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Abstract

Graphite is an example of a layered material that can be bent to form fullerenes which promise important applic
electronic nanodevices. The spheroidal geometry of a slightly elliptically deformed sphere was used as a possible ap
fullerenes. We assumed that for a small deformation the eccentricity of the spheroide � 1. We are interested in the elliptical
deformed fullerenes C70 as well as in C60 and its spherical generalizations like big C240 and C540 molecules. The low-lying
electronic levels are described by the Dirac equation in (2+ 1) dimensions. We show how a small deformation of spher
geometry evokes a shift of the electronic spectra compared to the sphere. The flux of a monopole field was included
surface to describe the fullerenes. Both the electronic spectrum of spherical and the shift of spheroidal fullerenes wer
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Fullerene molecules[1] are carbon cages which appear in the vaporization of graphite. One of their most
tiful features from a formal point of view is their geometric character and the exciting possibility of prod
them in all sorts of geometric shapes having as building blocks sections of the honeycomb graphite latt
most abundant of them is the most spherical C60 molecule. The shape of the C60 molecule is that of a soccer ba
consisting of 12 pentagons and 20 hexagons. However, some fullerenes as C70 are slightly elliptically deformed
with the shape being more similar to an American football. Fullerenes belong to a sort of carbon nanopart
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Carbon nanoparticles, which are expected to have important implications for the development of ele
devices, flat panel displays, nanoswitches, etc., have recently received great attention of both experim
and theorists (see[2]). High flexibility of carbon allows one to produce variously shaped carbon nanopart
nanotubes, fullerenes, cones, toroids, graphitic onions and nanohorns. Particular attention was given to
electronic states due to topological defects which were observed in different kinds of carbon nanopart
scanning tunneling microscopy (STM). For example, STM images with five-fold symmetry (due to pentag
the hexagonal graphitic network) were obtained in the C60 fullerene molecule[3]. The peculiar electronic propertie
at the ends of carbon nanotubes (which include several pentagons) were probed experimentally in[4,5].

By its nature, the pentagon in a graphite sheet is a topological defect. Actually, as was mentioned in R[6],
fivefold coordinated particles are orientational disclination defects in the otherwise sixfold coordinated tria
lattice. The local density of states was found in the vicinity of a pentagonal defect for spherical fullerene[7,8].
Moreover, disclinations aregeneric defects in closed carbon structures, fullerenes and nanotubes, because, in
dance with Euler’s theorem, these microcrystals can only be formed by having a total disclination of 4π . According
to the geometry of the hexagonal network, this implies the presence of twelve pentagons (60◦ disclinations) on the
closed hexatic surface.

Investigation of the electronic structure requires formulating a theoretical model describing electrons o
trary curved surfaces with disclinations taken into account. An important ingredient of this model can be p
by the self-consistent effective-mass theory describing the electron dynamics in the vicinity of an impu
graphite intercalation compounds[9]. The most important fact found in[9] is that the electronic spectrum of
single graphite plane linearized around the corners of the hexagonal Brillouin zone coincides with that of th
equation in (2+ 1) dimensions. This finding stimulated a formulation of some field-theory models for Dirac f
ons on hexatic surfaces to describe electronic structure of variously shaped carbon materials: fullerenes[10,11]and
nanotubes[12].

The Dirac equation for massless fermions in three-dimensional space–time in the presence of the magn
was found to yieldN −1 zero modes in theN -vortex background field[13]. As was shown in Ref.[14], the problem
of the local electronic structure of fullerene is closely related to Jackiw’s analysis[13]. Notice that the field-theory
models for Dirac fermions on a plane and on a sphere[15] were invoked to describe variously shaped car
materials. Recently, the importance of the fermion zero modes was discussed in the context of high-tem
chiral superconductors and fullerene molecules.

The most spherical fullerene is the C60 molecule nicknamed a ‘bucky ball’. Others are either slightly (as70
whose shape is more like an elliptic deformation) or remarkably deformed. We are interested here in60
molecule as well as in its spherical generalizations like big C240 and C540 molecules with the symmetry group
the icosahedron, and also in the elliptically deformed fullerene C70 and its relatives. Big fullerenes are used to st
radioactive material and inhibit enzymes related to different viruses[16,17].

