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Abstract. The electronic properties of the wormhole and the perturbed nanocylinder were investigated
using two different methods: the continuum gauge field-theory model that deals with the continuum ap-
proximation of the surface and the Haydock recursion method that transforms the surface into a simplier
structure and deals with the nearest-neighbor interactions. Furthermore, the changes of the electronic
properties were investigated for the case of enclosing the appropriate structure, and possible substitutes
for the encloser were derived. Finally, the character of the electron flux through the perturbed wormhole
was predicted from the model based on the multiwalled nanotubes. The effect of the “graphene blackhole”
is introduced.

1 Introduction

The carbon nanostructures play a key role in constructing
nanoscale devices like quantum wires, nonlinear electronic
elements, transistors, molecular memory devices or elec-
tron field emitters. Their molecules are variously-shaped
geometrical forms whose surface is composed of discli-
nated hexagonal carbon lattice. The wormhole [1] is cre-
ated when two graphene sheets are connected through a
small nanotube (so-called wormbridge) and through the
singularities which emerge by adding 6 heptagonal defects
to the connecting parts of the sheets with the wormbridge.

To characterize the electronic properties, the local den-
sity of states (LDoS) is investigated. For its calculation,
the continuum gauge field-theory can be used in which
the knowledge of the solution of the Dirac equation for
the conduction electron is necessary [2]. It is represented
by the wave-function, and to find it, we have to know the
geometry of the corresponding surface. The Haydock re-
cursion method [3,4] transforms the surface into a chain
of sites, each of them representing the equivalent sites in
the original structure. The LDoS is then acquired from
the Green function which is calculated from an iterative
formula [4].

The electronic flux can be influenced by a mechan-
ical deformation of the surface by creating the surface-
geometry induced attractive potential. In reference [5] is
described, how to achieve this effect by a massive quantum
particle present on a two-dimensional surface. This surface
can be presented by a monolayer or a bilayer of graphene.
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The resulted potential suppresses the local Fermi energy.
For this model, we can derive the relativistic dynamics and
calculate the energy bands [6]. For the case of the defor-
mation and the subsequent strain, this model is described
in reference [7]. There is presented the geometry of the
catenoid which connects the two sheets of the graphene.
In this context of the strain induced potential, we can
speak about so-called “straintronics”. Other possible ge-
ometries are the multiwalled nanotubes or fullerenes [8,9]
or the deformed wormhole.

In this paper, we calculate the LDoS of the wormhole
using the mentioned methods, and we compare the results
with the case of a perturbed nanocylinder including 2 hep-
tagons at the opposite sides of the surface. It is organized
as follows: the second section describes the metrics of the
investigated nanostructures. In the third and the fourth
section, the LDoS of the wormhole and the perturbed
nanocylinder is compared using the continuum gauge field-
theory and the Haydock recursion method. Then, the term
“perturbed wormhole” is introduced. In the fifth section,
we investigate how to enclose the perturbed nanocylinder,
and we look into the changes in the electronic structure.
Next, the electron flux will be investigated using the model
coming from the case of the multiwalled nanotubes.

2 Wormhole and perturbed nanocylinder

The surface of the investigated structure is depicted in
Figure 1. Contrary to the case of the wormhole, the
perturbed nanocylinder contains only 2 heptagonal de-
fects. It is derived from the defect-free nanocylinder which
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Fig. 1. Different surfaces derived from the cylindrical
structure: wormhole (left), perturbed nanocylinder (right).

Fig. 2. Character of the edge corresponding to the perturbed
nanocylinder: we cannot strictly say if the nanostructure is ac
or zz, it depends on the concrete position on the edge.

can be, similarly to the nanotubes, classified as arm-
chair (ac), zig-zag (zz) and achiral. These 3 forms can be
distinguished with the help of the chiral vector (n,m) [10].
All three forms differ by the shape of the edge. But it is
evident from Figure 2 that in the case of the perturbation,
the shape of the edge changes along the circumference and
that is why we cannot do such a classification for the case
of the perturbation. We can only say which one of the 3
forms resembles a concrete site.

