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Abstract. The electronic spectra for double-wall zigzag and armchair nanotubes are found. The influence
of nanotube curvatures on the electronic spectra is also calculated. Our finding that the outer shell is hole
doped by the inner shell is in the difference between Fermi levels of individual shells which originate from
the different hybridization of π orbital. The shift and rotation of the inner nanotube with respect to the
outer nanotube are investigated. We found stable semimetal characteristics of the armchair DWNTs in
regard of the shift and rotation of the inner nanotube. We predict the shift of kF towards the bigger wave
vectors with decreasing of the radius of the armchair nanotube.

PACS. 73.63.-b Electronic transport in nanoscale materials and structures – 73.63.Fg Nanotubes – 73.22.-f
Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

1 Introduction

Carbon nanotubes are very interesting because of their
unique mechanical and electronic properties. A single-wall
carbon nanotube can be described as a graphene sheet
rolled into a cylindrical shape so that the structure is one-
dimensional with axial symmetry and in general exhibiting
a spiral conformation called chirality. The primary sym-
metry classification of carbon nanotubes is either achiral
(symmorphic) or chiral (non-symmorphic). Achiral carbon
nanotubes are defined by a carbon nanotube whose mir-
ror images have an identical structure to the original one.
There are only two cases of achiral nanotubes, armchair
and zigzag nanotubes. The names of armchair and zigzag
nanotubes arise from the shape of the cross-section ring
at the edge of the nanotubes. Chiral nanotubes exhibit
spiral symmetry whose mirror image cannot be super-
posed onto the original one. There is a variety of geome-
tries in carbon nanotubes which can change the diame-
ter, chirality and cap structures. The electronic structure
of carbon nanotubes is derived by a simple tight-binding
calculation for the π-electrons of carbon atoms. Of spe-
cial interest is the prediction that the calculated electronic
structure of a carbon nanotube can be either metallic or
semiconducting, depending on its diameter and chirality.
The energy gap for a semiconductor nanotube, which is
inversely proportional to its diameters, can be directly ob-
served by scanning tunneling microscopy measurements.
The electronic structure of a single-wall nanotube can be
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obtained simply from that of two-dimensional graphite.
By using periodic boundary conditions in the circumfer-
ential direction denoted by the chiral vector Ch, the wave
vector associated with the Ch direction becomes quan-
tized, while the wave vector associated with the direction
of the translational vector T along the nanotube axis re-
mains continuous for a nanotube of infinite length. Thus,
the energy bands consist of a set of one-dimensional en-
ergy dispersion relations which are cross sections of those
for two-dimensional graphite. To obtain explicit expres-
sions for the dispersion relations, the simplest cases to
consider are the nanotubes having the highest symmetry,
e.g. highly symmetric achiral nanotubes. The synthesis
of DWNTs has been reported recently [1,2]. Their elec-
tronic structure was investigated by the local density ap-
proximation [3–7] and the tight-binding model [8–11]. A
similar method can be used to investigate the electronic
spectra of the fullerene molecules [12,13]. In this paper we
are interested in the zigzag and armchair double-wall nan-
otubes (DWNTs) with a small radius. In these DWNTs
the difference of Fermi levels of individual nanotubes has
to be taken into account. We focus on (9, 0)–(18, 0) zigzag
tubules and (5, 5)–(10, 10) armchair tubules. They are the
best matched, double layer tubules.

2 (9, 0)–(18, 0) zigzag tubules

Firstly, we describe the model for the zigzag nanotubes.
The π electronic structures are calculated from the
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Fig. 1. The outer shell part of the unit cell in the case of zigzag
nanotubes.

tight-binding Hamiltonian

H =
∑

i

ε|ϕout
i 〉〈ϕout

i | +
∑

i,j

γij

(|ϕin
i 〉〈ϕin

j | + h.c
)

+
∑

i

ε̃|ϕin
i 〉〈ϕin

i | +
∑

i,j

γ̃ij

(|ϕin
i 〉〈ϕin

j | + h.c
)

+
∑

l,n

Wln

(|ϕin
l 〉〈ϕout

n | + h.c
)
, (1)

ε and ε̃ are Fermi energies of the outer and inner nan-
otubes; |ϕout

i 〉, |ϕin
i 〉 are π orbitals on site i at the outer

and inner tubes; γij , γ̃ij are the intratube hopping inte-
grals; Wij are the intertube hoping integrals which de-
pends on the distance dij and angle θij between the πi

and πj orbitals (see [14–16] for details).

Wij =
γ0

8
cos(θij )e(ξ−dij )/δ, (2)

where θij is an angle between the ith atom of the inner
shell and the j th atom of the outer shell, dij is the inter-
atom distance and ξ is a intertube distance. The charac-
teristic length δ = 0.45 Å.

To describe the parameter which characterized the zig-
zag tubules, we start from the graphene layer [17] where
we can define the vectors connecting the nearest neighbor
carbon atoms for zigzag nanotubes in the form:

−→τ1 = a(0;
1√
3
),

−→τ2 = a(
1
2
;− 1

2
√

3
),

−→τ3 = a(−1
2
;− 1

2
√

3
). (3)

The distance between atoms in the unit cell is d = |−→τi | =
a√
3
. Following the scheme in Figures 1, 2 [18] we want to

find solution to the double-layer graphene tubules in the
form:

ψ(−→r ) = ψout (−→r ) + ψin(−→r ), (4)
where

ψout(−→r ) = CA1ψA1 + CA2ψA2 + CB1ψB1 + CB2ψB2

+ CA′
1
ψA′

1
+ CA′

2
ψA′

2
+ CB′

1
ψB′

1
+ CB′

2
ψB′

2
,

(5)

Fig. 2. The inner shell part of the unit cell in the case of zigzag
nanotubes.

and

ψin(−→r ) = CAψA + CBψB + CA′ψA′ + CB′ψB′ . (6)

We want to find solution to the above equation in the form
of the Bloch function

ψα(
−→
k ,−→r ) =

1√
M

∑

n

ei
−→
k (−→rn+

−→
d α)|ϕ(−→r −−→r n−−→

d α)〉, (7)

where α denotes A or B atoms. Here
−→
d α is the coordinate

of the α atom in the unit cell and −→rn is a position of a unit
cell, M is a number of the unit cell; |ϕ(r)〉 is a π orbital
which is generally different for the outer and inner shell.
We denote

