contains the symbol JSR*, representing all jump
instructions. The opcode for those instructions is 1A because the 8 in the heading is
replaced by the number to the right of the backslash in the Offset column. The
instruction format is listed under the instruction symbol.

Table A-8 Opcode Summary

Offset 00 08 10 18 20 28 30 38
0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
(pd) (mem) (op) (mem) (mem) (mem) (br) (or)
1/9 Res LDAH INTL* \PAL\ LDG LDQ FBEQ BEQ
(mem) (op) (mem) (mem) (br) (br)
2IA LDBU Res INTS* JSR* LDS LDL_L FBLT BLT
(op) (mem) (mem) (mem) (br) (br)

A-12 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

Table A-8 Opcode Summary (Continued)

Required PALcode Function Codes

Offset 00 08 10 18 20 28 30 38
3/B Res LDQ_U INTM* \PAL\ LDT LDQ_L FBLE BLE
(mem) (op) (mem) (mem) (br) (br)

4/C LDWU Res ITFP* FPTI* STF STL BSR BLBS
(mem) (mem) (br) (br)

5/D Res STW FLTV* \PAL\ STG STQ FBNE BNE
(op) (mem) (mem) (br) (br)

6/E Res STB FLTI* \PAL\ STS STL_C FBGE BGE
(op) (mem) (mem) (br) (br)

7IF Res STQ_U FLTL* \PAL\ STT STQ_C FBGT BGT
(mem) (op) (mem) (mem) (br) (br)

Table A-9 explains the symbols used in Table A-8.

Table A-9 Key to Opcode Summary Used in Table A-8

Symbol Meaning

FLTI* | EEE floating-point instruction opcodes
FLTL* Floating-point operate instruction opcodes
FLTV* VAX floating-point instruction opcodes

FPTI* Floating-point to integer register move opcodes
INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer shift instruction opcodes

ITFP* Integer to floating-point register move opcodes
JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcode ingtruction (CALL_PAL) opcodes
\PAL\ Reserved for PALcode

Res Reserved for Compaq

A.7 Required PALcode Function Codes

Table A-10 lists opcodes required for all Alpha implementations. The notation used is
oo.ffff, whereoo is the hexadecimal 6-bit opcode dfftlis the hexadecimal 26-bit
function code.

Table A-10 Required PALcode Function Codes

Mnemonic Type Function Code
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged 00.0086

Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A-13

IEEE Floating-Point Conformance

A.8 IEEE Floating-Point Conformance

The 21264/EV 67 supports the | EEE floating-point operations defined in the Alpha Sys-
tem Reference Manual, Revision 7 and therefore also from the Alpha Architecture
Handbook, Version 4. Support for a complete implementation of the IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is provided by a
combination of hardware and software. The 21264/EV 67 provides several hardware
features to facilitate complete support of the |EEE standard.

The 21264/EV 67 provides the following hardware features to facilitate complete sup-
port of the |EEE standard:

The 21264/EV 67 implements precise exception handling in hardware, as denoted
by the AMASK instruction returning bit 9 set. TRAPB instructions are treated as
NOPs and are not issued.

The 21264/EV 67 accepts both Signaling and Quiet NaNs as input operands and
propagates them as specified by the Alpha architecture. In addition, the 21264/
EV67 delivers a canonical Quiet NaN when an operation is required to produce a
NaN value and none of itsinputs are NaNs. Encodings for Signaling NaN and
Quiet NaN are defined by the Alpha Architecture Handbook, Version 4.

The 21264/EV 67 accepts infinity operands and implementsinfinity arithmetic as
defined by the |EEE standard and the Alpha Architecture Handbook, \Version 4.

The 21264/EV 67 implements SQRT for single (SQRTS) and double (SQRTT) pre-
cision in hardware.

Note: In addition, the 21264/EV 67 also implements the VAX SQRTF and

SQRTG instructions.

The 21264/EV 67 implements the FPCR[DNZ] bit. When FPCR[DNZ] is set,
denormal input operand traps can be avoided for arithmetic operations that include
the /S qualifier. When FPCR[DNZ] is clear, denormal input operands for arithmetic
operations produce an unmaskabl e denormal trap. CPY SE/CPY SN, FCM OV xX,
and MF_FPCR/MT_FPCR are not arithmetic operations, and pass denormal values
without initiating arithmetic traps.

The 21264/EV 67 implements the following disable bitsin the floating-point control
register (FPCR):

— Underflow disable (UNFD)

— Overflow disable (OVFD)

— Inexact result disable (INED)

— Division by zero disable (DZED)
— Invalid operation disable (INVD)

If one of these bits is set, and an instruction with the /S qualifier set generates the
associated exception, the 21264/EV67 produces the IEEE nontrapping result and

suppresses the trap. These nontrapping responses include correctly signed
infinity, largest finite number, and Quiet NaNs as specified by the IEEE
standard.

A-14 Alpha Instruction Set Alpha 21264/EV67 Hardware Reference Manual

IEEE Floating-Point Conformance

The 21264/EV 67 does not produce a denormal result for the underflow exception.
Instead, atrue zero (+0) is written to the destination register. In the 21264/EV 67,
the FPCR underflow to zero (UNDZ) bit must be set if the underflow disable
(UNFD) bit is set. If desired, trapping on underflow can be enabled by the instruc-
tion and the FPCR, and software may compute the denormal value as defined in the
|EEE standard.

The 21264/EV 67 records floating-point exception information in two places:

* TheFPCR status bits record the occurrence of all exceptions that are detected,
whether or not the corresponding trap is enabled. The status bits are cleared only
through an explicit clear command (MT_FPCR); hence, the exception information
they record isa summary of all exceptionsthat have occurred since the last time
they were cleared.

* If an exception is detected and the corresponding trap is enabled by the instruction,
and is not disabled by the FPCR control bits, the 21264/EV 67 will record the
condition in the EXC_SUM register and initiate an arithmetic trap.

The following items apply to Table A—11.:

e The 21264/EV67 traps on a denormal input operand for all arithmetic operations
unless FPCR[DNZ] = 1.

* Input operand traps take precedence over arithmetic result traps.
* Thefollowing abbreviations are used:

Inf: Infinity

QNaN: Quiet NaN

SNaN: Signaling NaN

CQNaN: Canonical Quiet NaN

For IEEE instructions with /S, Table A-11 lists all exceptional input and output
conditions recognized by the 21264/EV67, along with the result and exception gen-
erated for each condition.

Table A—11 Exceptional Input and Output Conditions

21264/EV67 Hardware

Alpha Instructions Supplied Result Exception
ADDx SUBx INPUT

Inf operand £Inf (none)

QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
Effective subtract of two Inf operands CQNaN Invalid Op
ADDx SUBx OUTPUT

Exponent overflow £Inf or tMAX Overflow
Exponent underflow +0 Underflow
Inexact result Result Inexact

Alpha 21264/EV67 Hardware Reference Manual

Alpha Instruction Set A-15

IEEE Floating-Point Conformance

Table A—11 Exceptional Input and Output Conditions (Continued)

21264/EV67 Hardware

Alpha Instructions Supplied Result Exception
MULX INPUT

Inf operand +Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
0 * Inf CQNaN Invalid Op
MULx OUTPUT (same as ADDX)

DIVx INPUT

QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
0/0 or Inf/Inf CONaN Invalid Op
A/0 (A not 0) £Inf Div Zero
AJInf +0 (none)

Inf/A +Inf (none)

DIVx OUTPUT (same as ADDXx)

SQRTx INPUT

+Inf operand +Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op
-A (A not 0) CQNaN Invalid Op
-0 -0 (none)
SQRTx OUTPUT

Inexact result root Inexact
CMPTEQ CMPTUN INPUT

Inf operand True or False (none)
QNaN operand False for EQ, True for UN (none)
SNaN operand False for EQ,True for UN Invalid Op
CMPTLT CMPTLE INPUT

Inf operand True or False (none)
QNaN operand False Invalid Op
SNaN operand False Invalid Op
CVTfi INPUT

Inf operand 0 Invalid Op
QNaN operand 0 Invalid Op

A-16 Alpha Instruction Set

Alpha 21264/EV67 Hardware Reference Manual

IEEE Floating-Point Conformance

Table A—11 Exceptional Input and Output Conditions (Continued)

21264/EV67 Hardware

Alpha Instructions Supplied Result Exception
SNaN operand 0 Invalid Op
CVTfi OUTPUT

Inexact result Result Inexact
Integer overflow Truncated result Invalid Op
CVTif OUTPUT

Inexact result Result Inexact
CVT{f INPUT

Inf operand £Inf (none)
QNaN operand QNaN (none)
SNaN operand QNaN Invalid Op

CVT{f OUTPUT (same as ADDx)

FBEQ FBNE FBLT FBLE FBGT FBGE
LDS LDT

STSSTT

CPYS CPYSN

FCMOVX

See Section 2.14 for information about the floating-point control register (FPCR).

Alpha 21264/EV67 Hardware Reference Manual Alpha Instruction Set A-17

B

21264/EV67 Boundary-Scan Register

This appendix contains the BSDL description of the 21264/EV 67 boundary-scan regis-

ter.

B.1 Boundary-Scan Register

The Boundary-Scan Register (BSR) on the 21264/EV 67 is 367 bitslong. It isaccessed
by the three public (SAMPLE, EXTEST, CLAMP) instructions. The register operation
for the public instructions is compliant with the IEEE 1149.1 standard.

The boundary-scan register coversall input, output, and bidirectional pins with the
exception of the compliance enable pins and pins that are power-supply-type or analog
in nature. The BSDL for the boundary-scan register is given in Section B.1.1.

B.1.1 BSDL Description of the Alpha 21264/EV67 Boundary-Scan Register

- al pha21264/ EV67. bsdl

- - The BSDL Description for EV6's IEEE 1149.1 Circuits

- Revision History

--Rev Date Description
--1.0 Feb 99 First external release

entity Alpha_21264/EV67 is-- (ref B.8)
generic (PHYSICAL_PIN_MAP :string := "PGA_EV6");-- (ref B.8.2)

port (-- (ref B.8.3)

TestStat_ H
SromOE_L
SromCIk_H
SromData_H
Reset_L
IRQ_H
DcOk_H
NoConnect_0
NoConnect_1
PlIBypass_H
FrameCIlk_H
FrameClk_L
ClkFwdRst_H
BcCheck_H
BcData_H
SysData_L
SysCheck_L

BcDatalnClk_H
SysDataOutClk_L :out

Spare_7

:out bit
:out bit
:out bit
in bit
:in bit ;
;in - bit_vector (0to 5) ;
Jlinkage bit
slinkage bit
Jlinkage bit
:linkage bit
:linkage bit
:linkage bit
iin - bit

:inout bit_vector (0 to 15);
sinout bit_vector (0 to 127);

:inout bit_vector (0 to 63) ;

:inout bit_vector (0 to 7) ;

:iin - bit_vector (0to 7) ;

:linkage bit_vector (0to 7) ;

Alpha 21264/EV67 Hardware Reference Manual

bit_vector (0to 7) ;

; -- Compliance enable input
;--nlc
;- nlc

21264/EV67 Boundary-Scan Register

B-1

Boundary-Scan Register

SysbDat al nCl k_H tin bit_vector (0 to 7)
BcDat aCut Cl k_L :out bit_vector (0 to 3) ; -- JWB corrected
BcDat aQut Gl k_H :out bit_vector (0 to 3) ; -- JWB corrected
a kln_H :linkage bit ; -- Gscillator
Ckin_L :linkage bit ; -- Gscillator
PLL_VDD :linkage bit ;
EV6C k_H :linkage bit ;
EV6d k_L :linkage bit ;
Spare_4 :linkage bit ;
Spare_5 :linkage bit ;
BcTag_H Ji nout bit_vector (20 to 42);
BcVr ef :linkage bit ;
BcTagl nC k_H (in bi t ; -- Nane in nodel:
BcTagd kl n_H
BcTagParity_H i nout bi t ;
BcTagShar ed_H Ji nout bi t ;
BcTagDirty_H Ji nout bi t ;
BcTagVval i d_H 1i nout bi t ;
BcTagQut Cl k_L :out bi t ;
BcTagQut G k_H :out bi t ;
BcTagOE_L :out bi t ;
BcTagW _L :out bi t ;
BcDat aW _L :out bi t ;
BcLoad_L :out bi t ;
BcDat aCE_L :out bi t ;
BcAdd_H s out bit_vector (4 to 23)
SysAddQut _L :out bit_vector (0 to 14) ;
SysAddl n_L (in bit_vector (0 to 14)
SysAddl nCl k_L tin bi t ;
SysAddQut O k_L :out bi t ; --JWB added
SysVr ef :linkage bit ; --JVWB added
SysFillValid_L (in bi t ;
SysDatal nvalid_L (in bi t ;
SysDat aQut Val i d_L (in bi t ;
Spare_0 :linkage bit i -- nlc
M scVr ef :linkage bit ;-
Spare_2 :linkage bit i -- nlc
Tdi _H (in bi t ;
Tdo_H :out bi t ;
Trst_L (in bi t ;
Tck_H (in bi t ;
Ts_H (in bi t ;
VSS: | inkage bit_vector (0 to 103);
VDD :linkage bit_vector (0 to 93));
use STD 1149 1 1994.all ;-- (ref B.8.4)

attribute COVPONENT_CONFORMANCE of Al pha_21264: entity is "STD 1149 1 1993";
attribute PIN_MAP of Al pha_21264 : entity is PHYSI CAL_PI N_MAP ;

constant PGA EV6 : PIN_MAP_STRING : = " &
"SysAddl n_L . (BD30, BC29, AY28, BE29, AW7, BA27, BD28, BE27, "&
" AY26, BC25, BB24, AvV24, BD24, BE23, AW3), "&
" SysAddl nCl k_L . BB26, "&
" SysVref . BA25, "&
"SysFillValid_L © BC23, "&
" SysAddQut _L . (AWB3, BE39, BD36, BC35, BA33, AY32, BE35, AV30, "&
" BB32, BA31, BE33, AW9, BC31, AV28, BB30), "&
"SysAddOut O k_L . BD34, "&
"SysData_L . (F14, G13, F12 , Hl12, HIO, G/ , F6 , K8 , "&
" M , NN , P6 , T8 , V8 , V6 , W , Y6 , "&
AB8 , AC7T , ADB , AE5 , AH6 , AHB , AJ7 , AL , "&

AP8 , AR7 , AT8 , AV6 , AV10, AW1, AV12, AWM3, "&

F32 , F34 , H34 , &85, F40 , G39 , K38, J41 , "&

MAO , N39 , P40, T38, V40 , W1 , WB9 , Y40 , "&

B-2 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register

" AB38, AC39, AD38, AF40, AH38, AJ39, AL41, AK3S8,

" AN39, AP38, AR39, AT38, AY38, AV36, AW5, AV34),

AA4L, AMA0, AY34),
, AG41, AV40),"&

" SysCheck_L (L7,
" SysDat al nCl k_H : (D8 , P4
"SysDat aCut d k_L (G,
"SysDat al nval i d_L : BD22,
" SysDat aCut Val i d_L : BB22,
"BcAdd_H ©(B28
" C31 ,
" B36 ,
"BcDat aCE_L o A27
"BcLoad_L : F26 ,
"BcDat aW _L ;D26 ,
"BcData_H . (B10 ,
" J3
" AC1 ,
" AY2 |
" &3,
" K44 |
" ADA2,
" AWM5,
" Cc11 ,
" o
" AB2 ,
" AU5
" A39 ,
" &45
" ACA3,
" AP40,
"BcCheck_H c(F2
" MB
"BcDat al nCl k_H ©(E7T
"Spare_7 : (F8
"BcDat aOut G k_L (K4,
"BcDat aCut d k_H (Jd5
"BcTag_H : (E13 ,
" C15 ,
" Al19 ,
"BcTagVal i d_H ;. B24
"BcTagDirty_H o C23
"BcTagShar ed_H . X3,
"BcTagParity_H ;. B22
"BcTagOE_L . H24
"BcTagW _L . E25
"BcTagl nCl k_H o Gl9
"BcVr ef : F18 |,
"BcTagQut Cl k_L . D24,
"BcTagOut d k_H . C25
"I RQ_H . (BA15,
"Reset _L . BD16,
" SronDat a_H : BC17,
" SronCLK_H © AW,
"SromOE_L . BE17,
"Trms_H : BD18,
"Tck_H : BE19,
"Trst _L . AY20,
"Tdi _H : BA21,
"Tdo_H : BB20,
"TestStat _H . BA19,
"dkln_H . AMB
" kln_L o AN7
"Framed k_H : AV16,
"FrameC k_L o AWLG,
"Pl | Bypass_H ;. BD12,

Alpha 21264/EV67 Hardware Reference Manual

AA5

, AF6 , AY6 , E37 , R43

ur o,

E27
H28 ,

D10 ,

BB2
C37 ,
N41
AEA3,
AUAL,

AV4
AU3 ,
H16 ,
H18 ,
F20 ,
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
BE13,
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&

AK8 ,

AG7 ,

A29 ,
@9 ,

L45 ,
AE41,
AVA2,
AT2 ,
AWM ,
AH2 |
AJl ,
K42 ,
J43 ,
All ,
D16 ,
D20

AW7, AV18, BCl5, BB16),

BA13,

AYS ,

&7 ,
A33
E33),

BB4 ,
41
P42 ,
AJ45,
BA43,
B6
L1

BC3 |
B42 |
N45 |
AGA5,
BB44,
BC11,
BDL0,
BC5 |
BD4 ,
AT42),
ARA3)
B12 ,
B16 ,
E21 ,

L39 ,

H36 ,

c29 ,
E31 ,

T44
AKA4,
BB42,
MBS |
E45 |
F38 ,
E39 ,

D14 ,
C17 ,
c21 ,

R41 ,

F28
D32

E15
Al7
D22

i

i

i

AHAO,

B30 ,
B34 ,

AVA2,
BA37,
AU43,
AT44,
AHA4,
AJ43,

A13
E19 ,
H22),

AVBO) ,

D30
A35 ,

EL
Ya
AP2
BE7
Fa4
AB44
ANAL |
BE41 ,

AME
AY12 |
H2
AA4S
AR4S
BD40) ,
BC37 ,
BB36) ,
AY40) ,
BA39),

Gl7
B18 ,

21264/EV67 Boundary-Scan Register

"&
"&
"&

"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&

B-3

Boundary-Scan Register

B-4

"NoConnect _0 : BB14, "&
"NoConnect _1 . BD2 , "&
"C kFwdRst _H © BEL1, "&
"EV6C k_H : AMB "&
"EV6C k_L o AL7 "&
"Spare_4 . AT4 "&
"Spare_5 : AR3 | "&
"PLL_VDD : AV8 "&
"Spare_0 . BC21, "&
"M scVref o AV22, "&
"Spare_2 : BE9 , "&
" DCOK_H © AY18, "&
"VSS: (cT , W8 , AR, ® |,

" BA4l1, R45 , J1 , AE ,
" BC33, AE39, A43 , AA45,
" BE25, E35 , AL39, (A3 ,
" E11 , BC19, C27 , BA35,
" BE3 , R7 , BAll, A21 ,
" AU45, ALl , E5 , AA7 ,
" E41 , A3, BC45, AUl ,
" BA29, AWB7, L41 , AMN43,
" BE21, A31 , BE37, U4l ,
" Gl5 , E23 , &B1 , C39 ,
" BC7 , AY14, BA23, AW1,
" AN5 , A9 , BEL5, A25 ,

“ E9 ,R5 , AG5, BA7,D38, T42, AG39, AW41) ,"&

"VDD :(B2 ,v4 ,AP6,D12,B20, H26 , BD32, AM38, "&

" BB40, Y44 ,H2 , AH4 , AT6, BB12, H20 , AV26, "&

" D34, AV38, F42 , AF44, P2 , AP4 ,BB6,B14,"&

" AV20, BD26, BB34, BD38, M42 , AM44, Y2 , AY4 ,"&

" B8 , H14 , BD20, D28, F36 , D40, V42 , AV44, "&

" AF2,D6 , P8 , AV14, F22 , BB28, AY36, K40, "&

" AH42, BD44, AM2 , K6 , Y8 , BD14, AY22, F30, "&

" B38, T40, AP42, AV2 ,T6 , AF8,F16, A23,"&

" AY30, H38 , AB40, AY42, AB6 , BD8, AY16, F24 , "&

" B32, P38, AD40, B44 ,F4 , AD6, F10, D18, "&

" AY24,H32, Y38, AK40, H44 , M4 , AK6 , AY10, "&

21264/EV67 Boundary-Scan Register

" BB18, B26 , AV32, AF38, AT40, P44)

constant numeric_EV6 : PIN_MAP_STRING := " " &
"SysAddin_L 1 (559, 536, 468 , 580, 445, 490, 558,579, "&
" 467,534 ,511,421,556,577 ,443), "&
"SysAddInCIk_L : 512, "&
"SysVref 1 489, "&
"SysFillvalid_L . 533, "&
"SysAddOut_L : (448,585,562, 539,493,470, 583, 424 ,"&
" 515,492,582, 446,537,423 ,514), "&
"SysAddOutClk_L . 561, "&
"SysData_L : (118, 140, 117, 161, 160, 137,114,189, "&

" 204, 213, 220,237, 253, 252, 261, 268 , "&
" 285,293,301, 308,332,333, 341,356, "&
" 381,389,397,412, 414,437,415 ,438,"&
" 127,128 ,172,151, 131,153,190, 183, "&
" 207,214,223 ,238, 255, 263, 262, 271 ,"&
" 286,294,302 ,319, 334, 342,359,350, "&
" 374,382,390, 398, 473,427,449 ,426),"&

"SysCheck_L (197,276,349, 483,198,279, 367 ,471),"&
"SysDatalnClk_H 1 (70 , 219, 316, 457, 107, 232,327,429),"&
"SysDataOutClk_L 1 (139, 245,325, 458,173, 231,335, 451),"&
"SysDatalnValid_L 1 555, "&
"SysDataOutValid_L . 510, "&

"BcAdd_H 1 (35,102, 14 , 147,58 ,125,36 ,81, "&

" 59 ,169, 148,16 ,104,82 ,38 ,17, "&

" 39 ,170,61 ,105), "&

"BcDataOE_L . 13, "&

E17 ,
BAS ,

AE45,
AU39,
BC27,
C13 ,
L5 ,
BC1 ,
AWM3,
ACA1L,
J39 ,
BE31,

&5 , C33 , AA39
AV , BAl7, AWR5
AN3 , C7 , C19
AA1 , AWB , J7

N43 , AL45, AEl1l
A37 , BC39, w3
&1, E29 , G37
AE7 , BCl3, AWl
us , AU7 , Al5
A3 AC5 , AW

AJ41, C45 , N3
R39 , AR41, J45

"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&

Alpha 21264/EV67 Hardware Reference Manual

"BcLoad_L
"BcDat aW _L
"BcDat a_H

"BcCheck_H
"BcDatal nCl k_H
" Spare_7

"BcDat aQut G k_L
"BcDat aQut d k_H
"BcTag_H

"BcTagVal i d_H
"BcTagDirty_H
"BcTagShared_H
"BcTagParity_H
"BcTagOE_L
"BcTagW _L
"BcTagl nCl k_H
"BcVr ef
"BcTagQut Cl k_L
"BcTagOut C k_H
"I RQ_H

"Reset _L

" SronDat a_H

" SronCLK_H
"SromOE_L
"Trs_H

"Tck_H

"Trst_L

"Tdi _H

"Tdo_H
"TestStat _H
"d kln_H

"d kln_L
"Framed k_H
"FrameC k_L
"Pl | Bypass_H
"NoConnect _0
"NoConnect _1
"C kFwdRst _H
"EV6C k_H
"EV6C k_L
"Spare_4
"Spare_5
"PLL_VDD
"Spare_0

"M scVref
"Spare_2

" DCOK_H

Alpha 21264/EV67 Hardware Reference Manual

124
79
(26
179
290
455
150
193
304
454
49
158
282
404
19
156
296
383
(112
205
(92
(115
(187
(180
(95
51
9
33
55
145
32
167
101
143
120
78
56
(484
552
530
441
574
553
575
464
487
509
486
365
373
417
439
550
506
545
571
364
357
395
387
413
532
420
570
463

71
186
298
500
62
215
312
407
3
134
291
477
84
200
305
499
283
275
227
235
411
403
163
164
121
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&

572 ,

"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&
"&

195
307
434
41

209
320
476
48

212
299
478
20

201
311
430
394
432
330
338
192
184

74
76

440 |

21264/EV67 Boundary-Scan Register

46

202
322
501
64

224
345
498
24

194
315
523
42

217
329
521
527
549
524
546
400
392
27

29

99

418

Boundary-Scan Register

45

234
346
503
65

248
352
543
23

210
339
547
87

241
353
520
206
111
130
108

73
52
54

529

90 ,
242
355 ,
568 ,
110 ,
257
377 ,
565 ,
68
243 ,
347
481 ,
88 ,
249
360 ,
542 ,
288
297
246 ,
254

96

7,

507),

159 ,
250
386
504
154
272,
385
518 |
136 ,
260
370 ,
526
175 ,
265
368
495 ,
408 ,
401 ,
337 ,
344

98
166),

"&
"&
89 , "&
267 , "&
378 , "&
569 , "&
133 , "&
289 , "&
375 , "&
586 , "&
67 "&
258 , "&
363, "&
460 , "&
176 , "&
280 , "&
393 , "&
564),"&
540 , "&
517),"&
474), "&
496),"&
"&
"&
142 , "&
30 , "&
"&
"&
B-5

