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Disclination vortices in elastic media
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Abstract. The vortex-like solutions are studied within the framework of the gauge model of
disclinations in an elastic continuum. A complete set of model equations with disclination-driven
dislocations taken into account is considered. Within the linear approximation an exact solution for
a low-angle wedge disclination is found to be independent of the coupling constants of the theory.
As a result, no additional dimensional characteristics (such as the core radius of the defect) are
involved. The situation changes drastically for 2ortices, where two characteristic lengths,
andly, become of importance. The asymptotic behaviour of the solutions for both singular and
non-singular 2 vortices is studied. Forces between pairs of vortices are calculated.
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1. Introduction

Topologically non-trivial objects arising in various physically interesting systems are the
subject of considerable current interest. It will suffice to mention the 't Hooft—Polyakov
monopole in the non-Abelian Higgs model, instantons in quantum chromodynamics, solitons
in the Skyrme model, Nielsen—Olesen magnetic vortices in the Abelian Higgs model, etc
(see, e.g., the book [1]). Note that similar objects are known in condensed matter physics as
well. Forinstance, vortices in liquids and liquid crystals, solitons in low-dimensional systems
(e.g. in magnetics, linear polymers and organic molecules) as well as the famous Abrikosov
magnetic vortices in superconductors are the matter of common knowledge. Mathematically,
all these objects appear within the framework of nonlinear models as partial solutions of
strongly nonlinear equations. As is well known, there are still no general methods to study
such equations. This makes the derivation of the solutions difficult. Animportant pointis also
that all the solutions are topologically stable and belong to non-trivial homotopic sectors.

It should be noted that elastic media also leave room for topological defects known as
dislocations and disclinations. However, these defects are usually treated within the linear
theory of elasticity. In this case, all the information about defects is incorporated via source
terms in the equilibrium condition. The sources are assumed to haviirection form
multiplied by either the Burgers or the Frank vector, respectively (see, e.g., [2]). There were
some attempts to invoke the nonlinear theory of elasticity for a description of dislocations
(see details in [3]) which account for the nonlinear relation between stresses and strains, thus
giving a possibility to determine stress and strain fields near a dislocation at large deformations.
Recently [4], nonlinear problems in dislocation theory were studied within the framework of
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the gauge model of dislocations and disclinations proposed in [5, 6]. Unfortunately, all of
these approaches [3, 4] are based on the perturbation scheme. It is known, however, that
topologically non-trivial solutions cannot be found within the framework of any perturbation
scheme.

As has been shown in [7-10], the gauge model [5] admits exact vortex-like solutions
for wedge disclinations. This finding confirms the view of a disclination as a vortex of the
elastic medium. Note that though the correspondence between dislocations and vortices has
been known for many years (see, e.g., the review [11]) the explicit vortex-like solutions for
disclinations were only obtained within the gauge-theory approach. It is interesting to note
that the elastic flux due to rotational defects was found to be completely determined by the
gauge vector fields associated with disclinations. In the continuum there are no restrictions on
the value of the flux which is in fact the Frank vectfx, Here we will consider two cases:
low-angle vortices withQ2| <« 1 and Zr vortices with|Q| = 2.

Before proceeding, let us mention that disclinations are ofimportance in various crystalline
and non-crystalline materials (see, e.g., [12]). Among the current applications one can hame
the new class of carbon materials: fullerenes and nanotubes (see, e.g., [13]). According to
Euler's theorem, these microcrystals can only be formed by having a total disclination of
47r. According to the geometry of the hexagonal network this means the presence ¢f 12 60
disclinations on the closed hexatic elastic surface. Note that the disclinations in liquid crystals
are one of the best-studied cases. In particular, the known exact ‘hedgehog’ solution has been
obtained within the continuum model of nematics [2].