ε = 〈ϕout(r −Ai)|H |ϕout(r −Ai)〉
= 〈ϕout(r −Bi)|H |ϕout (r −Bi)〉, (8)

ε̃ = 〈ϕin(r −Ai)|H |ϕin(r −Ai)〉
= 〈ϕin (r −Bi)|H |ϕin (r −Bi)〉. (9)

Now we define the intratube hopping integrals

〈ϕout (r − A1)|H |ϕout (r − B1)〉 = γ0,

〈ϕout (r −A1)|H |ϕout (r −B2)〉 = γ0β

= 〈ϕout(r −A1)|H |ϕout (r −B′
2)〉, (10)

and

〈ϕin(r −A)|H |ϕin(r −B)〉 = γ0,

〈ϕin (r −A)|H |ϕin (r −B′)〉 = γ0β̃, (11)

where γ0 is the hoping integral in the graphene and β(β̃)
is part which depends on the surface curvature and will
be computed latter. So in a tight-binding approximation
we get the systems of equations as showing in Appendix
A.

Firstly, we solve the equations in Appendix A as-
suming that Wij is the perturbation. So we can de-
couple these 12 equations. We get 8 equations for the
outer shell and 4 for the inner shell. If we express the
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state of the outer shell (Eq. (5)) in the form ψout =
(CA1 , CB1 , CA2 , CB2 , CA′

1
, CB′

1
, CA′

2
, CB′

2
), we get the so-

lutions to the outer shell in the form

E1,2(k) = ε±γ0

(
1+4β cos

mπ

N
cos

√
3ka
2

+4β2 cos2
mπ

N

)1
2

,

ψ1,2 =
1√
8

(
1;±e−iϕ1; 1;±e−iϕ1, 1;±e−iϕ1; 1;±e−iϕ1

)

(12)

E3,4(k)=ε± γ0

(
1−4β cos

mπ

N
cos

√
3ka
2

+4β2 cos2
mπ

N

)1
2

,

ψ3,4 =
1√
8

(
1;±e−iϕ2 ;−1;∓e−iϕ2, 1;±e−iϕ2;−1;∓e−iϕ2

)

(13)

E5,6(k)=ε±γ0

(
1+4β sin

mπ

N
cos

√
3ka
2

+4β2 sin2 mπ

N

)1
2

,

ψ5,6 =
1√
8

(
1;±e−iϕ3;−i;∓ie−iϕ3,−1;∓e−iϕ3; i;±ie−iϕ3

)

(14)

E7,8(k)=ε±γ0

(
1−4β sin

mπ

N
cos

√
3ka
2

+4β2 sin2 mπ

N

)1
2

,

ψ7,8 =
1√
8

(
1;±e−iϕ4; i;±ie−iϕ4,−1;∓e−iϕ4;−i;∓ie−iϕ4

)

(15)
where, for instance,

eiϕ1 =
e

i ka√
3 + 2β cos mπ

N e
−i ka

2
√

3

(1 + 4β cos mπ
N cos

√
3ka
2 + 4β2 cos2 mπ

N )
1
2

. (16)

Similar results for the electronic spectra in the case
of inner nanotubes were found in the form (ψin =
(CA, CB, CA′ , CB′))

E9,10(k)= ε̃±γ0

(
1+4β̃ cos

mπ

N
cos

√
3ka
2

+4β̃2 cos2
mπ

N

)1
2

,

ψ9,10 =
1√
4

(
1;±e−iϕ5; 1;±e−iϕ5

)
(17)

E11,12(k)= ε̃±γ0

(
1−4β̃ cos

mπ

N
cos

√
3ka
2

+4β̃2 cos2
mπ

N

)1
2

,

ψ11,12 =
1√
4

(
1;±e−iϕ6;−1;∓e−iϕ6

)
. (18)

Since the radii of the outer and inner nanotubes are dif-
ferent β �= β̃. Here ky = k and − π√

3a
< k < π√

3a
is the

first Brillouin zone. As we have a curved surface, the local
normals on the neighboring sites are no longer perfectly
aligned and this misorientation also changes the transfer
integral. The change can be calculated using the curvature
tensor bαβ [19]. The result is

δta
t

= −1
2
bγβb

γ
ατ

β
a τ

α
a , (19)

where the only nonzero term is bxxbxx = 1/R2. So we have

δt1
t

= 0, (20)

δt2
t

= −1
2
bxxb

x
x(τx

2 )2 = − 1
2R2

(τx
2 )2, (21)

δt3
t

= −1
2
bxxb

x
x(τx

3 )2 = − 1
2R2

(τx
3 )2. (22)

With using the unit vectors we have (τx
2 )2 = (τx

3 )2 = a2

4 .
We found the radius of the inner nanotube from the ex-
pression 2πR = Na. The nonzero terms are δt2

t = δt3
t =

1
2 ( π

N )2. The same holds for the outer nanotube. The pa-
rameters β, β̃ can be expressed in the form

β̃ = 1 − δt2
t

= 1 − 1
2

(π
9

)2

, (23)

and

β = 1 − δt2
t

= 1 − 1
2

( π

18

)2

. (24)

Now we calculate the values ε and ε̃ which are different
because the inner and outer shell radii are different. Due
to the curvature the coordinates of −→τi in space are

−→τ1 = d(0; 1; 0),

−→τ2 = d

(√
3

2
cos θ;−1

2
;−

√
3

2
sin θ

)
,

−→τ3 = d

(
−
√

3
2

cos θ;−1
2
;−

√
3

2
sin θ

)
, (25)

where sin θ = a/4R; R is the radius of the nanotube. Now
one can construct three hybrids along the three directions
of the bonds. These directions are

−→e1 = (0; 1; 0),

−→e2 =

(√
3

2
cos θ;−1

2
;−

√
3

2
sin θ

)
,

−→e3 =

(
−
√

3
2

cos θ;−1
2
;−

√
3

2
sin θ

)
. (26)