2. The model

Almost all fullerenes are only slightly elliptically deformed spherical molecules, e.g., C70 and its relatives. We
start with introducing spheroidal coordinates and writing down the Dirac operator for free massless ferm
the Riemann spheroidS2. Pi-molecular orbitals in fullerenes as a free electron model (electron gas) bound
surface of a sphere were used in[18]. We generalize that work to obtain an electronic spectrum for spherica
spheroidal geometries with and without the monopole field. The peculiarities of the electronic spectra for th
slightly different types of geometries are shown. To incorporate fermions on the curved background, we ne
of orthonormal frames{eα}, which yield the same metric,gµν , related to each other by the localSO(2) rotation,

eα → e′
α = Λβ

αeβ, Λβ
α ∈ SO(2).
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It then follows thatgµν = eα
µe

β
ν δαβ wheree

µ
α is the zweibein, with the orthonormal frame indices beingα,β =

{1,2}, and the coordinate indicesµ,ν = {1,2}. As usual, to ensure that physical observables are independen
particular choice of the zweibein fields, a localso(2) valued gauge fieldωµ is to be introduced. The gauge field
the local Lorentz group is known as a spin connection. For a theory to be self-consistent, the zweibein fie
be chosen to be covariantly constant[19]

Dµeα
ν := ∂µeα

ν − Γ λ
µνe

α
λ + (ωµ)αβeβ

ν = 0,

which determines the spin connection coefficients explicitly

(1)(ωµ)αβ = eα
ν Dµeβν.

Finally, the Dirac equation on a surfaceΣ in the presence of the magnetic monopole fieldAµ is written as[20]

(2)iγ αeα
µ[∇µ − iAµ]ψ = Eψ,

where∇µ = ∂µ + Ωµ with

(3)Ωµ = 1

8
ωα

µ
β [γα, γβ ],

being the spin connection term in the spinor representation.
The elliptically deformed sphere or a spheroid

(4)
x2

a2
+ y2

a2
+ z2

c2
= 1,

may be parameterized by two spherical anglesq1 = θ , q2 = φ that are related to the Cartesian coordinatesx, y, z

as follows

(5)x = a sinθ cosφ, y = a sinθ sinφ, z = c cosθ.

We have assumed that the eccentricity of the spheroid ise � 1 which in the casec < a gives expressionse =√
1− ( c

a
)2 � 1. The metric tensor and the natural diagonal zweibein different from zero on the spheroid ar

(6)gφφ = a2 sin2 θ, gθθ = a2 cos2 θ + c2 sin2 θ,

wherea, c � 0,0� θ � π,0� φ < 2π and

(7)e2
φ = 1

a sinθ
, e1

θ = 1√
a2 cos2 θ + c2 sin2 θ

,

which, in view of Eq.(1) gives the spin connection coefficients

(8)ω12
φ = −ω21

φ = a√
a2 + c2 tan2 θ

=: 2ω.

In 2D the Dirac matrices can be chosen to be the Pauli matrices,γ 1 = −σ 2, γ 2 = σ 1; Eq.(3) then reduces to

(9)Ωφ = iωσ 3.

We have assumed thatAθ = 0 and only the monopole fieldAφ is different from zero.
The eigenfunctions of the Dirac operator are two-component spinors that satisfy the eigenvalue equatio

(10)−i∇̂
(

αλ(θ,φ)

βλ(θ,φ)

)
= λ

(
αλ(θ,φ)

βλ(θ,φ)

)
.
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This system of first order partial differential equations inα andβ allows separation of variables therefore we c
isolate theφ-dependence by expanding the spinors into the Fourier series

(11)Ψ (θ,φ) =
(

αλ(θ,φ)

βλ(θ,φ)

)
=

∑
m

exp(imφ)√
2π

(
αλm(θ)

βλm(θ)

)
, m = ±1

2
,±3

2
, . . . ,

wherem are half-integers since we work with the spin1
2 field. Then the general form of the Dirac equation, Eq.(2),

on the spheroid becomes[
∂θ +

√
cot2 θ +

(
c

a

)2

m +
(

1− 2Aφ

√
1+

(
c

a

)2

tan2 θ

)
cotθ

2

]
βλm(θ)

= −
√

a2 cos2 θ + c2 sin2 θEαλm(θ),[
∂θ −

√
cot2 θ +

(
c

a

)2

m +
(

1+ 2Aφ

√
1+

(
c

a

)2

tan2 θ

)
cotθ

2

]
αλm(θ)

(12)=
√

a2 cos2 θ + c2 sin2 θEβλm(θ).