To investigate the physical properties of an arbitrary
nanostructure, the knowledge of its metric is necessary.
First, the radius vector has the form

−→
R(ξ, ϕ) = (x(ξ, ϕ), y(ξ, ϕ), z(ξ, ϕ)), (1)

where ξ and ϕ are the coordinates with the help of which
we parametrize the 2-dimensional surface embedded into 3
dimensions. Then, the metric is characterized by the met-
ric tensor gμν , μ, ν ∈ {ξ, ϕ}, defined as gμν = ∂μ

−→
R∂ν

−→
R.

The investigated cases are rotationally symmetric, so the
non-diagonal components of the metric are gξϕ = gϕξ = 0.

The radius vector of the perturbed nanocylinder has
the form
−→
R(z, ϕ) =

(
a
√

1 + �z2 cosϕ, a
√

1 + �z2 sinϕ, z
)
. (2)

Because of the structure of the cylinder, we use here the
coordinate z instead of ξ. The meaning of a is the radius

in the middle of the structure and � is a positive real pa-
rameter. For � � 1, the components of the metric tensor
will be

gzz = 1 + 1/(1 + �z2) ∼ 1 + a2�2z2, gϕϕ = a2(1 + �z2).
(3)

The wormhole geometry can be described by the polar-
like coordinates denoted as r−, ϕ− or r+, ϕ+, respectively,
where 0 < r−, r+ < +∞. We choose the convention

r− = a2/r+ (4)

where a is the radius of the wormhole (it coincides with
the radius of the nanocylinder), r− ≥ a for the lower sheet
and r+ ≥ a for the upper sheet, respectively. Then, the
corresponding metric tensor is [1]

gμν = Λ2(r±)
(

1 0
0 r2±

)
, (5)

where Λ(r±) = (a/r±)2 θ(a − r±) + θ(r± − a), θ being
the Heaviside step function. Because of (4), the choice of
the coordinates may seem to slant the real geometry: the
meaning of r−, r+, respectively, on the opposite sheets, has
nothing to do with the distance from the wormhole. But,
by computing the Euler characteristics for the continuous
surface, we get χ =

∫
d2x

√
det gR = −2, where R is the

Ricci curvature. The acquired value is the same as the
Euler characteristics of the corresponding carbon lattice.
Next, we include an additional assumption that a, the
radius of the wormhole bridge, is much larger than its
length. This is the minimal model which describes the
geometry of the wormhole [1].

3 Continuum gauge field-theory

In this section, we determine the LDoS from the solution
of the Dirac equation in (2 + 1) dimensions. It has the
form

iσαeμ
α[∂μ +Ωμ − iaμ − iaW

μ ]ψ = Eψ. (6)

The metric will be incorporated using the zweibeins eα

and the spin connection Ωμ [11]. In the gauge field aμ, the
influence of the present defects is included. For the case
of the perturbed nanocylinder, if we denote their number
by N , then aϕ = N/4, aξ = 0. Here, we put N = 2.

For the case of the wormhole, we have [1] aϕ = Φ/(2π),
aξ = 0, where Φ = −3π if the difference n − m of the
components in the chiral vector of the wormhole bridge is
a multiple of 3 and Φ = −π if the mentioned difference is
not a multiple of 3.

The gauge field aW
μ is used only in the case of the

perturbed nanocylinder. It is connected with the chiral
vector (n,m) of the defect-free structure from which the
perturbed structure is derived, and the values of its com-
ponents are aW

ϕ = −(2m + n)/3, aW
ξ = 0. The mean-

ing of all the other constituents in (6) is described in
reference [11].
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Fig. 3. LDoS of the perturbed cylinder with � = 0.05 as a function of E ∈ (−1, 1) on the edge site (left) and of the wormhole
(right).

The wave-function ψ which solves (6) has the form
(
ψA

ψB

)
= 1/ 4

√
gϕϕ

(
u(E, ξ)eiϕj

v(E, ξ)eiϕ(j+1)

)
, j = 0,±1, . . .

(7)
where each of the components ψA, ψB corresponds to one
of two different sublattices A,B of the hexagonal plane
lattice [12]. The introduced factorization of the solution
will be substituted into (6). Then we obtain

∂ξu/
√
gξξ−j̃/√gϕϕ·u = Ev,−∂ξv/

√
gξξ−j̃/√gϕϕ·v=Eu,

(8)
where j̃ = j + 1/2 − aϕ − aW

ϕ .
For the given ξ0, the LDoS is defined as LDoS(E) =

|u(E, ξ0)|2+ |v(E, ξ0)|2. In our calculations, the chiral vec-
tor of the perturbed nanocylinder will be (12, 0). In (7),
we choose the value j = 0 for both the perturbed
nanocylinder and the wormhole.

