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1 Introduction

Superconducting QUantum Interference Device (SQUID) is a supercon-
ducting loop containing one or more Josephson Junctions. Two physical
phenomena are combined in SQUIDs; flux quantization in a superconduct-
ing loops, and the Josephson effect. SQUIDs are the most sensitive detectors
of magnetic flux known. The double junction interferometer (de-SQUID)
consists of two junctions connected in parallel on a superconducting loop, as
it’s shown in fig 1.
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Figure 1: de-SQUID

Majorana bound states have been predicted to be hosted in Josephson junc-
tions [1-4] and superconducting quantum interference devices (SQUIDs) with
topologically nontrivial barriers [5], these SQUIDs are expected to be used
as a real quantum gates that are topologically decoupled from local sources
of decoherance.



2 Trivial DC-SQUID
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Figure 2: de-SQUID equivalent circuit

Assuming a symmetrical de-SQUID, and modeling the junctions by the re-
sistively and capacitively shunted junction (RCSJ) model, as represented in
fig. 2. The currents through the junctions can be written as:
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Normalizing current to ¢ = Iic and time to 7 = 2”1"Rt equationsl ,2 can be
written as:
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where (. = % is the McCumber parameter [6]

when magnetic field threads the superconducting loop, the magnetic flux is
quantized according to:
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where the total flux @, is:

®y = P, + LI sin(p;) — LI sin(ps) (6)
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2nd, 2nd, 2wLl. .

ot = 2o+ T sin(p) — sin() @
in dimensionless notation, with 5, = 27réfi[c:
P D, ) .
Im—t = 2r—< + Br(sin(p) — sin(ys)) (8)
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Br is the screening parameter, this parameter represents the ratio of the
magnetic flux generated by the maximum possible circulating current I, and
@0/27’(’.
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the system of equations is used:
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3 dc-SQUID characteristics

3.1 S-state

Fig 3.(a) shows the critical current of the de-SQUID vs. applied flux I.(®.)
for 3 values of the screening parameter 5;. .Fig 3.(b); the SQUID hand-
book [7] results for the same values, to be compared. As the screening pa-
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rameter [, increases the squid sensitivity to external magnetic flux decreases.

Figure 3: (a) Critical current modulation of de-SQUID for screening param-

eter fr,= 0.01, 1 and 5,

(b) A (Screen-shot) of Fig. 2.7(a)- SQUID Handbook [7]

If B, =0, it’s straight forward to get a mathematical expression for the

critical current dependence on the external flux I.(®,).

Starting with quantization:

5 b,
R— e 7T_
P2 — Y1 = By

In that case the super-current is
I, = I.(sin(p1) + sin(p2))

I, = 21,.sin (W) cos (w)

using 901?02 = — 501;;72 and 901;902 — —7T§—(t)
. P, &,
I, =21.s + m—) cos(m—
csin(ipy + 7 2) cos( )

then the de-SQUID critical current is

)
I.souip = 1" = 21| COS(?TatM
0

3.2 Voltage state

(17)

(18)

(19)

(20)

(21)

The CVCs of a ds-SQUID for (5. = 1,5, = 0.01) is shown in fig ??, and for

(B. = 1,8 = 1) is shown in fig ?7. The external magnetic flux changes from

0 to % by a 0.19, step.
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Figure 4: a g, = 0.01,5. = 1, b g, = 1,8. = 1, ¢ (Screen-shot)Fig.
2.8(¢-d)-SQUID Handbook [7]

The de-SQUID can be considered as a flux-to-voltage transducer, which
produces an output voltage in response to small variations of the input flux.
Figure 5 shows the modulation V(®.) for several values of the bias current

for f;, = land B. = 1. We see that the modulation in I. directly transfers
into a modulation of V.
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Figure 5: V(&) characteristics for trivial de-SQUID



4 Quantum computing and Majorana fermions

Decreasing the components size of the microprocessors brings quantum me-
chanical effects to domination. which give rise unpredictable and unwanted
operation in classical microprocessor designs.

The component size of individual transistors on modern micropro-
cessors is becoming so small that quantum effects will soon begin
to dominate. Unfortunately, quantum mechanical behaviour will
tend to result in unpredictable and unwanted operation in classi-
cal microprocessor designs. We therefore have two choices: keep
trying to suppress quantum effects in classically fabricated elec-
tronics, or move to the field of quantum information processing
(QIP) where we exploit them. This leads to a paradigm shift in
the way we view and process information and has commanded
considerable interest from physicists, engineers, computer scien-
tists and mathematicians. The counter-intuitive and strange rules
of quantum physics offer enormous possibilities for information
processing and the development of a large-scale quantum com-
puter is the holy grail for many researchers worldwide. While the
advent of Shor?s algorithm [ Sho97 | certainly spawned great in-
terest in QIP, demonstrating that quantum algorithms could be
far more efficient than those used in classical computing, there
was a great deal of debate surrounding the practicality of build-
ing a large scale, controllable, quantum system. It was well known
even before the introduction of quantum information that coher-
ent quantum states were extremely fragile and many believed
that to maintain large, multi-qubit, coherent quantum states for
a long enough time to complete any quantum algorithm was un-
realistic [8]