The numberm may be called the projection of angular momentum onto the polar axis. Ifa = c = R, whereR is
the radius of a sphere, Eq.(12)becomes the Dirac equation for sphere geometry.

Now we want to find an electronic spectrum for the sphere and spheroid analytically and numerically,
tively; therefore, we firstly assume that pentagon defects represented in this model by the monopole fieldAφ = 0.
Next, we want to separate the equations for the spinor componentsα andβ. This can be done by taking the squa
� (Laplace operator) of the Dirac operator∇̂ for spheroidal geometry. Finally, we find the equations[

− 1

sinθ
∂θ sinθ∂θ +

(
cot2 θ +

(
c

a

)2)
m2 − σ 3 cotθ√

cot2 θ + (c/a)2

m

sin2 θ
+ 1

4 sin2 θ

](
αλm(θ)

βλm(θ)

)

(13)=
[(

a2 cos2 θ + c2 sin2 θ
)
E2 − 1

4

](
αλm(θ)

βλm(θ)

)
.

Further simplifications come from the change of variablesx = cosθ , x ∈ [−1,1], which converts Eq.(13) into the
generalized hypergeometric equations[

d

dx

(
1− x2) d

dx
−

(
x2

1− x2
+

(
c

a

)2)
m2 + σ 3 x√

x2 + (c/a)2(1− x2)

m

1− x2
− 1

4(1− x2)

](
αλm(x)

βλm(x)

)

(14)= −
[(

a2x2 + c2(1− x2))E2 − 1

4

](
αλm(x)

βλm(x)

)
.

The replacementx → −x (or m → −m) is equivalent to changingα for β. Thus, the upper and lower spin
components are conjugate with respect to mirror reflection. Eq.(14) is singular at the poles of the spheroidx = ±1.
We redefine the unknowns

(15)

(
αλm(x)

βλm(x)

)
=

(
(1− x)1/2|m−1/2|(1+ x)1/2|m+1/2|ξλm(x)

(1− x)1/2|m+1/2|(1+ x)1/2|m−1/2|ηλm(x)

)
,

and use that in our model of a slightly deformed spherec ∼ a; hencec
a

.= 1± δ, whereδ � 1 is small deformation
of the sphere. Neglecting the second and higher order powers ofδ we solve Eq.(14) to the first order inδ and by
using redefinition(15)we arrive at the separate equations of hypergeometric type inξλm andηλm

(16)

{(
1− x2) d2

− (
1− 2(m − 1)x

) d − m(m − 1) + λ2 − 1 + f (x)

}
ξλm(x) = 0,
dx2 dx 4
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where

f (x) = δ
(∓2m2 ± 2a2E2 ∓ mx ∓ 2a2E2x2), λ = Ea.

For the above calculations we have assumed thatm − 1/2 � 0. A similar solution can be also found for the ca
m − 1/2 � 0. Following the calculations above we can get also the equation for functionηλm(x). The function
f (x) is the deviation of the solution for a spheroid from that for a sphere, see[21], and can be perceived as ne
energy part, i.e., the energy shift for a spheroid compared to a sphere geometry. Thus the expressionf (x) can also
be called as a perturbation part of Eq.(16).

To find the spectrum for spherical geometrya = c = R, we have to put the expressionf (x) = 0, so the case i
δ = 0. The spectrum can be found in the form

(17)λ2
sphere=

(
n + |m| + 1

2

)2

,

with non-negative integern � 0, with n being the order of Jacobi polynomials, see[21]. The eigenvaluesλ for the
sphere of the unit radiusS2 are non-zero integers

(18)λsphere= ±1,±2, . . . ,

and indeed the Dirac operator has no zero-modes. The spectra of the spherical geometry as the numeric
tions of Eq.(12)with Aφ = 0 and fora = c are illustrated inFig. 1and fit the analytical results in(18).

To find the electronic spectrum also in the case of spheroidal geometry whenf (x) 
= 0, we solve Eq.(12) for
two cases, whena < c anda > c, i.e., for two different types of an elliptically deformed sphere. The nume
results are shown inFig. 2.

