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Abstract. The vortex-like solutions are studied within the framework of the gauge model of
disclinations in an elastic continuum. A complete set of model equations with disclination-driven
dislocations taken into account is considered. Within the linear approximation an exact solution for
a low-angle wedge disclination is found to be independent of the coupling constants of the theory.
As a result, no additional dimensional characteristics (such as the core radius of the defect) are
involved. The situation changes drastically for 2π vortices, where two characteristic lengths,lφ
andlW , become of importance. The asymptotic behaviour of the solutions for both singular and
non-singular 2π vortices is studied. Forces between pairs of vortices are calculated.

AMS classification scheme numbers: 35Q72, 73C50, 81T13

1. Introduction

Topologically non-trivial objects arising in various physically interesting systems are the
subject of considerable current interest. It will suffice to mention the ’t Hooft–Polyakov
monopole in the non-Abelian Higgs model, instantons in quantum chromodynamics, solitons
in the Skyrme model, Nielsen–Olesen magnetic vortices in the Abelian Higgs model, etc
(see, e.g., the book [1]). Note that similar objects are known in condensed matter physics as
well. For instance, vortices in liquids and liquid crystals, solitons in low-dimensional systems
(e.g. in magnetics, linear polymers and organic molecules) as well as the famous Abrikosov
magnetic vortices in superconductors are the matter of common knowledge. Mathematically,
all these objects appear within the framework of nonlinear models as partial solutions of
strongly nonlinear equations. As is well known, there are still no general methods to study
such equations. This makes the derivation of the solutions difficult. An important point is also
that all the solutions are topologically stable and belong to non-trivial homotopic sectors.

It should be noted that elastic media also leave room for topological defects known as
dislocations and disclinations. However, these defects are usually treated within the linear
theory of elasticity. In this case, all the information about defects is incorporated via source
terms in the equilibrium condition. The sources are assumed to have aδ-function form
multiplied by either the Burgers or the Frank vector, respectively (see, e.g., [2]). There were
some attempts to invoke the nonlinear theory of elasticity for a description of dislocations
(see details in [3]) which account for the nonlinear relation between stresses and strains, thus
giving a possibility to determine stress and strain fields near a dislocation at large deformations.
Recently [4], nonlinear problems in dislocation theory were studied within the framework of
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the gauge model of dislocations and disclinations proposed in [5, 6]. Unfortunately, all of
these approaches [3, 4] are based on the perturbation scheme. It is known, however, that
topologically non-trivial solutions cannot be found within the framework of any perturbation
scheme.

As has been shown in [7–10], the gauge model [5] admits exact vortex-like solutions
for wedge disclinations. This finding confirms the view of a disclination as a vortex of the
elastic medium. Note that though the correspondence between dislocations and vortices has
been known for many years (see, e.g., the review [11]) the explicit vortex-like solutions for
disclinations were only obtained within the gauge-theory approach. It is interesting to note
that the elastic flux due to rotational defects was found to be completely determined by the
gauge vector fields associated with disclinations. In the continuum there are no restrictions on
the value of the flux which is in fact the Frank vector,Ω. Here we will consider two cases:
low-angle vortices with|Ω| � 1 and 2π vortices with|Ω| = 2π .

Before proceeding, let us mention that disclinations are of importance in various crystalline
and non-crystalline materials (see, e.g., [12]). Among the current applications one can name
the new class of carbon materials: fullerenes and nanotubes (see, e.g., [13]). According to
Euler’s theorem, these microcrystals can only be formed by having a total disclination of
4π . According to the geometry of the hexagonal network this means the presence of 12 60◦

disclinations on the closed hexatic elastic surface. Note that the disclinations in liquid crystals
are one of the best-studied cases. In particular, the known exact ‘hedgehog’ solution has been
obtained within the continuum model of nematics [2].

It is interesting that a hedgehog-like solution was also found for a point 4π disclination
within the framework of the gauge model [14, 15]. An important advantage of the gauge model
follows from the fact that it is similar to the known field theory models, first of all to the non-
Abelian and Abelian Higgs models, where topological objects are studied well. Taking into
account this similarity we have found two exact static solutions for linear disclinations [7, 9, 10]
which will be discussed in this paper. In particular, within the linear scheme our model recovers
the equilibrium conditions of the standard elasticity theory with a disclination-induced source
being generated by gauge fields. It should be noted, however, that these solutions were obtained
within the restricted model where the dislocation-induced contribution to the Lagrangian was
neglected. As a matter of fact, this contribution always exists (so-called disclination-driven
dislocations [5]). The goal of the present paper is to consider the most general model for linear
disclinations in an elastic continuum involving all the main contributions.