Boundary-Scan Register

"VSS : (44 , 259, 388, 138, 97 , 146 , 60 , 278 , "&
" 497 , 233 , 178 , 323 , 479 , 436 , 485, 444 , "&
" 538 , 310, 21 , 281, 226 , 371, 47 , 53 , "&

" 578 , 106 , 358 , 155, 313, 274 , 433, 181 , "&
" 94 , 531, 57 , 494, 406 , 216 , 361, 306 , "&
" 567 , 229 , 482, 10 , 535, 18 , 541 , 264 , "&
" 409 , 354, 91 , 277, 50 , 144 , 103, 152 , "&
" 109 , 328 , 544 , 402, 196, 309 , 528 , 442 , "&
" 491 , 450 , 199 , 376 , 522 , 244 , 405, 7 , "&
" 576 , 15 , 584 , 247 , 453 , 1 , 292 , 435, "&
" 141 , 100, 149, 63 , 295, 587, 135, 340, "&
" 525 , 461 , 488 , 447 , 182 , 343, 66 , 211 , "&

" 372 , 4 , 573, 12 , 581, 230, 391, 185 ,"&
“ 93 ,228,324,480,85 , 240, 326, 452),"&
"VDD :(22 ,251,380,72 ,31 ,168,560, 366, "&

" 519, 273,157,331, 396,505, 165, 422, "&
" 83 ,428,132,321,218,379,502, 28 ,"&
" 419,557,516, 563, 208, 369 , 266 , 456 , "&
" 25 ,162,554,80 , 129,86 ,256,431,"&
" 314,69 , 221,416,122 ,513,472,191,"&
" 336,566,362, 188, 269, 551, 465, 126, "&
" 40 , 239,384 ,410,236,317,119,11 ,"&
" 469,174,287 ,475, 284,548 , 462,123, "&
" 37 ,222,303,43 ,113,300,116,75 ,"&
" 466 ,171,270,351,177, 203, 348,459, "&
" 508,34 , 425,318,399, 225) "

attribute PORT_GROUPING of Alpha_21264/EV67 : entity is-- (Ref B.8.8. See Note 4.
"Differential_Voltage ((CLKIN_H), (CLKIN_L))";

attribute TAP_SCAN_CLOCK of Tck_H : signal is (5.0e6, LOW);
attribute TAP_SCAN_IN of Tdi_H : signal is TRUE;

attribute TAP_SCAN_OUT of Tdo_H : signal is TRUE;
attribute TAP_SCAN_MODE of Tms_H : signal is TRUE;
attribute TAP_SCAN_RESET of Trst_L : signal is TRUE;

attribute COMPLIANCE_PATTERNS of Alpha_21264/EV67 : entity is -- (Ref B.8.10). See
Note 4.
"(DcOk_H), (1)";

attribute INSTRUCTION_LENGTH of Alpha_21264/EV67 : entity is 5 ;
attribute INSTRUCTION_OPCODE of Alpha_21264/EV67 : entity is
"EXTEST (11011),"&-- No longer mandated to be (00000)!
"SAMPLE (11000),"&-- JWB changed "PRELOAD" to "SAMPLE"
"CLAMP (11010),"&
"HIGHZ (11001),"&
"DIE_ID (11110),"&
"BYPASS (11111)"
attribute INSTRUCTION_CAPTURE of Alpha_21264/EV67 : entity is "00001" ;
attribute INSTRUCTION_PRIVATE of Alpha_21264/EV67 : entity is "Private"; -- See Note 4.

attribute REGISTER_ACCESS of Alpha_21264/EV67 : entity is-- (ref B.8.13)
"BOUNDARY (EXTEST, SAMPLE)," &-- Redundant. Added for completeness
"BYPASS (BYPASS, HIGHZ, CLAMP)," &-- ditto
"DIE_ID[32] (DIE_ID)";

attribute BOUNDARY_LENGTH of Alpha_21264/EV67 : entity is 367 ;

attribute BOUNDARY_REGISTER of Alpha_21264/EV67 : entity is

--scan cell safe cntrl disable disable
-- cell type port function | cell value state
e ' R R R e
I I I
" 366 (BC_2, TestStat_H, OUTPUT2, x), "& --
" 365 (BC_2, SromOE_L, OUTPUT2, X), "& --

B-6 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register

364 (BC_2, SronClk_H, QUTPUT2, X), "& --
363 (BC_2, SronData_H, I NPUT, X), "& --
362 (BC_3, reset_L, | NPUT, X), "& --
361 (BC 3, IRQ H(5), | NPUT, X), "& --
360 (BC 3, IRQ H(4), | NPUT, X), "& --
359 (BC 3, IRQ H(3), I NPUT, X), "& --
358 (BC 3, IRQ H(2), | NPUT, X), "& --
357 (BC 3, IRQ H(1), | NPUT, X), "& --
356 (BC_3, IRQ H0), I NPUT, X), "& --
355 (BC_3, C kFwdRst_H, I NPUT, X), "& --
354 (BC_2, BcCheck_H(3), BI DI R, x, 339, O, z), "& --
353 (BC_2, BcCheck_H(11), Bl DI R, X, 339, O, z), "& --
352 (BC 2, SysCheck L(3), BI DI R, X, 336, O, VEAKL), "& --
351 (BC_2, BcData_H(31), BI DI R, x, 339, O, z), "& --
350 (BC_2, BcData_H(95), Bl DI R, X, 339, O, z), "& --
349 (BC_2, SysData_L(31), BI DI R, x, 336, O, WEAKL), "& --
348 (BC_2, BcData_H(30), BI DI R, x, 339, O, VA), "& --
347 (BC_2, BcData_H(94), Bl DI R, X, 339, O, z), "& --
346 (BC_2, SysData_L(30), BI DI R, x, 336, O, WEAKL), "& --
345 (BC_2, BcData_H(29), BI DI R, x, 339, O, z), "& --
344 (BC_2, BcData_H(93), Bl DI R, x, 339, O, z), "& --
343 (BC_2, SysData_L(29), BI DI R, x, 336, O, WEAKL), "& --
342 (BC_2, BcData_H(28), BI DI R, x, 339, O, z), "& --
341 (BC_2, BcData_H(92), Bl DI R, X, 339, O, z), "& --
340 (BC_2, SysData_L(28), BI DI R, x, 336, O, WEAKL), "& --
339 (BC 3, *, CONTROL, O), "& -- bccellO
338 (BC_3, BcDatalnC k_H(3), I NPUT, X), "& --
337 (BC 2, SysDataQutC k_L(3), OUTPUT2, x), "& --
336 (BC 3, *, CONTROL, O), "&-- sccellO
335 (BC 3, SysDatalnClk_H(3), |NPUT, X), "& --
334 (BC_2, BcData_H(27), BI DI R, x, 339, O, VA), "& --
333 (BC_2, BcData_H(91), BI DI R, x, 339, O, z), "& --
332 (BC_2, SysData_L(27), Bl DI R, x, 336, O, WEAKL), "& --
331 (BC_2, BcData_H(26), BI DI R, x, 339, O, z), "& --
330 (BC_2, BcData_H(90), BI DI R, x, 339, O, VA), "& --
329 (BC_ 2, SysData_L(26), BI DI R, X, 336, O, WEAKL), "& --
328 (BC_2, BcData_H(25), BI DI R, x, 339, O, z), "& --
327 (BC_2, BcData_H(89), BI DI R, x, 339, O, z), "& --
326 (BC_2, SysData_L(25), Bl DI R, x, 336, O, WEAKL), "& --
325 (BC_2, BcData_H(24), BI DI R, x, 339, O, VA), "& --
324 (BC_2, BcData_H(88), BI DI R, x, 339, O, z), "& --
323 (BC_2, SysData_L(24), Bl DI R, x, 336, O, WEAKL), "& --
322 (BC 2, BcbDataQutCl k_L(1), OUTPUT2, X), "& --
321 (BC 2, BcDataQutCl k_H(1), OUTPUT2, x), "& --
320 (BC_2, BcCheck_H(2), BI DI R, x, 305, O, z), "& --
319 (BC_2, BcCheck_H(10), BI DI R, x, 305, O, z), "& --
318 (BC 2, SysCheck L(2), BI DI R, X, 302, O, VEAKL), "& --
317 (BC_2, BcData_H(23), BI DI R, x, 305, O, z), "& --
316 (BC_2, BcData_H(87), BI DI R, x, 305, O, z), "& --
315 (BC_2, SysData_L(23), BI DI R, x, 302, O, WEAKL), "& --
314 (BC_2, BcData_H(22), Bl DI R, x, 305, O, VA), "& --
313 (BC_2, BcData_H(86), BI DI R, x, 305, O, VA), "& --
312 (BC_2, SysData_L(22), BI DI R, x, 302, O, WEAKL), "& --
311 (BC_2, BcData_H(21), Bl DI R, x, 305, O, VA), "& --
310 (BC_2, BcData_H(85), BI DI R, x, 305, O, z), "& --
309 (BC_2, SysData_L(21), BI DI R, x, 302, O, WEAKL), "& --
308 (BC_2, BcData_H(20), BI DI R, x, 305, O, z), "& --
307 (BC_2, BcData_H(84), Bl DI R, x, 305, O, z), "& --
306 (BC_2, SysData_L(20), BI DI R, x, 302, O, WEAKL), "& --
305 (BC 3, *, CONTROL, O), "& -- bccelll
304 (BC_3, BcDatalnC k_H(2), I NPUT, X), "& --
303 (BC 2, SysDataCutC k_L(2), OUTPUT2, x), "& --
302 (BC.3, *, CONTROL, O), "& -- sccelll
301 (BC 3, SysDatalnClk_H(2), |NPUT, X), "& --
300 (BC_2, BcData_H(19), BI DI R, x, 305, O, z), "& --

Alpha 21264/EV67 Hardware Reference Manual 21264/EV67 Boundary-Scan Register B-7

Boundary-Scan Register

299 (BC_2, BcData_H(83), BI DI R, x, 305, O, z), "& --
298 (BC_2, SysData_L(19), BI DI R, x, 302, O, WEAKL), "& --
297 (BC_2, BcData_H(18), Bl DI R, x, 305, O, z), "& --
296 (BC_2, BcData_H(82), BI DI R, x, 305, O, z), "& --
295 (BC_2, SysData_L(18), BI DI R, x, 302, O, WEAKL), "& --
294 (BC_2, BcData_H(17), Bl DI R, x, 305, O, z), "& --
293 (BC_2, BcData_H(81), BI DI R, x, 305, O, z), "& --
292 (BC_2, SysData_L(17), BI DI R, x, 302, O, WEAKL), "& --
291 (BC_2, BcData_H(16), Bl DI R, x, 305, O, z), "& --
290 (BC_2, BcData_H(80), BI DI R, x, 305, O, z), "& --
289 (BC_2, SysData_L(16), BI DI R, x, 302, O, WEAKL), "& --
288 (BC_2, BcCheck_H(1), Bl DI R, X, 273, O, z), "& --
287 (BC_2, BcCheck_H(9), BI DI R, x, 273, O, z), "& --
286 (BC_2, SysCheck_L(1), BI DI R, X, 270, O, WEAKL), "& --
" 285 (BC_2, BcData_H(15), Bl DI R, X, 273, O, z), "& --
' 284 (BC_2, Bcbhata_H(79), BI DI R, x, 273, O, VA), "& --
283 (BC_2, SysData_L(15), BI DI R, x, 270, O, WEAKL), "& --
282 (BC_2, BcData_H(14), Bl DI R, X, 273, O, z), "& --
281 (BC_2, BcData_H(78), BI DI R, x, 273, O, z), "& --
280 (BC_2, SysData_L(14), BI DI R, X, 270, O, WEAKL), "& --
279 (BC_2, BcData_H(13), Bl DI R, X, 273, O, z), "& --
278 (BC_2, BcData_H(77), BI DI R, x, 273, O, z), "& --
277 (BC_2, SysData_L(13), BI DI R, x, 270, O, WEAK1), "& --
276 (BC_2, BcData_H(12), Bl DI R, X, 273, O, z), "& --
275 (BC_2, BcData_H(76), BI DI R, X, 273, O, z), "& --
274 (BC_2, SysData_L(12), BI DI R, X, 270, O, WEAKL), "& --
273 (BC 3, *, CONTROL, O), "& -- bccell?2
272 (BC 3, BcDatalnCl k_H(1), | NPUT, X), "& --
271 (BC 2, SysDatacutC k_L(1), OUTPUT2, x), "& --
270 (BC_3, *, CONTROL, O), "& -- sccell2
269 (BC_3, SysDatalnC k_H(1), |NPUT, X), "& --
268 (BC_2, BcData_H(11), BI DI R, X, 273, O, z), "& --
267 (BC_2, BcData_H(75), Bl DI R, X, 273, O, z), "& --
266 (BC_2, SysData_L(11), BI DI R, X, 270, O, WEAKL), "& --
265 (BC_2, BcData_H(10), BI DI R, X, 273, O, VA), "& --
264 (BC_ 2, BcData_H(74), Bl DI R, X, 273, O, z), "& --
263 (BC_2, SysData_L(10), BI DI R, X, 270, O, WEAKL), "& --
262 (BC_2, BcData_H(9) , BI DI R, X, 273, O, z), "& --
261 (BC_ 2, BcData_H(73), Bl DI R, X, 273, O, z), "& --
260 (BC 2, SysData_L(9), BI DI R, X, 270, O, VEAKL), "& --
259 (BC 2, BcData_H(8) |, BI DI R, X, 273, 0, z), "& --
258 (BC_2, BcData_H(72), Bl DI R, X, 273, O, z), "& --
257 (BC 2, SysData_L(8), BI DI R, X, 270, O, VEAKL), "& --
256 (BC 2, BcDataQutCl k_L(0), OUTPUT2, x), "& --
255 (BC_2, BcDataQutd k_H(0), OQUTPUT2, x), "& --
254 (BC_2, BcCheck_H(0), BI DI R, X, 239, O, z), "& --
253 (BC_2, BcCheck_H(8), BI DI R, X, 239, O, z), "& --
252 (BC_2, SysCheck_L(0), BI DI R, X, 236, O, WEAKL), "& --
251 (BC_2, BcData_H(7) , BI DI R, X, 239, O, z), "& --
250 (BC_2, BcData_H(71), BI DI R, X, 239, O, z), "& --
249 (BC_2, SysData_L(7), Bl DI R, X, 236, O, WEAKL), "& --
248 (BC_2, BcData_H(6) , BI DI R, X, 239, O, VA), "& --
247 (BC_2, BcData_H(70), BI DI R, X, 239, O, z), "& --
246 (BC_2, SysData_L(6), Bl DI R, X, 236, O, WEAKL), "& --
245 (BC_2, BcData_H(5) , BI DI R, X, 239, O, z), "& --
244 (BC_2, BcData_H(69), BI DI R, X, 239, O, VA), "& --
243 (BC 2, SysbData_L(5), BI DI R, X, 236, O, VEAKL), "& --
242 (BC_2, BcData_H(4) , Bl DI R, X, 239, O, z), "& --
241 (BC_2, BcData_H(68), BI DI R, X, 239, O, z), "& --
240 (BC_2, SysData_L(4), Bl DI R, X, 236, O, WEAKL), "& --
239 (BC 3, *, CONTROL, O), "& -- bccell3
238 (BC 3, BcDatalnCl k_H(0), | NPUT, X), "& --
237 (BC_ 2, SysbDataQutd k_L(0), OUTPUT2, x), "& --
236 (BC_ 3, *, CONTROL, O), "& -- sccell3
235 (BC 3, SysDatalnCl k_H(0), |NPUT, X), "& --

B-8 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register

234 (BC_2, BcData_H(3) , BI DI R, X, 239, O, z), "& --
233 (BC_2, BcData_H(67), BI DI R, X, 239, O, z), "& --
232 (BC_2, SysData_L(3), BI D R, X, 236, O, WEAKL), "& --
231 (BC 2, Bcbata_H(2) |, BI DI R, X, 239, O, z), "& --
230 (BC_2, BcData_H(66), BI DI R, X, 239, O, z), "& --
229 (BC_2, SysData_L(2), BI DI R, X, 236, O, WEAKL), "& --
228 (BC 2, Bcbata_H(1) |, BI DI R, X, 239, O, z), "& --
227 (BC_2, BcData_H(65), BI D R, X, 239, O, z), "& --
226 (BC 2, SysData_L(1), BI DI R, X, 236, O, WEAKL), "& --
225 (BC 2, BcData_H(0) |, BI DI R, X, 239, O, z), "& --
224 (BC_2, BcData_H(64), BI DI R, X, 239, O, z), "& --
223 (BC_2, SysData_L(0), BI DI R, X, 236, O, WEAKL), "& --
222 (BC 2, BcTag H(20), BI DI R, X, 208, O, z), "& --
221 (BC 2, BcTag H(21), BI DI R, X, 208, O, z), "& --
220 (BC_2, BcTag_H(22), BI DI R, X, 208, O, z), "& --
219 (BC 2, BcTag H(23), BI DI R, X, 208, O, z), "& --
218 (BC 2, BcTag H(24), BI DI R, X, 208, O, z), "& --
217 (BC_2, BcTag_H(25), BI DI R, x, 208, O, z), "& --
216 (BC 2, BcTag H(26), BI DI R, X, 208, O, z), "& --
215 (BC 2, BcTag H(27), BI DI R, X, 208, O, z), "& --
214 (BC_2, BcTag_H(28), BI DI R, x, 208, O, z), "& --
213 (BC 2, BcTag H(29), BI DI R, X, 208, O, z), "& --
212 (BC 2, BcTag H(30), BI DI R, X, 208, O, z), "& --
211 (BC_2, BcTag_H(31), BI DI R, x, 208, O, z), "& --
210 (BC 2, BcTag H(32), BI DI R, X, 208, O, z), "& --
209 (BC 2, BcTag H(33), BI DI R, X, 208, O, z), "& --
208 (BC_ 3, *, CONTROL, O), "&-- tccellO
207 (BC_3, BcTagl nC k_H, I NPUT, X), "& --
206 (BC 2, BcTag H(34), BI DI R, X, 208, O, z), "& --
205 (BC_2, BcTag_H(35), BI DI R, x, 208, O, z), "& --
204 (BC 2, BcTag H(36), BI DI R, X, 208, O, z), "& --
203 (BC 2, BcTag H(37), BI DI R, X, 208, O, z), "& --
202 (BC_2, BcTag_H(38), BI DI R, X, 208, O, z), "& --
201 (BC 2, BcTag H(39), BI DI R, X, 208, O, z), "& --
200 (BC 2, BcTag_ H(40), BI DI R, X, 208, O, z), "& --
199 (BC_ 2, BcTag_H(41), BI DI R, x, 208, O, z), "& --
198 (BC 2, BcTag_H(42), BI DI R, X, 208, O, z), "& --
197 (BC_ 2, BcTagParity_H, BI DI R, X, 208, O, z), "& --
196 (BC_2, BcTagShared_H, Bl DI R, x, 208, O, z), "& --
195 (BC 2, BcTagDirty H, BI DI R, X, 208, O, z), "& --
194 (BC_2, BcTagValid_H, BI DI R, X, 208, O, z), "& --
193 (BC_ 2, BcTagQutd k_L, QUTPUT2, X), "& --
192 (BC_2, BcTagQutd k_H, QUTPUT2, x), "& --
191 (BC_ 2, BcTagOE_L, QUTPUT2, X), "& --
190 (BC_2, BcTagW L, QUTPUT2, X), "& --
189 (BC_2, BcDataWw _L, QUTPUT2, x), "& --
188 (BC_2, BclLoad_L, QUTPUT2, x), "& --
187 (BC_2, BcDataCE_L, QUTPUT2, X), "& --
186 (BC_ 2, BcAdd_H(4), QUTPUT2, X), "& --
185 (BC_ 2, BcAdd_H(5), QUTPUT2, X), "& --
184 (BC_2, BcAdd_H(#6), QUTPUT2, X), "& --
183 (BC_ 2, BcAdd_H(7), QUTPUT2, X), "& --
182 (BC_2, BcAdd_H(8), QUTPUT2, X), "& --
181 (BC_2, BcAdd_H(9), QUTPUT2, X), "& --
180 (BC_2, BcAdd_H(10), QUTPUT2, X), "& --
179 (BC 2, BcAdd_H(11), QUTPUT2, X), "& --
178 (BC_2, BcAdd_H(12), QUTPUT2, X), "& --
177 (BC_2, BcAdd_H(13), QUTPUT2, X), "& --
176 (BC 2, BcAdd_H(14), QUTPUT2, X), "& --
175 (BC_2, BcAdd_H(15), QUTPUT2, X), "& --
174 (BC_2, BcAdd_H(16), QUTPUT2, X), "& --
173 (BC 2, BcAdd_H(17), QUTPUT2, X), "& --
172 (BC_2, BcAdd_H(18), QUTPUT2, X), "& --
171 (BC_2, BcAdd_H(19), QUTPUT2, X), "& --
170 (BC_ 2, BcAdd_H(20), QUTPUT2, X), "& --

Alpha 21264/EV67 Hardware Reference Manual 21264/EV67 Boundary-Scan Register B-9

Boundary-Scan Register

169 (BC 2, BcAdd_H(21), QUTPUT2, X), "& --
168 (BC 2, BcAdd_H(22), QUTPUT2, X), "& --
167 (BC_2, BcAdd_H(23), QUTPUT2, x), "& --
166 (BC 2, SysData_L(32), BI DI R, x, 150, O, WEAKL), "& --
165 (BC_2, BcData_H(96), BI DI R, x, 153, O, z), "& --
164 (BC_ 2, BcData_H(32), Bl DI R, x, 153, O, z), "& --
163 (BC_ 2, SysData_L(33), BI DI R, x, 150, O, WEAKL), "& --
162 (BC_2, BcData_H(97), BI DI R, x, 153, O, z), "& --
161 (BC_2, BcData_H(33), Bl DI R, x, 153, O, z), "& --
160 (BC 2, SysData_L(34), BI DI R, x, 150, O, WEAKL), "& --
159 (BC_2, BcData_H(98), BI DI R, x, 153, O, z), "& --
158 (BC_2, BcData_H(34), Bl DI R, x, 153, O, z), "& --
157 (BC_2, SysData_L(35), BI DI R, x, 150, O, WEAKL), "& --
156 (BC_2, BcData_H(99), BI DI R, x, 153, O, z), "& --
155 (BC_2, BcData_H(35), Bl DI R, x, 153, O, z), "& --
154 (BC_3, SysDatalnC k_H(4), | NPUT, X), "& --
153 (BC 3, *, CONTROL, O), "& -- sccell4
152 (BC 2, SysDataQutCl k_L(4), OUTPUT2, X), "& --
151 (BC_3, BcDatalnCl k_H(4), | NPUT, X), "& --
150 (BC 3, *, CONTROL, O), "& -- bccell4
149 (BC_ 2, SysData_L(36), Bl DI R, x, 150, O, WEAKL), "& --
148 (BC_2, BcData_H(100), BI DI R, x, 153, O, z), "& --
147 (BC_2, BcData_H(36), BI DI R, x, 153, O, z), "& --
146 (BC_ 2, SysData_L(37), Bl DI R, x, 150, O, WEAKL), "& --
145 (BC_2, BcData_H(101), BI DI R, x, 153, O, z), "& --
144 (BC_2, BcData_H(37), BI DI R, x, 153, O, z), "& --
143 (BC_ 2, SysData_L(38), Bl DI R, x, 150, O, WEAKL), "& --
142 (BC_2, BcData_H(102), BI DI R, x, 153, O, z), "& --
141 (BC_2, BcData_H(38), BI DI R, x, 153, O, z), "& --
140 (BC_ 2, SysData_L(39), BI DI R, x, 150, O, WEAKL), "& --
139 (BC_2, BcData_H(103), BI DI R, x, 153, O, VA), "& --
138 (BC_2, BcData_H(39), BI DI R, x, 153, O, z), "& --
137 (BC_2, SysCheck_L(4), Bl DI R, x, 150, O, WEAKL), "& --
136 (BC_2, BcCheck_H(12), BI DI R, x, 153, O, z), "& --
135 (BC_2, BcCheck_H(4), BI DI R, x, 153, O, VA), "& --
134 (BC 2, BcDataQutCl k_H(2), OUTPUT2, X), "& --
133 (BC 2, BcDataQutC k_L(2), OUTPUT2, x), "& --
132 (BC_ 2, SysData_L(40), BI DI R, x, 119, O, WEAKL), "& --
131 (BC_2, BcData_H(104), Bl DI R, x, 116, O, z), "& --
130 (BC_2, BcData_H(40), BI DI R, x, 116, O, VA), "& --
129 (BC_ 2, SysData_L(41), BI DI R, x, 119, O, WEAKL), "& --
128 (BC_2, BcData_H(105), Bl DI R, x, 116, O, z), "& --
127 (BC_2, BcData_H(41), BI DI R, x, 116, O, z), "& --
126 (BC 2, SysData_L(42), BI DI R, x, 119, O, WEAKL), "& --
125 (BC_2, BcData_H(106), BI DI R, x, 116, O, z), "& --
124 (BC_2, BcData_H(42), BI DI R, x, 116, O, z), "& --
123 (BC_ 2, SysData_L(43), BI DI R, x, 119, O, WEAKL), "& --
122 (BC_2, BcData_H(107), BI DI R, x, 116, O, z), "& --
121 (BC_2, BcData_H(43), BI DI R, x, 116, O, z), "& --
120 (BC_ 3, SysDatalnC k_H(5), | NPUT, X), "& --
119 (BC_ 3, *, CONTROL, O), "& -- sccellb5
118 (BC_ 2, SysDataoutd k_L(5), OUTPUT2, x), "& --
117 (BC_3, BcDatal nC k_H(5), | NPUT, X), "& --
116 (BC_3, *, CONTROL, O), "& -- bccell5
115 (BC_ 2, SysData_L(44), BI DI R, x, 119, O, WEAKL), "& --
114 (BC_2, BcData_H(108), BI DI R, x, 116, O, VA), "& --
113 (BC_2, BcData_H(44), BI DI R, x, 116, O, z), "& --
112 (BC_ 2, SysData_L(45), Bl DI R, x, 119, O, WEAKL), "& --
111 (BC_2, BcData_H(109), BI DI R, x, 116, O, z), "& --
110 (BC_2, BcData_H(45), Bl DI R, x, 116, O, z), "& --
109 (BC_ 2, SysData_L(46), Bl DI R, x, 119, O, WEAKL), "& --
108 (BC_ 2, BcData_H(110), BI DI R, x, 116, O, VA), "& --
107 (BC_2, BcData_H(46), Bl DI R, x, 116, O, z), "& --
106 (BC 2, SysData_L(47), BI DI R, x, 119, O, WEAKL), "& --
105 (BC_ 2, BcData_H(111), BI DI R, x, 116, O, z), "& --