On the most basic level, a set of Majorana-carrying vortices or
domain walls non-locally encodes quantum information in the de-
generate ground-state space, enabling immediate applications for
long-lived 7topological quantum memory?. In the longer term
the prospect of manipulating that information in a manner that
avoids decoherence would constitute an important breakthrough
for quantum computation. This is made possible by the most
coveted manifestation of Majorana fermions: non-Abelian statis-
tics.



Together these properties give rise to non-Abelian statistics of
vortices: if one performs sequential exchanges, the final state de-
pends on the order in which they are carried out. [9]

5 Topologicaly nontrivial DC-SQUID

Topological nontrivial SQUID, is a SQUID with topologically nontrivial el-
ement (junctions or the superconducting loop). In such devices, Majorana
Fermios (MF) are predicted to exist. this existence of MF changes the su-
percurrent to be Iy = I.sin(¢/2).

Also the flux quantization eqn. 5 will change to:

21 &
YL %2 AT o (22)
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where ;1,72 and v, are related to the charge carrier ¢ = 276 in the junctions
and the loop respectively.
The total flux of the system is given by:

@t - @e + ICL(XI - X2) (23)
where
Xi = agsin(p;) + (1 — a;) sin(a;/2) (24)

The current using the RCSJ model, in normalized form:

oy | dpy
1= Be— + —— 25
=Pz ot a (25)
oy dpy
o = P —= 26
ir =03 prE + o + X2 (26)
the total current pass through the de-SQUID:
d*py | dps
— 28, 9 2
[ B a2 + g + X1+ X2 (27)
the flux quantization eqn. 22 can be written as:
1
PL_ 22 4 (900, + Br(x1 — x2)) = 27n (28)
Y1 Y2 N



we solve the following system of equations

If ﬁL == 0
: 11
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02 = Y2 [ = + 27?(% —n)] (29)
Vi1 M
If B #0
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o1 =W
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5.1 S-state

Critical current If 5, =0, the flux quantization can be written as (n =
0): a1 = ay

27 &,
A_P2_Ae (30)
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The super-current is
I, = I.(cq sin(er) + (1 — aq) sin(py/2))
+1.(ag sin(p2) + (1 — ag) sin(p2/2)) (31)

Assuming that the loop is trivial and the junctions are topologically nontrivial
(=1, &1 = ag =0 and ;1 = 7j2 = 2 ) ,the super-current is:

I, = L(sin(p1/2)) +sin(p/2)) (32)
I, = 2L sin( 2" I 23 cos( 2 h 2 (33)
us1ng <,01+(,02 _ % _ 9012902 and @1*902 — 2#%
P P
I, =21, sm(% - Wa;) cos(ﬂa;) (34)




then the de-SQUID critical current is

0
]c,NT—SQUID = Ism = 2]c| COS(T@—t” (35)
0

Figure 6: Critical current dependence on the external magnetic flux, g, = 0,
by changing the portion of Majorana fermions to cooper-pairs « from 0tol
by increment of da = 0.1

Otherwise, the maximum of I can be found by differentiating eqn. 31 with
respect to ¢, then find the zeros numerically..
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Figure 7: I ® characteristics of a dc SQUID composed of a topologically non-
trivial superconducting ring and nontrivial junctions. (a) dc SQUID oscilla-
tions for two symmetric junctions with equal amplitude sin(¢) and sin(¢/2)
components, « = 0.5. Increasing f, (in steps §5;, = 0.5, and shifted for
clarity)

5.2 Voltage state

the time-averaged voltage versus the applied flux for different values of the
bias current.
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Figure 8: V(®,) characteristics for nontrivial de-SQUID

Figure 8 shows the voltage flux dependency for a nontrivial de-SQUID |
a = 0.5, our results is compared to [5]

6 dc-SQUID with 1JJ

The flux quantization is

oo |
Z¢_m_ B " -m = -1 (9
11=Bcaat +ag—tm+xm (37)
I = 5«:% a(;ik + Pk (38)
I=1+1 (39)
a(;/’_tm = Up + (Uppsr + Uy — 2U,) (40)
aék = Vi + (Vi + Vit — 2V3) (41)
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6.1 Preliminary results

c = pT; = 50,7 = 1000, Jpy = 0.005,7p = 0.05,Ip = 0.1, Lyore1 =
0.2, Lnorez = 3, noismax = 1078,

B.=25,0r=1,a=0.1,7v=1

vi=lLy=1Le=1n=0,¢. =0,
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Figure 9: CVC of de-SQUIDs with 1JJ
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