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1 Introduction

Superconducting QUantum Interference Device (SQUID) is a supercon-
ducting loop containing one or more Josephson Junctions. Two physical
phenomena are combined in SQUIDs; flux quantization in a superconduct-
ing loops, and the Josephson effect. SQUIDs are the most sensitive detectors
of magnetic flux known. The double junction interferometer (dc-SQUID)
consists of two junctions connected in parallel on a superconducting loop, as
it’s shown in fig 1.

φ2

φ1

Figure 1: dc-SQUID

Majorana bound states have been predicted to be hosted in Josephson junc-
tions [1–4] and superconducting quantum interference devices (SQUIDs) with
topologically nontrivial barriers [5], these SQUIDs are expected to be used
as a real quantum gates that are topologically decoupled from local sources
of decoherance.
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2 Trivial DC-SQUID
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Figure 2: dc-SQUID equivalent circuit

Assuming a symmetrical dc-SQUID, and modeling the junctions by the re-
sistively and capacitively shunted junction (RCSJ) model, as represented in
fig. 2. The currents through the junctions can be written as:

I1 =
C~
2e

d2ϕ1

dt2
+

~
2eR

dϕ1

dt
+ Ic sin(ϕ1) (1)

I2 =
C~
2e

d2ϕ2

dt2
+

~
2eR

dϕ2

dt
+ Ic sin(ϕ2) (2)

Normalizing current to i = I
Ic

and time to τ = 2πIcR
Φ0

t, equations1 ,2 can be
written as:

i1 = βc
d2ϕ1

dt2
+
dϕ1

dt
+ sin(ϕ1) (3)

i2 = βc
d2ϕ2

dt2
+
dϕ2

dt
+ sin(ϕ2) (4)

where βc = 2πIcR2C
Φ0

is the McCumber parameter [6]

when magnetic field threads the superconducting loop, the magnetic flux is
quantized according to:

1

2π
(ϕ1 − ϕ2) +

Φt
Φ0

= n (5)

where the total flux Φt is:

Φt = Φe + LIc sin(ϕ1)− LIc sin(ϕ2) (6)
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2πΦt
Φ0

=
2πΦe
Φ0

+
2πLIc
Φt

(sin(ϕ1)− sin(ϕ2)) (7)

in dimensionless notation, with βL = 2πLIc
Φt

:

2π
Φt
Φ0

= 2π
Φe
Φ0

+ βL(sin(ϕ1)− sin(ϕ2)) (8)

βL is the screening parameter, this parameter represents the ratio of the
magnetic flux generated by the maximum possible circulating current Ic and
Φ0/2π.

2πn− (ϕ1 − ϕ2)− 2π
Φe
Φ0

= βL[sin(ϕ1)− sin(ϕ2)] (9)

the system of equations is used:

If βL = 0

V̇1 =
1

βc

[1
2
{I − sin(ϕ1)− sin(ϕ2)} − V1

]
; (10)

ϕ̇1 = V1 (11)

ϕ2 = 2π(
Φe
Φ0

− n)− ϕ1 (12)

If βL 6= 0

V̇1 =
1

βc

[1
2
I − sin(ϕ1) +

1

βL
(2πn− ϕ1 + ϕ2 − 2πΦe)− V1

]
(13)

ϕ̇1 = V1 (14)

V̇2 =
1

βc

[1
2
I − sin(ϕ2) +

1

βL
(2πn− ϕ1 + ϕ2 − 2πΦe)− V2

]
(15)

ϕ̇2 = V2 (16)

3 dc-SQUID characteristics

3.1 S-state

Fig 3.(a) shows the critical current of the dc-SQUID vs. applied flux Ic(Φe)
for 3 values of the screening parameter βL. .Fig 3.(b); the SQUID hand-
book [7] results for the same values, to be compared. As the screening pa-
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rameter βL increases the squid sensitivity to external magnetic flux decreases.
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Figure 3: (a) Critical current modulation of dc-SQUID for screening param-
eter βL= 0.01, 1 and 5,
(b) A (Screen-shot) of Fig. 2.7(a)- SQUID Handbook [7]

If βL = 0, it’s straight forward to get a mathematical expression for the
critical current dependence on the external flux Ic(Φe).
Starting with quantization:

ϕ2 − ϕ1 = 2π
Φe
Φ0

(17)

In that case the super-current is

Is = Ic
(

sin(ϕ1) + sin(ϕ2)
)

(18)

Is = 2Ic sin
(ϕ1 + ϕ2

2

)
cos
(ϕ1 − ϕ2

2

)
(19)

using ϕ1+ϕ2

2
= ϕ1 − ϕ1−ϕ2

2
and ϕ1−ϕ2

2
= −π Φt

Φ0

Is = 2Ic sin(ϕ1 + π
Φt
Φ0

) cos(π
Φt
Φ0

) (20)

then the dc-SQUID critical current is

Ic,SQUID = Ims = 2Ic| cos(π
Φt
Φ0

)| (21)

