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Abstract. The spheroidal geometry of a slightly elliptically deformed sphere was used as a
possible approach to fullerenes. We are interested in the elliptically deformed fullerenes like
big C240 molecule. The low-lying electronic levels are described by the Dirac equation in (2+1)
dimensions. We show how a small deformation of spherical geometry evokes a shift of the
electronic spectra compared to the sphere. The effect of a weak uniform magnetic field on
the electronic structure of slightly deformed fullerene molecules was also studied. We found
that behavior of the electronic spectra if the magnetic field is pointed in the x direction differs
markedly from the case of the magnetic field pointed in the z direction, where z is chosen to be
the symmetry axis of the fullerene. We briefly report also the C60-C240 fullerene onion.

1. Introduction
Recently, we have considered the problem of the low energy electronic states in spheroidal
fullerenes [1] as well as the influence of a weak uniform external magnetic field pointed in the
z and x directions [2, 3]. The main findings were a discovery of fine structure with a specific
shift of the electronic levels upwards due to spheroidal deformation and the Zeeman splitting
of electronic levels due to a weak uniform magnetic field. In addition, it was shown that the
external magnetic field modifies the density of electronic states and does not change the number
of zero modes. We found that modification of the electronic spectrum of the spheroidal fullerenes
in the case of x-directed magnetic field differs markedly from the case of the z-directed magnetic
field. This gives an additional possibility for experimental study of the electronic structure of
deformed fullerene molecules.

We have explored in the Ref. [2, 3] the field-theory model where the specific structure of carbon
lattice, geometry, and the topological defects (pentagons) were taken into account. Following
the Euler’s theorem one has to insert twelve pentagons into hexagonal network in order to form
the fullerenes. In the framework of continuum description in our model we extend the Dirac
operator by introducing the Dirac monopole field inside the spheroid to simulate the elastic
vortices due to twelve pentagonal defects. Our studies covered slightly elliptically deformed
molecules in a weak uniform external magnetic field pointed in the x,z directions.

As the result of this approach we found that the zero-energy states correspond to the HOMO
(highest occupied molecular orbital) and the HOMO-LUMO energy gap is approximately 1.1
eV for YO-C240 fullerene which was in good agreement with some another prediction [4]. We
extend our previous model of fullerenes to the fullerene onion. We used the idea published in [5]
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where the curvature effects in carbon nanotubes were studied as a function of chirality. The
result is that π orbitals are found to be significantly rehybridized in all nanostructures, so that
they are never situated normaly to the fullerenes surface, but are titled by the hybridization
angle. We computed HOMO-LUMO gap for concretely C60-C240 carbon onion.

2. Formulation of the model and the results
Geometry, topological defects and the peculiarity of graphene lattice have a pronounced effect
on the electronic structure of fullerene molecules. Spheroidal fullerenes can be considered as
the initially flat hexagonal network which has been wrapped into closed monosurface by using
of twelve disclinations [6]. We start from the tight-binding model of graphite layer with a trial
wave function taken in the form

χ(~r) = ψA(~r)χA( ~K,~r) + ψB(~r)χB( ~K,~r). (1)

As is seen, the trial function is described by smoothly varying envelope functions ψA,B(~r)
multiplying by Bloch functions χA,B( ~K,~r). Within the ~k~p approximation one obtains the
equations algebraically identical to the two-dimensional Dirac equation, where the two-
component wave function ψ represents graphite sublattices A and B. Following the approach
developed in [7, 8] let us write down the Dirac operator for free massless fermions on the
Riemannian spheroid S2. The Dirac equation on a surface Σ in the presence of the abelian
magnetic monopole field Wµ and the external magnetic field Aµ is written as [9]

iγαe µ
α [∇µ − iWµ − iAµ]ψ = Eψ, (2)

where eµ
α is the zweibein, gµν = eα

µeβ
ν δαβ is the metric, the orthonormal frame indices

α, β = {1, 2}, the coordinate indices µ, ν = {1, 2}, and ∇µ = ∂µ + Ωµ with

Ωµ =
1
8
ωα β

µ [γα, γβ], (3)

being the spin connection term in the spinor representation (see [10, 11] for details). The energy
in (2) is measured from the Fermi level.