The requirement of the orthonormality of the hybrid wave
functions determines uniquely the fourth hybrid, denoted
by |π〉, which corresponds to the pz orbital in graphite.
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The hybridization of the σ bonds therefore changes from
the uncurved expression to

|σ1〉 = s1|s〉 +
√

1 − s21|py〉,

|σ2〉 = s2|s〉 +
√

1 − s22

×
(√

3
2

cos θ|px〉 − 1
2
|py〉 −

√
3

2
sin θ|pz〉

)
,

|σ3〉 = s3|s〉 +
√

1 − s23

×
(
−
√

3
2

cos θ|px〉 − 1
2
|py〉 −

√
3

2
sin θ|pz〉

)
,

|π〉 = D1|s〉 +D2|px〉 +D3|py〉 +D4|pz〉. (27)

The mixing parameters si, Dj can be determined by
the orthonormality conditions 〈σi|σj〉 = δij , 〈π|σi〉 =
0,〈π|π〉 = 1. We get

|σ1〉 =
1√

3 cos 2θ
|s〉 +

√
1 − 1

3 cos 2θ
|py〉,

|σ2〉 =

√
3 cos 2θ − 1
3(cos 2θ + 1)

|s〉 +

√
2
3

1
cos θ

×
(√

3
2

cos θ|px〉 − 1
2
|py〉 −

√
3

2
sin θ|pz〉

)
,

|σ3〉 =

√
3 cos 2θ − 1
3(cos 2θ + 1)

|s〉 +

√
2
3

1
cos θ

×
(
−
√

3
2

cos θ|px〉 − 1
2
|py〉 −

√
3

2
sin θ|pz〉

)
,

|π〉 = tan θ

√
3 cos 2θ − 1

3 cos 2θ
|s〉 +

tan θ√
3 cos 2θ

|py〉

+

√
cos 2θ
cos θ

|pz〉. (28)

Now we can find the expression for the π orbital to the
lowest order in a/R

|π〉 ≈ a

2
√

6R
|s〉 +

a

4
√

3R
|py〉 + |pz〉, (29)

and so we get

ε=〈π|H |π〉 ≈ a2

24R2
〈s|H |s〉+ a2

48R2
〈py|H |py〉+〈pz|H |pz〉.

(30)
Due to a/2R = π/N , (N = 9) we have

ε̃ =
1
6
π2

N2
〈s|H |s〉 +

1
12

π2

N2
〈py|H |py〉 + 〈pz |H |pz〉, (31)

and

ε =
1
24

π2

N2
〈s|H |s〉 +

1
48

π2

N2
〈py|H |py〉 + 〈pz|H |pz〉. (32)

In the case m = 3 we find

E3,4(k) = ε± γ0(1 − 2β cos
√

3ka
2

+ β2)
1
2 , (33)

E11,12(k) = ε̃± γ0(1 − 2β̃ cos
√

3ka
2

+ β̃2)
1
2 , (34)

where k = 0 is a Fermi point for both the inner and outer
nanotubes in the case β = β̃ = 1. Nanotubes have no
gap and have a semiconductor character. If we impose a
curvature correction, we get a gap

Eg = 2(1 − β) = γ0

( π

2N

)2

=
γ0

4

( a

2R

)2

, (35)

for the outer nanotube and

Eg = 2(1 − β̃) = γ0

( π
N

)2

=
γ0

4

( a
R

)2

, (36)

for the inner nanotube. Here R is the radius of the inner
tube and 2R is the radius of the outer tube. So we get
the same gap as was computed in [20] where the rehy-
bridized orbital method was used. For γ0 ≈ 3 eV we get
Eg ≈ 0.365 eV for the inner tube and Eg ≈ 0.091 eV for
the outer tube. Now we want to estimate the difference
between “Fermi levels” of the inner and the outer shell.
We have [21]

〈s|H |s〉 ≈ −12 eV, (37)
〈py|H |py〉 ≈ −4 eV, (38)

and the difference is

ε− ε̃ =
1
6

(( π

2N

)2

−
( π
N

)2
)
〈s|H |s〉

+
1
12

(( π

2N

)2

−
( π
N

)2
)
〈py|H |py〉. (39)

From the expression above we finally get the value for the
energy gap

ε− ε̃ ≈ 0.21 eV. (40)

Now we use the eigenstates ψi to find the solution when
the interaction between shells is imposed. We assume the
symmetric geometry of zig-zag DWNT. It means that the
atoms A,A1 and B,B1 are directly one above another in
the neighboring shells [10]. We take into account only the
interactions

WA,A1 = WB,B1 =
γ0

8
. (41)

We look for solution in the form

Ψ =
12∑

i=1

ζiψi. (42)

We have secular equations

12∑

j=1

〈ψi|H |ψj〉ζj = Ẽζi, (43)
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Fig. 3. (Color online) Spectra of zigzag DWNT with the in-
tertube interactions.

where
〈ψi|H |ψj〉 = δijEi, (44)

for i, j = 1, ...8 and i, j = 9, ...12, and the interaction
between shells is described by the terms 〈ψi|H |ψj〉 for i =
1, ...8 ; j = 9, ...12 and vice versa. We have, for instance,

〈ψ9|H |ψ1〉 =
1

4
√

2
γ0

8

(
1 + ei(ϕ5−ϕ1)

)
, (45)

〈ψ9|H |ψ2〉 =
1

4
√

2
γ0

8

(
1 − ei(ϕ5−ϕ1)

)
. (46)

We get the eigenvalues Ẽi with eigenvectors which can be
expressed in the form

Ψi =
12∑

j=1

ζi,jψj . (47)

The eigenvalues of equation (55) for some values of√
3ka/2 near the point k = 0 are depicted in Figure 3

where Ec and Ev are conductive and valence band. The
band structure for zig-zag DWNT without intertube in-
teractions is also shown for comparison (Fig. 4). At the
point k = 0 we get the wave function of the valence band

Ψv 	 −0.6ψ3 + 0.8ψ11, (48)

ψ3(ψ11) is π∗ state of the outer(inner) nanotube. We
get a minimum gap Eg 	 90 meV between the valence
and conductive band of the DWNTs at the wave vectors√

3ka/2 	 ±0.05. At these points the wave function has
the form

Ψv 	− 0.263iψ3 + 0.838ψ4 − (0.14 + 0.45i)ψ11

+ (0.29 − 0.09i)ψ12, (49)

ψ4(ψ12) is π state of the outer(inner) nanotube. We
calculated also the electronic structure of (8, 0)–(16, 0)
and (10, 0)–(20, 0) DWNTs. The energy gaps are collected
in the Tables 1 and 2. To compute the gaps Δ we used
formula (19). The gaps denoted by ΔKM are computed
with formula used in [22]; ΔTB are gaps calculated in

Fig. 4. (Color online) Spectra of zigzag DWNT in the absence
of the intertube interactions.