This paper is structured as follows. In section 2 the gauge model of disclinations is
presented. The Lagrangian describes elastic deformations and the self-energy of disclinations
as well as a contribution from the rotational dislocations. A complete set of field equations
is formulated for the static case. In section 3 the gauge model is studied within the linear
approximation. An exact vortex-like solution for a low-angle straight wedge disclination is
found to be independent of the coupling constants of the theory. Forces between vortices as
well as dipole configurations are studied. Topologically stable 2π vortices are considered in
section 4 as the solutions of strongly nonlinear equations of the theory. First, we consider an
exact singular solution and show that the dislocation-induced contribution becomes important.
Second, we analyse briefly a problem of the non-singular vortex. In particular, appropriate
asymptotic solutions are found. Section 5 is devoted to concluding comments.

2. Gauge model

In accordance with the basic assumption of the gauge approach [5], topological defects can
be introduced into the Lagrangian of the elasticity theory through gauge fields. Namely, the
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defect-free Lagrangian of elasticity theory is invariant under the homogeneous action of the
space groupG = SO(3) F T (3). Let us consider this group as the gauge one and assume that
the inhomogeneous action ofG leaves the initial Lagrangian invariant. In this case, we arrive
at a Yang–Mills-type theory which contains two different gauge fields associated with the
rotationalSO(3) and translationalT (3) group, respectively. The model is based on the Yang–
Mills minimal coupling arguments. While the initial Lagrangian is chosen to be quadratic in
distortion fields, the presence of gauge fields makes it strongly nonlinear†. That is why the
nonlinear relation between stresses and strains occurs from the very beginning.

For disclinations and rotational dislocations, only theSO(3) group should be taken into
account. The problem becomes simpler for rectilinear defects, which are of interest here.
Indeed, in this case the rotational symmetry becomes broken only in the plane normal to the
defect line, and, correspondingly, the gauge group reduces toSO(2). Notice that such a gauge
group is typical for models containing vortex-like objects.

The Lagrangian that is invariant under the inhomogeneous action of theSO(2) gauge
group takes the following form [9]:

L = Lχ + Lφ + LW (1)

where

Lχ = 1
2ρ0B

i
3B

i
3− 1

8[λ(trE)2 + 2µ trE2] (2)

describes the elastic properties of the material, while

Lφ = − 1
2s1D

i
abk

ackbdDi
cd (3)

and

LW = − 1
2s2Fabg

acgbdFcd (4)

describe defect-induced contributions. HereEAB = BiAB
i
B − δAB is the strain tensor,

Di
ab = εijFabχj , Fab = ∂aWb − ∂bWa, s1 ands2 are the coupling constants, trE = EAA and

summation over repeated indices is assumed. In accordance with the minimal replacement
arguments, the distortion tensor is written as

Bia = ∂aχi + εijχ
jWa (5)

whereχi(xa) = χi(xA, T ) characterizes the configuration at timeT in terms of the coordinate
cover(xA) of a reference configuration,Wa is the compensating gauge field associated with
the disclination field. In (3) the tensorkab is given bykAB = −δAB , k33 = 1/y andkab = 0 for
a 6= b, whereas in (4)gAB = −δAB , g33 = 1/ξ andgab = 0 fora 6= b. The parametersy andξ
are the two positive ‘propagation parameters’,εij is a completely antisymmetric tensor,ε1

2 = 1,
andλ andµ are the Laḿe constants. (Indicesa, b, c, . . . = 1, 2, 3 andA,B,C, . . . = 1, 2 are
the space labels, whereasi, j, k, . . . = 1, 2 belong toSO(2).)

Notice thatLW describes a self-energy of pure rotational defects (disclinations). In
accordance with the general approach it acquires a standard form of theSO(2) Yang–Mills
action. Lφ is an additional invariant term associated with translational defects (rotational
dislocations). This is reflected in the fact that the tensorDi

ab in (3) is directly related to the
density of dislocations defined asαAi = εABCDi

BC (see [5]). Thus the appearance of this term
in the Lagrangian reflects the known fact in the defect theory that the presence of disclinations
implies the presence of dislocations.