It is interesting that a hedgehog-like solution was also found for a peairdidclination
within the framework of the gauge model [14, 15]. Animportant advantage of the gauge model
follows from the fact that it is similar to the known field theory models, first of all to the non-
Abelian and Abelian Higgs models, where topological objects are studied well. Taking into
accountthis similarity we have found two exact static solutions for linear disclinations [7, 9, 10]
which will be discussed in this paper. In particular, within the linear scheme our model recovers
the equilibrium conditions of the standard elasticity theory with a disclination-induced source
being generated by gauge fields. It should be noted, however, that these solutions were obtained
within the restricted model where the dislocation-induced contribution to the Lagrangian was
neglected. As a matter of fact, this contribution always exists (so-called disclination-driven
dislocations [5]). The goal of the present paper is to consider the most general model for linear
disclinations in an elastic continuum involving all the main contributions.

This paper is structured as follows. In section 2 the gauge model of disclinations is
presented. The Lagrangian describes elastic deformations and the self-energy of disclinations
as well as a contribution from the rotational dislocations. A complete set of field equations
is formulated for the static case. In section 3 the gauge model is studied within the linear
approximation. An exact vortex-like solution for a low-angle straight wedge disclination is
found to be independent of the coupling constants of the theory. Forces between vortices as
well as dipole configurations are studied. Topologically stables@rtices are considered in
section 4 as the solutions of strongly nonlinear equations of the theory. First, we consider an
exact singular solution and show that the dislocation-induced contribution becomes important.
Second, we analyse briefly a problem of the non-singular vortex. In particular, appropriate
asymptotic solutions are found. Section 5 is devoted to concluding comments.

2. Gauge model

In accordance with the basic assumption of the gauge approach [5], topological defects can
be introduced into the Lagrangian of the elasticity theory through gauge fields. Namely, the
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defect-free Lagrangian of elasticity theory is invariant under the homogeneous action of the
space grour = SO (3) > T'(3). Let us consider this group as the gauge one and assume that
the inhomogeneous action 6fleaves the initial Lagrangian invariant. In this case, we arrive

at a Yang-Mills-type theory which contains two different gauge fields associated with the
rotationalS O (3) and translational’ (3) group, respectively. The model is based on the Yang—
Mills minimal coupling arguments. While the initial Lagrangian is chosen to be quadratic in
distortion fields, the presence of gauge fields makes it strongly nonlineart. That is why the
nonlinear relation between stresses and strains occurs from the very beginning.

For disclinations and rotational dislocations, only $h@(3) group should be taken into
account. The problem becomes simpler for rectilinear defects, which are of interest here.
Indeed, in this case the rotational symmetry becomes broken only in the plane normal to the
defectline, and, correspondingly, the gauge group reducg8t8). Notice that such a gauge
group is typical for models containing vortex-like objects.

The Lagrangian that is invariant under the inhomogeneous action &f @&) gauge
group takes the following form [9]:

L=L,+Ly+ Ly 1)
where

Ly = 2poBLBL — L[A(tr E)? + 2utr E?] @)
describes the elastic properties of the material, while

Lo =~ DRk D], @
and

E = ~hsaFuns s Fu "

describe defect-induced contributions. Hefgz = BB, — 845 is the strain tensor,

D, = e; Fux!, Fu = 3,W, — 8, W,, s1 ands, are the coupling constants,Br= E,4 and
summation over repeated indices is assumed. In accordance with the minimal replacement
arguments, the distortion tensor is written as

Bl =5+ x'W, (5)

wherey!(x%) = x'(x*, T) characterizes the configuration at tiffién terms of the coordinate
cover(x*) of a reference configurationy, is the compensating gauge field associated with
the disclination field. In (3) the tenskft” is given byk48 = —§48 k33 = 1/y andk® = 0 for

a # b, whereasin (4348 = —§48, g% = 1/& andg® = Ofora # b. The parametersands

are the two positive ‘propagation parametesr'fb,ls a completely antisymmetric tensef, = 1,
andx andu are the Lard constants. (Indices b, c,...=1,2,3andA, B,C,...=1,2are
the space labels, whereag, k, ... = 1, 2 belong toS0O(2).)