Table 1. The values of the minimum energy gaps for different
types of zig-zag SWNTs. The values are calculated in eV. Δ
and ΔKM are the gaps computed in the present paper. The val-
ues for comparison ΔTB , ΔDF T are computations from simple
zone tight-binding and density functional theory [28].

SWNT Δ ΔKM ΔTB ΔDFT

(8, 0) 1.752 1.496 1.42 0.59
(9, 0) 0.37 0.093 0 0.096
(10, 0) 0.705 0.966 1.07 0.77
(16, 0) 0.538 0.634 0.67 0.54
(18, 0) 0.091 0.023 0 0.013
(20, 0) 0.619 0.568 0.56 0.50

Table 2. The values of the minimum energy gaps for differ-
ent types of zig-zag DWNTs. The values are calculated in eV,
ΔDF T is taken from [27]

DWNT Δ ΔKM ΔDFT

(8, 0)–(16, 0) 1.234 1.080 0.35
(9, 0)–(18, 0) 0.09 0.061 –
(10, 0)–(20, 0) 0.494 0.676 –

the simple zone folding tight-binding approximation where
the curvature effects are not taken into account. We com-
pare our results with the previous computed energy gaps.
For (8, 0)–(16, 0) DWNTs we get a gap which is signifi-
cantly greater than that computed by density functional
theory (DFT). It is mainly caused by that the tight-
bounding method gives greater gaps for nanotubes with a
very small diameter than the DFT computations. Another
reason is that we describe DWNTs as one unified sys-
tem where single nanotubes partially lose their individual
characteristics due to the interactions. For (10, 0)–(20, 0)
DWNTs we get a similar gap as in [25].

3 (5, 5)–(10, 10) armchair tubules

We can make similar calculations of electronic spectra also
in the case of armchair double-layer nanotubes. The sys-
tem is characterized by the same Hamiltonian as in the
previous section. We can define the vectors connecting the
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Fig. 5. The outer shell part of the unit cell in the case of
armchair nanotubes.

Fig. 6. The inner shell part of the unit cell in the case of
armchair nanotubes.

nearest neighbor carbon atoms for armchair nanotubes in
the form:

−→τ1 = a(
1√
3
; 0),

−→τ2 = a(− 1
2
√

3
;−1

2
),

−→τ3 = a(− 1
2
√

3
;
1
2
). (50)

The distance between atoms in the unit cell is also |−→τi | =
a√
3
.
Now we define the intratube hopping integrals

〈ϕout(r −A1)|H |ϕout(r −B1)〉 = γ0α,

〈ϕout(r −A1)|H |ϕout(r −B′
2)〉 = γ0β, (51)

and

〈ϕin(r −A)|H |ϕin(r −B)〉 = γ0α̃,

〈ϕin(r −A)|H |ϕin(r −B′)〉 = γ0β̃, (52)

where γ0 is the hoping integral in the graphene and α(α̃),
β(β̃) are parameters which describe the dependence of
hopping integrals on the surface curvature. From Figures 5
and 6 we get the system of equations as describing in
Appendix B.

At the beginning we neglect the intertube interactions
in the equations described in Appendix B. We get a set of

equations which can be decoupled. One set for the outer
shell and the other for the inner shell. The electronic spec-
tra and eigenstate for the outer shell can be expressed in
the form

E1,2(k)=ε±γ0

(
α2 + 4αβ cos

mπ

5
cos

ka

2
+4β2 cos2

ka

2

) 1
2

,

ψ1,2 =
1√
8

(
1;±e−iϕ1 ; 1;±e−iϕ1, 1;±e−iϕ1; 1;±e−iϕ1

)

(53)

E3,4(k)=ε±γ0

(
α2−4αβ cos

mπ

5
cos

ka

2
+4β2 cos2

ka

2

)1
2

,

ψ3,4 =
1√
8

(
1;±e−iϕ2;−1;∓e−iϕ2, 1;±e−iϕ2;−1;∓e−iϕ2

)

(54)

E5,6(k)=ε±γ0

(
α2+4αβ sin

mπ

5
cos

ka

2
+4β2 cos2

ka

2

) 1
2

,

ψ5,6 =
1√
8

(
1;±e−iϕ3 ;−i;∓ie−iϕ3,−1;∓e−iϕ3; i;±ie−iϕ3

)

(55)

E7,8(k)=ε±γ0

(
α2−4αβ sin

mπ

5
cos

ka

2
+4β2 cos2

ka

2

) 1
2

,

ψ7,8 =
1√
8

(
1;±e−iϕ4; i;±ie−iϕ4,−1;∓e−iϕ4;−i;∓ie−iϕ4

)
.

(56)
The electronic spectra for the inner nanotubes was found
in the form

E9,10(k) = ε̃±γ0

(
α̃2+4α̃β̃ cos

mπ

5
cos

ka

2
+4β̃2 cos2

ka

2

)1
2

,

ψ9,10 =
1√
4

(
1;±e−iϕ5; 1;±e−iϕ5

)
(57)

E11,12(k)= ε̃±γ0

(
α̃2−4α̃β̃ cos

mπ

5
cos

ka

2
+4β̃2 cos2

ka

2

)1
2

,

ψ11,12 =
1√
4

(
1;±e−iϕ6;−1;∓e−iϕ6

)
. (58)

From the boundary condition kxL = 2πm, L = N3d
where d = a/

√
3 is the nearest neighbor bond length we

get kx = 2πm
3dN = 2πm√

3Na
, m = 0, 1, ...N − 1; 3d is the

length of the unit cell in the x-direction. Here ky = k
and −π

a < k < π
a is the first Brillouin zone. In this

case, we assume that N = 5 for the above spectrum.
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The value for the parameter α̃ and β̃ can be found from
the expressions α̃ = 1 − 1