† The cubic terms can be included into the Lagrangian as well (see [6]), but in so doing the model becomes too
cumbersome for analysis.
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The Euler–Lagrange equations for (1) take the following form in the static case:

∂Aσ
A
k = εjkWCσ

C
j + s1χ

lδlkFABF
AB (6)

σ
j

Aδij ε
i
l χ

l = 2∂B
[
(s1(χ)

2 + s2)F
BA
]

(7)

where(χ)2 = χlχl , l = 1, 2. To avoid cumbersome expressions we will sometimes omit the
right order of the top and bottom indices which can be easily restored by using the appropriate
δ-symbols. The stress tensorσ jC is determined to be

σ
j

C = 1
2[λ(trE)BjC + 2µ(ECBB

j

B)]. (8)

It is convenient to introduce the dimensionless variables viaxi = √s2/s1 x̃i and
WA =

√
s1/s2 W̃A. The Euler–Lagrange equations (6) and (7) become

∂̃Aσ̃
A
k = εjk W̃Cσ̃

C
j +

s2
1

µs2
χ̃ lδlkF̃ABF̃AB (9)

σ̃
j

Aδij ε
i
l χ̃

l = 2s2
1

µs2
∂̃B [((χ̃)2 + 1)F̃ BA] (10)

whereχl(xB) = √s2/s1 χ̃ l(x̃B), ∂B =
√
s1/s2 ∂̃B , F̃AB = ∂̃AW̃B− ∂̃BW̃A and the stress tensor

is found to be

σ̃ Aj = 1
2L(tr Ẽ)B̃

j

A + ẼACB̃
j

C. (11)

HereL = λ/µ, and the strain tensor takes the form

ẼAB = B̃iAB̃iB − δAB (12)

with B̃iA = ∂̃Aχ̃ i + εij χ̃
j W̃A. To simplify the notation, below we will omit the ‘tilde’ symbol.

As is seen, the self-consistent system of field equations (9) and (10) is strongly nonlinear. In
some respects (see the discussion in [7, 9]) it is similar to that in the Abelian Higgs model. An
analogous system of equations appears in the study of type-II superconductors in a magnetic
field directed along thez-axis. This observation was helpful in finding the exact vortex-like
solution to (9) and (10) fors1 = 0 [7]. A possible way to study these equations is the
linearization procedure which is valid for low-angle defects. It was found [10] that there is
an exact vortex-like solution ats1 = 0 which reproduces the known strain and stress fields of
straight wedge disclinations. Note that both solutions are found to be singular at the disclination
line. While this singularity is well known in dislocation theory, the question arises whether
there exist non-singular solutions. Besides, it turns out that fors1 = 0 the coupling constants2
drops out of the problem as well. Let us re-examine the vortex-like solutions within the most
general model.

3. Low-angle disclination vortices

Let us consider first the linearized equations of the model. The linearization procedure is based
on a homogeneous scaling of the gauge group generators (for details see [5]). It is clear that
in employing the linear approximation we restrict our consideration to small deformations or,
correspondingly, to the low-angle defects. The displacement vectorui can be introduced as
follows:

χi(xB) = δiAxA + ui(xB). (13)

Then, with the scaling parameterε all the fields are expanded in series ofε

ui = εui1 + ε2ui2 + · · · WA = εW1A + ε2W2A + · · · . (14)
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Taking into account only defect-induced displacementsui1 that are of interest here, we obtain
the first-order equations in the following form:

∂B [(x2 + y2 + 1)FBA] = 0 (15)

1u + (L + 1)∇ divu = j + x
s2
1

µs2
FABF

AB (16)

where the density of the elastic flow due to a disclination,j, is completely determined by gauge
fields

jC = −(L− 1)εACWA − LεABxB∂CWA − εABxB∂AWC − εCBxB∂AWA. (17)

Hereafter we omit the index 1 denoting the order of the approximation. Let us emphasize that
here we assumes2

1/µs2 ∼ 1/ε. For the other two possibilities,s2
1/µs2 ∼ ε ands2

1/µs2 ∼ 1,
terms withs1 in (15) and (16) are of little importance, thus the standard theory [10] is recovered.
Note that fors1 = 0 a solution of these equations was found in [10]. An interesting property
of this solution is its independence of the parameters2 as well. This can be seen directly from
(15) and (16) wheres2 is completely absent. Let us choose the following vortex-like ansatz:

WA = −W(r)εAB∂B logr ui = xiG(r) (18)

wherer2 = x2 + y2. With (18) taken into account one can rewrite (15) and (16) as follows:

∂r

[
(r2 + 1)

W ′(r)
r

]
= 0 (19)

(L + 2)

(
G′′(r) +

3G′(r)
r

)
= LW

′(r)
r
− 2W(r)

r2
+

2s2
1

µs2

(
W ′(r)
r

)2

(20)

whereG′ stands for dG/dr andW ′ for dW/dr. A solution to (19) takes the form

W(r) = C1 ln(r2 + 1) +C0 (21)

with C0 andC1 being the integration constants. Note that a disclination flow through the plane
xy is given by a circular integral

1

2π

∮
W dr = ν. (22)

Taking this into account, we immediately obtain thatC1 = 0. Thus the constantC0 turns out
to be, in fact, a topological characteristic of the defect, that is the Frank indexν. ForW(r) = ν
(20) becomes remarkably simpler and has a solution

G(r) = − ν

L + 2
ln r − 1

2C2r
−2 +C3. (23)

Since the boundary condition requiresui(0) = 0 we must putC2 = 0. Returning to the
dimensional variables, we finally obtain

ui = −xi
(

ν

L + 2
ln

√
s1

s2
r +C3

)
(24)

whereC3 is still an arbitrary constant. As is seen, the term withs1 ands2 only renormalizes
the constantC3. As an example, for the straight wedge disclination on a disc of radiusR with
a boundary condition in the formui(R) = 0 one obtains

ui = −xi ν

L + 2
ln
r

R
. (25)
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Similarly, for the most-used boundary condition,σklnl = 0 at the free surfaces, one can
reproduce the well known stress fields for a wedge disclination on a disc (see details in [10]).
It is seen that parameterss1 and s2 actually drop out from (24) and (25). Thus one can
conclude that the information carried by the coupling constantss1 ands2 is lost within the
linear approximation. What does this mean? As is known, the classical theory of elasticity
introduces a characteristic velocity

√
µ/ρ0, but does not lead to a characteristic length. For

this reason there is no room within the linear theory of elasticity for a description of the core
region. It is interesting that the gauge theory of defects [5, 6] introduces appropriate length
scales. These are the dislocation length scale,l2φ = s1/µ, and the disclination length scale,
l4W = s2/µ. Nevertheless, as we have just seen, in the linear approximation the gauge theory
loses these parameters thus making the description of the core region impossible. One can
expect†, however, that these parameters would be of importance in a study of the basic model
equations (6) and (7). We will consider this problem in section 4.

3.1. Forces between vortices, dipole configurations

Let us consider two low-angle vortices with parallel Frank vectors oriented along thez-axis.
This corresponds to a pair of straight wedge disclinations. For simplicity, we suppose that
disclination lines coincide with their axes of rotations. The stress field due to the disclination
results in the force acting on the second defect (in perfect analogy to the known Peach–
Koehler force in dislocation theory). Generally, it can be written as [16] (per unit length of the
disclination line)

Fc = εbkcεamn�mXnσabξk (26)

whereEξ is a tangent vector at the disclination line,�m are the components of the Frank vector,
Xn = xn − x0

n, andx0
n is a point on the axis of the disclination. In our case,x0

n = 0 and one
has to put in (26)k = 3 andm = 3. Note that the same expression follows from the general
equations of the gauge model [5, 6] in the linear approximation. As was shown above, the
stress fields take the well known form in the linear theory. Evidently, the force between two
parallel low-angle wedge disclinations also has the known form. For example, when the first
vortex is situated at the point (0, 0) while the second one is at point (d, 0) on thexy-plane we
obtain from (26)

Fx = d�σyy Fy = −d�σyx (27)

in accordance with [16]. Note that for vortices with equal but oppositely directed Frank
vectors such a configuration corresponds to a wedge disclination dipole with non-skew axes
of rotation. It is interesting to reproduce the solution for the dipole within the gauge model.
Since the previous analysis shows that the constantss1 and s2 are inessential in the linear
approximation, we will drop terms withs1 and putW(r) = ν from the beginning. A dipole
solution to (15) then reads

WB = −νεBC∂C(logr1− logr2). (28)

The simplest way to solve (16) is via the Airy stress function. Namely, let us differentiate (16).
After straightforward calculations one can rewrite this equation as(

λ/4µ + 1
2

)
1 trE = εAB∂AWB. (29)

