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Electronic structure of disordered graphene with Green’s function approach
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The Green functions play a big role in the calculation of the local density of states of the carbon
nanostructures. We investigate their nature for the variously oriented and disclinated graphene-like
surface. Next, we investigate the case of a small perturbation generated by two heptagonal defects and
from the character of the local density of states in the border sites of these defects we derive their
minimal and maximal distances on the perturbed cylindrical surface. For this purpose, we transform
the given surface into a chain using the Haydock recursion method. We will suppose only the nearest-
neighbor interactions between the atom orbitals, in other words, the calculations suppose the short-range
potential.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The local density of states (LDoS) is one of the most important
characteristics describing the electronic properties of the carbon
nanostructures. Different methods were used for its calculation:
The first exploits the form of the electronic spectra [1], the sec-
ond deals with the gauge-theory model and the Dirac equation [2,
3], the third works with the Green function which can be calcu-
lated using different methods.

Possible procedures of the calculation of the Green function can
be seen in [4] for the case of the presence of the impurity poten-
tials and in [5] for the case of the smooth ripples present in the
graphene structure. In this Letter, we use the Haydock recursion
method [6,7] for this purpose. It will be applied for the calcula-
tion of the LDoS of different forms of the carbon nanocylinders
and other kinds of nanostructured surfaces which arise by adding 2
heptagonal defects.

First, we describe the Haydock recursion method and the pro-
cedure of the calculation of the Green function. Then we apply
this method on the calculation of the Green function and related
quantities in the edge sites of the carbon nanocylinder and of the
graphene nanoribbon perturbed by two heptagonal defects. Then
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we investigate the changes of the LDoS for the changing distance
of the defects, calculate the zero modes and after that we estimate
the minimal and maximal distance of the defects on the perturbed
surface of the nanocylinder.

2. Haydock recursion method

The LDoS can be defined as

LDoS(E) = lim
δ→+0

1

π
Im G00(E − iδ), (1)

where G00(E) is the Green function. It can be calculated using
the recursion procedure which transforms an arbitrary surface into
1-dimensional chain. This procedure is called the Haydock recur-
sion method [8]. It divides the positions of the investigated surface
into the groups of sites, each of them represents the site in the
1-dimensional chain. The investigated site we label by the num-
ber 1 and it lies in the beginning of the chain. The site 2 in the
chain corresponds to the nearest neighbors, the site 3 corresponds
to the next nearest neighbors, etc. For this purpose, we suppose
only short-distance interactions. On this base, we can write the
action of the Hamiltonian on the n-th site in the form

H|n〉 = an|n〉 + bn−1|n − 1〉 + |n + 1〉, (2)

where a0 = b0 = b−1 = 0. Then, from the knowledge of the
state |1〉, which corresponds to the usual state of the carbon atom,
we can recursively compute the coefficients an , bn corresponding
to the particular sites of the chain using
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Fig. 1. Surface of two forms of the carbon nanocylinders: armchair (left) and zig-zag (right); the labeling of the sites corresponds to the technique described in Section 2;
there are equivalent sites in each line parallel with the edge and that is why we label each line by the same number; the dashed lines consisting of sites denoted by black
or white color are identical on the real surface.
Fig. 2. LDoS for armchair and zig-zag cylinder; longitudinal number of atoms: 12,
circumferential number of atoms: 10 for armchair, 20 for zig-zag; here, δ = 0.1.

Fig. 3. Surface of the nanoribbon with a small perturbation; due to the mirror sym-
metry, we have pairs of equivalent sites in each line parallel with the edge, but
there is not any line composed of equivalent sites only; so, we distinguish only the
sites which are neighboring, next neighboring, etc. with the site 1 for which the
LDoS we calculate; the whole number of the sites in the chain is 9; in the case of
the semi-closed, nanocylindrical structure, the dashed lines consisting of sites de-
noted by black or white color are identical on the real surface.

|n + 1〉 = (H − an)|n〉 − bn−1|n − 1〉. (3)

The maximal value of n which is nmax determines the recursion
depth. It is given by the size of the concrete surface, but in the case
of infinitely large graphene, nanocone, etc., it is up to our choice
and it provides the rate of precision. Then we define G00(E) as [7]
Fig. 4. LDoS of the perturbed cylinder with surface depicted in Fig. 3; here, δ = 0.2.