B-10 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
' 49
' 48
' 47
' 46
' 45
' 44
' 43
' 42
' 41
' 40

BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 3,
BC 3,
BC 2,
BC 3,
BC 3,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 2,
BC 3,
BC 3,
BC 2,

W™ ®W @
IOIOIO
N W w

w
IO
NNNNMNNNMNNNN

o @

us]

o T @

©,0,0,0,0,6,06,0

o @

BcDat a_H(47),
SysCheck_L(5),
BcCheck_H(13),
BcCheck_H(5),
SysData_L(48),
BcData_H(112),
BcDat a_H(48),
SysData_L(49),
BcData_H(113),
BcDat a_H(49),
SysData_L(50),
BcDat a_H(114),
BcDat a_H(50),
SysData_L(51),
BcDat a_H(115),
BcDat a_H(51),

SysDat al nCl k_H(6),

SysDat aCut O k_L(6),
BcDat al nCl k_H(6),

*

SysData_L(52),
BcDat a_H(116),
BcData_H(52),
SysData_L(53),
BcDat a_H(117),
BcDat a_H(53),
SysData_L(54),
BcDat a_H(118),
BcDat a_H(54),
SysData_L(55),
BcDat a_H(119),
BcDat a_H(55),
SysCheck_L(6),
BcCheck_H(14),
BcCheck_H(6),

BcDat aCut G k_H(3),
BcDat aQut A k_L(3),

SysData_L(56),
BcDat a_H(120),
BcDat a_H(56) ,
SysData_L(57),
BcData_H(121),
BcDat a_H(57),
SysData_L(58),
BcData_H(122),
BcDat a_H(58),
SysData_L(59),
BcDat a_H(123),
BcDat a_H(59),

SysDat al ndl k_H(7),
*

SysDataQutd k_L(7),
BcDat al nCl k_H(7),

*

SysData_L(60),
BcDat a_H(124),
BcDat a_H(60),

SysData_L(61),
BcDat a_H(125),
BcData_H(61),

SysData_L(62),
BcDat a_H(126),
BcData_H(62),

SysData_L(63),

BIDI R
BIDI R
BI DI R
BIDI R
BIDI R
BI DI R
BIDI R
BIDI R
BI DI R
BIDI R
BIDI R
BI DI R
BIDI R
BIDI R
BI DI R
BIDI R
I NPUT,
CONTRQOL,
QUTPUT2,
I NPUT,
CONTRQOL,
BI DI R
BIDI R
BI DI R
BIDI R
BI DI R
BI DI R
BI DI R
BI DI R
BI DI R
BI DI R
BI DI R
BI DI R
BIDI R
BI DI R
BI DI R
QUTPUT2,
QUTPUT2,
BI DI R
BI DI R
BIDIR
BI DI R
BIDI R
BIDI R
BI DI R
BIDI R
BIDI R
BI DI R
BIDI R
BIDI R
I NPUT,
CONTROL,
QUTPUT2,
I NPUT,
CONTRQOL,
BI DI R
BI DI R
BI DI R
BIDI R
BI DI R
BI DI R
BI DI R
BI DI R
BI DI R
BIDIR

Alpha 21264/EV67 Hardware Reference Manual

Boundary-Scan Register

x, 116, O, z), "& --
x, 119, O, WEAKL), "& --
x, 116, O, Z), "& --
x, 116, O, z), "& --
x, 87, 0, WEAKL), "& --
X, 84, 0, z), "& --
X, 84, 0, z), "& --
x, 87, 0, WEAKL), "& --
X, 84, 0, z), "& --
X, 84, 0, z), "& --
x, 87, 0, WEAKL), "& --
X, 84, 0, z), "& --
X, 84, 0, z), "& --
x, 87, 0, WEAKL), "& --
X, 84, 0, z), "& --
X, 84, 0, VA), "& --
X), "& --
0), "& -- sccell6
X), "& --
X), "& --
0), "& -- bccell6
x, 87, 0, WEAKL), "& --
X, 84, 0, z), "& --
X, 84, 0, Z), "& --
x, 87, 0, WEAKL), "& --
X, 84, 0, z), "& --
X, 84, 0, z), "& --
x, 87, 0, WEAKL), "& --
X, 84, 0, z), "& --
X, 84, 0, z), "& --
x, 87, 0, WEAKL), "& --
X, 84, 0, z), "& --
X, 84, 0, z), "& --
x, 87, 0, WEAKL), "& --
X, 84, 0, VA), "& --
X, 84, 0, z), "& --
X), "& --
X), "& --
X, 53, 0, WEAKL), "& --
X, 50, 0, VA), "& --
X, 50, 0, z), "& --
X, 53, 0, WEAKL), "& --
X, 50, 0, z), "& --
X, 50, 0, z), "& --
X, 53, 0, WEAKL), "& --
X, 50, 0, z), "& --
X, 50, 0, z), "& --
X, 53, 0, WEAKL), "& --
X, 50, 0, z), "& --
X, 50, 0, z), "& --
X), "& --
0), "& -- sccell7
X), "& --
X), "& --
0), "& -- bccell7
X, 53, 0, WEAKL), "& --
X, 50, 0, z), "& --
X, 50, O, z), "& --
X, 53, 0, WEAKL), "& --
X, 50, O, z), "& --
X, 50, 0, z), "& --
X, 53, 0, WEAKL), "& --
X, 50, 0, z), "& --
X, 50, O, z), "& --
X, 53, 0, WEAKL), "& --

21264/EV67 Boundary-Scan Register

B-11

Boundary-Scan Register

39 (BC 2, BcData_H(127), BI DI R, X, 50, 0, z), "&--
38 (BC 2, BcData_H(63), BI DI R, X, 50, 0, z), "& --
37 (BC_2, SysCheck_L(7), BIDIR, x, 53, 0, VEAKL), "& --
36 (BC 2, BcCheck H(15), BI DI R, X, 50, 0, z), "&--
35 (BC_2, BcCheck_H(7), BI DI R, X, 50, 0, z), "&--
34 (BC 2, SysAddaut_L(0), QUTPUT2, X), "&--
33 (BC 2, SysAddout L(1), QUTPUT2, X), "&--
32 (BC 2, SysAddout L(2), QUTPUT2, X), "& --
31 (BC 2, SysAddaut_L(3), QUTPUT2, X), "&--
30 (BC 2, SysAddout L(4), QUTPUT2, X), "&--
29 (BC 2, SysAddout L(5), QUTPUT2, X), "& --
28 (BC 2, SysAddQut_L(6), QUTPUT2, X), "&--
27 (BC 2, SysAddout L(7), QUTPUT2, X), "& --
26 (BC 2, SysAddoutd k_L, QUTPUT2, X), "&--
25 (BC 2, SysAddQut_L(8), QUTPUT2, X), "&--
24 (BC 2, SysAddout L(9), QUTPUT2, X), "& --
23 (BC 2, SysAddout L(10), QUTPUT2, X), "&--
22 (BC 2, SysAddaut_L(11), QUTPUT2, X), "&--
21 (BC 2, SysAddout L(12), QUTPUT2, X), "&--
20 (BC 2, SysAddout L(13), QUTPUT2, X), "&--
19 (BC_2, SysAddCut_L(14), QUTPUT2, X), "&--
18 (BC_3, SysAddin_L(0), | NPUT, X), "& --
17 (BC_3, SysAddin_L(1), | NPUT, X), "&--
16 (BC_3, SysAddin_L(2), | NPUT, X), "&--
15 (BC_3, SysAddin_L(3), | NPUT, X), "&--
14 (BC_3, SysAddin_L(4), | NPUT, X), "&--
13 (BC_3, SysAddin_L(5), | NPUT, X), "&--
12 (BC_3, SysAddin_L(6), | NPUT, X), "&--
11 (BC_3, SysAddin_L(7), | NPUT, X), "&--
10 (BC_3, SysAddin_L(8), | NPUT, X), "&--
9 (BC.3, SysAddindk_L, | NPUT, X), "&--
"8 (BC.3, SysAddin_L(9), | NPUT, X), "& --
" 7 (BC_3, SysAddlin_L(10), | NPUT, X), "&--
" 6 (BC.3, SysAddin_L(11), | NPUT, X), "&--
" 5 (BC.3, SysAddin_L(12), | NPUT, X), "& --
" 4 (BC_3, SysAddin_L(13), | NPUT, X), "&--
" 3 (BC_3, SysAddin_L(14), | NPUT, X), "&--
"2 (BC3, SysFillvalid_L, | NPUT, X), "& --
"1 (BC3, SysDatalnValid_L, |NPUT, x), "&--
"0 (BC.3, SysDataCutValid_ L, |NPUT, X)y

attribute DESI GN_WARNI NG of Al pha_21264/ EV67: entity is

"1. I EEE 1149.1 circuits on Al pha 21264/ EV67 are designed primarily to support "&

" testing in off-line nmodul e manufacturing environnent. The SAMPLE/ PRELOAD' &
instruction support is designed primarily for supporting interconnection"&

verification test and not for at-speed sanples of pin data. "&
"2. TDO is Open-Drain signal. "&
"3. Add comment on port pin electrical characteristics: "&
"4. Comment out if conpiler does not support this statement. "

end Al pha_21264/ EV67

B-12 21264/EV67 Boundary-Scan Register Alpha 21264/EV67 Hardware Reference Manual

C

Serial Icache Load Predecode Values

See the Alpha Motherboards Software Developer’s Kit (SDK) for information.

Alpha 21264/EV67 Hardware Reference Manual Serial Icache Load Predecode Values C-1

D

PALcode Restrictions and Guidelines

D.1 Restriction 1 : Reset Sequence Required by Retire Logic and

Mapper

For convenience of implementation, the Ibox retire logic done status bits are not initial-
ized during reset. Instead, as shown in the example below, the first batch of valid
instructions sweeps through inum-space and initializes these bits. The 80 status bits
(onefor each inflight instruction) must be marked not done by the first 80 instructions
mapped after reset, and later marked done when those instructions are retired. There-
fore, the first 20 fetch blocks must contain four valid instructions each, and must not
contain any retire logic NOP instructions.

reset:

* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

* %
*/
/*
* %

*/

(1) Initialize 80 retirator "done" status bits and
the integer and floating nmapper destinati ons.

(2) Do AMPR ITB IA which turns on the mapper source
enabl es.

(3) Qeate a map stall to conplete the ITB |A

State after execution of this code:
retirator initialized
destinati ons napped
sour ce nappi hg enabl ed
itb flushed

The PALcode need not assune the foll owi ng since the SROMis not
required to do these:

dtb f 1 ushed

dtb_asn0 0

dtb_asnl 0

dtb_alt_node 0

Initialize retirator and destination nmap, doing 80 retires.

addg r31,r31,r0 /* initialize Int. Reg. 0*/
addg r31,r31,r1 /* initialize Int. Reg. 1*/
addt f31,f31,f0 /* initialize F.P. Reg. 0*/
mul t f31,f31,f1 /* initialize F.P. Reg. 1*/
addg r31,r31,r2 /* initialize Int. Reg. 2*/
addg r31,r31,r3 /* initialize Int. Reg. 3*/

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-1

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

addt f31,f31,f2 /* initialize F.P. Reg. 2*/
mul t f31,f31,f3 /* initialize F.P. Reg. 3*/
addg r31,r31,r4 /* initialize Int. Reg. 4*/
addg r31,r31,r5 /* initialize Int. Reg. 5%/
addt f31,f31,f4 /* initialize F.P. Reg. 4*/
mul t f31,f31,f5 /* initialize F.P. Reg. 5*/
addg r31,r31,r6 /* initialize Int. Reg. 6*/
addg f31,r31,r7 /* initialize Int. Reg. 7*/
addt f31,f31,f6 /* initialize F.P. Reg. 6*/
mul t f31,f31,f7 /* initialize F.P. Reg. 7*/
addg r31,r31,r8 /* initialize Int. Reg. 8*/
addg r31,r31,r9 /* initialize Int. Reg. 9*/
addt f31,f31,f8 /* initialize F.P. Reg. 8*/
milt f31,f31,f9 /* initialize F.P. Reg. 9*/
addg r31,r31,r10 /* initialize Int. Reg. 10*/
addg r31,r31,rl11 /* initialize Int. Reg. 11*/
addt f31,f31,f10 /* initialize F.P. Reg. 10*/
milt f31,f31,f11 /* initialize F.P. Reg. 11*/
addg r31,r31,r12 /* initialize Int. Reg. 12*/
addg r31,r31,r13 /* initialize Int. Reg. 13*/
addt f31,f31,f12 /* initialize F.P. Reg. 12*/
milt 31,131,113 /* initialize F.P. Reg. 13*/
addg r31,r31,rl14 /* initialize Int. Reg. 14*%/
addg r31,r31,r15 /* initialize Int. Reg. 15*/
addt f31,f31,f14 /* initialize F.P. Reg. 14*/
mul t f31,f31,f15 /* initialize F.P. Reg. 15*/
addg r31,r31,rl6 /* initialize Int. Reg. 16*/
addg r31,r31,r17 /* initialize Int. Reg. 17*%/
addt f31,f31,f16 /* initialize F.P. Reg. 16*/
mul t f31,f31,f17 /* initialize F.P. Reg. 17*%/
addg r31,r31,r18 /* initialize Int. Reg. 18*/
addg r31,r31,r19 /* initialize Int. Reg. 19*/
addt f31,f31,f18 /* initialize F.P. Reg. 18*/
mul t f31,f31,f19 /* initialize F.P. Reg. 19*/
addg r31,r31,r20 /* initialize Int. Reg. 20*/
addg r31,r31,r21 /* initialize Int. Reg. 21*/
addt f31,f31,f20 /* initialize F.P. Reg. 20*/
milt f31,f31,f21 /* initialize F.P. Reg. 21*/
addg r31,r31,r22 /* initialize Int. Reg. 22*/
addg r31,r31,r23 /* initialize Int. Reg. 23*/
addt f31,f31,f22 /* initialize F.P. Reg. 22*/
milt f31,f31,f23 /* initialize F.P. Reg. 23*/
addg r31,r31,r24 /* initialize Int. Reg. 24*/
addg r31,r31,r25 /* initialize Int. Reg. 25*/
addt f31,f31,f24 /* initialize F.P. Reg. 24*/
milt f31,f31,f25 /* initialize F.P. Reg. 25*%/
addg r31,r31,r26 /* initialize Int. Reg. 26*/

D-2 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

addg r31,r31,r27 /* initialize Int. Reg. 27*%/
addt f31,f31,f26 /* initialize F.P. Reg. 26*/
milt 31,3127 /* initialize F.P. Reg. 27*/
addg r31,r31,r28 /* initialize Int. Reg. 28*/
addg r31,r31,r29 /* initialize Int. Reg. 29*/
addt f31,f31,f28 /* initialize F.P. Reg. 28*/
mul t f31,f31,f29 /* initialize F.P. Reg. 29*/
addg r31,r31,r30 /* initialize Int. Reg. 30*/
addt f31,f31,f30 /* initialize F.P. Reg. 30*/
addg r31,r31,r0 /* initialize retirator 63*/
addg r31,r31,r0 /* initialize retirator 64*/
addg r31,r31,r0 /* initialize retirator 65*/
addg r31,r31,r0 /* initialize retirator 66*/
addg r31,r31,r0 /* initialize retirator 67*/
addg r31,r31,r0 /* initialize retirator 68*/
addg r31,r31,r0 /* initialize retirator 69*/
addg r31,r31,r0 /* initialize retirator 70*/
addg r31,r31,r0 /* initialize retirator 71*/
addg r31,r31,r0 /* initialize retirator 72*/
addg r31,r31,r0 /* initialize retirator 73*/
addg r31,r31,r0 /* initialize retirator 74*/
addg r31,r31,r0 /* initialize retirator 75*/
addg r31,r31,r0 /* initialize retirator 76*/
addg r31,r31,r0 /* initialize retirator 77%/
addg r31,r31,r0 /* initialize retirator 78*/
addg r31,r31,r0 /* initialize retirator 79*/
addg r31,r31,r0 /* initialize retirator 80*/

/* stop del eting*/

mpr r3L,BEV6__ITBIA /* flush the ITB (SCRBRD=4) *** this also
turns on mapper source enabl es ****/

mpr r3L,EV6_DIBIA [/* flush the DIB (SCRBRD=7)*/

mpr r3L,EVW6_VACIL [* clear VA CIL (SCRBRD=5)*/

mpr 31, Ev6_MCIL /* clear MCITL (SCRBRD=6)*/

/ *

** (Qeate a stall outside the IQuntil the mipr EV6_ | TB IAretires.

*\We can use DTB_ASNXx even though we don't seem to follow the restriction on

** scoreboard hits (4-7).It's okay because there are no real dstream

** operations happening.

*
mtprr3LEV6__DTB_ASNO /*clear DTB_ASNO (SCRBRD=4) creates a map-

stall under the above mtpr to SCRBRD=4*/

mtprr31L,EV6__DTB_ASN1 /*clear DTB_ASN1 (SCRBRD=7)*
mtprr31,EV6__CC_CTL P clear CC_CTL (SCRBRD=5)*
mtprr31,EV6__DTB_ALT_MODE clear DTB_ALT_MODE (SCRBRD=6)*/

lid
*MAP_SHADOW_REGISTERS

*k

** The shadow registers are mapped. This code may be done by the SROM

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-3

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

D-4

** or the PALcode, but it nust be done in the nanner and order bel ow

* %

* %

** non-shadow regi sters are mapped, and that napper source enabl es are on.

* %

** Source enabl es are on. For fault-reset and wake fromsl eep, we need to

It assunes that the retirator has been initialized, that the

** ensure we are in the icache so we don't fetch junk that touches the
** shadow sources before we write the destinations. For normal reset,
** e are already in the icache. However, so this macro is useful for
** all cases, force the code into the icache before doing the mapping.

*k

** Assume for fault-reset, and wake from sleep case, the exc_addr is

** stored in rl.
*
addq r31,r31,10 ¥ nop*/
addq r31,r31,10 f*nop*/
addq r31,r31,10 ¥ nop*/
br 131, tchO [*fetch in next block*/
align 3
nxt0: Ida r0,0x0086(r31) fload |_CTL....
mtpr r0,EV6__| CTL f*....SDE=2, IC_EN=3 (SCRBRD=4)*/
br r31,nxtl * continue executing in next block*/
tchO: br 131, tchl [* fetch in next block*/
nxtl: mtprr3L,EV6__IER CM [* clear [IER_CM (SCRBRD=4) creates a map-stall
under the above mtpr to SCRBRD=4*
addq r31,r31,10 F*nop*/
br r31,nx2 * continue executing in next block*/
tchl: br r31,tch2 [* fetch in next block*/
nxt2: addq r31,r31,0 * 1st buffer fetch block for above map-
stall*/
addq r31,r31,10 ¥ nop*/
br r31,nxt3 * continue executing in next block*/
tch2: br 131, tch3 [* fetch in next block*/
nxt3: addq 31,310 * 2nd buffer fetch block for above map-stall*/
addq r31,r31,10 F*nop*/
br r31,nxt4 * continue executing in next block*/
tch3: br r31,tch4 [*fetch in next block*/
nxt4: addq r31r310 ¥ need 3rd buffer fetch block to get correct
SDE bit for next fetch block*/
addq r31,r31,10 f*nop*/
br r31,nxt5 * continue executing in next block*/
tch4: br r31,tch5 [*fetch in next block*/
nxt5: addq r31,r31r4 [initialize Shadow Reg. 0*/
addq r31,r31,15 [initialize Shadow Reg. 1*/
br r31,nxt6 * continue executing in next block*/
tchb: br r31,tch6 [*fetch in next block*/
nxt6: addq r31r31r6 [iniialize Shadow Reg. 2*/
addq r31,r31r7 [initialize Shadow Reg. 3*/
br 131, nxt7 * continue executing in next block*/
tch6: br r31,tch7 [*fetch in next block*/
nxt7: addq r31,r31,r20 [*iniialize Shadow Reg. 4*/

PALcode Restrictions and Guidelines

Alpha 21264/EV67 Hardware Reference Manual

tch7:

nxt 8:

t ch8:
nxt 9:

/*

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

addq
br

addq
addq
br
br

r31,r31,r21
r31, nxt8
r31, tch8

r31,r31,r22
r31,r31,r23
r31, nxt9
r31, nxt0

** | N T_WR TE_MAY

/*
/*
/*

/*
/*
/*
/*

initialize Shadow Reg. 5*/
continue executing in next bl ock*/
fetch in next bl ock*/

initialize Shadow Reg. 6*/

initialize Shadow Reg. 7*/

continue executing in next bl ock*/

go back to 1st block and start executing*/

** Wite the chox wite many chain, initializing the bcache configuration.

* %

** This code is on a cache bl ock boundary,

* %

** **x the bcache is initialized GFF for the burnin test ***

*/

/*

** Because we aligned on and fit into a icache bl ock, and because she=0,
** and because we do an nb at the begi nning (which bl ocks further progress
** until the entire block has been fetched in), we don't have to

** fool with pulling this code in before executing it

¥

#undefbc_enable_a
#undef init_mode_a

#undefbc_size a

#undef zeroblk_enable a
#undef enable_evict a
#undef set_dirty_enable_a
#undefbc_bank_enable_a
#undefbc_wrt sts a

#define bc_enable_a 0
#define init_mode_a 0

#define bc_size a

0

#define zeroblk_enable a 1
#define enable_evict a 0
#define set_dirty enable a 0
#definebc_bank enable a 0
#define bc_wrt_sts a 0

loadwm:

lda rl, WRITE_MANY_CHAIN_H(31)

sl r1,32,r1

addg 31,60

mb

br 31, bceshf

align 6

beeshfmtpr r1,EV6 DATA
subg r0,1,0
beq rO,bccend

sl 16,1

f* data<35:32>*/
LDLI(rl, WRITE_MANY_CHAIN_L, r1)
[* shift in 6x 6-bits*/

f* data<31:00>*/

wait for all istream/dstream to complete/

[* shift in 6 bits*/

* decrement RO¥/

f*done if RO is zero*/
* align next 6 bits*/

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-5

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

D-6

br r 31, bceshf /* continue shifting*/
bccend:mipr r31, BEV6__EXC ADDR + 16/* dumy IPRwite - sets S(BD hit 4 */
addg r31,r31,r0 /* nop*/
addg r31,r31,rl /* nop*/
mpr r31, Bv6_ EXC ADDR + 16 /* also a dummy IPRwite -
[* stalls until above wite
/* retires*/
beq r31, bcenxt /* predicts fall through i n PALmode*/
br r3i, .-4 /* fools ibox predictor into infinite | oop*/
addg r31,r31,r1 /* nop*/
bcenxt:addq r31,4,r0 /* load PCTX*/
nmpr r0, BV6_ PROCESS QONTEXT /* ... FPE=1 (SCRBRD=4) */
| da rO, DC CTL_IN T_K(r31) /* load DC CTL..... */
mpr r0,BEV6_ DC CIL I* ... EQC EN=O, FH T=0, SET_EN-=3
/* (SCRBRD=6) */
addg r31,r31,r0 /* nop*/
addg r31,r31,rl /* nop*/
| da r0, Oxff61(r31) /* RO = ~xff6l (superpage) */
zap ro,oxfc, r0 /* PTE protection for DIB wite in next
bl ock*/
nipr r31,BEv6_DIB TAQ /* wite DIB TAQ (SCRBRD=2, 6) */
mpr 31, EV6_DIB TAGL /* wite DIB TAGL (SCRBRD=], 5)*/
mpr rO0,BEV6_DIB PTEO /* wite DIB PTEO (SCRBRD=0, 4)*/
mpr rO,BEV6_DIB PTEL /* wite DIB PTEL (SCRBRD=3,7)*/
mpr r3L,BVv6__ SRR /* clear SRR (SCRBRD=4)*/
| da r 0, OXO8FF(r 31) /* load FPCR*/
sl ro,52,r0 I* ... initia FPCR val ue*/
itoft r0, fO /* nop itoftr0,fQ val ue = 0x8FFO000000000000*/
m_fpcr fO /* nop m _fpcrf0,f0,f0 do the | oad*/
| da r0, 0x2086(r 31) /* load | _CIL..... */
I dah r0, 0x0050(r 0) I* ... TB MB EN=1, CALL PAL R23=1, S XM T=1,
/* SBE=0, SDE=2, |C EN=3*/
mpr r0,BV6_|_CIL /* val ue = 0x0000000000502086 (SCRBRD=4)*/
mpr 31, B _CC /* clear OC (SCRBRD=G) */
| da r 0, OxO01F(r 31) /* wite-one-to-clear bits in HVINI_CQLR
/* | _STAT and DC STAT*/
sl ro, 28,r0 /* val ue = 0x00000001F0000000*/
mpr rO,BEV6__ HWINT_QR/* clear bits in HVINI_CLR (SCRBRD=4) */
mpr r0,BEV6__|_STAT /* clear bits in |_STAT
[*(SCRBRD=4) creates a nap-stall
/* under the above nipr to SCRBRD=4*/
| da r0, Ox001F(r 31) /* val ue = 0x000000000000001F*/
mpr rO,BEV6__DC STAT /* clear bits in DC_STAT (SCORBRD=6)*/
addg r31,r31,r0 /* nop*/
mpr r31,BEv6_PCIRCIL /* 1st buffer fetch bl ock for above nap-stall
/* and 1st clear PCTR CIL (SCRBRD=4)*/
bi s r31, 1,r0 /* set up value for denon wite*/
bi s r31, 1,r0 /* set up value for denon wite*/
milg/v r31,r31,r0 [* nop*/

PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 1 : Reset Sequence Required by Retire Logic and Mapper

mpr r31,BEv6_PCIRCIL /* 2nd buffer fetch bl ock for above nap-stall
/* and 2nd cl ear PCTR CTL (SCRBRD=4)*/

bi s r31, 1,r0 /* set up value for denon wite*/

bi s r31, 1,r0 /* set up value for denon wite*/

milg r3.,r31,r0 /* nop*/

| da r0, 0x780(r 31) /* this is newinitialization stuff to

prevent */

nb

whint rO /* 1d/ st below fromgoing off-chip */

nb

bi s r31,1,r0 /* set up value for denon wite*/

Idg_p r1,0x780(r31) /* flush Pipe 0 LD I ogi c*/

Idg_p rO0,0x788(r31) /* flush Pipe 1 LD I ogi c*/

nb f*wait for LD's to complete*/

mb F*wait for LD's to complete®/

stq_p r1,0x780(r31) f*flush Pipe 0 ST logic*/

stq_p r0,0x788(r31) [*flush Pipe 1 ST logic*/

bis r31,32,10 *load loop count of 32%/
jsr_init_loop:

bsr r31,jsr_init_loop_nxt f*JSR to PC+4*/
jsr_init_loop_nxt:

stq_p r1,0x780(r31) f*flush Pipe 0 ST logic*/

subg r0,1,0

* decrement loop count*/

beq rOjsr_init done /*done?/

br r31jsr_init_loop /* continue loop*/
jsr_init_done:
lda r0,0x03FF(r31) [* create FP one..... */
sl r0,52,10 [~value = 0x3FF0000000000000 */
itoft r0,f0 Fputitinto FOreg*/
addq r31,r31r1 f*nop (also clears R1) */
mult f0,f0,f0 Fflush mul-pipe */
addt 0,f0,f0 Fflush add-pipe */
divt f0,f0,f0 Fflush div-pipe */
sartt f0,f0 [flush div-pipe */
cvtgt f0,f0 [flush add-pipe (integer logic) */
perr r31,r31,r10 Fflush MVI logic */

maxuw4 31,3110 /*flush MVl logic */

pkwb 31,0 F*flush MVI logic */
rc 10 [* clear interrupt flag/
addq r31,r31r1 F*nop (also clears R1)*/
addq r31,r31r1 /¥ nop (also clears R1)*/
addq r31,r31r1 /¥ nop (also clears R1)*/

/*

*This palbase init exists for the rare cases
*when this code is loaded into upper memory.
*That is the case when this code is loaded

* and executed in memory on a system that has
* already been initialized. This technique

* can sometimes be used to debug snippets of
* this code.