† We would like to thank Professor A M Kosevich for attracting our attention to this possibility.
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The last term in the right-hand side of (29) describes a source due to disclination fields. For
solution (28) it takes the form

εAB∂AWB = ν1(logr1− logr2) = 2πν(δ(Er1)− δ(Er2)).
Introducing the Airy stress functionχ(Er) byσBA = εBMεAN∂M∂Nχ(Er), one can finally rewrite
(29) as

K−1
0 12χ = 2πν(δ(Er1)− δ(Er2)). (30)

HereK0 = 4µ(λ +µ)/(λ + 2µ), and trE = (1/(λ +µ))1χ(Er). Evidently, a solution to (30)
is the sumχ = χ1 +χ2 with χi = Ar2

i ln ri (i = 1, 2). One can easily find thatA = ±νK0/4.
Finally, turning back toσBA one can exactly reproduce the known stress fields for disclination
dipoles (cf, e.g., [12, 17]).

4. 2π disclination vortices

Let us choose the following ansatz for (6) and (7) to meet the necessary symmetry requirements

χ1(xA) = F(r) cosθ χ2(xA) = F(r) sinθ (31)

and

Wx(x
A) = − y

r2
W(r) Wy(x

A) = x

r2
W(r) (32)

where r2 = xAxA (r, θ are the polar coordinates). All the variables here are again
dimensionless. We restrict ourselves by the topological sector withn = 1. As is seen,
(31) and (32) describe a 2π vortex, that is the circular integral in (22) is equal toν = 1. With
(31) and (32) taken into account (9) and (10) reduce to

4
F

r2
W ′2 = W − 1

r
f
[
K(g2 + f 2 − 2) + 2P(f 2 − 1)

]
+K

[
d

dr
(f 2g) +

f 2g

r

]
+
[
3(K + 2P)g′g2 − 2(K + P)g′

]
+

1

r

[
(K + 2P)g3− 2(K + P)g

]
(33)

4
d

dr

[
(1 +F 2)

W ′

r

]
= Ff [K(f 2 + g2 − 2) + 2P(f 2 − 1)] (34)

whereK = λs2/s2
1, P = µs2/s2

1, g = dF(r)/dr, f = F(r)(1−W(r))/r,W ′ = dW(r)/dr.
This system of equations is our interest in this section. We will consider two possible cases.

4.1. Singular vortex

In the case ofs1 = 0 an exact solution to (33) and (34) for a static disclination vortex was found
in [7, 8]. The solution is singular on the disclination line withW(r) = 1. It is interesting to
note that the same solution is valid for the general case whens1 6= 0. Indeed, forW(r) = 1
one obtainsf = 0. In such an event, both sides of (34) turn out to be zero, whereas (33)
reduces to (

3g′g2 −N2
0g
′) +

1

r

(
g3−N2

0g
) = 0 (35)

whereN2
0 = 2(K + P)/(K + 2P) = 2(λ + µ)/(λ + 2µ). Carrying out an integration in (35)

one obtains finally the algebraic equation

|g3(r)−N2
0g(r)| =

C0

r
(36)
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whereC0 is an arbitrary integration constant. The solution to (36) is written asg(r) =
(2/
√

3)N0ḡ(r) with

ḡ(r) =
{
ḡ1(r) = cosh[13 cosh−1(r0/r)] r 6 r0
ḡ2(r) = − cos[13 cos−1(r0/r) + 2

3πl] r > r0
(37)

wherer0 = 3
√

3C0/2N3
0 is a characteristic parameter, andl = 0, 1, 2. Note that in the natural

variablesr0 becomes dimensional. It was supposed in [7] thatr0 could be considered as a
core radius of the defect. Indeed, according to (37) the pointr = r0 is prominent. It should
be mentioned, however, that this attractive possibility for the description of the core radius
requires an involvement of the additional phenomenological parameter,C0, into the theory. At
the same time, the model parameterss1 ands2 drop out of (35) and (37).