Notice thatLy describes a self-energy of pure rotational defects (disclinations). In
accordance with the general approach it acquires a standard form §Ot® Yang—Mills
action. L, is an additional invariant term associated with translational defects (rotational
dislocations). This is reflected in the fact that the tenBfy in (3) is directly related to the
density of dislocations defined ad’ = €42 Di, . (see [5]). Thus the appearance of this term
in the Lagrangian reflects the known fact in the defect theory that the presence of disclinations
implies the presence of dislocations.

T The cubic terms can be included into the Lagrangian as well (see [6]), but in so doing the model becomes too
cumbersome for analysis.
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The Euler—Lagrange equations for (1) take the following form in the static case:
BAakA = e,{ Wcajc + 51 8 Fag FAP (6)

oasizelx' = 20p[(s2(x)? +52) F*4] (7
where(x)? = x'x;, I = 1, 2. To avoid cumbersome expressions we will sometimes omit the
right order of the top and bottom indices which can be easily restored by using the appropriate
§-symbols. The stress tensgf is determined to be

ol = 3[A(tr EYBL + 2u(Ecp Bp)). (8)
It is convenient to introduce the dimensionless variables wWia= ./s»/s1 % and

W, = /s1/s2 W4. The Euler—-Lagrange equations (6) and (7) become

52

a6 =€ WC&j‘C + L 36 FapFap ()]
1152
~jo izl ZSf 3 ~\2 FBA
o40ij€ X = s B+ DHF™T] (10)
2

wherex!(x8) = /s2/s1 5/ (iB), 05 = /51/52 05, Fag = 0, W5 — d5 W, and the stress tensor
is found to be

&' = 3L(tr E)B, + EacBY. (11)
HereL = A/u, and the strain tensor takes the form

Esp = B\Bl — 5,3 (12)

with By = 9,%' + €' 3/ W,. To simplify the notation, below we will omit the ‘tilde’ symbol.

As is seen, the self-consistent system of field equations (9) and (10) is strongly nonlinear. In
some respects (see the discussion in [7, 9]) it is similar to that in the Abelian Higgs model. An
analogous system of equations appears in the study of type-1l superconductors in a magnetic
field directed along the-axis. This observation was helpful in finding the exact vortex-like
solution to (9) and (10) fos; = 0 [7]. A possible way to study these equations is the
linearization procedure which is valid for low-angle defects. It was found [10] that there is
an exact vortex-like solution at = 0 which reproduces the known strain and stress fields of
straight wedge disclinations. Note that both solutions are found to be singular at the disclination
line. While this singularity is well known in dislocation theory, the question arises whether
there exist non-singular solutions. Besides, it turns out that fer O the coupling constan

drops out of the problem as well. Let us re-examine the vortex-like solutions within the most
general model.

3. Low-angle disclination vortices

Let us consider first the linearized equations of the model. The linearization procedure is based
on a homogeneous scaling of the gauge group generators (for details see [5]). It is clear that
in employing the linear approximation we restrict our consideration to small deformations or,
correspondingly, to the low-angle defects. The displacement vetian be introduced as
follows:

' (xB) =52xA +u' (xB). (13)
Then, with the scaling parameterll the fields are expanded in seriescof

ui:eu’i+ezui2+-~- Wa = eWip +€?Wop +---. (14)
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Taking into account only defect-induced displacemeftthat are of interest here, we obtain
the first-order equations in the following form:

dp[(x2+y?+ DFE4 =0 (15)
2

Au+(L+D)Vdivu = j + oL FuzFAB (16)
s2

where the density of the elastic flow due to a disclinatjgiis completely determined by gauge
fields

Jc=—(L —1DeacWa — LeapxpdcWa — €spxpdaWe — €cpxpdaWy. a7

Hereafter we omit the index 1 denoting the order of the approximation. Let us emphasize that
here we assume/us; ~ 1/¢. For the other two possibilities? /sy ~ € ands?/us, ~ 1,

terms withsy in (15) and (16) are of little importance, thus the standard theory [10] is recovered.
Note that fors; = 0 a solution of these equations was found in [10]. An interesting property
of this solution is its independence of the parameters well. This can be seen directly from