*

Alpha 21264/EV67 Hardware Reference Manual

PALcode Restrictions and Guidelines

D-7

Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group

br r31, pal base_init
pal base_init:
br r0, br60 /* r0 <- current location */

br60: Ida rl, (EntryPoint-br60)(r0) /* rl <- location of codebase */
mpr rl, EV6__PAL BASE /* set up pal _base register */

bi s r31, 2, r0
m pr ro, EVv6__VA CIL

bi s r31l, 8, r0
m pr ro, v6__ M CIL

br ro, jnpO
jmp0: addq rO, (jnpl-jnpO+l), rO
hw rets/jnp(r0)
jnpl:
| da ri, 1(r31) /* rl < cc_ctl enable bit */

sl | rl, 32, rl
mpr rl, EV6_CQCCIL /* Enable/clear the cycle counter. */

/*

** Nowinitialize the dcache to allowthe
** minidebugger so save gpr's

*

D.2 Restriction 2: No Multiple Writers to IPRs in Same Scoreboard
Group

For convenience of implementation, only one explicit writer (HW_MTPR) to |PRs that
are in the same group can appear in the same fetch block (octaword-aligned octaword).
Multiple explicit writers to IPRs that are not in the same scoreboard group can appear.

If this restriction is violated, the IPR readers might not see the in-order state. Also, the
IPR might ultimately end up with a bad value.

D.3 Restriction 4 : No Writers and Readers to IPRs in Same Score-
board Group

Thisrestriction is made for the convenience of microprocessor implementation.

An explicit reader of an IPR in a particular scoreboard group cannot follow an explicit
writer (HW_MTPR) to an IPR in that same scoreboard group within one fetch block
(octaword-aligned octaword). Also within one fetch block, an implicit reader of an IPR
in a particular scoreboard group cannot follow an explicit writer (HW_MTPR) to an
IPR in that scoreboard group. Thisrestriction coverswritesto DTB_PTE or DTB_TAG
followed by LD, ST, or any memory operation, including all types of IMP instructions
and HW_RET instructions that do not have the STALL bit set.

D-8 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-Modify-Write

D.4 Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-
Modify-Write

Avoid consecutive read-modify-write-read-modify-write sequences to | PRs in the same
scoreboard group.

The latency between the first write and the second read is determined by the retire
latency of the IPR. For convenience of implementation, the latency between the time
when the read is issued and when the final write isissued depends on the run-time con-
tents of the issue queue. It is somewhere between four and nine cycles, even if thereis
no data dependency between the read and write.

D.5 Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/
ITOF

On an Mbox replay trap, the 21264/EV 67 |box guarantees that the refetched load or
store instruction that caused the trap isissued before any newer load or store instruc-
tions. For load and integer store instructions, this is a consequence of the natural opera-
tion of theissue queue. The refetched instruction enters the age-prioritized queue ahead
of newer load and store instructions and does not have any dependencies on dirty regis-
ters.

Because thereisno overhead time for checking these register dependencies (that is, it is
known upon enqueueing that there are no dirty registers), the queue will issue the
refetched instruction in priority order. For floating-point store instructions, there is nor-
mally some overhead associated with checking the floating-point source register dirty
status, so the store instruction would normally wait before being issued. This would
have the undesired consequence of allowing newer load and store instructions to be
issued out of order. A deadlock can occur if issuing the instructions out-of-order causes
the floating-point store instruction to continually replay the trap. To avoid the deadlock
on afloating-point store instruction replay trap, the source register dirty status is not
checked (the source register is assumed to be clean because the store instruction was
issued previously).

The hardware mechanism that keeps track of replayed floating-point store instructions,
and cancels the dirty register check, requires some software restrictions to guarantee
that it is applied appropriately to the replayed instruction and not to other floating-point
store instructions. The hardware mechanism marks the position in the fetch block (low
two bits of the PC) where the replay trap occurred. This action cancels the dirty float-
ing-point source register check of the next valid instruction enqueued to the integer
queue (integer, all load and store, and I TOF instructions) that has the same positionin
the fetch block (normally the replayed STF). If the PC is somehow diverted to a PAL-
code flow, this hardware might inadvertently cancel the register check of some other
STF (or ITOF) instruction. Fortunately, there are aminimal number of reasons why the
PC might be diverted during areplay trap. They areinterrupts and I TB fills.

The following PAL code example shows that an STF or ITOF instruction, in agiven
position in afetch block, must be preceded by avalid instruction that isissued out of
the integer queue in the same position in an earlier fetch block. Acceptable instruction
classesinclude load, integer store, and integer operate instructions that do not have R31
as a destination or branch.

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-9

Bad_interrupt_flowentry:

ADDQ R31, R31, RO

STF Fa, (Rb) ; This STF night not undergo
; check and mght give wong results
ADDQ R31, R31, RO

ADDQ R31, R31, RO
Good_interrupt_flowentry:

ADDQ R31, R31, RD; Enables FP dirty source
; check for (P 1:0] == 00)

ADDQ R31, R31, R); Enables FP dirty source
; check for (P 1:0] == 01)

ADDQ R31, R31, RD; Enables FP dirty source
; check for (PJ1:0] == 10)

ADDQ R31, R31, RD; Enables FP dirty source
; check for (PQ1:0] == 11)

ADDQ R31, R31, RO

Restriction 9 : PALmode Istream Address Ranges

a dirty source register

regi ster

regi ster

regi ster

regi ster

STF Fa, (Rb); This STF wi |l successful |y undergo

; adirty source register check
ADDQ R31, R31, RO
ADDQ R31, R31, R0

D.6 Restriction 9 : PALmode Istream Address Ranges

PAL mode[physical] Istream addresses must ensure proper sign extension for the

selected value of |_CTL[VA_48]. When |_CTL[VA_48] is clear, indicating 43-bit vir-
tual address format, PALmode]physical] Istream addresses must sign-extend address
bits above bit 42 athough the physical address range is 44 bits. Anillegal address can
only be generated by a PALmode JSR-type instruction or aHW_RET instruction
returning to a PALmode address.

D.7 Restriction 10: Duplicate IPR Mode Bits

D-10 PALcode Restrictions and Guidelines

The virtual address size is selectable by programming IPR bits|_CTL[VA_48]

and VA_CTL[VA _48]. These bit values should usually be equal when operating in
native (virtual) mode. Thel CTL[VA_48] bit determines the DTB double3/doubled
PAL code entry, the JSR mispredict comparison width, the VPC address generation
width, the Istream ACV limits, and the IVA_FORM format selection. The
VA_CTL[VA_48] bit determinesthe VA_FORM format selection and the Dstream
ACV limits. IPR mode bits|_CTL[VA_FORM_32] and VA_CTL[VA_FORM_32]
should be consistent when executing in native mode.

Alpha 21264/EV67 Hardware Reference Manual

Restriction 11: Ibox IPR Update Synchronization

D.8 Restriction 11: Ibox IPR Update Synchronization

When updating any |box IPR, areturn to native (virtual) mode should usethe HW_RET
instruction with the associated STALL bit set to ensure that the updated IPR value
affects all instructions following the return path. The new IPR value takes effect only
after the associated HW_MTPR instruction is retired.

For update to some IPR fields with propagation delay, such as| _CTL[SDE] and
PCTX[FPE], synchronization as described in Section D.32 isthe preferred method of
synchronization.

D.9 Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR,
IVA_FORM, and EXC_SUM

Implicitly written IPRs are non-renamed hardware registers that must be available for
subsequent traps. After any trap to PALcode, hardware protects the values from a sec-
ond implicit write by locking these registers and delaying subsequent traps for a safe
(limited time). Their values can be read reliably by aHW_MFPR within the first four
instructions of a PALcode flow and prior to any taken branch in that PAL code flow,
whichever is earlier. These instructions should not include PALmode trapping instruc-
tions. After the delimiting instruction defined above retires, these registers are unl ocked
and may change due to new exception conditions.

If a second exception occurs before the registers are unlocked, it will be either delayed
or forced to replay trap (a non-PALmode trap) until the register has been unlocked.
After being unlocked, a subsequent new path exception condition will be allowed to
reload the register and trap to PALcode. The 21264/EV 67 may complete execution of
the first PAL code flow, encountering the second exception condition before the delimit-
ing instruction is retired, hence the need for the locking mechanism to ensure visibility
of theinitial register value.

The VA_FORM, VA, and MM _STAT registers are not included in thislist of protected
IPRS. See Section D.24 for a description of how to protect these |PRs from subsequent
implicit writers.

D.10 Restriction 13 : DTB Fill Flow Collision

Two DTB fill flows might collide such that the HW_MTPR’s in the second fill could be
issued before all of the HW_MTPR’s in the first PALcode flow are retired. This can be
prevented by putting appropriate software scoreboard barriers in the PALcode flow.

D.11 Restriction 14 : HW_RET

There can be no HW_RET in the first fetch block of a PALcode routine, other

than CALL_PAL routines. With a HW_RET in the first fetch block of a PALcode rou-
tine, the HW_RET will be mispredicted and the JSR/RETURN stack could lose its syn-
chronization.

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-11

Guideline 16 : JISR-BAD VA

D.12 Guideline 16 : JSR-BAD VA

A JSR memory format instruction that generates abad VA (IACV) trap requires PAL-
code assistance to determine the correct exception address. If the
EXC_SUM[BAD_IVA] isset, bits[63,1] of the exception address are valid in the VA
IPR and not the EXC_ADDR asusual. The PALmode bit, however, isalwayslocated in
EXC_ADDR[0] and must be combined, if necessary, by PAL code to determine the full
exception address.

D.13 Restriction 17: MTPR to DTB_TAGO/DTB_PTEO/DTB_TAG1/
DTB_PTE1

These four write operations must be executed atomically, that is, either all four must be
retired or none of them may be retired.

D.14 Restriction 18: No FP Operates, FP Conditional Branches,
FTOI, or STF in Same Fetch Block as HW_MTPR

No FP operate instructions (including Mx_FPCR), FP conditional branches, FTOI reg-
ister move instructions, or FP store instructions are allowed in the same fetch block as
any HW_MTPR instructions. This includes ADDx/MULX/DIVx/SQRTx/FPCondition-
aBranch/STx/FTOIx, where x is any applicable FP data type, but does not include
LDx/ITOFx.

D.15 Restriction 19: HW_RET/STALL After Updating the FPCR by
way of MT_FPCR in PALmode

FPCR updating occurs in hardware based on the retirement of a nontrapping version of
MT_FPCR (in PALcode). UseaHW_RET/STALL after the nontrapping MT_FPCR to
achieve minimum latency (four cycles) between the retiring of the MT_FPCR and the
first FLOP that uses the updated FPCR.

D.16 Guideline 20:1_CTL[SBE] Stream Buffer Enable

Thel_CTL[SBE] bits should not be enabled when running with the Icache disabled to
avoid potentialy long fill delays. When the Icache is disabled, the only method of sup-
plying instructions is by way of a stream hit. If thefill is returned in non-sequential
wrap order, the stream will continue fetching through the entire page while waiting for
a hit. Normally the data will be found in the cache.

D.17 Restriction 21: HW_RET/STALL After HW_MTPR ASNO/ASN1

There must be a scoreboard bit-to-register dependency chain to prevent HW_MTPR
ASNO or HW_MTPR ASN1 from being issued while any of scoreboard bits[7:4] are
set. The following example contains a code sequence that creates the dependency chain.

:Assune Ra holds value to wite to ASND/ ASNL
HVMPR RO, VA SCBDX7, 6,5, 4>

XRR, RO, RO

BISR), RO, RO

D-12 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 22: HW_RET/STALL After HW_MTPR IS0/IS1

BIS R31, R31, R3l

HWMPR RO, ASND, SCBD<4>

HWMPR RO, ASNL, SCBD<7>

This sequence guarantees, through the register dependency on RO, that neither
HW_MTPR are issued before scoreboard bits [7:4] are cleared. In addition, there must
beaHW_RET/STALL after aHW_MTPR ASNO/HW_MTPR ASNL1 pair. Finally,

these two writes must be executed atomically, that is, either both must be retired or nei-
ther may be retired.

D.18 Restriction 22: HW_RET/STALL After HW_MTPR 1S0/IS1

There must be a scoreboard bit-to-register dependency chain to prevent either
HW_MTPR IS0 or HW_MTPR IS1 from issuing instructions while any of scoreboard
bits[7:4] are set. The following example contains a code sequence that creates the
dependency chain.

HWVMPR RO, VA SCBDX7, 6,5, 4>, RO

XR R, RO, RO

BISR), RO, RO

BIS R31,R31, R3l

HWMPR RO, |0, SOBD<6>

HWMPR RO, |Sl, SOBD<7>

This sequence guarantees, through the register dependency on RO, that neither
HW_MTPR areissued before scoreboard bits [7:4] are cleared. There must be a
HW_RET/STALL after an HW_MTPR ISO/HW_MTPR ISl pair. Also, these two

writes must be executed atomically, that is, either both must be retired or neither may be
retired.

D.19 Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the
Lock Flag

A HW_ST/P/ICONDITIONAL will not clear the lock flag such that a successive store-
conditional (either STx_C or HW_ST/C) might succeed even in the absence of aload-
locked instruction. In the 21264/EV 67, a store-conditional isforced to fail if thereisan
intervening memory operation between the store-conditional and its address-matching
LDxL. The following example shows the memory operations.

LDL/QFGYT

SIUQFGST

LDQ U (not to R31)

STQU

Absent from thislist are HW_LD (any type), HW_ST (any type), ECB, and WH64.
Their absence impliesthat they will not force a subsequent store-conditional instruction
to fail. PALcode must insert a memory operation from the above list after aHW_ST/

CONDITIONAL in order to force afuture store-conditional to fail if it was not pre-
ceded by aload-locked operation:

HW LDXL

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-13

Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM,

XXX

HWST/C -> RO

Bxx RO, try_again

STQ; Force next ST/Cto fail if no precedi ng LDxL
HW RET

D.20 Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH,
IC_FLUSH_ASM, CLEAR_MAP

Theremust beaHW_RET/STALL after aHW_MTPRIC_FLUSH, IC_FLUSH_ASM, or
CLEAR_MAP. The Icache flush associated with these instructions will not occur until
the HW_RET/STALL occurs and all outstanding Istream fetches have been completed.

Also, there must be a guarantee that the HW_MTPR IC_FLUSH or HW_MTPR
IC_FLUSH_ASM will not be retired simultaneously with the HW_RET/STALL. This
can be ensured by inserting a conditional branch between the two (BNE R31, 0 cannot
be mispredicted in PALmode), or by ensuring at least 10 instructions between the
MTPR instruction and the HW_RET/STALL containing at least one instruction in each
quad aligned group with a valid destination. Finally, the HW_RET/STALL that is used
for CLEAR_MAP cannot trigger a cache flush. That is, if botha CLEAR_MAP and
IC_FLUSH are desired, there must be two HW_RET/STALLSs, one following each
HW_MTPR.

D.21 Restriction 25: HW_MTPR ITB_IA After Reset

AnHW_MTPRITB_IA isrequired in the reset PALcodeto initializethe ITB. It isalso
required that PAL code not be exited, even via a mispredicted path until this
HW_MTPR ITB_IA has been retired. PALmode can change temporarily after fetching
aHW_RET, regardless of the STALL qualifier, down amispredicted path leading to use
of the ITB beforeit is actualy initialized.

Unexpected instruction fetch and execution can occur following misprediction of any
memory format control instruction (JMP, JSR, RET, JSR_CO, or HW_JMP, HW_JSR,
HW_RET, HW_JSR_CO regardless of the STALL qualifier), or after any mispredicted
conditional branch instruction. If the unexpected instruction flow containsaHW_RET
instruction, PALmode may be exited prematurely.

One way to ensure that PALmode is not exited isto placethe HW_MTPR ITB_IA at
least 80 instructions before any possible HW_RET instruction can be encountered via
any fetch path. Since memory format control instructions can mispredict to any cache
location, they should also be avoided within these 80 instructions.

D.22 Guideline 26: Conditional Branches in PALcode

To avoid pollution of the branch predictors and improve overall branch prediction accu-
racy, conditional branch instructionsin PALcode will be predicted to not be taken. The
only exception to this rule are conditional branches within the first cache fetch (up to
four instructions) of all PAL code flows except CALL_PAL flows. Conditional branches
should be avoided in this window.

D-14 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode

D.23 Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode

A virtual mode load or storeisrequired in PALcode before the execution of any load-
locked or store-conditional instructions. The virtual-mode load or store may not be a
HW LD, HW_ST, LDx_L, ECB, or WH64.

D.24 Restriction 28: Enforce Ordering Between IPRs Implicitly Writ-
ten by Loads and Subsequent Loads

Certain |PRs, which are updated as a result of faulting memory operations, require soft-
ware assistance to maintain ordering against newer instructions. Consider the following
code sequence:

HWMPR | PR_MVI STAT
LDQ rx, (ry)

These instructions would typically be issued in-order. The HW_MFPR is data-ready
and both instructions use alower subcluster. However, the HW_MFPRs (and
HW_MTPRs) respond to certain resource-busy indications and are not issued when the
Mbox informs the Ibox that a certain set of resources (store-bubbles) are busy. The LDs
respond to adifferent set of resource-busy indications (load-bubbles) and could be
issued around the HW_MFPR in the presence of the former. Software assistance is
reguired to enforce the issue order. One sure way to enforce the issue order isto insert
an MB instruction before the first load that occurs after the HW_MFPR MM _STAT.
The VA, VA_FORM, and DC_CTL registersrequire asimilar congtraint. All LOAD
instructions except HW_LD might modify any or all of these registers. HW_LD does
not modify MM_STAT.

D.25 Guideline 29 : JSR, JMP, RET, and JSR_COR in PALcode

Unprivileged JSR, JIMP, RET, and JSR_COR instructions will always mispredict when
used in PALcode. In addition, HW_RET to a PALmode target will always mispredict
since the JSR stack only predicts native-mode return addresses. HW_RET to a native-
mode target uses the JSR stack for prediction and should usually be used when exiting
PALmode in order to maintain JSR stack alignment since all PALmode traps also push
the value of the EXC_ADDR on the JSR stack.

Privileged versions of the JSR type instructions (HW_JSR,HW_IJMPHW _JSR_COR)
can be used both within PALmode or to exit PALmode and generate a predicted target
based on their hint bits and the current processor PALmode state.

D.26 Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR

External bus activity must be isolated from writes and reads to the Cbox CSR. This
requires that all Dstream and Istream fills must be avoided until after the HW_MTPR/
HW_MFPR updates are completed. An MB instruction can block Dstream activity, but
blocking all Istream fills, including prefetches, requires more extensive code. The fol-
lowing code example blocks all Istream fill requests and stalls instruction fetch until
after the desired MTPR/MFPR action is completed. This code disables Istream
prefetching by way of aHW_MTPRto | _CTL[SBE], IC_FLUSH, and
HW_RET_STALL sequence.

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-15

Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR

sys__chox:

ALl G\ FETCH BLOCK

nb

hw nfpr p6, EV6__ | _CIL
| da p4, ~xFCFF(r31)
and p6, p4, p4

; quiet the dstream

(4,0L) get i_ctl
nmask for clearing SBE bits

; clear SBE bits

sbe_of f _offset = <sys cbox_sbe_off_done - sys__cbox_sbe of f>

hw nipr p4, EV6__ | _CIL
br p6, sys__chox_she of f

sys__chox_sbe of f:

addq p6, #<sbe_of f_of fset +1>, p6

bsr r31,

ALl G\ FETCH BLOCK <"x47FF041F> al i gn

hw nipr r31, EV6_ | C FLUSH
bne r31,

PVC JSR sbe of f

hw ret_stall (p6)

PVC JSR sbe of f, dest=1

sys__cbox_she_of f_done:

br r31, sys__cbox_touchl

ALl QN CACHE BLOCK

sys__chox_over 1:

addq r31, #11, p6
addq r31, r31, p7
br r31, sys__cbox_over2

sys__chbox_t ouchl:

br r31, sys__ cbox_t ouch2

sys__chox_over 2:

hw mipr r31, EV6_ SH FT_GONTRCL

subq p6, #1, p6
br r31, sys__cbox_over3

sys__chox_t ouch2:

br r31, sys__cbox_t ouch3

sys__chox_over 3:

hw ntpr r31, <BV6__ MM STAT !
bi s p5, #1, p5
br r31, sys__cbox_over4

sys__chox_t ouch3:

br r31, sys__cbox_t ouch4

sys__chox_over 4:

hw nfpr p4, EV6__ DATA
bi s r31, r31, r31
br r31, sys__cbox_over5

sys__chox_t ouch4:

br r31, sys__chox_touch5

sys__chox_over5:

and p4, #'x3F, p4
addq p4, p7, p7
br r31, sys__cbox_over6

sys__chbox_t ouch5:

br r31, sys__cbox_t ouch6

D-16 PALcode Restrictions and Guidelines

(4,0L) wite newi_ctl
past stall in pal node
stack push

(4,0L) elimnate prefetches
pvc #24

; synch and flush

use ret, pop stack
br stops predictor

now pul | in the next bl ock
bl ock 1

initialize shift count (11x)
initialize shift data

; go to block 2

; touch bl ock 2

bl ock 2
(6,0L) shift in6 bits

; decrenent shift count
; go to block 3

touch bl ock 3

bl ock 3
(6,0L) wait for shift
return in pal node

; go to block 4

touch bl ock 4

bl ock 4

(6,0L) read cbhox data
nop

go to block 5

touch bl ock 5

bl ock 5

; clean to <5:0>
; accunul ate shift data

go to block 6

; touch bl ock 6

Alpha 21264/EV67 Hardware Reference Manual

sys__chox_over 6:

beq p6, sys__chox_over8

bi s r31, r31, r31

br r31, sys__cbox_over7

sys__chbox_t ouch6:

br r31, sys__cbox_t ouch7

sys__chox_over7:
bi s p7, r31, p20
sl | p7, #6, p7

br r31, sys__cbox_over2

sys__chox_t ouch?7:

br r31, sys__cbox_t ouch8

sys__chox_over 8:

beq r31, sys__cbox_cbox_done

PVC M QLATE <1006>

br r31, .-4

bi s r31, r31, r31
sys__chox_t ouch8:

br r31, sys__cbox_over1l

sys__chbox_chox_done:
hw nipr p6, EV6_ | _CIL

| da p4, <3@V6__|_CIL__SBE S>(r31)

or p61 p4: p4
bi s r31, r31, r31

hw nipr p4, EV6__ | _CIL

PVC JSR cbox, bsr=1, dest=1

hw ret_stall (p5)

Restriction 31 : 1 CTL[VA_48] Update

; block 6

branch i f done
nop

; go to block 7

touch bl ock 7

bl ock 7
save before shifting

; shift data 6 bits left
; do next shift

touch bl ock 8

; block 8
; predict not taken

predict back to infinite | oop

now start executing the shifts

; nowrestore i_ctl

(4,0L) get i_ctl
sbe bits
set SBE bhits

; (4,0L) restore i _ctl

return to caller with stall

D.27 Restriction 31 : 1 _CTL[VA_48] Update

The VA_48 virtual address format cannot be changed while executing a JSR, IMP,
GOTO, JSR_COROUTINE, or HW_RET instruction. A simple method of ensuring
that the address does not change isto write | _CTL twice, in two separate fetch blocks,
with the same data. The second write will stall the pipeline and ensure that the mode
cannot change, even down a mispredicted path, while a following JSR type instruction
might be using the address comparison logic.