3.2 Voltage state

The CVCs of a ds-SQUID for (βc = 1, βL = 0.01) is shown in fig ??, and for
(βc = 1, βL = 1) is shown in fig ??. The external magnetic flux changes from
0 to Φ0

2
by a 0.1Φ0 step.
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Figure 4: a βL = 0.01, βc = 1, b βL = 1, βc = 1, c (Screen-shot)Fig.
2.8(c-d)-SQUID Handbook [7]

The dc-SQUID can be considered as a flux-to-voltage transducer, which
produces an output voltage in response to small variations of the input flux.
Figure 5 shows the modulation V (Φe) for several values of the bias current
for βL = 1and βc = 1. We see that the modulation in Ic directly transfers
into a modulation of V .
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Figure 5: V (Φe) characteristics for trivial dc-SQUID
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4 Quantum computing and Majorana fermions

Decreasing the components size of the microprocessors brings quantum me-
chanical effects to domination. which give rise unpredictable and unwanted
operation in classical microprocessor designs.

The component size of individual transistors on modern micropro-
cessors is becoming so small that quantum effects will soon begin
to dominate. Unfortunately, quantum mechanical behaviour will
tend to result in unpredictable and unwanted operation in classi-
cal microprocessor designs. We therefore have two choices: keep
trying to suppress quantum effects in classically fabricated elec-
tronics, or move to the field of quantum information processing
(QIP) where we exploit them. This leads to a paradigm shift in
the way we view and process information and has commanded
considerable interest from physicists, engineers, computer scien-
tists and mathematicians. The counter-intuitive and strange rules
of quantum physics offer enormous possibilities for information
processing and the development of a large-scale quantum com-
puter is the holy grail for many researchers worldwide. While the
advent of Shor?s algorithm [ Sho97 ] certainly spawned great in-
terest in QIP, demonstrating that quantum algorithms could be
far more efficient than those used in classical computing, there
was a great deal of debate surrounding the practicality of build-
ing a large scale, controllable, quantum system. It was well known
even before the introduction of quantum information that coher-
ent quantum states were extremely fragile and many believed
that to maintain large, multi-qubit, coherent quantum states for
a long enough time to complete any quantum algorithm was un-
realistic [8]

On the most basic level, a set of Majorana-carrying vortices or
domain walls non-locally encodes quantum information in the de-
generate ground-state space, enabling immediate applications for
long-lived ?topological quantum memory?. In the longer term
the prospect of manipulating that information in a manner that
avoids decoherence would constitute an important breakthrough
for quantum computation. This is made possible by the most
coveted manifestation of Majorana fermions: non-Abelian statis-
tics.
.
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.
Together these properties give rise to non-Abelian statistics of
vortices: if one performs sequential exchanges, the final state de-
pends on the order in which they are carried out. [9]

5 Topologicaly nontrivial DC-SQUID

Topological nontrivial SQUID, is a SQUID with topologically nontrivial el-
ement (junctions or the superconducting loop). In such devices, Majorana
Fermios (MF) are predicted to exist. this existence of MF changes the su-
percurrent to be Is = Ic sin(φ/2).
Also the flux quantization eqn. 5 will change to:

ϕ1

γj1
− ϕ2

γj2
+

2π

γl

Φt
Φ0

= 2πn (22)

where γj1,γj2 and γl are related to the charge carrier q = 2e
γ

in the junctions
and the loop respectively.
The total flux of the system is given by:

Φt = Φe + IcL(χ1 − χ2) (23)

where

χi = αi sin(ϕi) + (1− αi) sin(αi/2) (24)

The current using the RCSJ model, in normalized form:

i1 = βc
d2ϕ1

dt2
+
dϕ1

dt
+ χ1 (25)

i2 = βc
d2ϕ2

dt2
+
dϕ2

dt
+ χ2 (26)

the total current pass through the dc-SQUID:

i = 2βc
d2ϕ2

dt2
+ 2

dϕ2

dt
+ χ1 + χ2 (27)

the flux quantization eqn. 22 can be written as:

ϕ1

γj1
− ϕ2

γj2
+

1

γl
(2πΦe + βL(χ1 − χ2)) = 2πn (28)
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we solve the following system of equations

If βL = 0

V̇1 =
1

βc
(
1

2
(I−α1 sin(ϕ1)−(1−α1) sin(

ϕ1

2
)−α2 sin(ϕ2)−(1−α2) sin(

ϕ2

2
))−V1)

ϕ̇1 = V1

ϕ2 = γj2
[ ϕ1

γj1
+ 2π(

Φe
γl
− n)

]
(29)

If βL 6= 0

V̇1 =
1

βc
(
1

2
I−α1 sin(ϕ1)−(1−α1) sin(

ϕ1

2
)+

γl
βL

(2πn−ϕ1 − ϕ2

γj
−2π

Φe
γl

)−V1)