G00(E) = 1

E − a1 − b1 g1(E)
, (4)

where

g1(E) = 1

E − a2 − b2 g2(E)
, (5)

...

gn−1(E) = 1

E − an − bn gn(E)
, (6)

gnmax−1(E) = E − anmax

2bnmax

(
1 −

√
1 − 4bnmax

(E − anmax)
2

)
. (7)

It can be found from (3) that for 1 � n � nmax,

an = 〈n|H|n〉
〈n|n〉 , bn = 〈n|H|n + 1〉

〈n|n〉 = 〈n + 1|n + 1〉
〈n|n〉 . (8)

To calculate 〈n|H|n〉, knowledge of the expressions 〈n|H2|n〉,
〈n|H3|n〉 will be needed. They have the form

〈n|Hr |n〉 =
∑

n1,n2,...,nr−1

〈n|H|n1〉〈n1|H|n2〉 . . . 〈nr−1|H|n〉, (9)

where the sum goes over all nonzero possibilities, in other words,
each term of the sum is formed by a product of the cycles con-
taining the atom from the n-th site, where the total number of the
atoms in the term is 2 or 3, respectively. The form of (9) is char-
acteristic for each kind of the nanostructures.
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Fig. 5. Real part of the Green function for armchair, zig-zag and perturbed cylinder with different values of δ: δ = 0.1 (left) and δ = 0.2 (right).

Fig. 6. Perturbed nanostructured surfaces with different distances of the defects. We calculate the LDoS for the denoted sites; in the case of the semi-closed, nanocylindrical
structure, the dashed lines consisting of sites denoted by black or white color are identical on the real surface.
3. LDoS of nanocylinder

The carbon nanocylinder is a nanotube without a cap and with
a finite length. It arises by rolling up a graphene sheet. Then, the
atomic structure of the molecular surface depends on the orien-
tation of this graphene sheet. Similarly as for the nanotubes, we
distinguish three forms of the nanocylinders: armchair (ac), zig-
zag (zz) and achiral [9].

In this Letter, we will be concerned with the armchair and zig-
zag form. In Fig. 1, we see the surface of these two forms together
with the labeling of the sites in accordance with the technique
described in the previous section. The armchair form should be
always metallic, the zig-zag form is mostly semimetallic and rarely
metallic. The evidence of the metallicity is given by the peak in
the LDoS for the Fermi level [1].

To apply the Haydock recursion method, we have to choose the
recursion depth nmax, which closely corresponds to the length of
the nanocylinder. The procedure of the calculation will differ in the
form of the expressions 〈n|H2|n〉, 〈n|H3|n〉 in (9) included in the
resulting expressions for the calculation of the coefficients an , bn .
The LDoS for different forms of the nanocylinder is shown in Fig. 2
together with the chosen values of the circumferential and the lon-
gitudinal number of atoms. The chosen value of the parameter δ

in (1) is 0.1.
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Fig. 7. LDoS for the particular cases of the perturbed cylindrical surfaces. The notation (a)–(d) corresponds to Fig. 6. The value of the parameter δ is 0.2.
3.1. The case of perturbation

Let us investigate the LDoS in the edge sites of a perturbed
graphene nanoribbon of the sizes which have the same values as
the above mentioned cylindrical surface (see Fig. 3). The pertur-
bation is created by two heptagonal defects. From the sketch it is
evident that we can’t distinct the armchair and the zig-zag edges
for this kind of perturbation. Because the structure of the surface is
different from the previous case (see Fig. 1), the placement and la-
beling of the equivalent sites is changed. For the chosen edge sites,
the result is presented in Fig. 4. In this case, the chosen value of
the parameter δ is 0.2.

It is also interesting to compare the nature of the real part of
the Green function in all of the investigated cases. The correspond-
ing plots we see in Fig. 5. It strongly depends on the chosen value
of δ which gives the precision of the calculations: the lower δ, the
more precise results we get.

The limiting sizes of the nanocylinder disclinated by the inves-
tigated kind of perturbation will be derived now. For this purpose,
we investigate the LDoS in the sites of the defects denoted by num-
ber 1 in the disclinated surfaces depicted in Fig. 6 and we compare
the results with the results presented in [1], where the LDoS for
the simple graphene was presented. In the calculations we sup-
pose that the left and the right parts of the particular surfaces
(see Fig. 6) are joined together.

In Fig. 6, we define the distance of the defects as the dis-
tance of the investigated sites lying in different defects. The unit
of distance will be given by the distance of the neighboring sites.
Using the Haydock recursion scheme, we get the plots of the LDoS
outlined in Fig. 7. Now, it is important to stress that the defects
are placed in the middle parts of the nanocylinders. The acquired
results should be similar to the LDoS of simple graphene [1]. Then,
we suppose the presence of the local minimum for the Fermi level
in the corresponding plot.