D.28 Restriction 32 : PCTR_CTL Update

Alpha 21264/EV67 Hardware Reference Manual

The performance counter must not be left in a state near overflow. If counting isdis-
abled, the counters may produce multiple overflow signalsif the counter output is not
updated due to the counter being disabled. A repeated overflow signal with counters
disabled can block other incoming interrupt requests while the overflow state persists.
To avoid this situation, reads or writes to the counters should not |eave avaue near
overflow. In normal operation, with counters enabled, a counter overflow will produce
an overflow pulse, clear the counter, and produce a performance counter interrupt.
Interrupts can only be blocked for one cycle.

PALcode Restrictions and Guidelines D-17

Restriction 33 : HW_LD Physical/Lock Use

D.29 Restriction 33 : HW_LD Physical/Lock Use

The HW_L D physical/lock instruction must be one of the first three instructionsin a
guad-instruction aligned fetch block. A pipeline error can occur if the HW_LD physi-
cal/lock is fetched as the fourth instruction of the fetch block.

D.30 Restriction 34 : Writing Multiple ITB Entries in the Same PAL-
code Flow

Before a PAL code flow writes multiple I TB entries, additiona scoreboard bits should
be set to avoid possible corruption of the TAG IPR prior to final updateinthe ITB. The
addition of scoreboard bits 0 and 4 to the standard scoreboard bit 6 for ITB_TAG will
prevent subsequent HW_MTPR ITB_TAG writes from changing the staging register
TAG value prior to retirement of the HW_MTPR ITB_PTE that triggersthefinal ITB
update.

D.31 Guideline 35: HW_INT_CLR Update

When writing the HW_INT_CLR IPR to clear interrupt requests, it may be necessary to
write the same value twice in distinct fetch blocks to ensure that the interrupt request is
cleared before exiting PALcode. A second write will cause a scoreboard stall until the
first write retires, creating a convenient synchronization with the PAL mode exit.

D.32 Restriction 36 : Updating |_CTL[SDE]

A softwareinterlock is required between updates of the | _CTL[SDE] and a subsequent
instruction fetch that may use any destination registers. A suggested method of ensuring
thisinterlock isto usetwo MTPR |_CTL instructionsin separate fetch blocks, followed
by three more fetch blocks of non-NOP instructions.

D.33 Restriction 37 : Updating VA_CTL[VA_48]

A software interlock is required between updates of the VA_CTL[VA_48] and follow-
ing LD or ST instructions. Thisis necessary since the VA_CTL update will not occur
until the HW_MTPR VA_CTL instruction retires. A sufficient method of ensuring this
interlock isto writethe VA_CTL with the same data in two successive fetch blocks,
causing a mapper stall. The dependant LD or ST instructions can be placed in any loca
tion of the second fetch block.

D.34 Restriction 38 : Updating PCTR_CTL

When updating the PCTR_CTL, it may be necessary to write the update value twice. If
the counter being updated is currently disabled by way of the respectivel _CTL or
PCTX bits, the value must be written twice to ensure that the counter overflow is prop-
erly cleared. The overflow bit is conditionally latched using the same write enable as
the counter update, so an additional write of the counter value will ensure that the over-
flow logic accurately reflects the addition of the new counter value plus the input condi-
tions. The new update value must not be within one cycle of overflow (within 16 for
SLO, within 4 for SL1) asrequired by Section D.28.

D-18 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Guideline 39: Writing Multiple DTB Entries in the Same PAL Flow

D.35 Guideline 39: Writing Multiple DTB Entries in the Same PAL
Flow

If a PALcode flow intends to write multiple DTB entries (as would occur in a double
miss), it must take care to keep subsequent HW_MTPR DTB_TAGXx writes from cor-
rupting the staging register TAG values prior to retirement of the HW_MTPR
DTB_PTEXx, which triggers the final DTB update.

For example, in the double miss DTB flow, the following code could be used to hold up
the return to the single miss flow (the numbers in parentheses are the scoreboard bits):

hw mpr r4, EV6__DIB TAQD ; (286) wite tago
hw nipr r4, EV6_ DIB TAGA ; (185) wite tag 1
hw nmpr r5 EV6__DIB PTED ; (0&4) wite ptel
hw nmpr r5, EV6__DIB PTEL 7 (3&7) wite ptel
bis r31, r31, r31 ; force new fetch bl ock

bis r31, r31, r31
bis r31, r31, r31
hw nmpr r31, <BV6__ MM STAT | ~x80> ; (7) wait for pte wite

hwret (r6) ; return to single niss

D.36 Restriction 40: Scrubbing a Single-Bit Error

On Bcache and Memory single bit errors on Icache fills, the hardware flushes the
Icache, but the PAL code must scrub the block in the Bcache and memory. On Bcache
and Memory single bit errors on Dcache fills, the hardware scrubs the Dcache as long
as the error was on atarget quadword, but the PAL code must scrub the Dcache for non-
target quadwords, and must in general scrub the block in the Bcache and memory.

The scrub consists of reading each quadword in the block, with at least one exclusive
access |load/store to ensure the corrected data will be scrubbed in Bcache and memory.
The scrub itself causes a CRD to be flagged, which is cleared by the PAL code before
exiting to native mode.

; Sanpl e code for scrubbing a single bit error.

; Since we only have the bl ock address, and the hardware only corrects
; target quadwords, we read each quadwor d.
; In order to ensure eviction to bcache and nemory, a store
is needed to nark the block dirty. An exclusive access is
used to ensure we scrub in main nenory. Virtual access is
used because of restrictions in use of hwld/ hw st |ock
; i nstructions.
; After the scrub, read the chox chain again.
; The scrub will cause a crd, but will get cleared with a wite
; to hwint_clr.

;. Qurrent state:
rs base of crd | ogout frane

hw ldg/p r4, MHK CRD__C ADDR(r5) ; get address back
bi s r31, r31, r31
bi s r31, r31, r31
bi s r31, r31, r31

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-19

Restriction 40: Scrubbing a Single-Bit Error

hw nmpr r31, BEV6_DIB | A (7,1L) flush dtb
| da r20, "~x3301(r31) ;. set W RE

bi s r31, r31, r31

bi s r31, r31, r31

hw mpr r31, <BEV6__ MM STAT ! ~x80> ; wait for retire

srl rd4, #13, r6 ; shift byte of fset
sl ré, #8V6__ DIB PTEO_ PFN_ S, r6 ; shift into position
bi s ré, r20, r6 ; produce pte

hw mpr r4, EV6__DIB TAQD ; (286,0L) wite tag0
hw nmpr r4, EV6__DIB TAG 7 (185,1L) wite tagl

hw mpr r6, EV6__DIB PTED
hw nmpr r6, EV6_ DIB PTEL

(0&4,0L) wite pteO
(3&7,1L) wite ptel

nb ; quiet before we start
bi s r31, r31, r31
bi s r31, r31, r31
bi s r31, r31, r31

I dg ré6, ~x00(r4) ; re-read the bad bl ock QNV#0

I dg r6, ~x08(r4) ; re-read the bad bl ock QNV#1

I dg r6, ~x10(r4) ; re-read the bad bl ock QNV#2

I dg re, ~x18(r4) ; re-read the bad bl ock QN#3

I dg re, ~x20(r4) ; re-read the bad bl ock QN#4

I dg re, ~x28(r4) ; re-read the bad bl ock QN#5

I dg r6, ~x30(r4) ; re-read the bad bl ock QNV#6

nb ; no other nemops till done

I dg_l re, ~x38(r4) ; re-read the bad bl ock QN#7

stg_c r6, "x38(r4) ; nowstore it to force scrub

nb

and ré, r31, r6 ; consurer of above

beq r6, sys__crd_scrub_done ; these 2 lines......

br r3i, .-4 Do stop pre-fetching
sys__crd_scrub_done:

bsr r7, sys__chox ; clean the cbox error chain

bi s r31, r31, r31

hw nipr r31, EV6__DIB | A ; (7,1L) flush dtb
bi s r31, r31, r31
bi s r31, r31, r31
bi s r31, r31, r31

hw nipr r31, <BEV6__ MM STAT ! ~x80> ; wait for retire

bi s r31, #1, r7 ; get al

sl | r7, #86_ HWINT_OR_CR_S, r7 ; shift into position
hw nmpr r7, EV6_ HWINI_AR ; (4,0L) clear crd

| da r7, BEV6__DC STAT WIC CRO(r31) ; WIC bhits

hw nmpr r7, EV6__DC STAT ; (6,0L)

bi s r31, r31,r31
bi s r31, r31,r31

hw mpr r31, <BEV6__ MM STAT ! ~x50> ; stall till they retire

D-20 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block

D.37 Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the
Same Fetch Block

Writethe ITB_TAG and ITB_PTE registersin the same fetch block. This avoids a
mispredict path write of invalid datato the ITB_TAG register.

D.38 Restriction 42: Updating VA_CTL, CC_CTL, or CC IPRs

When writing to the VA_CTL, CC_CTL, or CC IPRs, write the same value twicein dis-
tinct fetch blocks. This ensuresthat the instruction isretired before any mispredict from
ayounger branch, DTB misstrap, or hw_ret_stall.

D.39 Restriction 43: No Trappable Instructions Along with
HW_MTPR
There are two parts to this restriction:

1. There cannot be any mispredictable/trappable instructions together with an
HW_MTPR in the current fetch block.

2. There cannot be any mispredictable/trappable instructions in the previous fetch
block.

D.40 Restriction 44: Not Applicable to the 21264/EV67

D.41 Restriction 45: No HW_JMP or JMP Instructions in PALcode

Do not include HW_JMP or IMP instructions in PAL code; use HW_RET instead.

HW_JMP aways predicts in PALmode, and may mispredict to random cache blocks.
This may cause speculative code to begin executing in PALmode and may have unex-
pected side effects such as 1/0 stream references.

HW_RET always predictsin native mode, and when it mispredicts, it avoids specula-
tive execution in PALmode.

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-21

Restriction 46: Avoiding Live locks in Speculative Load CRD Handlers

D.42 Restriction 46: Avoiding Live locks in Speculative Load CRD
Handlers

Speculative load CRD handlers that release from the interrupt without scrubbing a
cache block could suffer from the following live-lock condition:
1. Aninitial error on a speculative load forces a CRD interrupt.

2. The CRD releaseswithout scrubbing the block. A speculative load in the shadow of
the hw_ret (or hw_ret_stall) touches a Dcache location that has the single-bit error,
forcing a CRD.

3. The CRD handler is entered again immediately.
4. Goto (2).

This problem can be avoided if all jumpsin the CRD handler path for speculative loads
use the following sequence:

nb ; nake sure hwret goes

ALl GN_FETCH BLOCK <*"x47FF041F>

mul g p6, #1, p6 ; Hold up | oads

mul gq p6, #1, p6 ; Hold up | oads

hw nipr p6, <BEV6__ MM STAT ! ~x44> ; Hold up | oads

PVC M QLATE<43> ; lgnore restriction 43
hw ret_stall (p23) ; Return

This sequence prevents specul ative loads from issuing in the shadow of the

hw_ret stall. Notethat it isaviolation of restriction 4 to have in the samefetch block a
MTPR that specifies scoreboard bit 2 (an explicit writer in the memory operation
group) and aHW_RET (an implicit reader in the memory operation group). Under nor-
mal circumstances, the intention would be for aHW_RET to wait until the MTPR
issues, and that can only be enforced by putting the two instructions in different fetch
blocks. In this case, the intention is for the HW_RET to issue before the MTPR. The
hardware does not enforce the scoreboarding when the two instructions are in the same
fetch block, and thus the HW_RET can issue and mispredict before any speculative
loads (which are held up by the MTPR) can issue.

D.43 Restriction 47: Cache Eviction for Single-Bit Cache Errors

A live lock can occur if issuing instructions out-of-order causes a floating-point store
instruction (with sberr) to replay trap.

A hardware mechanism exists that keeps track of replayed floating-point store instruc-
tions, and cancels the dirty register check. See Section D.5 for more details.

If the floating-point store instruction has an sberr and the CRD_HANDLER is entered/
exited before the instruction is replayed, the mechanism will lose track of the instruc-
tion. When the instruction is replayed, the dirty register check is not canceled, and a
replay trap occurs, causing the floating-point store instruction to continually replay the
trap until the sberr is evicted from cache. The sberr will not evict, because the floating-
point store instruction is killed by the replay trap. Killed instructions are not scrubbed
by the Error Recovery Machine, and CBOX_ERR[C_ADDR] may not contain the
address of the sherr. Because CBOX_ERR[C_ADDR] is not guaranteed, the
CRD_HANDLER might not evict the sherr.

D-22 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

Restriction 47: Cache Eviction for Single-Bit Cache Errors

If "CBOX_ERR[C_ADDR]" has not changed when the CRD_HANDLER isre-
entered, or "CBOX_ERR[C_STAT] == 0x0", al cache locations should be evicted to
avoid the live lock described above.

Sanpl e code for evicting cache.
; This nethod | oads a 64K bl ock, then exits the CRD HANDLER
: tocheck if the sberr has been evicted. If not it |oads the next 64K bl ock.
; I'n the sanpl e code bel ow
; sX i s a shadow regi ster
Idi is anmacro that |oads a 64-bit constant into the specified register

full _scrub:
hw | dg/ p s5, 104(r31)
| di sl, ~x200 ; Loop dec val ue
| di s2, "x1Q0 ; Start offset
| di s3, ~x10000 ; Block size (64K -> size of dcache)
| di s4, ”~x2000000 ; 2X bcache si ze

addq s3,s5,s5

bl e sb, s4, <. +4> ; Skip next instruction if ADDR
i .le. 2X bcache

bi s r31, r31, s5 ; Set ADDR = 0x0

hw stqg/p s5, 104(r31) ; Store ADDR for next pass thru

subq sb, s2, sb5

nb ; Make sure no specul ative | oads

; happen in the CRD handl er
.align 4, NOP_CPQE i
bl bc r31, < +4> i
br r3l, <.-4> Vv
.align 4, NOP_CPQE ; Make sure no specul ative | oads
; happen in the CRD handl er

next _r er ead:
; ¥***xxxx four cache bl ocks

; Bvict dcache by prefetching to all dcache i ndexes.
; use "hwldl r31 xxxx’ Nornal Prefetch
; Do not use "hwldg/p r31 xxx' Prefetch,
Evict Next because this will always access the sane set in dcache.
hw ldl/p r 31, *x1Q0(s5) ; Re-read the bad bl ock QN#0

hw ldl/p r 31, ~x180(s5) ; Re-read the bad bl ock QN#0
hw | dl/p r 31, ~x140(sb5) ; Re-read the bad bl ock QN#0
hw | dl/p r 31, ~x100(sb5) ; Re-read the bad bl ock QN#0
hw ldl/p r 31, *xQ0(s5) ; Re-read the bad bl ock QN#0
hw ldl/p r 31, ~x80(s5) ; Re-read the bad bl ock QN#0
hw ldl/p r 31, ~x40(s5) ; Re-read the bad bl ock QN#0
hw | dl/p r 31, ~x00(s5) ; Re-read the bad bl ock QN#0
subq s5, sl1, s5 ; Decrenent addr

subq s3, sl, s3 ; Decrenent counter

bl e s3, < +4>

br r31, next_reread

bsr s7, sys__cbox ; Read and cl ean chox error ipr

Alpha 21264/EV67 Hardware Reference Manual PALcode Restrictions and Guidelines D-23

Restriction 48: MB Bracketing of Dcache Writes to Force Bad Data ECC and Force

D.44 Restriction 48: MB Bracketing of Dcache Writes to Force Bad
Data ECC and Force Bad Tag Parity

Writesto DC_CTL[F_BAD_DECC] and DC_CTL[DCDAT_ERR_EN] must be brack-
eted by MB instructions to quiesce the memory system. The Istream must also be qui-
esced before and during the sequence, as described in Section D.26.

D-24 PALcode Restrictions and Guidelines Alpha 21264/EV67 Hardware Reference Manual

E

21264/EV67-to-Bcache Pin Interconnections

This appendix provides the pin interface between the 21264/EV 67 and Bcache
SSRAMSs.

E.1 Forwarding Clock Pin Groupings

Table E-1 lists the correspondance between the clock signals for the 21264/EV67 and
Bcache (late-write non-bursting and dual-data rate) SSRAMs.

Table E-1 Bcache Forwarding Clock Pin Groupings

Pad and Pin Input Clock Output Clocks

BcData H[71:64,7:0] BcDatalnClk_H[0] BcDataOutClk_x[0]
BcCheck _HI[8,0] BcDatalnClk_H[0] BcDataOutClk_x[0]
BcData H[79:72,15:8] BcDatalnClk_H[1] BcDataOutClk_x[0]
BcCheck _HI[9,1] BcDatalnClk_H[1] BcDataOutClk_x[0]

BcData H[87:80,23:16]
BcCheck _H[10,2]
BcData H[95:88,31:24]
BcCheck _H[11,3]
BcData H[103:96,39:32]
BcCheck _H[12,4]
BcData H[111:104,47:40]
BcCheck _H[13,5]
BcData H[119:112,55:48]
BcCheck _H[14.6]
BcData H[127:120,63:56]
BcCheck _H[15,7]
BcTag H[42:20]
BcTagParity H

BcDatalnClk_H[2]
BcDatalnClk_H[2]
BcDatalnClk_H[3]
BcDatalnClk_H[3]
BcDatalnClk_H[4]
BcDatalnClk_H[4]
BcDatalnClk_H[5]
BcDatalnClk_H[5]
BcDatalnClk_H[6]
BcDatalnClk_H[6]
BcDatalnClk_H[7]
BcDatalnClk_H[7]
BcTaglnClk_H

BcTaglnClk_H

BcDataOutClk_x[1]
BcDataOutClk_x[1]
BcDataOutClk_x[1]
BcDataOutClk_x[1]
BcDataOutClk_x[2]
BcDataOutClk_x[2]
BcDataOutClk_x[2]
BcDataOutClk_x[2]
BcDataOutClk_x[3]
BcDataOutClk_x[3]
BcDataOutClk_x[3]
BcDataOutClk_x[3]
BcTagOutClk_x

BcTagOutClk_x

Alpha 21264/EV67 Hardware Reference Manual 21264/EV67-to-Bcache Pin Interconnections

E-1

Late-Write Non-Bursting SSRAMs

Table E-1 Bcache Forwarding Clock Pin Groupings (Continued)

Pad and Pin Input Clock Output Clocks

BcTagShared H BcTaglnClk_H BcTagOutClk_x
BcTagDirty H BcTagInClk_H BcTagOutClk_x
BcTagvalid_H BcTagInClk_H BcTagOutClk_x

E.2 Late-Write Non-Bursting SSRAMs

Table E-2 provides the data pin connections between late-write non-bursting SSRAMs
and the 21264/EV67 or the system board. Table E-3 provides the same information for
the tag pins.

Data Pin Usage

Table E-2 Late-Write Non-Bursting SSRAMs Data Pin Usage
21264/EV67 Signal Name or Board Connection Late-Write SSRAM Data Pin Name

BcAdd_H[21:4] SA_H[17:0]
BcDataOutClk_H[3:0] CK H
Set from board to 1/2 the 21264/EV67 corevoltage CK_L
BcData H[127:0]/BcCheck H[15:0] DQx
BcDatawr_L SW_L
Unconnected Tck H
Unconnected Tdo H
Unconnected Tms H
Unconnected Tdi_H
From board, pull down toVSS G L
From board, pull down toVSS SBx L

From board, pull down to VSS or BcDataOE_L SS L (Vendor dependent)

Tag Pin Usage

Unused Bcache tag pins should be pulled to ground through a 200-ohm resistor.

Table E-3 Late-Write Non-Bursting SSRAMs Tag Pin Usage

21264/EV67 Signal Name or Board Connection Late-Write SSRAM Tag Pin Name

BcAdd_H[22:6] SA H[16:0]

BcTag H[42:20] DQx

BcTagOE_L or from board, pull downto VSS SS L (Vendor dependent)
BcTagWr_L SW_L

From board, pull down toVSS SBx L

BcTagOutClk_H CK _H

E-2 21264/EV67-to-Bcache Pin Interconnections Alpha 21264/EV67 Hardware Reference Manual

Dual-Data Rate SSRAMs

Table E-3 Late-Write Non-Bursting SSRAMs Tag Pin Usage (Continued)

21264/EV67 Signal Name or Board Connection Late-Write SSRAM Tag Pin Name
Set from board to 1/2 the 21264/EV 67 corevoltage CK_L
Set from board to 1/2 the 21264/EV 67 corevoltage VREF1 H

VREF2_H

Set from board (implementation dependent) ZQH
BcTagvalid_ H DQx
BcTagDirty H DQx
BcTagShared H DQx
Unconnected TMS H
Unconnected TDI_H
Unconnected TCK_H
Unconnected TDC H

E.3 Dual-Data Rate SSRAMSs

Table E—4 provides the data pin connections between dual-data rate SSRAMs and the
21264/EV67 or the system board. Table E-5 provides the same information for the tag
pins.

Data and Tag Pin Usage

Table E—4 Dual-Data Rate SSRAM Data Pin Usage
21264/EV67 Signal Name or Board

Connection Dual-Data Rate SSRAM Data Pin Name
BcAdd_H[21:4] SA_H[17:0]
BcData H[33:20]/ DQx
BcCheck _H[15:0]

BcLoad L LD L (Bl)
BcDatawr_L R/W_L(B2)
From board, pulled up to VDD LBO L
From board, pulled down to VSS QL
BcDatalnClk_H CQH
BcDataOutClk_H CK_H
BcDataOutClk_L CK_L

Set from board to 1/2 the 21264/EV 67 core VREF1 H
voltage VREF2_H
Set from board (implementation-dependent) ZQ H
Unconnected or terminated CQL

From board, pulled up to VDD TCK_H
Unconnected TDO H

Alpha 21264/EV67 Hardware Reference Manual 21264/EV67-to-Bcache Pin Interconnections E-3

Dual-Data Rate SSRAMs

E-4

Table E-4 Dual-Data Rate SSRAM Data Pin Usage (Continued)

21264/EV67 Signal Name or Board
Connection

Dual-Data Rate SSRAM Data Pin Name

From board, pulled up to VDD

From board, pulled up to VDD
Unconnected or pulled down to VSS
BcDataOE_L

From board, pulled downto VSS

TMS H
TDI_H
TRST L
OE L (G L)
SD/DD_L (B3)

Table E-5 Dual-Data Rate SSRAM Tag Pin Usage

21264/EV67 Signal Name or Board Connection Dual-Data Rate SSRAM Tag Pin Name

BcAdd_H[23:6]

BcTag H[33:20]

BcTagOE_L

BcTagWr_L

From board, pulled up to VDD
From board, pulled down to VSS

BcTaglnClk_H

BcTagOutClk_H
BcTagOutClk_L

Set from board to 1/2 core voltage

Set from board (implementati on-dependent)
BcTagvalid_ H

BcTagDirty H

BcTagShared H
BcTagParity H

Unconnected or terminated

From board, pulled up to VDD
Unconnected

From board, pulled up to VDD
From board, pulled up to VDD
Unconnected

From board, pulled downto VSS
From board, pulled up to VDD

SA_H[17:0]
DQx

LD_L (B1)
RIW_L (B2)
LBO L

QL
SA[19:18]

CQ H
CK_H
CK_L

VREF1_H
VREF2_H

ZQ H

DQx

DQx

DQx

DQx

CQ.L
TCK_H
TDO_H

TMS H
TDI_H
TRST L
OE L (G_L)
SD/DD_L (B3)

21264/EV67-to-Bcache Pin Interconnections Alpha 21264/EV67 Hardware Reference Manual

Glossary

This glossary provides definitions for specific terms and acronyms associated with the
Alpha 21264/EV 67 microprocessor and chipsin general.

abort

The unit stops the operation it is performing, without saving status, to perform some
other operation.

address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of cached
addresstranslations for process-specific addresses when a context switch occurs. ASNs
are processor specific; the hardware makes no attempt to maintain coherency across
multiple processors.

address translation

The process of mapping addresses from one address space to another.