(15) and (16) where, is completely absent. Let us choose the following vortex-like ansatz:

Wi = —W(r)eapdslogr u' =x'G(r) (18)
wherer? = x? + y2. With (18) taken into account one can rewrite (15) and (16) as follows:
|:(r sy (r)} -0 (19)
(L+2) (G”(r) . 3G (r)> _r Wir) 2W2(r) 2sl (W (r)) 20)
r r r US2 r

whereG'’ stands for d@;/dr and W’ for dW/dr. A solution to (19) takes the form

W(r) = C1In(r? + 1) + Co (21)
with Co andC; being the integration constants. Note that a disclination flow through the plane
xy is given by a circular integral

iﬂ % Wdr = v. (22)

Taking this into account, we immediately obtain tidat= 0. Thus the constard, turns out
to be, in fact, atopological characteristic of the defect, thatis the Frank indesr W (r) = v
(20) becomes remarkably simpler and has a solution

G@r)=— Inr — 2Cor 2+ Ca. (23)

Vv
L+2
Since the boundary condition requiregg0) = 0 we must putC, = 0. Returning to the
dimensional variables, we finally obtain

i i v /51
u' = x<L+2|n s2r+C3> (24)

whereCjy is still an arbitrary constant. As is seen, the term witlands, only renormalizes
the constanCs. As an example, for the straight wedge disclination on a disc of ratliwgh
a boundary condition in the formi (R) = 0 one obtains

Vv r

= x'—|n—. 25
" L+2 R (25)
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Similarly, for the most-used boundary condition,n, = 0 at the free surfaces, one can
reproduce the well known stress fields for a wedge disclination on a disc (see details in [10]).
It is seen that parametess and s, actually drop out from (24) and (25). Thus one can
conclude that the information carried by the coupling constanends, is lost within the

linear approximation. What does this mean? As is known, the classical theory of elasticity
introduces a characteristic velocityut/po, but does not lead to a characteristic length. For
this reason there is no room within the linear theory of elasticity for a description of the core
region. It is interesting that the gauge theory of defects [5, 6] introduces appropriate length
scales. These are the dislocation length sdéle; 51/, and the disclination length scale,

I3, = s2/1. Nevertheless, as we have just seen, in the linear approximation the gauge theory
loses these parameters thus making the description of the core region impossible. One can
expectt, however, that these parameters would be of importance in a study of the basic model
equations (6) and (7). We will consider this problem in section 4.

3.1. Forces between vortices, dipole configurations

Let us consider two low-angle vortices with parallel Frank vectors oriented alongdkis.

This corresponds to a pair of straight wedge disclinations. For simplicity, we suppose that
disclination lines coincide with their axes of rotations. The stress field due to the disclination
results in the force acting on the second defect (in perfect analogy to the known Peach—
Koehler force in dislocation theory). Generally, it can be written as [16] (per unit length of the
disclination line)

Fe = Ebkcfamngszvno-ab'S;:k (26)

whereg is a tangent vector at the disclination lire, are the components of the Frank vector,

X, = x, — x0, andx? is a point on the axis of the disclination. In our cagg~= 0 and one

has to put in (26 = 3 andm = 3. Note that the same expression follows from the general
equations of the gauge model [5, 6] in the linear approximation. As was shown above, the
stress fields take the well known form in the linear theory. Evidently, the force between two
parallel low-angle wedge disclinations also has the known form. For example, when the first
vortex is situated at the point,(0) while the second one is at poimt, ©) on thexy-plane we
obtain from (26)

Fy =dQoy, Fy = —dQoy, 27)

in accordance with [16]. Note that for vortices with equal but oppositely directed Frank
vectors such a configuration corresponds to a wedge disclination dipole with non-skew axes
of rotation. It is interesting to reproduce the solution for the dipole within the gauge model.
Since the previous analysis shows that the constanémd s, are inessential in the linear
approximation, we will drop terms witky and putW (») = v from the beginning. A dipole
solution to (15) then reads