In the case of the wormhole, we get the solution of (6)

u(r, E) = C1(E)Jα(Er) + C2(E)Yα(Er),
v(r, E) = C3(E)Jβ(Er) + C4(E)Yβ(Er),

where α = 1/2 |Φ/π + 1 − 2j|, β = 1/2 |Φ/π − 1 − 2j|
and C1(E), C2(E), C3(E), C4(E) are such that the nor-
malization is satisfied and it works for the initial values.
Jα(x), Jβ(x) and Yα(x), Yβ(x), are the Bessel functions of
the first and the second kind, respectively.

Similarly, in the case of the perturbed nanocylinder,
the solution is:

u(z, E) = C1(E)Dν1 (ξ(z)) + C2(E)Dν2(iξ(z)),

v(z, E) = C1(E)/E
(
∂zDν1(ξ(z)) − j̃Dν1(ξ(z))

× (1 − 0.5�2z2)/a
)

+ C2(E)/E
(
∂zDν2(iξ(z))

− j̃Dν2(iξ(z))(1 − 0.5�2z2)/a
)
,

where Dν(ξ) is the parabolic cylinder function [13], and
the constants ν1, ν2 and the function ξ(z) can be calcu-
lated from the input parameters. Again, C1(E), C2(E)
satisfy the normalization.

In Figure 3, the local density of states of the worm-
hole and of the perturbed nanocylinder on the edge site
is compared. We see that in the case Φ = −π (the differ-
ence n −m of the coordinates in the chiral vector is not
a multiple of 3), the results are very similar for both the
cases.

4 Haydock recursion method

In this section, we give a short description of the Haydock
recursion method. As stated in the Section 1, this method
transforms the surface into a chain of sites each of them
represents the equivalent sites in the original structure.
The results acquired by this method are more precise
than the results acquired using the continuum gauge field-
theory [14].

The sites are represented by the state vectors |n〉, n =
1, . . . , nmax. From the action of the Hamiltonian corre-
sponding to the nearest-neighbor interaction follows [4]

H |n〉 = an|n〉 + bn−1|n− 1〉 + |n+ 1〉, (9)

where an, bn, n = 1, . . . , nmax are real coefficients. Then,
the LDoS is defined as:

LDoS(E) = lim
δ→+0

ImG00(E − iδ)/π, (10)

where G00(E) is the Green function which will be cal-
culated recursively using the procedure described in
reference [4].

In Figure 4, similarly as in the previous chapter, we
see a comparison of the character of the LDoS calcu-
lated by using this method for both the wormhole and
the perturbed nanocylinder. It follows from the plot that,
analogously to the case of using the continuum gauge
field-theory for the calculation of the LDoS of the per-
turbed nanocylinder and of the wormhole with Φ = −π,
the results are similar for both the cases.

http://www.epj.org
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Fig. 4. LDoS calculated using the Haydock recursion method for the perturbed nanocylinder (left) and the wormhole (right);
here, δ = 0.2.

5 Perturbed wormhole

So in the following we will speak about the perturbed
wormhole instead of the perturbed nanocylinder. By
the perturbed wormhole we will understand the structure
which will be similar to the wormhole, but the curvature
will not be established by 12 heptagonal defects, as in the
case of the wormhole, but it will be mediated by only 2
heptagonal defects which will be placed in the same way
as in the case of the perturbed nanocylinder. The result-
ing nanostructure arises by adding the graphene structure
to the edges of the perturbed nanocylinder. This creates
a continuous prolongation whose form could be similar to
the Beltrami pseudosphere [15], but the mechanical defor-
mation causes the adaptation to the definitive form. One
of possible parametrizations (logarithmic) of the resulting
surface can be found e.g. in [7]. In this paper, the deforma-
tion will be described by the parameter � which appears
in (2). We will suppose that, on the contrary to the cal-
culations made in Section 3, the chiral vector will have
different components than (12, 0). The reason is that for
this case, the difference n − m is a multiple of 3 and as
follows from Figure 3, for this case the value of Φ in the
wormhole is −3π. The corresponding plots of LDoS for
both structures would not be then similar. On the other
hand, the results for the perturbed nanocylinder are not
changed in the case of small changes of the chiral vector.