ALIGNED
A datum of size 2**N is stored in memory at a byte address that is amultiple of 2**N
(that is, one that has N low-order zeros).
ALU
Arithmetic logic unit.
ANSI
American National Standards Institute. An organization that develops and publishes
standards for the computer industry.
ASIC
Application-specific integrated circuit.
ASM
Address space match.
ASN
See address space humber.
assert
To cause asignal to change to itslogical true state.
AST

See asynchronous system trap.

Alpha 21264/EV67 Hardware Reference Manual Glossary-1

asynchronous system trap (AST)

A software-simulated interrupt to a user-defined routine. ASTs enable auser processto
be notified asynchronously, with respect to that process, of the occurrence of a specific
event. If auser process has defined an AST routine for an event, the system interrupts
the process and executes the AST routine when that event occurs. When the AST rou-
tine exits, the system resumes execution of the process at the point where it was inter-
rupted.

bandwidth
Bandwidth is often used to express the rate of datatransfer in abus or an 1/0 channdl.
barrier transaction

A transaction on the external interface as aresult of an MB (memory barrier) instruc-

tion.

Bcache
See second-level cache.

bidirectional
Flowing intwo directions. The buses are bidirectional; they carry both input and output
signals.

BiSlI
Built-in self-initialization.

BiST
Built-in self-test.

bit
Binary digit. The smallest unit of datain abinary notation system, designated as O or 1.

bit time
Thetotal timethat asignal conveysasingle valid piece of information (specified in ns).
All data and commands are associated with a clock and the receiver’s latch on both the
rise and fall of the clock. Bit times are a multiple of the 21264/EV67 clocks. Systems
must produce a bit time identical to 21264/EV67’s bit time. The bit time is one-half the
period of the forwarding clock.

BIU

Bus interface unitSee Cbox.
Block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-back
with a cache miss fill.

board-level cache

See second-level cache.

Glossary-2 Alpha 21264/EV67 Hardware Reference Manual

boot
Short for bootstrap. Loading an operating system into memory is called booting.

BSR
Boundary-scan register.

buffer
Aninternal memory area used for temporary storage of data records during input or
output operations.

bugcheck
A software condition, usually the response to software’s detection of an “internal incon-
sistency,” which results in the execution of the system bugcheck code.

bus
A group of signals that consists of many transmission lines or wires. It interconnects
computer system components to provide communications paths for addresses, data, and
control information.

byte

Eight contiguous bits starting on an addressable byte boundary. The bits are numbered
right to left, O through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written con-
currently and independently by different processes or processors.

cache
See cache memory.
cache block

The smallest unit of storage that can be allocated or manipulated in a cache. Also
known as a cache line.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cached in

another processor, it must not receive incorrect data and when cached data is modified,
all other processors that access that data receive modified data. Schemes for maintain-
ing consistency can be implemented in hardware or software. Also called cache consis-

tency.

cache fill
An operation that loads an entire cache block by using multiple read cycles from main
memory.

cache flush

An operation that marks all cache blocks as invalid.

Alpha 21264/EV67 Hardware Reference Manual Glossary-3

cache hit

The status returned when alogic unit probes a cache memory and finds avalid cache
entry at the probed address.

cache interference

Theresult of an operation that adversely affects the mechanisms and procedures used to
keep frequently used itemsin a cache. Such interference may cause frequently used
items to be removed from a cache or incur significant overhead operations to ensure
correct results. Either action hampers performance.

cacheline

See cache block.
cache line buffer

A buffer used to store a block of cache memory.
cache memory

A small, high-speed memory placed between slower main memory and the processor. A
cache increases effective memory transfer rates and processor speed. It contains copies
of datarecently used by the processor and fetches several bytes of datafrom memory in
anticipation that the processor will access the next sequential series of bytes. The
21264/EV 67 microprocessor contains two onchip internal caches. See also write-
through cache and write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL instructions

Special instructions used to invoke PAL code.
Cbox

External cache and system interface unit. Controls the Bcache and the system ports.
central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instructions.

CISC
Complex instruction set computing. An instruction set that consists of alarge number
of complex instructions. Contrast with RISC.

clean
In the cache of a system bus node, refersto a cache line that is valid but has not been
written.

clock

A signal used to synchronize the circuits in a computer.

Glossary-4 Alpha 21264/EV67 Hardware Reference Manual

clock offset (or clkoffset)

The delay intentionally added to the forwarded clock to meet the setup and hold
requirements at the Receive Flop.

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process that
combines PMOS and NMOS semiconductor material.

conditional branch instructions

Instructions that test aregister for positive/negative or for zero/nonzero. They can also
test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s I1/0O space. The CSR ini-
tiates device activity and records its status.

CPI
Cycles per instruction.
CPU
See central processing unit.
CSR
See control and status register.
cycle
One clock interval.
data bus
A group of wires that carry data.
Dcache
Data cache. A cache reserved for storage of data. The Dcache does not contain instruc-
tions.
DDR
Dual-data rate. A dual-data rate SSRAM can provide data on both the rising and falling
edges of the clock signal.
denormal
An |IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.
DIP

Dual inline package.

Alpha 21264/EV67 Hardware Reference Manual Glossary-5

direct-mapping cache

A cache organization in which only one address comparison is needed to locate any
datain the cache, because any block of main memory data can be placed in only one
possible position in the cache.

direct memory access (DMA)

Access to memory by an I/O device that does not require processor intervention.

dirty
One statusitem for a cache block. The cache block is valid and has been written so that
it may differ from the copy in system main memory.

dirty victim
Used in reference to a cache block in the cache of a system bus node. The cache block
isvalid but is about to be replaced due to a cache block resource conflict. The data must
therefore be written to memory.

DMA
See direct memory access.

DRAM
Dynamic random-access memory. Read/write memory that must be refreshed (read
from or written to) periodically to maintain the storage of information.

DTB
Data translation buffer. Also defined as Dstream trandlation buffer.

DTL
Diode-transistor logic.

dual issue
Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

ECC
Error correction code. Code and algorithms used by logic to facilitate error detection
and correction. See also ECC error.

ECC error
An error detected by ECC logic, to indicate that data (or the protected “entity”) has
been corrupted. The error may be correctable (soft error) or uncorrectable (hard error).

ECL
Emitter-coupled logic.

EEPROM

Electrically erasable programmable read-only memory. A memory device that can be
byte-erased, written to, and read fra@ontrast with FEPROM.

Glossary-6 Alpha 21264/EV67 Hardware Reference Manual

external cache

FEPROM

FET

FEU

firmware

See second-level cache.

Flash-erasable programmabl e read-only memory. FEPROMSs can be bank- or bulk-
erased. Contrast with EEPROM.

Field-effect transistor.

The unit within the 21264/EV 67 microprocessor that performs floating-point calcula-
tions.

Machine instructions stored in nonvolatile memory.

floating point

flush

A number system in which the position of the radix point isindicated by the exponent
part and another part represents the significant digits or fractional part.

See cache flush.

forwarded clock

FPGA

FPLA

FQ

A single-ended differential signal that is aligned with its associated fields. The for-
warded clock is sourced and aligned by the sender with aperiod that istwo times the bit
time. Forwarded clocks must be 50% duty cycle clocks whose rising and falling edges
are aligned with the changing edge of the data.

Field-programmabl e gate array.

Field-programmable logic array.

Floating-point issue queue.

framing clock

The framing clock defines the start of atransmission either from the system to the
21264/EV 67 or from the 21264/EV 67 to the system. The framing clock is a power-of -
2 multiple of the 21264/EV67 GCLK frequency, and is usually the system clock. The
framing clock and the input oscillator can have the same frequency. The
add_frame_select IPR setsthat ratio of bit times to framing clock. The frame clock
could have a period that is four times the bit time with aadd_frame_select of 2X.
Transfers begin on therising and falling edge of the frame clock. Thisisuseful for sys-
tems that have system clocks with a period too small to perform the synchronous reset

Alpha 21264/EV67 Hardware Reference Manual Glossary-7

GCLK

granularity

of the clock forward logic. Additionally, the framing clock can have aperiod that is
less than, equal to, or greater than the time it takes to send a full four cycle command/
address.

Global clock within the 21264/EV 67.

A characteristic of storage systemsthat defines the amount of data that can be read and/
or written with asingle instruction, or read and/or written independently.

hardware interrupt request (HIR)

An interrupt generated by a periphera device.

high-impedance state

hit

Icache

IDU

An electrical state of high resistance to current flow, which makes the device appear not
physically connected to the circuit.

See cache hit.

Instruction cache. A cache reserved for storage of instructions. One of the three areas of
primary cache (located on the 21264/EV67) used to store instructions. The Icache con-
tains 8K B of memory space. It isadirect-mapped cache. Icache blocks, or lines, con-
tain 32 bytes of instruction stream data with associated tag as well as a 6-bit ASM field
and an 8-bit branch history field per block. Icache does not contain hardware for main-
taining cache coherency with memory and is unaffected by the invalidate bus.

A logic unit within the 21264/EV 67 microprocessor that fetches, decodes, and issues
instructions. It also controls the microprocessor pipeline.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats cover
32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

Inf

INT nn

Glossary-8

A standard for the Test Access Port and Boundary Scan Architecture used in board-
level manufacturing test procedures.

Infinity.

Theterm INTnn, wherennisoneof 2, 4, 8, 16, 32, or 64, refersto adatafield size of nn
contiguous NATURALLY ALIGNED bytes. For example, INT4 refersto a NATU-
RALLY ALIGNED longword.

Alpha 21264/EV67 Hardware Reference Manual

interface reset

A synchronously received reset signal that is used to preset and start the clock forward-
ing circuitry. During thisreset, all forwarded clocks are stopped and the presettable
count values are applied to the counters; then, some number of cycles later, the clocks
are enabled and are free running.

Internal processor register (IPR)
Special registersthat are used to configure options or report status.

IOWB

I/O write buffer.
IPGA

Intergtitial pin grid array.
1Q

Integer issue queue.
ITB

Instruction trangation buffer.
JFET

Junction field-effect transistor.
latency

The amount of time it takes the system to respond to an event.
LCC

Leadless chip carrier.
LFSR

Linear feedback shift register.
load/store architecture

A characteristic of a machine architecture where data items are first loaded into a pro-
cessor register, operated on, and then stored back to memory. No operations on memory
other than load and store are provided by the instruction set.

longword (LW)

Four contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 31.

LQ
Load queue.
LSB
Least significant bit.

Alpha 21264/EV67 Hardware Reference Manual Glossary-9

machine check

An operating system action triggered by certain system hardware-detected errors that
can be fatal to system operation. Once triggered, machine check handler software ana-
lyzes the error.

MAF
Miss addressfile.
main memory

The large memory, external to the microprocessor, used for holding most instruction
code and data. Usually built from cost-effective DRAM memory chips. May be used in
connection with the microprocessor’s internal caches and an external cache.

masked write

A write cycle that only updates a subset of a nominal data block.

MBO
See must be one.

Mbox
This section of the processor unit performs address translation, interfaces to the
Dcache, and performs several other functions.

MBZ

See must be zero.
MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI protocol
consists of four states that define whether a block is modified (M), exclusive (E), shared
(S), orinvalid (1.

MIPS

Millions of instructions per second.
miss

See cache miss.
module

A board on which logic devices (such as transistors, resistors, and memory chips) are
mounted and connected to perform a specific system function.

module-level cache

See second-level cache.
MOS

Metal-oxide semiconductor.
MOSFET

Metal-oxide semiconductor field-effect transistor.

Glossary-10 Alpha 21264/EV67 Hardware Reference Manual

MSI
Medium-scale integration.
multiprocessing

A processing method that replicates the sequential computer and interconnects the col-
lection so that each processor can execute the same or a different program at the same
time.

must be one (MBO)
A field that must be supplied as one.
must be zero (MBZ)

A field that isreserved and must be supplied as zero. If examined, it must be assumed to
be UNDEFINED.

NaN

Not-a-Number. An IEEE floating-point bit pattern that represents something other than
anumber. This comesin two forms: signaling NaNs (for Alpha, those with an initial
fraction bit of 0) and quiet NaNs (for Alpha, those with aninitial fraction bit of 1).

NATURALLY ALIGNED
See ALIGNED.
NATURALLY ALIGNED data

Data stored in memory such that the address of the datais evenly divisible by the size of
the data in bytes. For example, an ALIGNED longword is stored such that the address
of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.
NVRAM

Nonvolatile random-access memory.
OBL

Observability linear feedback shift register.
octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 127.

OpenVMS Alpha operating system
The version of the open VM S operating system for Alpha platforms.
operand

The data or register upon which an operation is performed.

Alpha 21264/EV67 Hardware Reference Manual Glossary-11

output mux counter

PAL

PALcode

PALmode

parameter

parity

PGA

pipeline

PLA

PLCC

PLD

PLL

PMOS

PQ

Glossary-12

Counter used to select the output mux that drives address and data. It is reset with the
Interface Reset and incremented by a copy of the locally generated forwarded clock.

Privileged architecture library. See also PAL code. See also Programmable array logic
(hardware). A device that can be programmed by a process that blows individual fuses
to create a circuit.

Alpha privileged architecture library code, written to support Alpha microprocessors.
PAL code implements architecturally defined behavior.

A special environment for running PALcode routines.

A variable that is given a specific value that is passed to a program before execution.

A method for checking the accuracy of data by calculating the sum of the number of
ones in apiece of binary data. Even parity requires the correct sum to be an even num-
ber, odd parity requires the correct sum to be an odd number.

Pin grid array.

A CPU design technique whereby multiple instructions are simultaneously overlapped
in execution.

Programmable logic array.

Plastic leadless chip carrier or plastic-leaded chip carrier.

Programmable logic device.

Phase-locked loop.

P-type metal-oxide semiconductor.

Probe queue.

Alpha 21264/EV67 Hardware Reference Manual

PQFP
Plastic quad flat pack.
primary cache

The cache that is the fastest and closest to the processor. The first-level caches, located
on the CPU chip, composed of the Dcache and Icache.

program counter

That portion of the CPU that contains the virtual address of the next instruction to be
executed. Most current CPUs implement the program counter (PC) as aregister. This
register may be visible to the programmer through the instruction set.

PROM

Programmabl e read-only memory.
pull-down resistor

A resistor placed between asignal line and a negative voltage.
pull-up resistor

A resistor placed between a signal lineto a positive voltage.

QNaN
Quiet Nan. See NaN.
guad issue
Four instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.
quadword
Eight contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, O through 63.
RAM
Random-access memory.
RAS
Row address select.
RAW
Read-after-write.
READ_BLOCK

A transaction where the 21264/EV 67 requests that an external logic unit fetch read data.
read data wrapping

System feature that reduces apparent memory latency by allowing read data cyclesto
differ the usual low-to-high sequence. Requires cooperation between the 21264/EV 67
and external hardware.

Alpha 21264/EV67 Hardware Reference Manual Glossary-13

read stream buffers

Arrangement whereby each memory modul e independently prefetches DRAM data
prior to an actual read request for that data. Reduces average memory latency while
improving total memory bandwidth.

receive counter

Counter used to enable thereceive flops. It isclocked by the incoming forwarded clock
and reset by the Interface Reset.

receive mux counter

register

reliability

reset

RISC

ROM

RTL

SAM

SBO

SBZ

scheduling

Glossary-14

The receive mux counter is preset to a selectable starting point and incremented by the
locally generated forward clock.

A temporary storage or control location in hardware logic.

The probability adevice or system will not fail to perform itsintended functions during
aspecified time interval when operated under stated conditions.

An action that causes alogic unit to interrupt the task it is performing and go to itsini-
tialized state.

Reduced instruction set computing. A computer with an instruction set that is paired
down and reduced in complexity so that maost can be performed in a single processor
cycle. High-level compilers synthesize the more complex, least frequently used instruc-
tions by breaking them down into simpler instructions. This approach allows the RISC
architecture to implement asmall, hardware-assisted instruction set, thus eliminating
the need for microcode.

Read-only memory.

Register-transfer logic.

Serial access memory.

Should be one.

Should be zero.

The process of ordering instruction execution to obtain optimum performance.

Alpha 21264/EV67 Hardware Reference Manual

SDRAM
Synchronous dynamic random-access memory.
second-level cache

A cache memory provided outside of the microprocessor chip, usually located on the
same module. Also called board-level, external, or module-level cache.

set-associative

A form of cache organization in which the location of adata block in main memory
constrains, but does not completely determine, its location in the cache. Set-associative
organization is a compromise between direct-mapped organization, in which data from
agiven addressin main memory has only one possible cache location, and fully asso-

ciative organization, in which data from anywhere in main memory can be put any-

where in the cache. Am*way set-associative” cache allows data from a given address
in main memory to be cached in anyndbcations.

SIMM

Single inline memory module.
SIP

Single inline package.
SIPP

Single inline pin package.
SMD

Surface mount device.
SNaN

Signaling NaN See Nan.
SRAM

See SSRAM.
SROM

Serial read-only memory.
SSI

Small-scale integration.
SSRAM

Synchronous static random-access memory.
stack

An area of memory set aside for temporary data storage or for procedure and interrupt
service linkages. A stack uses the last-in/first-out concept. As items are added to
(pushed on) the stack, the stack pointer decrements. As items are retrieved from
(popped off) the stack, the stack pointer increments.

Alpha 21264/EV67 Hardware Reference Manual Glossary-15

STRAM
Sdf-timed random-access memory.
superpipelined

Describes a pipelined machine that has a larger number of pipe stages and more com-
plex scheduling and control. See also pipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to be
issued in paralel during agiven clock cycle.

system clock

The primary skew controlled clock used throughout the interface components to clock
transfer between ASICs, main memory, and 1/0 bridges.

tag

The part of a cache block that holds the address information used to determineif a
memory operation is a hit or amiss on that cache block.

target clock
Skew controlled clock that receives the output of the RECEIVE MUX.

B
Translation buffer.
tristate
Refers to abused line that has three states: high, low, and high-impedance.
TTL
Transistor-transistor logic.
UART

Universal asynchronous receiver-transmitter.
UNALIGNED

A datum of size 2**N stored at a byte address that is not a multiple of 2**N.
unconditional branch instructions

Instructions that change the flow of program control without regard to any condition.
Contrast with conditional branch instructions.

UNDEFINED

An operation that may halt the processor or cause it to loseinformation. Only privileged
software (that is, software running in kernel mode) can trigger an UNDEFINED opera-
tion. (This meaning only applies when the word iswritten in all upper case.)

Glossary-16 Alpha 21264/EV67 Hardware Reference Manual

UNPREDICTABLE

UVPROM

VAF

valid

VDF

VHSIC

victim

Results or occurrences that do not disrupt the basic operation of the processor; the pro-
cessor continues to execute instructionsin its normal manner. Privileged or unprivi-
leged software can trigger UNPREDICTABLE results or occurrences. (This meaning
only applies when the word is written in all upper case.)

Ultraviolet (erasable) programmabl e read-only memory.

See victim address file.

Allocated. Valid cache blocks have been loaded with data and may return cache hits
when accessed.

See victim datafile.

Very-high-speed integrated circuit.

Used in reference to a cache block in the cache of a system bus node. The cache block
isvalid but is about to be replaced due to a cache block resource conflict.

victim address file

The victim address file and the victim data file, together, form an 8-entry buffer used to
hold information for transactions to the Bcache and main memory.

victim data file

The victim address file and the victim data file, together, form an 8-entry buffer used to
hold information for transactions to the Bcache and main memory.

virtual cache

VLSI

VPC

VRAM

A cache that is addressed with virtual addresses. The tag of the cache isavirtual
address. This process allows direct addressing of the cache without having to go
through the trand ation buffer making cache hit times faster.

Very-large-scale integration.

Virtual program counter.

Video random-access memory.

Alpha 21264/EV67 Hardware Reference Manual Glossary-17

WAR

Write-after-read.

word
Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are num-
bered from right to left, O through 15.

write-back

A cache management technique in which write operation data is written into cache but
is not written into main memory in the same operation. This may result in temporary
differences between cache data and main memory data. Some logic unit must maintain
coherency between cache and main memory.

write-back cache

Copies are kept of any datain the region; read and write operations may use the copies,
and write operations use additional state to determine whether there are other copiesto
invalidate or update.

WRITE_BLOCK

A transaction where the 21264/EV 67 requests that an external logic unit process write
data.

write data wrapping

System feature that reduces apparent memory latency by allowing write data cyclesto
differ the usual low-to-high sequence. Requires cooperation between the 21264/EV 67
and externa hardware.

write-through cache

A cache management technigque in which awrite operation to cache also causes the
same data to be written in main memory during the same operation. Copies are kept of
any datain aregion; read operations may use the copies, but write operations update the
actual datalocation and either update or invalidate all copies.

Glossary-18 Alpha 21264/EV67 Hardware Reference Manual

Numerics

21264/EV 67, features of, 1-3

32_BYTE_IO Cbox CSR
defined 5-34

A

Abbreviations xix
binary multiples xix
register accessxix

AC characteristics 9—6

Address conventionsxx
Aggregate mode 6-18

Aligned convention xx

Alpha instruction summaryA-1
AMASK instruction values 2—-38
ARITH synchronous trap 6—14

B

B_DA _OD pintype 3-3 9-2
values for 9-4

B_DA_PP pin typg 3-3 9-2
values for 9-4

BC_BANK_ENABLE Cbox CSR 4-52 5-39

7-13

BC BPHASE LD VECTOR Cbhox CSR4-45
defined 5-38

BC_BURST_MODE_ENABLE Cbox CSR4-52
defined 5-35

BC_CLEAN_VICTIM Cbox CSR 4-23
defined 5-34

BC_CLK_DELAY Cbox CSR 4-45
defined 5-35

BC CLK LD _VECTOR Chox CSR 4-45
defined 5-38

BC_CLKFWD_ENABLE Cbox CSR 4-47
defined 5-36

Alpha 21264/EV67 Hardware Reference Manual

Index

BC_CLOCK_OUT Chox CSR 4-45

BC_CPU_CLK DELAY Chox CSR 4-44, 4-45
defined 5-38

BC_CPU_LATE_WRITE_NUM Cbox CSR
defined 5-35

BC_DDM_FALL_EN Cbox CSR 4-47
defined 5-36

BC_DDM_RISE_EN Cbox CSR4-47
defined 5-36

BC_DDMF_ENABLE Cbox CSR 4-47
defined 5-35

BC_DDMR_ENABLE Cbhox CSR 4-47
defined 5-35

BC_ENABLE Chox CSR 4-51, 5-39 7-12

BC_FDBK_EN Cbox CSR 4-46
defined 5-38

BC_FRM_CLK Cbox CSR 4-47
defined 5-35

BC_LAT _DATA PATTERN Cbox CSR 4-48
defined 5-35

BC_LAT _TAG_PATTERN Chox CSR 4-48
defined 5-35

BC_LATE_WRITE_NUM Cbox CSR 4-49
defined 5-35

BC_LATE_WRITE_UPPER Chox CSR
defined 5-35

BC_PENTIUM_MODE Cbox CSR 4-52
defined 5-35

BC_PERR error status in C_STAB-41

BC_RCV_MUX_ CNT_PRESET Cbhox CSR
defined 5-36

BC_RCV_MUX_PRESET_CNT Cbox CSRi-48

BC_RD_RD BUBBLE Chox CSR
defined 5-34

BC_RD_WR_BUBBLES Chox CSR4-49
defined 5-34

BC_RDVICTIM Cbox CSR 4-23 4-26
defined 5-34

BC_SIZE Cbox CSR 4-51, 5-39 7-12

Index—1

BC_SJ BANK_ENABLE Cbhox CSR
defined, 5-34
BC_TAG_DDM_FALL_EN Cbhox CSR 4-47
defined 5-35
BC_TAG_DDM_RISE_EN Cbox CSR4-47
defined 5-36
BC_WR_RD_BUBBLES Chox CSR4-49
defined 5-34
BC_WR_WR_BUBBLE Chox CSR4-54
defined 5-34
BC_WRT_STS Cbox CSR5-39 7-13

Bcache
banking 4-54
bubbles on the data hud—-49
clocking, 4-44
control pins 4-52
data read transactiongt—47
data single-bit correctable ECC errd8-5

data single-bit correctable ECC error on a probe

8-8
data write transactions4—48
error case summary for8—10
filling Dcache erroy 8-6
filling Icache error 8-5
forwarding clock pin groupingsE-1
maximum clock ratip 4-42
port, 4-42
port ping 4-43
programming the size pf4-51
setting clock period 4-45
structure of 4-7
tag parity errors 8-5
tag read transactionsi—-47
victim read during an ECB instruction eryor
8-7
victim read during Dcache/Bcache miss error
8-6
victim read erroy 8—6
BcAdd_H signal pins 3-3, 4-43
characteristics 4-51
BcCheck H signal pins3-3, 443
BcData_H signal pins 3—-3, 4-43

BcDatalnClk_H signal pins 3-3, 4-43
using 4-53
BcDataOE_L signal pin 3—-3, 4-43
BcDataOutClk_x signal pins3—4, 4-43
BcDataWr_L signal pin 3—4, 4-44
BcLoad_L signal pin 3—4, 4-44
BcTag_H signal pins 3—4, 4-44
BcTagDirty H signal pin 3—4, 4-44
BcTagInClk_H signal pin 3—-4, 4-44
using 4-53
BcTagOE_L signal pin 3—4, 4-44
BcTagOutClk_x signal pins3-4, 4—44

Index—2

BcTagParity H signal pin 3—4, 4-44
BcTagShared_H signal pin3—4, 4-44
BcTagValid_H signal pin 3-4, 4-44
BcTagWr_L signal pin 3—4, 4-44
BcVref signal pin 3-4, 4-44