2bxxb
x
x(τx

1 )2 = 1 − 1
2R2

a2

3 and
β̃ = 1 − 1

2bxxb
x
x(τx

2 )2 = 1 − 1
2R2

a2

12 . The radius for the
inner, outer nanotube can be found from the expressions
2πR = N3d =

√
3Na, 2πR = N6d, respectively. Now

we make a correction of transfer integral caused by the
curvature of nanotubes

β̃ = 1 − 1
2
(
π

3N
)2; β= 1 − 1

8
(
π

3N
)2, (59)

α̃ = 1 − 2(
π

3N
)2; α= 1 − 1

2
(
π

3N
)2. (60)

We calculate the values ε and ε̃. Due to the curvature the
coordinates of −→τi in space are

−→τ1 = d(cos θ; 0;− sin θ),

−→τ2 = d

(
−1

2
cosϑ;−

√
3

2
;−1

2
sinϑ

)
,

−→τ3 = d

(
−1

2
cosϑ;

√
3

2
;−1

2
sinϑ

)
, (61)

where sin θ = d/2R and sinϑ = d/4R; R is the radius of
the nanotube. In a similar way, as in the previous section,
we get

|σ1〉 =
cos(θ + ϑ)√

2 + cos2(θ + ϑ)
|s〉

+

√
2

2 + cos2(θ + ϑ)
(cos θ|px〉 − sin θ|pz〉) ,

|σ2〉 =
1√
3
|s〉+

√
2
3

(
−1

2
cosϑ|px〉−

√
3

2
|py〉− 1

2
sinϑ|pz〉

)
,

|σ3〉 =
1√
3
|s〉+

√
2
3

(
−1

2
cosϑ|px〉+

√
3

2
|py〉− 1

2
sinϑ|pz〉

)
,

|π〉 =

√
2
3

sin(θ + ϑ)√
2 + cos2(θ + ϑ)

|s〉

+
2 sin θ − sinϑ cos(θ + ϑ)√

6 + 3 cos2(θ + ϑ)
|px〉

+
2 cos θ + cosϑ cos(θ + ϑ)√

6 + 3 cos2(θ + ϑ)
|pz〉. (62)

Now we can find the expression for the π orbital to the
lowest order in d/R

|π〉 ≈
√

2d
4R

|s〉 +
d

4R
|px〉 + |pz〉. (63)

Due to 3dN = 2πR we get

|π〉 ≈
√

2π
6N

|s〉 +
π

6N
|px〉 + |pz〉, (64)

and so

ε = 〈π|H |π〉 ≈ 1
18

( π
N

)2

〈s|H |s〉

+
1
36

( π
N

)2

〈px|H |px〉 + 〈pz |H |pz〉. (65)

From this expression we derive, if (N = 5),

ε̃ =
1
18

( π
N

)2

〈s|H |s〉 +
1
36

( π
N

)2

〈px|H |px〉 + 〈pz|H |pz〉,
(66)

and

ε =
1
18

( π

2N

)2

〈s|H |s〉+ 1
36

( π

2N

)2

〈px|H |px〉+〈pz|H |pz〉.
(67)

The energy levels E3,4 and E11,12 define the Fermi point
for m = 0. We have

E3,4(k) = ε± γ0|α− 2β cos
ka

2
|, (68)

E11,12(k) = ε̃± γ0|α̃− 2β̃ cos
ka

2
|, (69)

and the Fermi point is defined by the equations

α̃− 2β̃ cos
ka

2
= 0, (70)

for the inner shell, and

α− 2β cos
ka

2
= 0, (71)

for the outer shell, respectively. By virtue of β ≥ α(β̃ ≥ α̃)
the curvature does not open a gap in the case of sin-
gle nanotubes. Using the values 〈s|H |s〉 ≈ −12 eV and
〈px|H |px〉 ≈ −4 eV in the following expression:

ε− ε̃ =
1
18

(( π

2N

)2

−
( π
N

)2
)
〈s|H |s〉

+
1
36

(( π

2N

)2

−
( π
N

)2
)
〈px|H |px〉, (72)

we find
ε− ε̃ ≈ 0.23 eV. (73)

Now we use the eigenstates ψi to find the solution when
the interaction between shells is imposed. Similarly, as in
the previous case, we look for the solution in the form

Ψ =
12∑

i=1

ζiψi. (74)

We have secular equations

12∑

j=1

〈ψi|H |ψj〉ζj = Ẽζi. (75)

We take into account all intertube interactions between
atoms which have a distance dij less than 4.2 Å similarly
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Fig. 7. (Color online) Spectra of armchair DWNT in the ab-
sence of the intertube interactions.

Fig. 8. (Color online) Spectra of armchair DWNT with the
intertube interactions in symmetric case.

as in [15,16]. We use the value ξ = 3.466 for the inter-
tube distance in the numerical computations. We compute
spectra for three different geometries. The first case was
symmetric geometry where the atoms B′

2(A2) occupy a
position directly above A′(B′), respectively. In the second
case, we shift the inner shell axially by 0.612 Å and in
the third case, we rotate the inner shell by 6◦ from the
symmetric orientation. We get the eigenvalues Ẽi with
eigenvectors which can be expressed in the form

Ψi =
12∑

j=1

ζi,jψj . (76)

The spectra for some values of ka/2 near the Fermi points
of single nanotubes are depicted in Figure 7. The point
ka/2 = 1.086 is the Fermi point of the isolated inner
nanotube. The point ka/2 = 1.057 is the Fermi point of
the isolated outer nanotube. Approximately, from point
ka/2 = 1.054 to point 1.095 the Ẽ11 levels are below the
Ẽ4 level. So in the armchair DWNT the state Ψ11 is oc-
cupied at these points. The state Ψ11 is some mixture of
the states ψi. For example, for the point ka/2 = 1.083 we
have that the main part of Ψ11 is ψ11 which is π∗ state of
the inner tube.

We get that electrons which are localized in the outer
nanotubes in the case without interaction between shells

Fig. 9. (Color online) Spectra of armchair DWNT with the
intertube interactions with shift of y-axes of inner tube about√

3b/4 Å.