The main reason is that the chosen ansatzW(r) = 1 (the pure gauge for allr) is too
restrictive. Obviously, any solutions with no constantW(r) are of special interest. However,
equations (33) and (34) look rather cumbersome, and a search for non-trivial exact solutions
still remains an open problem. Let us try another way of looking at the problem. For this
purpose, one can putC0 = 0 in (37). The exact solution to (35) then takes the essentially
simpler form

W(r) = 1 F1,2(r) = ±N0r F3(r) = 0. (38)

As a first step, let us consider small perturbations of the exact solution (38). It will be shown
below that even this simplified consideration allows us to obtain important information about
the role of the coupling constantss1 ands2 in the theory. Let us write

F(r) = N0r + εu1(r) + ε2u2(r) + · · · (39)

W(r) = 1− εw1(r) + · · · . (40)

We consider here the caseF(r) = F1(r). Substituting this expansion into (33) and (34) one
obtains (

1

r
+N2

0r

)
w′′1(r) +

(
N2

0 −
1

r2

)
w′1(r)−

P

2
N4

0rw1(r) = 0 (41)

u′′2(r) +
1

r
u′2(r) =

N0

(K + P)

(w′1)
2

r
−N0

w2
1

2r
− KN0

K + 2P
w1w

′
1. (42)

It should be noted thatu1 = 0. This follows from the requirementF(r)→ 0 atr → 0. Let
us analyse (41). As is known, the equation of the typew′′ +H(x)w′ +Q(x)w = 0 can be put
into the formz′′ + I (x)z = 0 by a substitution

w(x) = z(x) exp

(
− 1

2

∫
H(x) dx

)
whereI = − 1

2H
′ − 1

4H
2 +Q. For (41)

H(r) = N2
0r

2 − 1

r
(
N2

0r
2 + 1

) Q(r) = − PN4
0r

2

2(N2
0r

2 + 1)
. (43)

In this case, the general solution is not yet known. Instead, let us derive two limiting cases.

1. In the limitN2
0r

2� 1 one obtainsH(r) = 1/r, andw1(r) = z(r)/
√
r. The equation for

z(r) takes the form

z′′(r) =
(
PN2

0

2
− 1 + 2P

4r2

)
z(r). (44)
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This is a special form of the Whittaker equation with the solution

z(r) = ClW0,m(βr) (45)

whereCl is a constant,W0,m is the Whittaker function,m = ±i
√
P/2, andβ = N0

√
2P .

In this case,W(r) is found to be

W(r) = 1− Clr−1/2W0,m(βr). (46)

Note thatCl includesε. Depending onβ two asymptotics can be obtained.

(i) For βr � 1 one obtains

W(r) = 1− Clr−1/2 exp(− 1
2βr) (47)

and

F(r) = N0r +C2
l

K

4(K + 2P)

1

N0r
exp(−βr). (48)

(ii) In the limit βr � 1 one has

W(r) = 1− Cl cos
(√

1
2P ln(βr)

)
(49)

and

F(r) = 1
2N0(2− C2

l )r. (50)

2. Let us consider the limitN2
0r

2 � 1. In this case,H(r) = −1/r andw1(r) =
√
rz(r).

The equation forz(r) reads

z′′(r) =
(

3

4r2
+
P

2
N4

0r
2

)
z(r) (51)

with a solution in the form

z(r) = 2Cs
sinh( 1

2γ
2r2)√

γ r
(52)

whereγ 2 = N2
0

√
P/8. Thus,

W(r) = 1− 2Cs√
γ

sinh( 1
2γ

2r2). (53)

Two limiting cases are of interest.

(i) For γ 2r2� 1 one obtains

W(r) = 1− Cs√
γ

exp( 1
2γ

2r2) (54)

and

F(r) = N0r +�1C
2
s r

3
∞∑
n=0

(γ 2r2)n

n!

1

(2n + 3)2
(55)

where�1 = N0γ (
√

2P −K)/(K + 2P).
(ii) If γ 2r2� 1 we obtain

W(r) = 1− Csγ 3/2r2 (56)

and

F(r) = N0r + 4
9C

2
s γ

3 N0

K + P
r3. (57)
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For a better understanding of the obtained results let us return to the dimensional variables. It
is interesting that both characteristic lengths of the theory turn out to be involved. Namely,
the dimensionalr readsr = √s2/s1 r̃, and the important parametersβ andγ are determined
via
√
P = l2W/l2φ . In [6] three physically interesting limits were discussed. In particular, in

accordance with [6] the typical condition which is valid in crystals and polycrystals islW � lφ ,
in some polycrystals and amorphous bodieslW ∼ lφ , while the most exotic limit which can
be expected in some special amorphous materials islW � lφ . Our consideration shows that
vortex-like solutions have different asymptotics in each case. ForlW � lφ, lW ∼ lφ and
lW � lφ they follow (1(i), 2(i)), (1(i), 2(ii)) and (1(ii), 2(ii)), respectively (see above). In
accordance with (11) and (12) this results in different asymptotic behaviour of strains and
stresses due to disclinations thus giving a possibility for the experimental verification. On the
other hand, the obtained results indicate that the proper information about the core region, if
any, can be obtained only within the framework of the complete gauge model which should
include rotational dislocations.