Wp = —vepcac(logry — logry). (28)

The simplest way to solve (16) is via the Airy stress function. Namely, let us differentiate (16).
After straightforward calculations one can rewrite this equation as

(A/4M+%)AtrE:eA38AWB. (29)

T We would like to thank Professé M Kosevich for attracting our attention to this possibility.
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The last term in the right-hand side of (29) describes a source due to disclination fields. For
solution (28) it takes the form

EABaAWB = UA('Ogrl — |Og}’2) = 27'[])(8(}_"1) — 5(72))

Introducing the Airy stress function(¥) by o4 = egmeandudy x (7), one can finally rewrite
(29) as

KotA%x = 27v(8(F1) — 8(72)). (30)

HereKo = 4u( + 1)/ (A + 2u), and trE = (1/(A + u)) A x (¥). Evidently, a solution to (30)
isthe sumy = x1 + xo with y; = Arl?ln r; (i = 1, 2). One can easily find that = +vKy/4.
Finally, turning back terz 4 one can exactly reproduce the known stress fields for disclination
dipoles (cf, e.g., [12, 17]).

4. 2r disclination vortices

Let us choose the following ansatz for (6) and (7) to meet the necessary symmetry requirements
x1(x*) = F(r) cost x2(x*) = F(r)sing (31)
and
A y A X
Wi (x?) = —r—zW(r) Wy(x?) = ﬁW(r) (32)
where r> = x%x, (r,0 are the polar coordinates). All the variables here are again
dimensionless. We restrict ourselves by the topological sector with 1. As is seen,

(31) and (32) describe ar2vortex, that is the circular integral in (22) is equabte= 1. With
(31) and (32) taken into account (9) and (10) reduce to

— 2
4£2W12= W—lf[K(82+f2—2)+2P(f2—1)]+K[dg(f2g)+ﬁ]
r r - p
+[3(K +2P)g'g? — 2K + P)g] + %[(K”P)ga 2K + Pg] (33)

whereK = Asp/s?, P = usp/s?, g = dF(r)/dr, f = F(r)(L— W(r))/r, W = dW(r)/dr.
This system of equations is our interest in this section. We will consider two possible cases.

4.1. Singular vortex

Inthe case of; = 0 an exact solution to (33) and (34) for a static disclination vortex was found
in [7,8]. The solution is singular on the disclination line with(r) = 1. It is interesting to
note that the same solution is valid for the general case whenO. Indeed, foW (r) = 1

one obtainsf = 0. In such an event, both sides of (34) turn out to be zero, whereas (33)
reduces to

1
(3¢'¢* — Ngg') + ~(¢* = Ngg) =0 (35)

whereNZ = 2(K + P)/(K +2P) = 2( + 1)/ (» + 2u). Carrying out an integration in (35)
one obtains finally the algebraic equation

C
183r) — N3g(r)| = 70 (36)
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where Cy is an arbitrary integration constant. The solution to (36) is writtez@3 =
(2/+/3)Nog (r) with

g(r) = coshf, cosiT*(ro/1)] r

<70
go(r) = — COS[% cos Y(ro/r) + %nl] r>=ro

g(r) = (37)

whererg = 3«/§C0/2N§ is a characteristic parameter, adng 0, 1, 2. Note that in the natural
variablesrg becomes dimensional. It was supposed in [7] thatould be considered as a
core radius of the defect. Indeed, according to (37) the poiatrg is prominent. It should

be mentioned, however, that this attractive possibility for the description of the core radius
requires an involvement of the additional phenomenological paraniigtento the theory. At

the same time, the model parametgrands, drop out of (35) and (37).