This model allows us to study the structure of electronic levels near the Fermi energy. It is
convenient to consider this problem by using of the Cartesian coordinates x, y, z in the form

x = a sin θ cosφ; y = a sin θ sinφ; z = c cos θ. (4)

The Riemannian connection reads

ω1
φ2 = −ω2

φ1 =
a cos θ√

a2 cos2 θ + c2 sin2 θ
; ω1

θ2 = ω2
θ1 = 0. (5)

Within the framework of the perturbation scheme the spin connection coefficients are written
as

ω1
φ2 = −ω2

φ1 ≈ cos θ(1− δ sin2 θ), (6)

where c = a+ δa and terms to first order in δ are taken into account. In spheroidal coordinates,
the only nonzero component of Wµ in region RN is found to be (see Ref. [1])

Wφ ≈ g cos θ(1 + δ sin2 θ) + G(1− cos θ)− δG sin2 θ cos θ. (7)

Firstly we assume that the external magnetic field B is chosen to be pointed in the x direction,
so that ~A = B (0,−z, y) /2. One obtains

Aφ = −1
2
Bac sin θ cos θ cosφ, (8)
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Aθ = −1
2
Bac sinφ. (9)

The Dirac matrices can be chosen to be the Pauli matrices, γ1 = −σ2, γ2 = −σ1. By using the
substitution (

ψA

ψB

)
=

∑

j

ei(j+G)φ

√
2π

(
uj(r)
vj(r)

)
, j = 0,±1,±2, . . . (10)

where j is the angular momentum, we obtain the Dirac equation for functions uj and vj in the
form

(
−iσ1

1
a
(∂θ +

cot θ

2
+ i

1
2
Ba2 sinφ) +

σ2

a sin θ

(
j −m cos θ +

1
2
Ba2 sin θ cos θ cosφ

)
+ δD̂1

)
×

×
(

uj(θ)
vj(θ)

)
= E

(
uj(θ)
vj(θ)

)
, (11)

where m = g −G and

D̂1 = −γ1

a
sin θ (j − 2m cos θ)− γ1

Ba

2
sin2 θ cos θ cosφ. (12)

The square of the nonperturbative part of the Dirac operator takes the form

D̂2
0 = − 1

a2

(
∂2

θ +
cos θ

sin θ
∂θ − 1

4
− 1

4 sin2 θ

)
+

(j −m cos θ)2

a2 sin2 θ

+σ3
m− j cos θ

a2 sin2 θ
+ BV (θ, φ). (13)

From the equations above we finally find the low energy electronic spectrum of spheroidal
fullerenes in the form

Ejn = E0
jn + EδBx . (14)

Next we have assumed that the external magnetic field is pointed in the z direction so that
~A = B (y,−x, 0) /2. The only nonzero part of the external magnetic field reads

Aφ = −1
2
Ba2 sin2 θ. (15)

After the calculations describe in Ref. [2] we obtain the Dirac equation for functions uj and vj

in the form
(
−iσ1

1
a
(∂θ +

cot θ

2
) +

σ2

a sin θ

(
j −m cos θ − 1

2
Ba2 sin2 θ

)
+ δD̂1

)
×

×
(

uj(θ)
vj(θ)

)
= E

(
uj(θ)
vj(θ)

)
, (16)

where the spheroidal perturbation part is

D̂1 = −γ1

a
sin θ (j − 2m cos θ)− γ1

Ba

2
sin3 θ. (17)

Since we consider the case of a weak magnetic field the terms with B2 and δB can be neglected
in calculations. Finally, in the linear in δ approximation, the low energy electronic spectrum of
spheroidal fullerenes takes the form

Ejn = E0
jn + Eδ

jn + EδBz
jn , (18)
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Figure 1. The schematic picture of the first electronic level Ejn of spheroidal fullerenes in a
weak uniform magnetic field pointed in the x (left) and z (right) directions.
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Figure 2. The schematic picture of the second electronic level Ejn of spheroidal fullerenes in a
weak uniform magnetic field pointed in the x (left) and z (right) directions.

where
E0

jn = (n + |j|+ 1/2)2 −m2, (19)

describes the spectrum for spherical fullerene.
Tables with the numerical values of the electronic spectra influenced by a weak uniform

external magnetic field pointed in the z and x directions and all analytical expressions above are
presented in [2, 3]. The experimental data for our calculations of YO-C240 fullerene was found
in [12, 13]. As is seen in Figs.1,2, there is a marked difference between the behavior of the first
and second energy levels in magnetic field. Indeed, in both cases the energy levels become shifted
due to a spheroidal deformation. However, the uniform magnetic field does not influence the
first energy level. The splitting takes place only for the second level. This is clearly illustrated
in Fig.1 and Fig.2, which schematically show the structure of the first and second levels in the
uniform magnetic field pointed in x direction. The case of the z-directed magnetic field is also
shown for comparison. We can conclude that there is a possibility to change the structure of
electronic levels in spheroidal fullerenes by altering the direction of the magnetic field. It would
be interesting to test this prediction in experiment.