Fig. 1. The electronic spectra of spherical geometry|λ|sphere, wherea = c.

Fig. 2. The electronic spectra of spheroidal geometry|λ|spheroidwhere,a < c anda > c (going from left to right).
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As can be seen fromFig. 2, the spectra display the energetic shifts compared to the spectra of the
in Fig. 1. The shift increases or reduces the initial electronic spectrum of sphere depending on the type o
deformation. The shift is bigger with increasing value of the modes of the electronic spectra, which can be a
from the structure off (x) in Eq.(16). The perturbation parameterδ = 0.3 was used to obtain the electronic spec
of the Dirac equation for the spheroidal geometry. The angular momentumm = 1/2 was used in the calculation
All the spectra are mirror symmetric with respect to they-axis.

3. Dirac equations for spheroid with monopole field

We assume that the parameter of perturbation and the eccentricity of the spheroide � 1, so we can use th
magnetic monopole field inside the surface to obtain C70 fullerene or bigger fullerene molecules like C240 and C540
also with a small elliptical deformation. The area of surface for a small elliptically deformed sphere, sphero
for oblate spheroid (a = b) can be formulated as, see[22]

S ≈ 2π

(
a2 + c2 arctanh(e)

e

)
.

In the case of small eccentricity the surface area of a spheroid becomes the surface area of a sphereS ≈ 2πa2.
It means that we can include the existence of a fictitious magnetic monopole chargeg inside the surface of th
spheroid with the structure as in Ref.[15]. The values ofg, e.g., for tetrahedron and icosahedron structures requ
1/2 and 3/2, respectively. With the monopole field taken asAθ = 0 andAφ = j

2 cosθ , wherej/2 = g (for structures
abovej = 1,3), the resulting Dirac equation(12) for the spheroid with the monopole field reads[

∂θ +
√

cot2 θ +
(

c

a

)2

m +
(

1− j

a

√
a2 cos2 θ + c2 sin2 θ

)
cotθ

2

]
βλm(θ)

= −
√

a2 cos2 θ + c2 sin2 θEαλm(θ),[
∂θ −

√
cot2 θ +

(
c

a

)2

m +
(

1+ j

a

√
a2 cos2 θ + c2 sin2 θ

)
cotθ

2

]
αλm(θ)

(19)=
√

a2 cos2 θ + c2 sin2 θEβλm(θ).

Unfortunately, general solutions to Eq.(19) are not available yet for spherical and spheroidal fullerenes, so w
not have initial conditions for numerical calculations which are very sensitive to them. However, we will p
some analytical predictions of the electronic spectra for spherical and spheroidal fullerenes from the s
Dirac operator in Eq.(19).

To find an analytical expression for the shift of the spheroidal fullerenes, we put for simplicity in Eq.(19) the
value of the angular momentumm = 0. For elliptically deformed fullerenes in the special case wherem = 0 with
using the model of a slightly deformed sphere wherec

a

.= 1± δ, the square of Dirac operator(19)was found in the
form [

− 1

sinθ
∂θ sinθ∂θ + (j

√
(1± 2δ sin2 θ) − σ 3)2

4 sin2 θ
+ σ 3 ±jδ cos2 θ√

(1± 2δ sin2 θ)

](
αλm(θ)

βλm(θ)

)

(20)=
[(

λ2 +
(

j

2

)2)(
1± 2δ sin2 θ

) − 1

4

](
αλm(θ)

βλm(θ)

)
,

whereδ � 1 is small deformation of the sphere. We neglect the second and higher order powers ofδ in the
calculations.
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If the perturbation parameterδ = 0, we get the square of Dirac operator for spherical fullerenes with the
tronic spectrum as in Ref.[11]. To get connection with Section2, the spectrum with the monopole field for th
spherical fullerenes can be rewrite from the right-hand side of Eq.(20) to the form

(21)λ2
field =

(
|λ|sphere− 1

2

)2

− g2,

with |λ|sphere− 1/2 = n + |m|, see[21]. The value of the electronic spectrumλfield is shifted (decreases) by th
value of the chargeg of the monopole field. Moreover, the presence of the monopole restricts possible va
the angular momentum[15], so thatm � ||j | − 1|/2 and, therefore, the values ofm change contrary to structure
without a monopole field inside, as in Section2. It means that for fullerenes the angular momentumm can get
the valuesm = 0,1, . . . . The spectra of fullerenes are appended by the monopole charge compared to E(13)
for spherical geometry. So the spectra of fullerenes are greatly dependent on the value of the monopole
the case of tetrahedron and icosahedron structures expression(21) can predict the existence of zero modes wh
λfield = 0.