Fig. 10. (Color online) Spectra of armchair DWNT with
the intertube interactions with rotation of inner tube about
6 angle.

(or in the case of single nanotubes) are now localized in
the inner nanotubes in the state which is unoccupied in
the single nanotubes. Figures 8–10 describe how the shift
and rotation of the inner nanotube, similarly as in [15],
influence the energy gap between conductance and valence
bands in the DWNTs armchair nanotube where Ec and Ev

are conductive and valence bands. We get similar results
for (4, 4)–(8, 8) and (6, 6)–(12, 12) DWNTs.

4 Conclusion

In the present work, we take into account that the Fermi
levels of the individual nanotubes which create the dou-
ble wall nanotubes are different. This difference is very
important in the double wall nanotubes with small di-
ameters. The interplay between energy difference of the
Fermi levels of the individual nanotubes and the energy
gap between valence and conducting band of individual
nanotubes have a strong effect on the conductivity of dou-
ble wall nanotubes [23–25]. The important parameter is
also a difference of wave vectors kF of the individual nan-
otubes.



M. Pudlak and R. Pincak: Electronic properties of double-layer carbon nanotubes 573

To compute the influence of a curvature of the sur-
face on the matrix elements of the secular equation, we
used two methods. The rehybridization of the π orbital
method was used for the computation of diagonal ma-
trix elements which define the Fermi levels of single nan-
otubes. To compute the nondiagonal matrix element, we
used the curvature tensor bij . In the present work, we get
the same gap as in [20] which was computed by the re-
hybridized method for single wall zig-zag nanotubes. The
gap is by a factor of 4 larger than that computed in the
previous study [22]. The reason is that we get analytically
a 4 time bigger term δti/t. The curvature of the surface
opens the gap in the zig-zag SWNTs but does not open
the gap in the armchair SWNTs. The Fermi level of the
outer shell is about 0.21 eV higher than the Fermi level of
the inner shell in the case of (9, 0)–(18, 0) zig-zag DWNTs.
In the case of zig-zag DWNTs, the curvature does not shift
the minimum of the conductance band and maximum of
the valence band of the individual nanotubes. The result is
that these DWNTs are the semiconductor. The electronic
structure of the (9, 0)–(18, 0) DWNTs in the absence of
the intertube interactions is shown in Figure 4. Due to the
difference in Fermi levels of individual nanotubes the va-
lence states are not symmetric to conduction states about
the Fermi level. We have a gap Eg = 25 meV between
the valence band of the outer shell and the conductive
band of the inner shell. The difference in the Fermi levels
of individual nanotubes has not been taken into account
in [10]. They have symmetric valence states to the con-
duction states, and the energy gap Eg is associated with
outer (18, 0) nanotubes in the absence of the intertube in-
teraction. We get a minimum gap between the valence and
conductive band at the points

√
3ka/2 	 ±0.05 and this

energy gap has value Eg = 90 meV when the intertube
interactions are imposed. We also compute the energy
gaps of (8, 0)–(16, 0) and (10, 0)–(20, 0) zig-zag DWNTs.
For (8, 0)–(16, 0) DWNTs we get a significantly greater
gap than is predicted by DFT calculations. It is mainly
due to difference in the energy gaps of (8, 0) SWNTs. DFT
calculations predict energy gaps 0.6 eV. Quasiparticle cor-
rections open the gap to 1.75 eV [26]. A similar gap is
predicted in the present paper. The values of the mini-
mum energy gaps for different types of zig-zag SWNTs
and DWNTs are collected in Tables 1 and 2.

The Fermi level of the outer shell is about
0.23 eV higher than the Fermi level of the inner shell
for (5, 5)–(10, 10) armchair DWNTs. The result is that in
the armchair DWNTs part of electrons from the valence
band of the outer shell comes to the conductance band of
the inner shell. The inner shell will have a negative charge
and will have electron conductivity, and the outer shell will
have a positive charge and will have hole conductivity. In
the case of armchair SWNTs, the Fermi points are shifted
and the shift depends on the curvature. Since the α

2β is
bigger than α̃

2β̃
, the Fermi point kF of the outer nanotube

is smaller than the wave vector kF of the Fermi point of
the inner nanotube. The highest occupied state is located
above the lowest unoccupied state in the case of the arm-
chair DWNT. The differences are 0.16 eV in the symmet-

ric geometry, 0.1 eV when inner nanotube is shifted in the
direction of the axes and 96 meV in the case of the rota-
tional displacement of the inner with respect to the outer
tube. So armchair DWNTs have a semimetallic charac-
ter. We get the same character of the conductivity in all
computed geometries for the armchair (5, 5)–(10, 10) nan-
otube. It means that the conductivity does not strongly
depend on the relative position of individual shells. We
get similar results, as in [3,4], for the asymmetric geome-
try of (5, 5)–(10, 10) armchair nanotube, but we have the
inverse asymmetry of the electronic spectra. In our model
we get the asymmetry because the Fermi level of the outer
nanotube is higher than the Fermi level of the inner nan-
otube, and the wave vector kF of the Fermi level of the
outer nanotube is smaller than the wave vector of the
Fermi level of the inner nanotube (Fig. 8). We get simi-
lar results also for (4, 4)–(8, 8) and (6, 6)–(12, 12) DWNTs
where the highest occupied state is 0.217 eV above the
lowest unoccupied state in the case of (4, 4)–(8, 8) DWNTs
and 0.12 eV in the case of (6, 6)–(12, 12) DWNTs.

The main reason why there is a difference in the char-
acter of the conductivity of armchair and zig-zag double
wall nanotubes is the absence of the shift of the wave
vector k where the individual zig-zag nanotubes have a
minimal gap. So zig-zag DWNTs are semiconductors. We
have a maximum of the valence band of the outer armchair
nanotube higher than a minimum of the conductive band
of the inner nanotube in the armchair DWNTs. There is
no energy gap in armchair nanotubes but there is a shift
of kF . Those are the main reasons why the armchair dou-
ble wall nanotubes with a small radius are semimetal. We
can also conclude that the shift and rotation of the inner
nanotube do not influent largely the main characteristics
of the DWNTs armchair nanotubes; therefore, they are
stable with their semimetallic character. It would be in-
teresting to test this prediction in experiment.