3. C60 − C240 fullerene onion
Now we consider the case of C60 −C240 fulleren onion. In this fullerene onion the hybridization
of the orbitals of the inner and outer shell is different. Due to the curvature the coordinates of−→τi in space are −→τ1 = d(cos θ; 0;− sin θ), (20)
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−→τ2 = d(ex;−ey; ez), (21)
−→τ3 = d(ex; ey; ez). (22)

Where sin θ = d/2R and

ex = − d

2R
tan θ − 1

2 cos θ
, (23)

ey =

(
1− 1

4(1− d2

4R2 )
− 2

(
d

2R

)2 1
(1− d2

4R2 )

)
, (24)

ez = − d

2R
, (25)

R is the radius of the fullerene molecules and d is the nearest neighbor length. It was assumed
that the angle between the bonds −→τ1 ,−→τ2 and also −→τ1 ,−→τ3 is 120o [14]. We get the numerical
values for the π orbital in the case of C60 fullerene molecule

|π〉 ≈ 0.289|s〉 − 0.068 |px〉+ 0.955|pz〉. (26)

It was assumed that R = 3.5Å. For C240 fullerene molecules we have

|π〉 ≈ 0.144|s〉 − 0.007 |px〉+ 0.990|pz〉. (27)

It was assumed that R = 7.1Å. Hence, in the case of C60 molecule, one has

ε̃ = 0.083〈s|H|s〉+ 0.005〈px|H|px〉+ 0.911〈pz|H|pz〉, (28)

and for C240

ε = 0.021〈s|H|s〉+ 0.980〈pz|H|pz〉. (29)

Finally, we obtain
ε− ε̃ ≈ 1.024 eV. (30)

Now we use the values of highest occupied molecular orbital (HOMO) computed in [4] and
the lowest unoccupied molecular orbital (LUMO) energy levels for C60 and C240 fullerenes.
We have HOMO(C60)=−1.545eV , LUMO(C60)=0.346eV , and HOMO(C240)=−1.092eV ,
LUMO(C240)=0.149eV for isolated fullerenes. In the C60 − C240 onion we must add the value
1.024eV to the C240 fullerene energies. So we get approximately the following values in a slightly
interacting onion for the C240 fullerene. HOMO(C240)=−0.068eV , LUMO(C240)=1.173eV . So
we get a gap between HOMO(C240) and LUMO(C60) which is about 0.414eV . If the interaction
between the shells is not very strong, the value of the gap could not be strongly influenced. We
can see that in the first excitation state the electron is localized mainly in the inner shell and
the hole is localized in the outer shell.

4. Conclusion
We have studied the influence of the uniform magnetic field on the energy levels of spheroidal
fullerenes. The case of the x-directed magnetic field was considered and compared with the case
of the z-th direction. The z axis is defined as the rotational axis of the spheroid with maximal
symmetry. The most important finding is that the splitting of the electronic levels depends on
the direction of the magnetic field. We found that the structure of the electronic levels is crucially
depend on the direction of the external magnetic field which could be also checked in experiment.
To compute the influence of a curvature of the surface on the matrix elements of the secular
equation, we used two methods. The rehybridization of the π orbital method was used for the
computation of diagonal matrix elements. To compute the nondiagonal matrix element, we used
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the curvature tensor. In the case of small interaction between shells in C60−C240 fullerene onion
we get the difference 1.024 eV between the ”Fermi levels” of individual fullerenes. Therefore we
get a gap between HOMO(C240) and LUMO(C60) which is about 0.414eV . As in [4] we used for
both C60 and C240 the value 2.5 eV for transfer integrals in both the shells. There ought to be
also made a correction to different curvatures of these fullerenes. Howewer, we think that this
correction does not change significantly the HOMO-LUMO gap. It would be interesting to test
this predictions of the HOMO-LUMO gap for the C60 − C240 fullerene onion in experiment.
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