The main reason is that the chosen angétz) = 1 (the pure gauge for aH) is too
restrictive. Obviously, any solutions with no constdintr) are of special interest. However,
equations (33) and (34) look rather cumbersome, and a search for non-trivial exact solutions
still remains an open problem. Let us try another way of looking at the problem. For this
purpose, one can pud; = 0 in (37). The exact solution to (35) then takes the essentially
simpler form

W) =1 Fi2(r) = +Nor F3(r) = 0. (38)

As a first step, let us consider small perturbations of the exact solution (38). It will be shown
below that even this simplified consideration allows us to obtain important information about
the role of the coupling constantsands, in the theory. Let us write

F(r) = Nor + euy(r) + ezug(r) +... (39)
Wr)=1—ecwi(r)+---. (40)

We consider here the cagdr) = F1(r). Substituting this expansion into (33) and (34) one
obtains

(% + Ngr)w’l’(r) + (Ng - r—lz)w'l(r) - gNérwl(r) =0 (41)

No (w))? N w? KN
(K+P) r 2 K+2P
It should be noted that; = 0. This follows from the requiremerfi(r) — 0 atr — 0. Let
us analyse (41). As is known, the equation of the tyger H (x)w’ + QO (x)w = 0 can be put
into the formz” + I (x)z = 0 by a substitution

w(x) = z(x) exp(—% / H(x) dx)

wherel = —3H' — H?+ Q. For (41)

" 1 ’ /
uy(r) + ;uz(r) = wiw]. (42)

NEr?—1
r(Ngr2 +1)

In this case, the general solution is not yet known. Instead, let us derive two limiting cases.

PNgr?

Q(r) =— (43)

1. Inthe limit N3~ >> 1 one obtaing? (r) = 1/r, andw,(r) = z(r)/+/r. The equation for
z(r) takes the form

2
7'(r) = (PNO - 1+2P>z(r). (44)

2 4r2
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This is a special form of the Whittaker equation with the solution
z(r) = CiWom (Br) (45)

where(; is a constantWy ,, is the Whittaker functioryy = +i/P/2, andg = Nov 2P.
In this caseW (r) is found to be

W) =1—Cr Y2Wo,.(Br). (46)

Note thatC; includese. Depending org two asymptotics can be obtained.
(i) For Br > 1 one obtains

Wr)=1- Cirt exp( ,Br) 47
and
1
F(r) = Nor + ClmN exp(—pBr). (48)

(i) In the limit Br < 1 one has

W) =1-C cos(\/;P In(6r)) (49)

F(r)= —N0(2 C ). (50)

. Let us consider the limivZr? < 1. In this caseH (r) = —1/r andwi(r) = /7z(r).
The equation for(r) reads

and

" 3
z (r)=(42+EN >z(r) (51)
with a solution in the form
sinh(y2r2
2(r) = 2C; sinfzy™r) (52)
N4
wherey? = N2/P/8. Thus,
2C,
W(r) =1— —sinh(2y?%? (53)
vroo?
Two limiting cases are of interest.
(i) Fory?r?2>> 1 one obtains
W(r) = \/_ 27/ %r?) (54)
and
o 2..2\n
_ 2.3 (yre) 1
F(r) = Nor + Q1C?r ;o T 3 (55)
where2; = Noy (v/2P — K)/(K +2P).
(ii) If y%r? « 1 we obtain
W) =1—Cyy¥2r? (56)
and
423 NO /3
F(r) = Nor + 5C5y . (57)

K+P
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For a better understanding of the obtained results let us return to the dimensional variables. It
is interesting that both characteristic lengths of the theory turn out to be involved. Namely,
the dimensionat readsr = 4/s2/s1 7, and the important parametetsandy are determined
viav/P = lﬁ,/lj. In [6] three physically interesting limits were discussed. In particular, in
accordance with [6] the typical condition which is valid in crystals and polycrystalsis I,

in some polycrystals and amorphous bodigs~ ,, while the most exotic limit which can

be expected in some special amorphous materidlg ik I5. Our consideration shows that
vortex-like solutions have different asymptotics in each case. l\Fo»> Iy, Iy ~ Iy and

lw < Iy they follow (1(i), 2(i)), (1(i), 2(ii)) and (1(ii), 2(ii)), respectively (see above). In
accordance with (11) and (12) this results in different asymptotic behaviour of strains and
stresses due to disclinations thus giving a possibility for the experimental verification. On the
other hand, the obtained results indicate that the proper information about the core region, if
any, can be obtained only within the framework of the complete gauge model which should
include rotational dislocations.