Generally, we can say that the conductivity depends
on the relative position of the wave vectors k where the
individual nanotubes have a minimum gap. If there is no
shift, the DWNTs are semiconductors. Zig-zag SWNTs
have a minimum gap at point Γ . It means that from our
prediction all zig-zag DWNTs ought to be semiconduc-
tors. It is partially supported in [25]. On the other hand,
if there is a shift in the wave vectors where the individual
nanotubes have a minimal gap depending on the mutual
positions of the Fermi levels and the energy gap width
of individual nanotubes, the DWNT can be semimetal or
semiconductor. The examples are (5, 5)–(10, 10) DWNTs
where the shift is caused by curvature and (4, 2)–(10, 5)
DWNTs where individual nanotubes have gap minima at
the points X and Γ [27]. We have shown that the differ-
ence in the Fermi level energies and mixing of orbitals lo-
calized on the outer and inner nanotubes cause the charge
transfer from outer to inner tubules. We do not take into
account that charge transfer between the outer and in-
ner tubules create an electric field between these tubules.
So not all electrons can transfer from the outer shell to
the inner shell, as is predicted by the present study. As-
sumption of this effect can make a reconstruction of the
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electronic spectra of DWNTs. This is important mainly in
the DWNTs where the inner nanotube has a very small
diameter. The result can be metallic character of zig-zag
DWNTs with (7, 0) and (5, 0) inner nanotube, as is pre-
dicted in [6,7,27]. Our calculations predict semiconducting
character of (9, 0)–(18, 0) DWNTs similarly to [3,10] and
contrary to [6]. It ought to be resolved.

If inner shell has a radius about 7 Å and more, the dif-
ference between Fermi energy of the outer and the inner
tubules is small. So the charge transfer is not significant.
The lower the minimum of the π∗ state of the inner nan-
otube in comparison with the maximum of the π state of
the outer nanotube the bigger charge transfer is. If individ-
ual nanotubes have metallic character, the charge transfer
will be greater then in the case of DWNTs where one or
both of the nanotubes are semiconductor. It means for
instance that the charge transfer is smaller in the case of
zig-zag DWNTs than in the case of armchair DWNTs with
similar radius. Charge transfer is from the outer to the in-
ner nanotube because Fermi level of the outer nanotube
is higher then Fermi level of the inner nanotube.

From equation (71) we get the following formula for
the Fermi wave vector kF of the armchair SWNT;

kF =
2
a

arccos
1 − 1

2

(
d
R

)2

2
(
1 − 1

8

(
d
R

)2
) . (77)

For a large radius the Fermi wave vector is located at
kF (R → ∞) = 2π/3a. As a diameter decreases, the po-
sition of kF shifts from kF (R → ∞) towards the bigger
wave vectors. The DFT calculations predict the opposite
shift [28]. Parameter α is smaller than parameter β. It
means that because of curvature the hopping integral in
the τ 1 direction is smaller than the hopping integrals in
the τ 2 and τ 3 directions. This is the reason why we get
the shift of kF towards the bigger wave vector with de-
creasing of the radius of the nanotube. We expect that
less symmetric DWNTs have no such stable characteristic
when we change a relative position of the outer and in-
ner nanotubes. The oscillation character of a energy gap
will not exist in the case of less symmetric DWNTs. The
understanding how the rotation of the inner nanotube in
different types of DWNTs influences electronic properties
of this type of nanostructures is needed to design a new
type of nanomotors [29].
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Appendix A

In a tight-binding approximation for the case of zig-zag
tubules we get the following systems of equations: for the

outer shell

εCA1 +HA1B2CB2 +HA1B′
2
CB′

2
+HA1B1CB1

+
∑

λ

WA1,λCλ = ECA1 , (78)

where HA1B2 = γ0βe
i
−→
k −→τ2 ; HA1B′

2
= γ0βe

i
−→
k −→τ3 ; HA1B1 =

γ0e
i
−→
k −→τ1 .

εCB1 +HB1A1CA1 +HB1A′
2
CA′

2
+HB1A2CA2

+
∑

λ

WB1,λCλ = ECB1 , (79)

where HB1A1 = γ0e
−i

−→
k −→τ1 ; HB1A′

2
= γ0βe

−i
−→
k −→τ2 ; HB1A2 =

γ0βe
−i

−→
k −→τ3 .

εCA2 +HA2B1CB1 +HA2B2CB2 +HA2B′
1
CB′

1

+
∑

λ

WA2,λCλ = ECA2 , (80)

where HA2B2 = γ0e
i
−→
k −→τ1 ; HA2B1 = γ0βe

i
−→
k −→τ3 ; HA2B′

1
=

γ0βe
i
−→
k −→τ2 .

εCB2 +HB2A1CA1 +HB2A′
1
CA′

1
+HB2A2CA2

+
∑

λ

WB2,λCλ = ECB2 , (81)

where HB2A1 = γ0βe
−i

−→
k −→τ2 ; HB2A′

1
= γ0βe

−i
−→
k −→τ3 ;

HB2A2 = γ0e
−i

−→
k −→τ1 .

εCB′
1
+HB′

1A2CA2 +HB′
1A′

2
CA′

2
+HB′

1A′
1
CA′

1

+
∑

λ

WB′
1,λCλ = ECB′

1
, (82)

where HB′
1A2 = γ0βe

−i
−→
k −→τ2 ; HB′

1A′
2

= γ0βe
−i

−→
k −→τ3 ;

HB′
1A′

1
= γ0e

−i
−→
k −→τ1 .

εCA′
2
+HA′

2B′
1
CB′

1
+HA′

2B′
2
CB′

2
+HA′

2B1CB1

+
∑

λ

WA′
2,λCλ = ECA′

2
, (83)

where HA′
2B′

1
= γ0βe

i
−→
k −→τ3 ; HA′

2B′
2

= γ0e
i
−→
k −→τ1 ; HA′

2B1 =

γ0βe
i
−→
k −→τ2 .

εCB′
2
+HB′

2A′
2
CA′

2
+HB′

2A′
1
CA′

1
+HB′

2A1CA1

+
∑

λ

WB′
2,λCλ = ECB′

2
, (84)

where HB′
2A′

2
= γ0e

−i
−→
k −→τ1 ; HB′

2A′
1

= γ0βe
−i

−→
k −→τ2 ; HB′

2A1 =

γ0βe
−i

−→
k −→τ3 .