Bidirectional differential amplifier receiver -
open-drain. See B_DA OD

Bidirectional differential amplifier receiver -
push-pull. See B_DA PP

Binary multiple abbreviationsxix

BiST. See Built-in self-test

Bit notation conventions xx

Bounder-scan registerB—1

Branch history table, initialized by Bi$T7-12

Branch mispredication, pipeline abort delay from
2-16

Branch predictqr 2—3

BSDL description of the boundary-scan register
B-1

Built-in self-test 11-5

load, 7-6

C

C_ADDR Cbox read register figld5—-41
C_DATA Cbox data register5-33

at power-on reset staté/—16
C_SHFT Cbox shift register5—-33

at power-on reset staté/—16
C_STAT Cbox read register figldo—41
C_STS Chox read register figldb—-41
C_SYNDROME_O0 Cbox read register fieléb—41
C_SYNDROME_1 Cbox read register fielé—41

Cache block states4—9

response to 21264/EV67 commands-10
transitions 4-10

Cache coherengy4-8
CALL_PAL entry points 6-12
Caution convention xx

Alpha 21264/EV67 Hardware Reference Manual

Chox
dataregister C DATA, 5-33
described 2-11, 4-3
duplicate Dcache tag arrapy—11
duplicate Dcache tag array wjtt#—13
HW_MTPR and HW_MFPR to CSRD-15
1/0O write buffer, 2—11
internal processor register§—3
probe queug 2-11
read register 5-41
shift register C_SHFT 5-33
victim address file 2-11
WRITE_MANY chain, 5-38
WRITE_MANY chain examplg 5-39
WRITE_ONCE chain 5-33

CC cycle counter registers—3
at power-on reset state/—15
CC_CTL cycle counter control registeb—3
at power-on reset staté&/—15
CFR_EV6CLK_DELAY Chox CSR, defingd5-37
CFR_FRMCLK_DELAY Cbhox CSR, defingd5-38
CFR_GCLK_DELAY Chox CSR, defined5-37
ChangeToDirtyFail, SysDc command-1Q 4-11,
4-12
ChangeToDirtySuccess, SysDc commadd-1Q
4-11, 4-12
Choice predictgr 2-5
ChxToDirty, 21264/EV67 command4—12
CLAMP public instruction B-1
Clean cache block state}—9
Clean/Shared cache block sta#-10
CleanToDirty, 21264/EV67 commandi—22, 4-40
system probes, with4-41
CleanVictimBIlk, 21264/EV67 command#—22,
4-39
ClkFwdRst_H signal pin 3—4, 4-30
with system initialization 7—7
ClkIn_x signal pins 3—4
Clock forwarding 7—-4
CLR_MAP clear virtual-to-physical map register
5-21
at power-on reset stgté&/—15
CMOV instruction, special cases, 02—26
COLD reset machine stater—17

Commands

21264/EV67 to system4—19
system to 21264/EV§74—26
when to NXM, 4-38

Alpha 21264/EV67 Hardware Reference Manual

Conventions Xix

abbreviations xix
address xx
aligned xx

bit notation xx
caution xx

data units xxi

do not care xxi
externa) xxi

field notation xxi
note Xxxi
numbering xxi
ranges and extentsxi
register figures xxi
signal names xxi
unaligned xx

X, Xxi

CTAG, 4-13

D

Data cache. See Dcache

Data merging

load instructions in 1/0O address spac-28
store instructions in 1/O address spa@:-29

Data transfer commands, systed28

Data types

floating point support 1-2
integer supported 1-2
supported 1-1

Data units conventignxxi

Data wrap 4-36
double-pumped 4-38
interleaved 4-37
DATA_VALID_DLY Cbox CSR, defined 5-38

dc

characteristics ¢f 9-2

input pin capacitance define®-2

test load defined 9-2

voltage on signal pins9-1
DC_CTL Dcache control registei'5—30

at power-on reset staté/—16
error correction and 8-2

DC_PERR error status in C_STAB-41

DC_STAT Dcache status registes—31
at power-on reset state/—16

Index—3

Dcache
described, 2-12
duplicate tag parity errors8—4
duplicate tags with 4-13
error case summary for8-9
fill from Bcache error 8—6
fill from memory errors 8-7
initialized by BiST, 7-12
pipelined 2-16
single-bit correctable ECC erroB8-3
store second errpr8—4
tag parity errors 8-2
victim extracts 8-4

Dcache data single-bit correctable ECC efrds3
Dcache tag, initialized by BiST7-12
DCOK_H signal pin 3-4

power-on reset floyw 7—1
DCVIC_THRESHOLD Cbox CSR, definedb—34

DFAULT fault, 6-13

Differential 21264/EV67 clocks7—19
Differential reference clocks7-19
Dirty cache block state4—10
Dirty/Shared cache block statd—10
Do not care conventignxxi
Double-bit fill errors 8-9

DOWNL1 reset machine statgd—18
DOWN?2 reset machine statd—19
DOWNS reset machine statgd—19

Dstream translation buffer2—13
See also DTB

DSTREAM_BC_DBL error status in C_STAT
5-41

DSTREAM_BC_ERR error status in C_STAT
5-41

DSTREAM_DC_ERR error status in C_STAT
5-41

DSTREAM_MEM_DBL error status in C_STAT
5-41

DSTREAM_MEM_ERR error status in C_STAT
5-41

DTAG. See Duplicate Dcache tag array

DTB entries, writing multiple in same PAL flqw
D-19

DTB fill, 6-14

DTB, pipeline abort delay with2-16

DTB_ALTMODE alternate processor mode register
5-26
at power-on reset stgté&/—15

Index—4

DTB_ASNO address space number register 0
at power-on reset staté/—16

DTB_ASNO address space number registers-028

DTB_ASNI1 address space number registieb128
at power-on reset staté/—16

DTB_IA invalidate-all process registeb—27
at power-on reset staté/—15

DTB_IAP invalidate-all (ASM=0) process register

5-27

at power-on reset staté/—15

DTB_IS0 invalidate single (array 0) registes—27
at power-on reset state/—16

DTB_IS1 invalidate single (array 1) registes—27
at power-on reset state/—16

DTB_PTEO array write O register

at power-on reset state/—15
MTPR tg D-12

DTB_PTEO array write register, 06—26

DTB_PTEL1 array write 1 registet5—26

at power-on reset staté/—15
MTPR tg, D-12

DTB_TAGO array write O register5-25

at power-on reset staté/—15
MTPR tg D-12

DTB_TAG1 array write 1 register5-25

at power-on reset staté/—15
MTPR tg D-12

DTBM_DOUBLE_3 faul{ 6-13
DTBM_DOUBLE_4 fault 6-13
DTBM_SINGLE fauly 6-13

Dual-data rate SSRAM pin assignmens-3
DUP_TAG_ENABLE Chox CSR, defingd5-34
Duplicate Dcache tag array2—11

Duplicate Dcache, initialized by BiST7—-12
Duplicate tag array, Cbox copy. See CTAG
Duplicate tag stores, Bcaghd—7

E

Ebox

cycle counter control register CC_C;TI5-3
cycle counter register GC5—3

describeg 2-8

executed in pipeline 2-16

internal processor registerd—1

slotting, 2-18

subclusters 2-18

virtual address control register VA_CT15-4
virtual address format register VA_FORN—-5
virtual address registers5—4

ECB instruction, external interface reference-5

Alpha 21264/EV67 Hardware Reference Manual

ECC

64-hit data and check bit code, 8—2

Dcache data single-bit correctable eryo8s-3

for system data bys8—2

memory/system port single-bit correctable
errors 8-7

store instructions 8—4

ENABLE_EVICT Cbox CSR 4-23 5-39

ENABLE_PROBE_CHECK Cbox CSR8-2
defined 5-35

ENABLE_STC_COMMAND Cbox CSR, defined

5-35

Energy star certification 7-9

Error case summayy8-9

Error correction code. See ECC

Error detection mechanism$-1

EV6CIk x signal pins 3—4

Evict, 21264/EV67 command4-13 4-22 4-39

EVICT_ENABLE Cbox CSR 7-13

EXC_ADDR exception address registés—3

after fault reset 7-8
at power-on reset state/—15

EXC_SUM exception summary registef—13
at power-on reset staté&/—15
Exception and interrupt logic2—8

Exception condition summayyA-15

External cache and system interface unit. See Cbox

External convention xxi
External interface initializatign 7-14
EXTEST public instruction B—1

F

F31

load instructions with 2—23
retire instructions with 2—22

Fast data disable mod&—33

Fast data mode4-3Q 4-31

FAST_MODE_DISABLE Cbox CSR 4-30
defined 5-34

Fault reset flow 7-8

Fault reset sequence of operatior’s-9

FAULT_RESET reset machine staté—18

Fbox

described 2-10
executed in pipeline2-16

FEN fault 6-13

FetchBIk, 21264/EV67 commandi—22 4-39
system probes, with4-41

Alpha 21264/EV67 Hardware Reference Manual

FetchBlkSpec, 21264/EV67 command—-22, 4—-39
Field notation conventignxxi

Floating-point arithmetic trap, pipeline abort delay
with, 2-16

Floating-point control register2—36
PALcode emulation of 6-11
Floating-point execution unit. See Fbox

Floating-point instructions
IEEE, A-9
independent A-11
VAX, A-11

Floating-point issue queye2—7
Forwarding clock pin groupingse—1
FPCR. See Floating-point control register
FQ. See Floating-point issue queue
FrameClk_x signal pins3-5, 4-30

G

GCLK, 7-19
Global predictoy 2—4

H

Heat sink center temperatyréd0-1
Heat sink specifications10-3

HW_INT_CLR hardware interrupt clear register
5-12

at power-on reset stater—15

updating D-18
HW_LD PALcode instruction 6-3, A—9, D-18
HW_MFPR PALcode instructign6—6, A—9
HW_MTPR PALcode instructiogn 6—6, A—9
HW_REI PALcode instruction A—9
HW_RET PALcode instructign 6-5

HW_ST PALcode instructian 6—4, A-9

I/O address space
instruction data merging2—29
load instruction data merging2—28
load instructions with 2—28
store instructions with 2—29

I/O write buffer, 2-11

defined 2-32

Index-5

I_CTL Ibox control register, 5-15

after fault reset 7-8

after warm reset 7-11

at power-on reset state/—15
PALshadow registers6-11
through sleep mode7-10
VA_48 field update D-17

I_DA pin typg 3-3 9-2
values for 9-3
I_DA_CLK pin typg 3-3, 9-2
values for 9-3
|_DC_POWER pin typg 9-2
I_DC_REF pin typg 3-3 9-2
values for 9-3
|_STAT Ibox status register5-18
at power-on reset staté&/—15
IACV fault, 6-13

Ibox

branch predictgr 2—-3

clear virtual-to-physical map register
CLR_MAP, 5-21

exception address register EXC_ADPRE-8

exception and interrupt logic2—8

exception summary register EXC_SUN—13

floating-point issue queye2—7

hardware interrupt clear register HW_INT_CLR

5-12

Ibox control register |_CTL 5-15

Ibox process context register PCT%-21

Ibox status register |_STAT5-18

Icache flush ASM register IC_FLUSH_ASM

5-21

Icache flush register IC_FLUSH5-21

instruction fetch logic 2—6

instruction virtual address format register
IVA_FORM, 5-9

instruction-stream translation buffeP-5

integer issue queye?2—6

internal processor registers—1

interrupt enable and current processor mode
register IER_CM 5-9

interrupt summary register ISUM5-11

ITB invalidate single register ITB_|S5-7

ITB invalidate-all ASM (ASM=0) register
ITB_IAP, 5-7

ITB invalidate-all register ITB_IA 5-7

ITB PTE array write register ITB_PTES>—6

ITB tag array write register ITB_TAG5-6

PAL base register PAL_BASE5-15

performance counter control register
PCTR_CTL 5-23

ProfileMe register PMPC 5-8

register rename mapL—-6

retire logig 2-8

retire logic and mapper, required sequence for

sleep mode register SLEER-21

software interrupt request register SIRR-10

subsections in 2-2

virtual program counter logic2—2

Index—6

IC_FLUSH Icache flush register
at power-on reset staté/—15
IC_FLUSH_ASM Icache flush ASM registe5—-21

Icache

data errors 8-2

error case summary for8—9

fill from Bcache erroy 8-5

fill from memory error 8-7

flush register IC_FLUSH 5-21

initialized by BiST, 7-12

tag, initialized by BiST 7-12
IEEE 1149.1

notes for compliance {0117
test port reset 7-16
test port, operation pf11-3

IEEE floating-point conformangeA-14
IEEE floating-point instruction opcodesA\—9

IER_CM interrupt enable and current processor mode

registey 5-9
at power-on reset stater—15
IMPLVER instruction values 2—38

Independent floating-point function coges—11

INIT_MODE Cbox CSR 5-39 7-12

Initialization mode processing7—12

Input dc reference pin. See |_DC_REF pin type

Input differential amplifier clock receiver. See
|_DA_CLK pin type

Input differential amplifier receiver. See |_DA pin
type

Instruction fetch logic 2—6

Instruction fetch, issue, and retire unit. See Ibox

Instruction fetch, pipelingd2—-14

Instruction issue rules2-16

Instruction latencies, pipelined2—20

Instruction ordering 2—30

Instruction retire latencies, minimyn2-21

Instruction retire rules
F31, 2-22
floating-point dividg 2-22
floating-point square ropt2—22
pipelined 2-21
R31, 2-22
Instruction slot, pipelined 2-14
Instruction-stream translation buffe—5

Int_Add_BcCIk internal forwarded clogkd—44,
4-48

Int_Data_BcCIk internal forwarded cloclkd—44,
4-49

INT_FWD_CLK clock queug 4-30

Integer arithmetic trap, pipeline abort delay with

Alpha 21264/EV67 Hardware Reference Manual

2-16
Integer execution unit. See Ebox
Integer issue queye2—6
pipelined 2-15
Internal processor register&—1
accessing 6-7
explicitly written, 6-8
implicitly written, 6-9
ordering access6-9

paired fetch order 6-9
scoreboard bits for 6—8

INTERRUPT interrupt 6-14
INVAL_TO_DIRTY Cbox CSR 4-23
programming 4-23
INVAL_TO _DIRTY_ENABLE Cbox CSR 5-39
7-12
InvalToDirty, 21264/EV67 commandd—12 4-22,
4-40
system probes, with4—41
InvalToDirtyVic, 21264/EV67 command4—22,
4-40
IOWB. See I/O write buffer
IPRs. See Internal processor registers
IQ. See Integer issue queue
IRQ_H signal pins 3-5
Istream 2-5
Istream memory references
translation to external reference4-5
ISTREAM_BC _DBL error status in C_STAT5-41
ISTREAM_BC_ERR error status in C_STAB—-41
ISTREAM_MEM_DBL error status in C_STAT
5-41
ISTREAM_MEM_ERR error status in C_STAT
5-41
ISUM interrupt summary registers—11
at power-on reset staté&/—15
ITB, 2-5
ITBfill, 6-16
ITB miss, pipeline abort delay with?—16
ITB_IA invalidate-all register 5—7
at power-on reset state/—15
ITB_IAP invalidate-all (ASM=0) register5—7
at power-on reset staté&/—15
ITB_IS invalidate single registers—7
at power-on reset staté&/—15
ITB_MISS fault, 6-14

ITB_PTE array write register5—6
at power-on reset state/—14

Alpha 21264/EV67 Hardware Reference Manual

ITB_TAG array write register 5-6
at power-on reset stater—14
IVA_FORM instruction virtual address format
registey 5-9
at power-on reset staté/—15

J

JITTER_CMD Cbox CSR, defingd5—-38
JMP misprediction, in PALcodeD-15

JSR misprediction

in PALcode D-15
pipeline abort delay with 2—-16

JSR_COR misprediction, in PALcod®-15
Junction temperatuye9—1

L

Late-write non-bursting SSRAM pin assignments
E-2

LDBU instruction, normal prefetch with2—23

LDF instruction, normal prefetch with2—23

LDG instruction, normal prefetch with2—23

LDQ instruction, prefetch with evict ngx2—24

LDS instruction, prefetch with modify intent2—23

LDT instruction, normal prefetch with2—-23

LDWU instruction, normal prefetch with2—23

LDx_L instructions
in-order processing for4—15
locking mechanism for4-14

Load hit speculation 2—24

Load instructions
ECC with, 8-3
I/O reference ordering2—-31
Mbox order traps 2—31
memory reference ordering2—31
translation to external interfacel—5

Load queue, described?—13
Load-load order trap 2—32

Local predictoy 2-4

Lock mechanism 4-14

Logic symbol, the 21264/EV6§73—-2
LQ. See Load queue

M

M_CTL Mbox control register 5-29
at power-on reset staté/—16
MAF. See Miss address file

MB instruction processing2—-33

Index—7

MB, 21264/EV67 command, 4-13 4-21
MB_CNT Cbhox CSR, operatign2—32
MBDone, SysDc command4—13

Mbox

Dcache control register DC_CTL5-30

Dcache status register DC_STAB-31

described 2-12

Dstream translation buffer2—13

DTB address space number registers 0 and 1
DTB_ASNx, 5-28

DTB alternate processor mode register
DTB_ALTMODE, 5-26

DTB invalidate-all (ASM=0) process register
DTB_IAP, 5-27

DTB invalidate-all process register DTB_,IA

5-27

DTB invalidate-single registers 0 and 1
DTB_ISx, 5-27

DTB PTE array write registers 0 and 1
DTB_PTEx 5-26

DTB tag array write registers 0 and 1
DTB_TAGx, 5-25

internal processor registers—2

load queuge 2-13

Mbox control register M_CTL 5-29

memory management status register
MM_STAT, 5-28

miss address file2—13

order traps 2-31

pipeline abort delay with order traj2—16

pipeline abort delays2-16

store queug 2-13

MBOX_ BC_PRB_STALL Cbox CSR, defined
5-35

MCHK interrupt 6-14

Mechanical specifications3—17

Memory

error case summary for8—10
filling Dcache errors 8—7
filling Icache errors 8-7

Memory address space

load instructions with 2—-27
merging rules 2—-30
store instructions with 2—29
Memory barrier instructions
translation to external interfacel—5
Memory barriers 2-32
Memory reference unit. See Mbox
MF_FPCR instruction 6-12
Microarchitecture
summarized 2-1
MiscVref signal pin 3-5
Miss address file 2—13

I/O address space logd2—-28
memory address space loads-28
memory address space stqres-29

Index—8

MM_STAT memory management status register
5-28
at power-on reset staté/—16
MT_FPCR instruction 6-12

MT_FPCR synchronous tras—14

N

NoConnect pin type 3—-3
Nonexistent memory
processing 4-38
NOP, 21264/EV67 command4—21
Note convention xxi
Numbering conventign xxi
NXM. See Nonexistent memory
NZNOP, 21264/EV67 commandd4—21

O

O_OD pin typge 3-3 9-2
values for 9-4

O_OD_TP pin typge 3-3 9-2
values for 9-4

O_PP pin type 3-3, 9-2
values for 9-5

O_PP_CLK pin typge 3-3, 9-2
values for 9-5

OPCDEC fault 6-13

Opcodes
IEEE floating-poinf A—9
independent floating-pointA-11
reserved for CompagA—8
reserved for PALcode A-9
summary of A-12
VAX floating-point, A-11

Open-drain driver for test pins. See O_OD_TP
Open-drain output driver. See O_OD pin type
Operating temperatuyel0-1

P

Packaging 3-18
Paired instruction fetch orde6—9

PAL_BASE register 5-15

after fault reset 7-8

after warm reset 7-11

at power-on reset staté/—15
through sleep mode7-10

Alpha 21264/EV67 Hardware Reference Manual

PALcode

conditional branchesin, D-14
described 6-1

entries points fqr 6-12
exception entry poinfs6—13
guidelines foy D-1
HW_LD instruction 6-3
HW_MFPR instruction 6-6
HW_MTPR instruction 6—6
HW_RET instruction 6-5
HW_ST instruction 6-4
required function codes6-3
reserved opcodes f016—3
restrictions foy D-1

PALmode environment 6—2
PALshadow registers6-11

PCTR_CTL performance counter control counter
register
updating D-17
PCTR_CTL performance counter control register
5-23
at power-on reset stgté&/—15
updating D-18
PCTX Ibox process context registef—21
after fault reset 7-8
after warm reset 7-11
at power-on reset state/—15
through sleep mode7-10

Phase-lock loop. See PLL
Physical address consideratipné-4
Pipeline
abort delay 2-16
Dcache access2—-16
Ebox execution 2—-16
Ebox slotting 2-18
Fbox execution 2—-16
instruction fetch 2-14
instruction group definitions2-17
instruction issue rules2-16
instruction latencigs 2—20
instruction retire rules 2—-21
instruction slot 2—-14
issue queue 2-15
organization 2-13
register maps 2—-15
register reads 2—16
PLL
description 7-19
output clocks 7-19
ramp up 7-6
PLL_IDD, values for 9-3
PLL_VDD signal pin 3-5
PLL_VDD, values foy 9-3
PlIBypass_H signal pin3-5

PMPC ProfileMe register5-8

Alpha 21264/EV67 Hardware Reference Manual

Ports

IEEE 1149.1 11-3
serial terminag| 11-2
SROM load 11-2

Power
maximum 9-1
sleep defined 9-3

Power supply sequencin@-5

Power-on
flow signals and constraints/—7
reset flow 7-1
self-test and initialization 11-5
timing sequence 7-3

PRB_TAG_ONLY Chox CSR 4-28
defined 5-34

Privileged architecture library code
Sce PALcode

Probe commands, system—26 4-40
Probe queue 2-11
PROBE_BC_ERR error status in C_STAB-41

ProbeResponse, 21264/EV67 comma#dd2],
4-24, 4-39

ProfileMe mode 6-20
Push-pull output clock driver. See O_PP_CLK
Push-pull output driver. See O_PP

R

R31

load instructions with 2—23
retire instructions with 2—22
speculative loads {02—-25

RAMP1 reset machine statd—17

RAMP2 reset machine statgd—18

Ranges and extents conventioxxi

RdBIk, 21264/EV67 command4—39
RdBIkl, 21264/EV67 command4—39
RdBIkMod, 21264/EV67 comman®—39
RdBIkModSpec, 21264/EV67 command—39
RdBIkModVic, 21264/EV67 command4—39
RdBIkSpec, 21264/EV67 command—39
RdBlkSpecl, 21264/EV67 command—39
RdBIkVic, 21264/EV67 command4—39
RdBIkVicl, 21264/EV67 command4-39
RdBytes, 21264/EV67 commandi—39
RdLWSs, 21264/EV67 comman#—39
RdQWs, 21264/EV67 commandi—39

RDVIC_ACK_INHIBIT Chox CSR 4-25 4-26
defined 5-34

Index—9

ReadBlk, 21264/EV67 command, 4-21
system probes, with4-41
ReadBlkl, 21264/EV67 command—22
ReadBlkMod, 21264/EV67 command—22
system probes, with4-41

ReadBlkModSpec, 21264/EV67 commant-22

ReadBlkModVic, 21264/EV67 commandi—22

ReadBlkSpec, 21264/EV67 command—22

ReadBlkSpecl, 21264/EV67 command-22

ReadBlkVic, 21264/EV67 commandi—22

ReadBlkVicl, 21264/EV67 command—22

ReadBytes, 21264/EV67 command—22

ReadData, SysDc command-1Q 4-11, 4-12

ReadDataDirty, SysDc command-1Q 4-11, 4-12

ReadDataError, SysDc command-10, 4-11,
4-12 4-13

ReadDataShared, SysDc commars-10, 4-11,
4-12

ReadDataShared/Dirty, SysDc commanri-10
4-11, 4-12

ReadlLWs, 21264/EV67 command—22

ReadQWs, 21264/EV67 command-22

Register access abbreviatiorngx

Register figure conventionsxxi

Register maps, pipelined?—15

Register rename map2-6

Replay traps 2—-31

RESET interrupt 6-14

Reset state machine
major operations of 7-1
Reset L signal pin 3-5
power-on reset floyw 7-1
RET misprediction, in PALcodeD-15

Retire logic 2-8, D-1

RO,n convention xix

RUN reset machine state/—18
RW,n convention xx

S

SAMPLE public instruction B—1
Scrubbing single-bit erroysD-19

|_CTL Ibox control register
updating I_CTL, D-18
Second-level cache. See Bcache

Index—10

Security holes
with UNPREDICTABLE results xxii
Serial terminal port 11-2
SET DIRTY_ENABLE Chox CSR 4-23 5-39
7-12
programming 4—24
SharedToDirty, 21264/EV67 command—-22 4-40
system probes, with4-41
Signal name conventignxxi
Signal pin types, defingd3—-3
Signal pins
test 11-1
Single-bit error scribbing D-19
Single-bit errors in hardware, correctjin§—2
SIRR software interrupt request registé&—10
at power-on reset stater—15
SKEWED_FILL_MODE Chox CSR
defined 5-34
Sleep mode
flow, 7-9
timing sequence 7-11
SLEEP mode register5-21
at power-on reset stater—15
Spare pin typge 3—-3
SPEC_READ_ENABLE Chox CSR4-23
defined 5-35
SQ. See Store queue
SROM content map11-6
SROM initialization 11-5
SROM interface, in microarchitectyre—13
SROM line, Icache bit fields in,al1-6
SROM load 7-6
SROM load operatign 11-2
SromCIk_H signal pin 3-5, 11-2
SromData_H signal pin3-5, 11-2
SromOE_L signal pin 3-5, 11-2
SSRAMs

dual-data rate pin assignments—3
late-write non-bursting pin assignments—2

STC_ENABLE Cbox CSR 4-24

STCChangeToDirty, 21264/EV67 command-13
4-22, 4-40
Storage temperature9—1

Alpha 21264/EV67 Hardware Reference Manual

Store instructions

Dcache ECC errorswith, 8-4

I/O address spa¢ce2—29

I/O reference ordering2—-31

Mbox order traps 2—-31

memory address space—29
memory reference ordering?—31
translation to external interfacel—5