4.2. Non-singular2π vortex

Let us discuss briefly a possibility for a non-singular solution in (31) and (32) which provides
a finite energy of the vortex. This means that the conditionW(r)→ 0 for r → 0 should be
satisfied. A simple analysis of (33) and (34) shows that there is an asymptotic solution at small
r in the form

W(r) ∼ rα F (r) ∼ arµ (58)

whereµ = 1, α = 2 anda is an arbitrary constant with the only restrictiona 6= 1 following
from (34). Note that this resembles the behaviour of the Abrikosov–Nielsen–Olesen vortex.
For larger, the asymptotics found in the previous subsection are valid. To prove the existence
of the solution for anyr the numerical calculations of variations in the energy density which
has the following form:

E(r) = λ
[
F ′2 +

F 2

r2
(1−W)2 − 2

]2

+ 2µ

[
F ′4 +

F 4

r4
(1−W)2 − 2F ′2 − 2

F 2

r2
(1−W)2 + 2

]
+
s2

1

s2

[
(F 2 + 1)

(
W ′

r

)2]
(59)

whereF ′ = dF/dr andW ′ = dW/dr must be used. This study will give a final answer about
whether the above asymptotics come from the unique solution or not. The corresponding
calculations are now in progress.

4.3. Forces

Let us discuss briefly the force between two 2π vortices. In accordance with the classical
formula (26) one obtains

FA = �f
[
λ(g2 + f 2 − 2) + 2µ(f 2 − 1)

]
xA. (60)

Thus the force turns out to be exactly zero for the solutionW(r) = 1,F(r) = N0r, that is
in the case of 2π singular vortices. Assuming a small perturbation of this exact solution we
obtain the following asymptotics.

1. ForN2
0r

2s1/s2� 1

FA = −2µN2
0Cl�

(
r

√
s1

s2

)−1/2

W0,m

(
β

√
s1

s2
r

)
xA (61)
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2. For N2
0r

2s1/s2� 1

FA = −4µN2
0Cs�

1√
γ

sinh

(
γ 2 s1

s2
r2

)
xA.ψ (62)

It isimportant tonotethat in thestrict sensewehavetousethegeneral expressionsfor theforces
given by the gauge model (see [5, 6]). These calculations, however, are too cumbersome and
wil l beomitted here. Noteonly that themain conclusions agreevery closely with (60)–(62).

5. Conclusion

In thispaper wehavestudied thevortex-likesolutionsfor disclinationswithin themost general
gaugemodel of rotational defectswhen both disclinationsand rotational dislocationsaretaken
into account. The model contains two additional parameters, coupling constants s1 and s2,
which allow us to introduce two characteristic lengths lφ and lW . The appearance of these
lengths is the unique property of the gauge model that distinguishes it from the classical
elasticity theory aswell asfrom other known modelsof theelastic continuum with topological
defects.

Thereare two distinctive featuresof thevortices in elastic media. First, theelastic flux is
‘classical’ in its origin, i.e. there is no quantization as opposed to the magnetic vortex. This
means that generally there are no restrictions on the value of ν in (22) apart from ν > −1 for
topological reasons. However, if we take into account the symmetry group of the underlying
crystal lattice the available values of ν become ’quantized’ in accordance with this group
(e.g. ν = 1

6,
1
4,

1
3, . . . for a hexagonal lattice). Second, the singular character of the solution

on the defect line is typical for the dislocation theory. As a result, all the known solutions
for dislocations contain a logarithmic divergence in the energy. To avoid this difficulty, one
introduces acut-off from below by using r0 as acore radius of the defect. The core region
itself isassumed to bebeyond thescopeof the linear theory of elasticity. For this reason, any
non-singular solution wil l beof essential interest.

Finally, let us note that a similar problem appears for point 4π disclinations. In this
case, thegaugegroup SO(3) should beconsidered. Weexpect that the inclusion of rotational
dislocationswil l clarify theroleof thecharacteristic lengthsaswell astheproblem of thecore
region in this case. This study is now in progress.
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