εCA′
1
+HA′

1B′
1
CB′

1
+HA′

1B2CB2 +HA′
1B′

2
CB′

2

+
∑

λ

WA′
1,λCλ = ECA′

1
, (85)
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where HA′
1B′

1
= γ0e

i
−→
k −→τ1 ; HA′

1B2 = γ0βe
i
−→
k −→τ3 ; HA′

1B′
2

=

γ0βe
i
−→
k −→τ2 . Here λ denotes the atoms of the unitary cell

localized on the inner shell. Now we write down the equa-
tions for the inner shell in the case of zigzag nanotubes.

ε̃CA +HABCB +HAB′CB′ +
∑

λ

WA,λCλ = ECA, (86)

where HAB = γ0e
i
−→
k −→τ1 ; HAB′ = γ0β̃(ei

−→
k −→τ2 + ei

−→
k −→τ3).

ε̃CB +HBACA +HBA′CA′ +
∑

λ

WB,λCλ = ECB, (87)

where HBA = γ0e
−i

−→
k −→τ1 ; HBA′ = γ0β̃(e−i

−→
k −→τ2 + e−i

−→
k −→τ3).

ε̃CA′ +HA′BCB+HA′B′CB′ +
∑

λ

WA′,λCλ = ECA′ , (88)

where HA′B′ = γ0e
i
−→
k −→τ1 ; HA′B = γ0β̃(ei

−→
k −→τ2 + ei

−→
k −→τ3).

ε̃CB′+HB′ACA+HB′A′CA′ +
∑

λ

WB′,λCλ = ECB′ , (89)

where HB′A′ = γ0e
−i

−→
k −→τ1 ; HB′A = γ0β̃(e−i

−→
k −→τ2 + e−i

−→
k −→τ3)

and λ denotes the atoms of the unitary cell localized on
the outer shell.

Appendix B

In a tight-binding approximation for the case of armchair
tubules we get the following systems of equations: for the
outer shell

εCA1 +HA1B1CB1 +HA1B′
2
CB′

2
+

∑

λ

WA1,λCλ = ECA1 ,

(90)
where HA1B1 = γ0αe

i
−→
k −→τ1 ; HA1B′

2
= γ0β(ei

−→
k −→τ2 + ei

−→
k −→τ3).

εCB1 +HB1A1CA1 +HB1A2CA2 +
∑

λ

WB1,λCλ = ECB1 ,

(91)
where HB1A1 = γ0αe

−i
−→
k −→τ1 ; HB1A2 = γ0β(e−i

−→
k −→τ2 +

e−i
−→
k −→τ3).

εCA2 +HA2B2CB2 +HA2B1CB1 +
∑

λ

WA2,λCλ = ECA2 ,

(92)
where HA2B2 = γ0αe

i
−→
k −→τ1 ; HA2B1 = γ0β(ei

−→
k −→τ2 + ei

−→
k −→τ3).

εCB2 +HB2A′
1
CA′

1
+HB2A2CA2 +

∑

λ

WB2,λCλ = ECB2 ,

(93)
where HB2A2 = γ0αe

−i
−→
k −→τ1 ; HB2A′

1
= γ0β(e−i

−→
k −→τ2 +

e−i
−→
k −→τ3).

εCA′
1
+HA′

1B2CB2 +HA′
1B′

1
CB′

1
+

∑

λ

WA′
1,λCλ = ECA′

1
,

(94)

where HA′
1B′

1
= γ0αe

i
−→
k −→τ1 ; HA′

1B2 = γ0β(ei
−→
k −→τ2 + ei

−→
k −→τ3 ).

εCB′
1
+HB′

1A′
1
CA′

1
+HB′

1A′
2
CA′

2
+

∑

λ

WB′
1,λCλ = ECB′

1
,

(95)
where HB′

1A′
1

= γ0αe
−i

−→
k −→τ1 ; HB′

1A′
2

= γ0β(e−i
−→
k −→τ2 +

e−i
−→
k −→τ3).

εCA′
2
+HA′

2B′
1
CB′

1
+HA′

2B′
2
CB′

2
+

∑

λ

WB′
2,λCλ = ECB′

2
,

(96)
where HA′

2B′
2

= γ0αe
i
−→
k −→τ1 ; HA′

2B′
1

= γ0β(ei
−→
k −→τ2 + ei

−→
k −→τ3 ).

εCB′
2
+HB′

2A1CA1 +HB′
2A′

2
CA′

2
+

∑

λ

WB′
2,λCλ = ECB′

2
,

(97)
where HB′

2A′
2

= γ0αe
−i

−→
k −→τ1 ; HB′

2A1 = γ0β(e−i
−→
k −→τ2 +

e−i
−→
k −→τ3). Here λ denotes the atoms of the unitary cell lo-

calized on the inner shell. The equations for the inner shell
can be expressed in the form:

ε̃CA +HAB′CB′ +HABCB +
∑

λ

WA,λCλ = ECA, (98)

where HAB = γ0α̃e
i
−→
k −→τ1 ; HAB′ = γ0β̃(ei

−→
k −→τ2 + ei

−→
k −→τ3).

ε̃CB +HBACA +HBA′CA′ +
∑

λ

WB,λCλ = ECB , (99)

where HBA = γ0α̃e
−i

−→
k −→τ1 ; HBA′ = γ0β̃(e−i

−→
k −→τ2 + e−i

−→
k −→τ3).

ε̃CA′ +HA′BCB +HA′B′CB′ +
∑

λ

WA′,λCλ = ECA′ ,

(100)
where HA′B′ = γ0α̃e

i
−→
k −→τ1 ; HA′B = γ0β̃(ei

−→
k −→τ2 + ei

−→
k −→τ3).

ε̃CB′ +HB′ACA +HB′A′CA′ +
∑

λ

WB′,λCλ = ECB′ ,

(101)
where HBA′ = γ0α̃e

−i
−→
k −→τ1 ; HB′A = γ0β̃(e−i

−→
k −→τ2 +e−i

−→
k −→τ3).

Here λ denotes the atoms of the unitary cell localized on
the outer shell.
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