Store queug 2-13
Store-load order trgp2—-32

STx_C instructions
in-order processing for4—15
locking mechanism for 4-14

Supply voltage signal pins. See |_ DC_POWER pin
type
Synchronous static random-access memory. See
SSRAMs
SYS_BPHASE_LD_VECTOR Cbox CSR4-18
defined 5-38
SYS_BUS_FORMAT Chbox CSR, definedb—34
SYS_BUS_SIZE Chox CSR4-21
defined 5-34
SYS CLK DELAY Cbox CSR, defingd5-36
SYS_CLK LD _VECTOR Cbox CSR4-18
defined 5-38
SYS CLK_RATIO Chox CSR, defingd5—34
SYS_CLKFWD_ENABLE Cbhox CSR, defined
5-36
SYS_CPU_CLK_DELAY Chox CSR
defined 5-38
SYS_DDM_FALL_EN Cbox CSR 4-18
defined 5-36
SYS_DDM_RD_FALL_EN Cbox CSR4-18
SYS_DDM_RD_RISE_EN Cbhox CSR4-19
SYS_DDM_RISE_EN Cbox CSR4-18
defined 5-36
SYS_DDMF_ENABLE Chox CSR 4-19
defined 5-36
SYS_DDMR_ENABLE Cbox CSR 4-19
defined 5-36
SYS_FDBK_EN Chox CSR4-18
defined 5-38
SYS_FRAME_LD_VECTOR Cbox CSR4-19
4-31
defined 5-38
SYS_RCV_MUX_CNT_PRESET Cbox CSRI-31
defined 5-36
SYS_RCV_MUX_PRESET Cbhox CSR4-33
SysAddIn_L signal pins 3-5
SysAddInCIk_L signal pin 3-5
SysAddOut_L signal pins3-5

Alpha 21264/EV67 Hardware Reference Manual

SysAddOutClk_L signal pin 3-5

SYSBUS_ACK_LIMIT Cbox CSR 4-25
defined 5-34

SYSBUS_FORMAT Cbox CSR4-21

SYSBUS_MB_ENABLE Chox CSR4-23

defined 5-34
operation 2-32

SYSBUS_VIC_LIMIT Cbox CSR 4-26
defined 5-34

SysCheck_L signal pjn3-5

SYSCLK, 4-31

SysData_L signal pin3-5

SysDatalnCIk_H signal pjn3-5

SysDatalnValid_L signal pin3-5
rules for 4-34

SysDataOutClk_L signal pjn3-5

SysDataOutValid_L signal pjn3-5
rules for 4-35

SysDc commands4-11
system probes, with4—42

SysDc field, system to 21264/EV67 commands

4-29
SYSDC_DELAY Cbox CSR 4-32
defined 5-38
SysFillvalid_L signal pin 3-5
rules for, 4-35
System clock ratio configuration7—4

System initialization 7-7

System interface clocks, programmjng—18
System port 4-16

SysVref signal pin 3-6

T

Tag parity errors 8—-2

TB fill flow, 2-34 6-14

Tck _H signal pin 3-6

Tdi_H signal pin 3—-6

Tdo_H signal pin 3—-6

Temperatures
maximium average per frequencg0-2
operating 10-1

Terminology xix

TestStat_H signal pin3-6
purpose for 11-4
with BiST and SROM load 7-6

Thermal design characteristjc40-7
Tms_H signal pin 3—-6

Index—11

Traps
load-load order, 2—32
Mbox order 2-31
replay, 2-31
store-load order 2—-32

Trst_L signal pin 3—6

U

UNALIGN fault, 6-13
Unaligned conventign xx

Vv

VA virtual address registers5-4
at power-on reset state/—15

VA_CTL virtual address control registeb—4
at power-on reset stgté&/—15
updating VA_48 field D-18

VA_FORM virtual address format registeb—5
at power-on reset state/—15

VAF. See Victim address file

VAX floating-point instruction opcodesA-11
VBIAS defined 9-2

VDB. See Victim data buffer
VDBFlushRequest, 21264/EV67 command-21
VDD signal pin list 3-16

VDD, values for 9-3

VDF. See Victim data file

Vdiff defined, 9-2

Victim address file
described 2-11
Victim address file, described2—11

Victim data buffer (VDB) 4-8

Virtual address suppqrtl—2

Virtual program counter logjc2—2

VPC. See Virtual program counter logic
VREF, values for 9-3

VSS signal pin list 3—-16

w

WAIT_BiSI reset machine state7—18
WAIT_BIiST reset machine state/—18
WAIT_CIlkFwdRst0 reset machine staté—18
WAIT_ClkFwdRst1 reset machine staté—18
WAIT_INTERRUPT reset machine stat€—19
WAIT_NOMINAL reset machine staje7-17

Index—12

WAIT_RESET reset machine stat&—18
WAIT_SETTLE reset machine statg—17
WAKEUP interrupt 6-14

WAR, eliminating 2-6

Warm reset flow 7-11

WAW

eliminating 2-6
WNMB instruction processing2-34
WO,n convention xx

Wrap order
double-pumped 4-38
interleaved 4-37

WrBytes, 21264/EV67 commandi—22, 4-39
Write hint instructions, translation to external
interface 4-5

WRITE_MANY chain 5-38
example 5-39
values for Bcache initializatign7—12

WRITE_MANY register

after fault reset 7-8
after warm reset 7-11
through sleep mode7-10

WRITE_ONCE chain descriptign5—-33
Write-after-read. See WAR
Write-after-write. See WAW

WrLWs, 21264/EV67 command4—22 4-39
WrQWs, 21264/EV67 command—22 4-39

WrVictimBIlk, 21264/EV67 command4—22, 4-39
system probes, with4-41

X

X convention Xxxi

Alpha 21264/EV67 Hardware Reference Manual

	Table of Contents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	A
	B
	C
	D
	E

	Figures
	Tables
	Preface
	Introduction
	1.1� The Architecture
	1.1.1� Addressing
	1.1.2� Integer Data Types
	1.1.3� Floating-Point Data Types

	1.2� 21264/EV67 Microprocessor Features

	Internal Architecture
	2.1� 21264/EV67 Microarchitecture
	2.1.1� Instruction Fetch, Issue, and Retire Unit
	2.1.1.1� Virtual Program Counter Logic
	2.1.1.2� Branch Predictor
	2.1.1.3� Instruction-Stream Translation Buffer
	2.1.1.4� Instruction Fetch Logic
	2.1.1.5� Register Rename Maps
	2.1.1.6� Integer Issue Queue
	2.1.1.7� Floating-Point Issue Queue
	2.1.1.8� Exception and Interrupt Logic
	2.1.1.9� Retire Logic

	2.1.2� Integer Execution Unit
	2.1.3� Floating-Point Execution Unit
	2.1.4� External Cache and System Interface Unit
	2.1.4.1� Victim Address File and Victim Data File
	2.1.4.2� I/O Write Buffer
	2.1.4.3� Probe Queue
	2.1.4.4� Duplicate Dcache Tag Array

	2.1.5� Onchip Caches
	2.1.5.1� Instruction Cache
	2.1.5.2� Data Cache

	2.1.6� Memory Reference Unit
	2.1.6.1� Load Queue
	2.1.6.2� Store Queue
	2.1.6.3� Miss Address File
	2.1.6.4� Dstream Translation Buffer

	2.1.7� SROM Interface

	2.2� Pipeline Organization
	2.2.1� Pipeline Aborts

	2.3� Instruction Issue Rules
	2.3.1� Instruction Group Definitions
	2.3.2� Ebox Slotting
	2.3.3� Instruction Latencies

	2.4� Instruction Retire Rules
	2.4.1� Floating-Point Divide/Square Root Early Retire

	2.5� Retire of Operate Instructions into R31/F31
	2.6� Load Instructions to R31 and F31
	2.6.1� Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions
	2.6.2� Prefetch with Modify Intent: LDS Instruction
	2.6.3� Prefetch, Evict Next: LDQ and HW_LDQ Instructions
	2.6.4� Prefetch with the LDx_L / STx_C Instruction Sequence

	2.7� Special Cases of Alpha Instruction Execution
	2.7.1� Load Hit Speculation
	2.7.2� Floating-Point Store Instructions
	2.7.3� CMOV Instruction

	2.8� Memory and I/O Address Space Instructions
	2.8.1� Memory Address Space Load Instructions
	2.8.2� I/O Address Space Load Instructions
	2.8.3� Memory Address Space Store Instructions
	2.8.4� I/O Address Space Store Instructions

	2.9� MAF Memory Address Space Merging Rules
	2.10� Instruction Ordering
	2.11� Replay Traps
	2.11.1� Mbox Order Traps
	2.11.1.1� Load-Load Order Trap
	2.11.1.2� Store-Load Order Trap

	2.11.2� Other Mbox Replay Traps

	2.12� I/O Write Buffer and the WMB Instruction
	2.12.1� Memory Barrier (MB/WMB/TB Fill Flow)
	2.12.1.1� MB Instruction Processing
	2.12.1.2� WMB Instruction Processing
	2.12.1.3� TB Fill Flow

	2.13� Performance Measurement Support—Performance Counters
	2.14� Floating-Point Control Register
	2.15� AMASK and IMPLVER Instruction Values
	2.15.1� AMASK
	2.15.2� IMPLVER

	2.16� Design Examples

	Hardware Interface
	3.1� 21264/EV67 Microprocessor Logic Symbol
	3.2� 21264/EV67 Signal Names and Functions
	3.3 � Pin Assignments
	3.4 � Mechanical Specifications
	3.5 � 21264/EV67 Packaging

	Cache and External Interfaces
	4.1� Introduction to the External Interfaces
	4.1.1� System Interface
	4.1.1.1� Commands and Addresses

	4.1.2� Second-Level Cache (Bcache) Interface

	4.2� Physical Address Considerations
	4.3� Bcache Structure
	4.3.1� Bcache Interface Signals
	4.3.2� System Duplicate Tag Stores

	4.4� Victim Data Buffer
	4.5� Cache Coherency
	4.5.1� Cache Coherency Basics
	4.5.2� Cache Block States
	4.5.3� Cache Block State Transitions
	4.5.4� Using SysDc Commands
	4.5.5� Dcache States and Duplicate Tags

	4.6� Lock Mechanism
	4.6.1� In-Order Processing of LDx_L/STx_C Instructions
	4.6.2� Internal Eviction of LDx_L Blocks
	4.6.3� Liveness and Fairness
	4.6.4� Managing Speculative Store Issues with Multiprocessor Systems

	4.7� System Port
	4.7.1� System Port Pins
	4.7.2� Programming the System Interface Clocks
	4.7.3� 21264/EV67-to-System Commands
	4.7.3.1� Bank Interleave on Cache Block Boundary Mode
	4.7.3.2� Page Hit Mode

	4.7.4� 21264/EV67-to-System Commands Descriptions
	4.7.5� ProbeResponse Commands (Command[4:0] = 00001)
	4.7.6� SysAck and 21264/EV67-to-System Commands Flow Control
	4.7.7� System-to-21264/EV67 Commands
	4.7.7.1� Probe Commands (Four Cycles)
	4.7.7.2� Data Transfer Commands (Two Cycles)

	4.7.8� Data Movement In and Out of the 21264/EV67
	4.7.8.1� 21264/EV67 Clock Basics
	4.7.8.2� Fast Data Mode
	4.7.8.3� Fast Data Disable Mode
	4.7.8.4� SysDataInValid_L and SysDataOutValid_L
	4.7.8.5� SysFillValid_L
	4.7.8.6� Data Wrapping

	4.7.9� Nonexistent Memory Processing
	4.7.10� Ordering of System Port Transactions
	4.7.10.1� 21264/EV67 Commands and System Probes
	4.7.10.2� System Probes and SysDc Commands

	4.8� Bcache Port
	4.8.1� Bcache Port Pins
	4.8.2� Bcache Clocking
	4.8.2.1� Setting the Period of the Cache Clock

	4.8.3� Bcache Transactions
	4.8.3.1� Bcache Data Read and Tag Read Transactions
	4.8.3.2� Bcache Data Write Transactions
	4.8.3.3� Bubbles on the Bcache Data Bus

	4.8.4� Pin Descriptions
	4.8.4.1� BcAdd_H[23:4]
	4.8.4.2� Bcache Control Pins
	4.8.4.3� BcDataInClk_H and BcTagInClk_H

	4.8.5� Bcache Banking
	4.8.6� Disabling the Bcache for Debugging

	4.9� Interrupts

	Internal Processor Registers
	5.1� Ebox IPRs
	5.1.1� Cycle Counter Register – CC
	5.1.2� Cycle Counter Control Register – CC_CTL
	5.1.3� Virtual Address Register – VA
	5.1.4� Virtual Address Control Register – VA_CTL
	5.1.5� Virtual Address Format Register – VA_FORM

	5.2� Ibox IPRs
	5.2.1� ITB Tag Array Write Register – ITB_TAG
	5.2.2� ITB PTE Array Write Register – ITB_PTE
	5.2.3� ITB Invalidate All Process (ASM=0) Register – ITB_IAP
	5.2.4� ITB Invalidate All Register – ITB_IA
	5.2.5� ITB Invalidate Single Register – ITB_IS
	5.2.6� ProfileMe PC Register – PMPC
	5.2.7� Exception Address Register – EXC_ADDR
	5.2.8� Instruction Virtual Address Format Register — IVA_FORM
	5.2.9� Interrupt Enable and Current Processor Mode Register – IER_CM
	5.2.10� Software Interrupt Request Register – SIRR
	5.2.11� Interrupt Summary Register – ISUM
	5.2.12� Hardware Interrupt Clear Register – HW_INT_CLR
	5.2.13� Exception Summary Register – EXC_SUM
	5.2.14� PAL Base Register – PAL_BASE
	5.2.15� Ibox Control Register – I_CTL
	5.2.16� Ibox Status Register – I_STAT
	5.2.17� Icache Flush Register – IC_FLUSH
	5.2.18� Icache Flush ASM Register – IC_FLUSH_ASM
	5.2.19� Clear Virtual-to-Physical Map Register – CLR_MAP
	5.2.20� Sleep Mode Register – SLEEP
	5.2.21� Process Context Register – PCTX
	5.2.22� Performance Counter Control Register – PCTR_CTL

	5.3� Mbox IPRs
	5.3.1� DTB Tag Array Write Registers 0 and 1 – DTB_TAG0, DTB_TAG1
	5.3.2� DTB PTE Array Write Registers 0 and 1 – DTB_PTE0, DTB_PTE1
	5.3.3� DTB Alternate Processor Mode Register – DTB_ALTMODE
	5.3.4� Dstream TB Invalidate All Process (ASM=0) Register – DTB_IAP
	5.3.5� Dstream TB Invalidate All Register – DTB_IA
	5.3.6� Dstream TB Invalidate Single Registers 0 and 1 – DTB_IS0,1
	5.3.7� Dstream TB Address Space Number Registers 0 and 1 – DTB_ASN0,1
	5.3.8� Memory Management Status Register – MM_STAT
	5.3.9� Mbox Control Register – M_CTL
	5.3.10� Dcache Control Register – DC_CTL
	5.3.11� Dcache Status Register – DC_STAT

	5.4� Cbox CSRs and IPRs
	5.4.1� Cbox Data Register – C_DATA
	5.4.2� Cbox Shift Register – C_SHFT
	5.4.3� Cbox WRITE_ONCE Chain Description
	5.4.4� Cbox WRITE_MANY Chain Description
	5.4.5� Cbox Read Register (IPR) Description

	Privileged Architecture Library Code
	6.1� PALcode Description
	6.2� PALmode Environment
	6.3� Required PALcode Function Codes
	6.4� Opcodes Reserved for PALcode
	6.4.1� HW_LD Instruction
	6.4.2� HW_ST Instruction
	6.4.3� HW_RET Instruction
	6.4.4� HW_MFPR and HW_MTPR Instructions

	6.5� Internal Processor Register Access Mechanisms
	6.5.1� IPR Scoreboard Bits
	6.5.2� Hardware Structure of Explicitly Written IPRs
	6.5.3� Hardware Structure of Implicitly Written IPRs
	6.5.4� IPR Access Ordering
	6.5.5� Correct Ordering of Explicit Writers Followed by Implicit Readers
	6.5.6� Correct Ordering of Explicit Readers Followed by Implicit Writers

	6.6� PALshadow Registers
	6.7� PALcode Emulation of the FPCR
	6.7.1� Status Flags
	6.7.2� MF_FPCR
	6.7.3� MT_FPCR

	6.8� PALcode Entry Points
	6.8.1� CALL_PAL Entry Points
	6.8.2� PALcode Exception Entry Points

	6.9� Translation Buffer (TB) Fill Flows
	6.9.1� DTB Fill
	6.9.2� ITB Fill

	6.10� Performance Counter Support
	6.10.1� General Precautions
	6.10.2� Aggregate Mode Programming Guidelines
	6.10.2.1� Aggregate Mode Precautions
	6.10.2.2� Operation
	6.10.2.3� Aggregate Counting Mode Description
	6.10.2.3.1� Cycle counting
	6.10.2.3.2� Retired instructions cycles
	6.10.2.3.3� Bcache miss or long latency probes cycles
	6.10.2.3.4� Mbox replay traps cycles

	6.10.2.4� Counter Modes for Aggregate Mode

	6.10.3� ProfileMe Mode Programming Guidelines
	6.10.3.1� ProfileMe Mode Precautions
	6.10.3.2� Operation
	6.10.3.3� ProfileMe Counting Mode Description
	6.10.3.3.1� Cycle counting
	6.10.3.3.2� Inum retire delay cycles
	6.10.3.3.3� Retired instructions cycles
	6.10.3.3.4� Bcache miss or long latency probes cycles
	6.10.3.3.5� Mbox replay traps cycles

	6.10.3.4� Counter Modes for ProfileMe Mode

	Initialization and Configuration
	7.1� Power-Up Reset Flow and the Reset_L and DCOK_H Pins
	7.1.1� Power Sequencing and Reset State for Signal Pins
	7.1.2� Clock Forwarding and System Clock Ratio Configuration
	7.1.3� PLL Ramp Up
	7.1.4� BiST and SROM Load and the TestStat_H Pin
	7.1.5� Clock Forward Reset and System Interface Initialization

	7.2� Fault Reset Flow
	7.3� Energy Star Certification and Sleep Mode Flow
	7.4� Warm Reset Flow
	7.5� Array Initialization
	7.6� Initialization Mode Processing
	7.7� External Interface Initialization
	7.8� Internal Processor Register Power-Up Reset State
	7.9� IEEE 1149.1 Test Port Reset
	7.10� Reset State Machine
	7.11� Phase-Lock Loop (PLL) Functional Description
	7.11.1 � Differential Reference Clocks
	7.11.2 � PLL Output Clocks
	7.11.2.1 � GCLK
	7.11.2.2 � Differential 21264/EV67 Clocks
	7.11.2.3 � Nominal Operating Frequency
	7.11.2.4 � Power-Up/Reset Clocking

	Error Detection and Error Handling
	8.1� Data Error Correction Code
	8.2� Icache Data or Tag Parity Error
	8.3� Dcache Tag Parity Error
	8.4� Dcache Data Single-Bit Correctable ECC Error
	8.4.1� Load Instruction
	8.4.2� Store Instruction (Quadword or Smaller)
	8.4.3� Dcache Victim Extracts

	8.5� Dcache Store Second Error
	8.6� Dcache Duplicate Tag Parity Error
	8.7� Bcache Tag Parity Error
	8.8� Bcache Data Single-Bit Correctable ECC Error
	8.8.1� Icache Fill from Bcache
	8.8.2� Dcache Fill from Bcache
	8.8.3� Bcache Victim Read
	8.8.3.1� Bcache Victim Read During a Dcache/Bcache Miss
	8.8.3.2� Bcache Victim Read During an ECB Instruction

	8.9� Memory/System Port Single-Bit Data Correctable ECC Error
	8.9.1� Icache Fill from Memory
	8.9.2� Dcache Fill from Memory

	8.10� Bcache Data Single-Bit Correctable ECC Error on a Probe
	8.11� Double-Bit Fill Errors
	8.12� Error Case Summary

	Electrical Data
	9.1� Electrical Characteristics
	9.2� DC Characteristics
	9.3� Power Supply Sequencing and Avoiding Potential Failure Mechanisms
	9.4� AC Characteristics

	Thermal Management
	10.1� Operating Temperature
	10.2� Heat Sink Specifications
	10.3� Thermal Design Considerations

	Testability and Diagnostics
	11.1� Test Pins
	11.2� SROM/Serial Diagnostic Terminal Port
	11.2.1� SROM Load Operation
	11.2.2� Serial Terminal Port

	11.3� IEEE 1149.1 Port
	11.4� TestStat_H Pin
	11.5� Power-Up Self-Test and Initialization
	11.5.1� Built-in Self-Test
	11.5.2� SROM Initialization
	11.5.2.1� Serial Instruction Cache Load Operation

	11.6� Notes on IEEE 1149.1 Operation and Compliance

	Alpha Instruction Set
	A.1� Alpha Instruction Summary
	A.2� Reserved Opcodes
	A.2.1� Opcodes Reserved for Compaq
	A.2.2� Opcodes Reserved for PALcode

	A.3� IEEE Floating-Point Instructions
	A.4� VAX Floating-Point Instructions
	A.5� Independent Floating-Point Instructions
	A.6� Opcode Summary
	A.7� Required PALcode Function Codes
	A.8� IEEE Floating-Point Conformance

	21264/EV67 Boundary-Scan Register
	B.1� Boundary-Scan Register
	B.1.1� BSDL Description of the Alpha 21264/EV67 Boundary-Scan Register

	Serial Icache Load Predecode Values
	PALcode Restrictions and Guidelines
	D.1� Restriction 1 : Reset Sequence Required by Retire Logic and Mapper
	D.2� Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group
	D.3� Restriction 4 : No Writers and Readers to IPRs in Same Scoreboard Group
	D.4� Guideline 6 : Avoid Consecutive Read-Modify-Write-Read- Modify-Write
	D.5� Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/ ITOF
	D.6� Restriction 9 : PALmode Istream Address Ranges
	D.7� Restriction 10: Duplicate IPR Mode Bits
	D.8� Restriction 11: Ibox IPR Update Synchronization
	D.9� Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR, IVA_FORM, and EXC_SUM
	D.10� Restriction 13 : DTB Fill Flow Collision
	D.11� Restriction 14 : HW_RET
	D.12� Guideline 16 : JSR-BAD VA
	D.13� Restriction 17: MTPR to DTB_TAG0/DTB_PTE0/DTB_TAG1/ DTB_PTE1
	D.14� Restriction 18: No FP Operates, FP Conditional Branches, FTOI, or STF in Same Fetch Block a...
	D.15� Restriction 19: HW_RET/STALL After Updating the FPCR by way of MT_FPCR in PALmode
	D.16� Guideline 20 : I_CTL[SBE] Stream Buffer Enable
	D.17� Restriction 21: HW_RET/STALL After HW_MTPR ASN0/ASN1
	D.18� Restriction 22: HW_RET/STALL After HW_MTPR IS0/IS1
	D.19� Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the Lock Flag
	D.20� Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM, CLEAR_MAP
	D.21� Restriction 25: HW_MTPR ITB_IA After Reset
	D.22� Guideline 26: Conditional Branches in PALcode
	D.23� Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode
	D.24� Restriction 28: Enforce Ordering Between IPRs Implicitly Written by Loads and Subsequent Loads
	D.25� Guideline 29 : JSR, JMP, RET, and JSR_COR in PALcode
	D.26� Restriction 30 : HW_MTPR and HW_MFPR to the Cbox CSR
	D.27� Restriction 31 : I_CTL[VA_48] Update
	D.28� Restriction 32 : PCTR_CTL Update
	D.29� Restriction 33 : HW_LD Physical/Lock Use
	D.30� Restriction 34 : Writing Multiple ITB Entries in the Same PALcode Flow
	D.31� Guideline 35 : HW_INT_CLR Update
	D.32� Restriction 36 : Updating I_CTL[SDE]
	D.33� Restriction 37 : Updating VA_CTL[VA_48]
	D.34� Restriction 38 : Updating PCTR_CTL
	D.35� Guideline 39: Writing Multiple DTB Entries in the Same PAL Flow
	D.36� Restriction 40: Scrubbing a Single-Bit Error
	D.37� Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must Be in the Same Fetch Block
	D.38� Restriction 42: Updating VA_CTL, CC_CTL, or CC IPRs
	D.39� Restriction 43: No Trappable Instructions Along with HW_MTPR
	D.40� Restriction 44: Not Applicable to the 21264/EV67
	D.41� Restriction 45: No HW_JMP or JMP Instructions in PALcode
	D.42� Restriction 46: Avoiding Live locks in Speculative Load CRD Handlers
	D.43� Restriction 47: Cache Eviction for Single-Bit Cache Errors
	D.44� Restriction 48: MB Bracketing of Dcache Writes to Force Bad Data ECC and Force Bad Tag Parity

	21264/EV67-to-Bcache Pin Interconnections
	E.1� Forwarding Clock Pin Groupings
	E.2� Late-Write Non-Bursting SSRAMs
	E.3� Dual-Data Rate SSRAMs

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