If δ 
= 0, the shift of the spheroidal fullerenes from the spherical ones in Eq.(20) were found. Moreover, whe
we use the substitutionx = cosθ as in Section2, we can rewrite the shift on the right-hand side of Eq.(20) in the
following form

(22)f (x) = 2δ
(
λ2 + g2)(±1∓ x2), λ = aE.

The electronic spectrum will be shifted by the value±2δ(λ2 + g2). The functionf (x) is the deviation of spher
oidal from spherical fullerenes, similarly to the previous section, and can also be perceived as the energ
spheroidal fullerenes compared to spherical ones. Moreover, the perturbation functionf (x) is in the case when
m = 0 andg = 0 the same as the shift in Eq.(16) for spheroidal geometry. So we can expect a similar beha
(shifts) of the spectra of spheroidal fullerenes (decreases by the value of the monopole chargeg) as in the case o
spheroidal geometry without a monopole field, seeFig. 2.

4. Conclusion

To find the electronic spectra of the C70 fullerene and its relatives, we have used the model of a slightly e
tically deformed sphere, the spheroidal geometry (δ 
= 0), as distinct from the C60 fullerene where the spheric
geometry (δ = 0) was used. The Dirac equation in (2+ 1) dimensions for slightly elliptically deformed fulleren
with monopole field inside the surface was evaluated, Eq.(19). The discrete spectrum of energy for both types
geometries was found. The electronic spectrum and the shift of the spheroidal geometry in Eq.(16)contrary to the
sphere was calculated both analytically and numerically.Fig. 2shows the shift of the spectra for spheroidal geo
etry. From the square of Dirac operator for spheroidal fullerenes valid at first order perturbation in the ecce
Eq. (20), the electronic spectrum of spherical and the shift of spheroidal fullerenes were derived analytica
spectra of spherical and spheroidal fullerenes decreasing by the value of monopole chargeg were found. The ex
pressionf (x) for deviation of the solution for a spheroid from that for a sphere in Eq.(16) was found the same a
for the deviation between spheroidal and spherical fullerenes in expression(22). So we can expect a similar shift o
the spectra for real elliptically deformed fullerenes when the magnetic monopole field has to be included in
surface to simulate pentagon defects and create fullerenes. Zero energy modes dictated by the chargeg were found
for fullerenes contrary to spherical geometry without the monopole field inside. The shift of the electronic
of spheroidal, in contrast to spherical fullerenes, gives rise to reduction or increase in the conduction ba
depending on the type of elliptical deformation (a < c, a > c). Due to this, the crystals made of these deform
fullerene molecules, when doped should be poorer or better conductors than the spherical ones. More
spherical fullerenes as Care stable towards fragmentation than the other bigger fullerenes[23], following our
60
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analysis, also with small elliptical deformations and with a shift of the electronic spectra. The presence
magnetic monopole field with the charge leads to a decrease in the electronic spectra and shifts for sphe
spheroidal molecules, respectively. The decrease is smaller with increasing value of the modes of the e
spectra and, therefore, for low-lying electronic levels the spectra of the spheroidal fullerenes C70 or C240 and C540
could be shifted to a lower magnitude. The very big structures like C960 and C1500become more deformed, facet
and can no longer form a free-electron model like the electronic shell[18], which was the assumption for th
model. For these structures the deviation from the sphericity is larger when the pentagon defects are loc
the opposite poles. In the case when the poles are far away from each other we obtain the structure of n
and for the exact description some new model related to that proposed here should be used. We hop
knowledge of the shifts of the electronic spectra of spheroids could be useful for experimentalists for choo
optimal energetic scale for different types of fullerenes. Finally, we think that the spheroidal geometry ap
could also be related to other physical problems with slightly deformed spherical structures that are comm
nature.
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