6 Enclosure of the deformed structure

The electronic properties can be changed if we enclose the
investigated structure by a nanostructured surface which
contains some pentagonal defects. We will demonstrate
this effect in the case of the perturbed wormhole.

First, we find how many pentagonal defects N(�)
must be present in the enclosing structure and investi-
gate the geometry of this structure. After doing this and
the calculation of N(�), we find the value of � which
is needed to use some concrete forms of the fullerene
molecules as the encloser. Then, we investigate how the
energy of the “Fermi levels” of the infinitely small nan-
otubes, from which the perturbed wormhole is composed

Fig. 5. Perturbed wormhole enclosed by the spherical (a) or
rotationally elliptical surface (b).

(see Sect. 6.3 for the detailed explanation), depends on
the distance from the heptagonal defect.

6.1 Geometry and included defects

The investigated structure is depicted in Figure 5a.
(Fig. 5b shows that this structure can be more compli-
cated but this case will not be investigated here.) In this
figure, we see the perturbed wormhole which is enclosed
by a spherical surface of the radius r which encloses the
structure. The coordinates of the perturbed wormhole sur-
face will be denoted by (ρw, zw) and the coordinates of the
surface of the encloser will be denoted by (ρs, zs). Both
the surfaces are connected in the position given by the
coordinates (ρmax, zmax).

The deformation of the wormhole is described by the
parameter � and from (2) the relation follows between
the coordinates zw and ρw:

ρw(zw) = a
√

1 + �z2
w, (11)

where ρ2
w = x2

w + y2
w and a is the radius of the center of

the perturbed wormhole bridge.
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Fig. 6. Number of pentagonal defects which enclose the
perturbed wormhole surface as a function of the parameter �.

The sphere is described by:

zs − z0 = ±
√
r2 − ρ2

s, (12)

where the sign “±” corresponds to the top and to the bot-
tom part of the sphere, respectively. The corresponding
sign for the position (ρmax, zmax) is “−”. The parameters
r, z0 can be calculated from the requirement of the connec-
tion of both surfaces in this position and of the continuity
of the derivations: we have dzw/dρw|ρmax = dzs/dρs|ρmax ,
from which follows after some modifications

r = a
√

1 + �z2
max + a2�2z2

max. (13)

Now with the help of (12), (13) and (11) we can derive

z0 = zmax(1 + �a2). (14)

Now we can find N(�), the number of the defects which
are needed to enclose the perturbed wormhole. As it is
known from the Euler theorem, each enclosed structure,
its defects are created by pentagons, contains exactly 12
defects. We denote by Nd the number of the defects con-
tained in the bottom part of the enclosing nanostruc-
ture. Then N(�) + Nd = 12. Because the angle be-
tween the tangential lines is 2θ, it follows from [10] that
sin θ = 1−Nd/6 = N(�)/6−1. The value of θ is between
0 and π/2, so we easily see that the values of N(�) are
between 12 and 6. We derive now how N(�) depends on
a concrete value of �.

It follows from the sketch in Figure 5 that
dzw/dρw|ρmax = tan (π/2 − θ) = cot θ and after using
some identities and substituting ρmax = a

√
1 + �z2

max

we get

N(�) = 6
(
1 + a�zmax/

√
1 + �z2

max + a2�2z2
max

)
.

(15)
In Figure 6, we see how the number of needed defects
depends on the parameter �. To investigate the change
of the electronic properties, we will use the Haydock re-
cursion method described in the previous section. The in-
vestigation will be carried out for the sites placed in the

Fig. 7. LDoS of the enclosed perturbed wormhole calculated
using the Haydock recursion method; here, δ = 0.2.

Table 1. The values of d/r and �̃ for different kinds
of spherical surfaces present in the encloser.