4.2. Non-singula@r vortex

Let us discuss briefly a possibility for a non-singular solution in (31) and (32) which provides
a finite energy of the vortex. This means that the condiior) — O for r — 0 should be
satisfied. A simple analysis of (33) and (34) shows that there is an asymptotic solution at small
r in the form

W) ~r® F(r) ~ar® (58)
wherep = 1, @ = 2 anda is an arbitrary constant with the only restriction# 1 following
from (34). Note that this resembles the behaviour of the Abrikosov—Nielsen—Olesen vortex.
For larger, the asymptotics found in the previous subsection are valid. To prove the existence

of the solution for any the numerical calculations of variations in the energy density which
has the following form:

F2 2 F4 F2
E(r) = A|:F/2 +— (1= W) - 2} + ZM[F“‘ +— (1= W)?—2F?-2—(1-W)*+ 2}
r r r

2 7\ 2
+3 |:(F2 + 1)<K) } (59)
S2 r

whereF’ = dF/dr andW’ = dW /dr must be used. This study will give a final answer about
whether the above asymptotics come from the unique solution or not. The corresponding
calculations are now in progress.

4.3. Forces

Let us discuss briefly the force between twe 2ortices. In accordance with the classical
formula (26) one obtains

Fa=Qf[Mg?+ 2= 2) +2u(f? — D]xa. (60)
Thus the force turns out to be exactly zero for the soluto@) = 1,F(r) = Nor, that is

in the case of 2 singular vortices. Assuming a small perturbation of this exact solution we
obtain the following asymptotics.

1. ForNgrzsl/Sz >1

—1/2
:FA = —2MN§C]Q<F s_:L) WO,m <IB S_1r>xA (61)
\l §2 §2
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2. For N()’ s1/s0 K 1
J A — _4}LNOC Q— S|nh )4 _S / XA (62)
’ '\/7 S2 '

Itisimportarito notetha inthestrict sengwehaveto usethegeneraexpressiosfor theforces
given by the gauge modé (ses [5, 6]). The= calculationshowever, are too cumbersoraand
will be omitted here Note only tha the main conclusiors agree very closely with (60)—(62).

5. Conclusion

Inthis pape we have studied the vortex-lik e solutiors for disclinatiors within themog general
gaug modd of rotationd defecs when both disclinatiors and rotationd dislocatiors are taken
into account The modé contairs two additiond parameterscoupling constant s; and so,
which allow us to introduce two characterist lengths /, ard Iy,. The appearaneof these
lengtts is the unique propery of the gauge modé tha distinguishs it from the classical
elasticiy theoly aswell asfrom othe known modek of the elastt continuum with topological
defects.

Thete are two distincive features of the vorticesin elastt media First, the elastt flux is
‘classical in its origin, i.e. there is no quantizatio as opposéd to the magnett vortex. This
mears tha generaly ther are no restrictiors on the value of v in (22) apat fromv > —1 for
topologicad reasons However, if we take into accoun the symmety grouwp of the underlying
crystd lattice the available values of v becone 'quantized in accordane with this group
(e.gv =1, 3 1 ... for ahexagonalattice) Secondthe singula characteof the solution
on the defed line is typicd for the dislocation theor. As aresult all the known solutions
for dislocatiors contan a logarithmic divergen in the enegy. To awoid this difficulty, one
introduces acut-df from below by using ro as acore radius of the defect The core region
itself isassumd to be beyond the scope of the linear theoly of elasticily. For thisreasonany
non-singula solution will be of essentikinterest.

Finally, let us note tha a similar problam appeas for point 47 disclinations In this
casethe gauge grow S O (3) shoutl be consideredWe exped that the inclusion of rotational
dislocatiors wil | clarify the role of the characteristi lengtts aswell as the problem of the core
region in this case This study is now in progress.
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