Let us look through the plots of the LDoS in Fig. 7. From these
plots we see that the growing distance of the defects causes de-
crease of the LDoS for the Fermi energy and violation of the peak.
The case (d) in Fig. 7 corresponds to the expected shape of the
LDoS [1]. From this follows an important conclusion that the sur-
face (d) in Fig. 6 corresponds to the minimal necessary size of the
cylindrical surface perturbed by 2 heptagonal defects and so, the
minimal distance between the defects on the perturbed cylindrical
surface is 4 times the distance of the nearest-neighbor atoms.

If we do an approximation of the dependence of the LDoS on
the distance of defects, we get the 3D plot in Fig. 9. From this plot
follows the decrease of the LDoS with the growing distance of de-
fects. We can estimate from the character of this decrease that the
LDoS violates for the distance of defects which corresponds to 8
chosen units of length, i.e. for the surface which is twice longer
than the surface (d) in Fig. 6. We can suppose that this case cor-
responds to the maximal permissible distance of the defects in the
perturbed cylinder.

3.2. Zero modes

We denote the LDoS for zero energy as LDoS0. From the out-
lined plots, it is possible to calculate the LDoS0 for all of the in-
vestigated cases. Next, for the surfaces in Fig. 6, we can find the
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Fig. 8. LDoS of the zero modes (LDoS0) depending on the distance of the defects
which is understood as the distance of the investigated sites lying in different
defects (see Fig. 6). Here the unit distance is given by the distance of the nearest-
neighbor atoms.

Table 1
Zero modes of the LDoS in the edge sites for δ = 0.1. LDoS0 is present in the units
( h̄v F

a )−1 Å−2, where h̄ is the Planck constant, v F is the Fermi velocity (taken as 1),
a is the size of the surface, Å is angstrom.

ac zz Perturbation

LDoS0 2.34 1.31 0.32

dependence of LDoS0 on the distance of defects. The result we see
in Fig. 8.

We can also compare LDoS0 in the edge sites corresponding to
the case of armchair, zig-zag and perturbation. The concrete values
for δ = 0.1 we see in Table 1. In accordance with our expecta-
tion, the highest value corresponds to armchair which has metallic
character. The lowest value corresponds to the perturbation. But
on the edge of the perturbed cylinder are not equivalent sites, so
this value is changing from site to site. It could be interesting to
investigate the zero modes in all of the edge sites of the perturbed
cylinder.

4. Conclusion

We applied the Haydock recursion method on the calculation of
the LDoS of the carbon nanocylinder. We can compare the results
presented in Fig. 2 with the calculation in [1], where the form of
the electronic spectrum is applied. The results presented in this
paper are close to our results. They are also similar to the plots
presented in [10]. In both of these papers as well as in Fig. 2, the
difference between the armchair and the zig-zag form is given by
the peak for the armchair form at the Fermi level. But in Fig. 2, the
peak at the Fermi level should be much closer. The inaccuracy is
given by the choice of the values of δ and of the parameters an , bn

in the Haydock recursion method which does not provide a single
solution.

Next, we derived that the minimal size of the disclinated cylin-
drical surface containing 2 heptagonal defects corresponds to the
case (d) in Fig. 6 and that the maximal size corresponds to the
surface which is twice longer. This is also confirmed by the plot
of zero modes in Fig. 8: for the growing distance of the defects,
after strong rise in the beginning, the magnitude of the LDoS0 is
decreasing.

The model of 2 defects can be also applied on a simulation of a
dipole or a quadrupole present on a defect-free graphene surface:
Fig. 9. Approximation of the dependence of the LDoS on the energy and on the
distance of the defects (with the unit given by the distance of the nearest-neighbor
atoms). Here we see the evidence of the decrease of the LDoS with the growing
distance of the defects.

the dipole can be given by a combination of one pentagonal and
one heptagonal defect and the quadrupole by two pentagonal and
two heptagonal defects. Of course, higher number of defects can
give much more possibilities. In the future, the calculations will be
focused on these problems.

The plots of the real part of the Green function in Fig. 5 are
similar to the results for the self-energy in [11] and for the real
parts in [10]. It indicates a close connection of the presented re-
sults with the case of the disordered graphene. Although we made
the calculations on the cylindrical surface, in fact, there was not
any indication of the curvature in the procedure, so, the results
can be compared with other works dealing with the disclinated
graphene.
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