C60 C80 C180 C240

d/r 0.419 0.363 0.242 0.209

�̃ 0 0.498 2.221 3.249

connecting part of the perturbed wormhole and the en-
closing nanostructure (coordinates ρmax, zmax in Fig. 5).
The result is in Figure 7.

6.2 Possible forms of fullerene molecules
in the encloser

Now we find which form of the fullerene molecule can en-
close the given structure with the given value of �. This
form is characterized by the ratio d/r, where d is the
length of the bond between the carbon atoms. For the
fullerene C60 [16], the length of the circumference corre-
sponds to p60 = 15 bonds, so approximately 2πr = p60d60,
where d60 denotes the length of the corresponding bond.
Simultaneously, we fix the number of the atoms on the
connection part of the perturbed wormhole as 15. So in the
case � = 0, the structure will be enclosed by the fullerene
C60 and, for the arbitrary deformation, in the case of
the spherical surface, 2πρmax = 2πa

√
1 + �z2

max = p60d.
Simultaneously, (13) holds, so after the substitution of the
dimensionless parameter �̃ = �a2,

d/r = 2π/p60

√(
1 + �̃(zmax/a)2

)

×
√

1/
(
1 + �̃(zmax/a)2 + �̃2(zmax/a)2

)
. (16)

Now, we find the relation between d/r and �̃ for some
concrete cases of using the fullerene molecules as the en-
closer. But there are too many parameters and that is why
we fix the ratio zmax/a. In the following calculations, we
put zmax/a = 2. For the cases of other values of this ra-
tio, we would have to do other calculations. In Table 1,

http://www.epj.org
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Fig. 8. Similarity of the structures of the multiwalled nan-
otubes and the perturbed wormhole: the thickness of the worm-
hole sheet has a very small value, we denote it by dh. Then,
the perturbed wormhole can be understood as a composition
of very low and thin nanotubes. In this way, we can calculate
the “Fermi levels” at each “nanotube”. The meaning of the
particular symbols is explained in the text.

the values of d/r and �̃ are introduced for some kinds of
the fullerene molecules.

6.3 “Fermi levels” of the perturbed wormhole

The concentric circles of which the sheets of the perturbed
wormhole are composed can be understood as very low
and thin nanotubes which are ordered very close to each
other (see Fig. 8). This can be exploited for the investiga-
tion of the effect which was proven in [8,9] for the case of
the multiwalled nanotubes (or the multiwalled fullerenes,
respectively): the Fermi level of the electrons on the outer
nanotubes (with the higher radius) is higher than the
Fermi level of the electrons on the inner nanotubes (with
the lower radius). Then, in a similar way we can formally
calculate the difference of the “Fermi levels” as [8]

ε− ε̃ = π2(1 + 4�̃)
(
(z1/a)2 − (z2/a)2

) �̃
× 1/

(
36l2c(1 + z2

1�̃/a2)(1 + z2
2�̃/a2)

)

× (2〈s|H |s〉 + 〈p|H |p〉) (17)

(ε, ε̃ correspond to the “Fermi level” of the outer and the
inner circle, respectively, 〈s|H |s〉, 〈p|H |p〉 are the energies
of the corresponding s and p orbitals [8]; z1, z2 are z coor-
dinates of the circles). Here, the expression “Fermi level”
is written in the quotation marks, because the bonds be-
tween the particular circles are much stronger than in the
case of the maltiwalled nanotubes and in fact, in the case
of the precise calculations, they cannot be taken as the
separated structures. What we present here, is a rough
approximation.

We choose some fixed values of z1, z2 and we will com-
pare the difference of the “Fermi levels” of the circles
for different deformations, i.e. for different values of �̃.
We use the values from Table 1. So we put z1 = zmax,
z2 = 1.2zmax, lc = 15; then z1/a = 2, z2/a = 2.4
and taking into account that [8] 〈s|H |s〉 = −12 eV,
〈p|H |p〉 = −4 eV, we get the difference of the “Fermi
levels”, as introduced in Table 2.

Table 2. The difference of the “Fermi levels” on the per-
turbed wormhole for the chosen values of z1, z2. The values
of �̃ correspond to the values from Table 1.