ϕ̇1 = V1

V̇2 =
1

βc
(
1

2
I−α2 sin(ϕ2)−(1−α2) sin(

ϕ2

2
)+

γl
βL

(2πn−ϕ1 − ϕ2

γj
−2π

Φe
γl

)−V2)

ϕ̇2 = V2

5.1 S-state

Critical current If βL = 0, the flux quantization can be written as (n =
0): α1 = α2

ϕ1

γj1
− ϕ2

γj2
=

2π

γl

Φe
Φ0

(30)

The super-current is

Is = Ic(α1 sin(ϕ1) + (1− α1) sin(ϕ1/2))

+Ic(α2 sin(ϕ2) + (1− α2) sin(ϕ2/2)) (31)

Assuming that the loop is trivial and the junctions are topologically nontrivial
(γl = 1, α1 = α2 = 0 and γj1 = γj2 = 2 ) ,the super-current is:

Is = Ic(sin(ϕ1/2)) + sin(ϕ2/2)) (32)

Is = 2Ic sin(
ϕ1 + ϕ2

4
) cos(

ϕ1 − ϕ2

4
) (33)

using ϕ1+ϕ2

4
= ϕ1

2
− ϕ1−ϕ2

4
and ϕ1−ϕ2

2
= 2π Φt

Φ0

Is = 2Ic sin(
ϕ1

2
− π Φt

Φ0

) cos(π
Φt
Φ0

) (34)
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then the dc-SQUID critical current is

Ic,NT−SQUID = Ims = 2Ic| cos(π
Φt
Φ0

)| (35)

Φ
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Figure 6: Critical current dependence on the external magnetic flux, βL = 0,
by changing the portion of Majorana fermions to cooper-pairs α from 0to1
by increment of δα = 0.1

Otherwise, the maximum of Is can be found by differentiating eqn. 31 with
respect to ϕ1, then find the zeros numerically..
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Figure 7: I Φ characteristics of a dc SQUID composed of a topologically non-
trivial superconducting ring and nontrivial junctions. (a) dc SQUID oscilla-
tions for two symmetric junctions with equal amplitude sin(φ) and sin(φ/2)
components, α = 0.5. Increasing βL (in steps δβL = 0.5, and shifted for
clarity)

5.2 Voltage state

the time-averaged voltage versus the applied flux for different values of the
bias current.
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Figure 8: V (Φe) characteristics for nontrivial dc-SQUID

Figure 8 shows the voltage flux dependency for a nontrivial dc-SQUID ,
α = 0.5, our results is compared to [5]

6 dc-SQUID with IJJ

The flux quantization is

N1∑
1

ψm
νj
−

N2∑
1

ϕk
νj

+ 2π(
Φe
γl
− n) =

βL
2

(I2 − I1) (36)

I1 = βc
∂Um
∂t

+
∂ψm
∂t

+ χm (37)

I2 = βc
∂Vk
∂t

+
∂ϕk
∂t

+ ρk (38)

I = I1 + I2 (39)

∂ψm
∂t

= Um + α(Um+1 + Um−1 − 2Um) (40)

∂ϕk
∂t

= Vk + α(Vk+1 + Vk−1 − 2Vk) (41)
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∂ψm
∂t

= Um + α(Um+1 + Um−1 − 2Um)

∂ϕk
∂t

= Vk + α(Vk+1 + Vk−1 − 2Vk)

∂Um
∂t

=
1

βc

[I
2
− 1

βL
{ 1

νj
(

N1∑
1

ψm −
N2∑
1

ϕk) + 2π(
Φe
γl
− n)} − ∂ψm

∂t
− χm

]
∂Vk
∂t

=
1

βc

[I
2

+
1

βL
{ 1

νj
(

N1∑
1

ψm −
N2∑
1

ϕk) + 2π(
Φe
γl
− n)} − ∂ϕm

∂t
− ρm

]

6.1 Preliminary results

c = p, Ti = 50, Tf = 1000, JP0 = 0.005, TP = 0.05, I0 = 0.1, Imore1 =
0.2, Imore2 = 3, noismax = 10−8,
βc = 25, βL = 1, α = 0.1, γ = 1
νj = 1, νl = 1, ε = 1, n = 0, Φe = 0,

12



I

V

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
N

1
=1, N

2
=3 , β

l
=0.1, β

c
=25, Φ

e
=0

I

V

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
N

1
=1, N

2
=3 , β

l
=1, β

c
=25, Φ

e
=0

I

V

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5
N

1
=3, N

2
=3 , β

l
=0.01, β

c
=25, Φ

e
=0

I

V

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5
N

1
=3, N

2
=3 , β

l
=1, β

c
=25, Φ

e
=0

Figure 9: CVC of dc-SQUIDs with IJJ
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