�̃ 0 0.498 2.221 3.249

ε − ε̃ 0 0.023 0.029 0.030

7 Conclusion

The comparison of the LDoS of the wormhole and of
the perturbed nanocylinder was performed using different
methods. Both methods provided much different results,
but in the case of the difference n−m of the components of
the chiral vector of the wormhole bridge not being a multi-
ple of 3, each of the methods confirmed similarity of both
structures from the perspective of the electronic proper-
ties. In a different way, the equivalence of both structures
was proven in [17]. The value of the perturbation in the
investigated structures was not very large and that is why
we can compare our results with the calculations in some
earlier works [18,19]. We can also make a comparison with
the calculations performed for the capped nanotubes [20].

As mentioned in Section 2, the radius of the wormhole
bridge is much larger than its length. Contrary to this,
this assumption is not needed in the case of the intro-
duced perturbed wormhole which theoretically can have a
macroscopic size.

The similarity of the physical properties of the worm-
hole and of the perturbed nanocylinder can be exploited in
many applications from the fields of nanoelectronics and
nanooptics. On the other hand, the perturbed nanocylin-
der can be used as the substitute for studying astro-
physical phenomena related to the gravitational effects
connected with the electron quasiparticles.

If we enclose the given structure by a concrete num-
ber of pentagonal defects, we achieve a significant change
of the electronic structure (see Figs. 4 and 7). Not only
the investigated spherical surface (Fig. 5a and Tab. 1) is
possible for the encloser. Other forms like e.g. elliptical
surface presented in Figure 5b can be investigated in a
similar way.

The rise of the “Fermi levels” shows an important
property of the related structures: the electron flux is di-
rected from the far areas of the perturbed wormhole to the
center. As a consequence, the electrical charge is accumu-
lated in the center and in this way, we can speak about
the so-called graphene blackhole. Detailed explanation of
the related effects is given in [6], where the effects accom-
panying the deformation of the graphene are described:
the distance of the carbon atoms in the layer is changed.
Next, the rotation of the pz orbitals occurs and the π and
σ orbitals are rehybridizated. This procedure leads to the
creation of the p − n junctions similarly as in the case
of transistor. By this way, the direction of the electron
flux is influenced. The idea of the graphene blackhole in
the case of the deformed wormhole is based on this effect
which changes the Fermi level. It is rising in the far ar-
eas from the wormhole center and as a result the electron
flux is directed from these areas to the middle where the

http://www.epj.org
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electric charge is accumulated. The form of the nanotube
in the middle plays a big role for this purpose. It cannot
be unperturbed because in such a case the effect of the
blackhole would be disrupted. It can be ensured only in
the case when the nanotubular neck is tapering in the di-
rection to its center, because this ensures the decrease of
the Fermi level [8,9]. The related effects appearing on the
nanostructures are also described in reference [15].

The effect of the graphene blackhole could eventually
disappear in the presence of the external magnetic (elec-
tric) field which would cause the transfer of the charge
from one of the wormhole sheets to another through the
center. This serves as an important model for further in-
vestigations of the electron flux in the presence of the de-
fects. In [21], some investigations were carried out for the
above mentioned wormhole with 12 heptagonal defects.
Possible investigations in the case of the next deformations
could contribute to the applications in the cosmological
models.

Unfortunately, in the literature there are not any
deeper conception which suggests a method of the pro-
duction of the graphene wormholes. So, we suggest that it
could be manufactured from the graphene bilayers whose
properties are described for example in [22] or [23]. We
consider that the graphene monolayers could be mechan-
ically pressed against each other so that their distance
would be reduced below the value of the length of the
atomic bonds in the graphene. Under these conditions, the
interaction between the valence electrons of the carbon
atoms from the opposite layers could achieve significant
values, because it would exceed the interaction between
the neighbors in the hexagonal carbon structure. Further-
more, as we considered above, the radius of the wormhole
must be much smaller than the graphene layers length, so,
the minimal distance between the monolayers is very im-
portant. The structure of the wormhole could then arise
spontaneously. This should be concrete task for the future
experimenal research.

In the paper were also found very similar analogies
between the investigated structures. It is very important
for the real applications in electronic nanodevice because
the size of graphene wormhole is microscopic in contrary
with the perturbed nanotube which can have macroscopic
size. In this context of the strain induced potential and
graphene wormhole deformations, we can speak about
so-called “straintronics” and their real application into
nanodevices.
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