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a b s t r a c t

In this paper we apply a new approach of string theory to the real financial market. The
models are constructed with an idea of prediction models based on the string invariants
(PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and ar-
tificial neural networks (ANN) on an artificial and a financial time series. A brief overview
of the results and analysis is given. The first model is based on the correlation function
as invariant and the second one is an application based on the deviations from the closed
string/pattern form (PMBCS). We found the difference between these two approaches. The
firstmodel cannot predict the behavior of the forexmarketwith good efficiency in compari-
sonwith the second onewhich is, in addition, able tomake relevant profit per year. The pre-
sented string models could be useful for portfolio creation and financial risk management
in the banking sector as well as for a nonlinear statistical approach to data optimization.

© 2013 Published by Elsevier B.V.

1. Introduction

Time series forecasting is a scientific field under continuous active development covering an extensive range of methods.
Traditionally, linear methods and models are used. Despite their simplicity, linear methods often work well and may well
provide an adequate approximation for the task at hand and are mathematically and practically convenient. However, the
real life generating processes are often non-linear. This is particularly true for financial time series forecasting. Therefore
the use of non-linear models is promising. Many observed financial time series exhibit features which cannot be explained
by a linear model.

There are plenty of non-linear forecast models based on different approaches (e.g. GARCH [1], ARCH [2], ARMA [3],
ARIMA [4] etc.) used in financial time series forecasting. Currently, perhaps the most frequently used methods are based on
Artificial Neural Networks (ANN, which covers a wide range of methods) and Support Vector Machines (SVM). A number of
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research articles compare ANN and SVM to each other and to other more traditional non-linear statistical methods. Tay and
Cao [5] examined the feasibility of SVM in financial time series forecasting and compared it to amultilayer Back Propagation
Neural Network (BPNN). They showed that SVM outperforms the BP neural network. Kamruzzaman and Sarker [6] modeled
and predicted currency exchange rates using three ANN based models and a comparison was made with the ARIMAmodel.
The results showed that all the ANN based models outperform the ARIMA model. Chen et al. [7] compared SVM and BPNN
taking the auto-regressive model as a benchmark in forecasting the six major Asian stock markets. Again, both the SVM and
BPNN outperformed the traditional models.

While the traditional ANN implements the empirical risk minimization principle, SVM implements the structural risk
minimization [8]. Structural risk minimization is an inductive principle for model selection used for learning from finite
training data sets. It describes a general model of capacity control and provides a trade-off between hypothesis space
complexity and the quality of fitting the training data (empirical error). For this reason SVM is often chosen as a benchmark
to compare other non-linear models to. Also, there is a growing number of novel and hybrid approaches, combining the
advantages of variousmethods using for example evolutionary optimization,methods of computational geometry and other
techniques (e.g. Refs. [9,10]).

In this paper we apply the string model and approaches described in Ref. [11] to the real finance forex market. This is an
extension of the previous work [11] into the real finance market. We derive two models for predictions of EUR/USD prices
on the forex market. This is the first attempt for real application of string theory in the field of finance, and not only in high
energy physics, where it is established very well. Firstly we describe briefly some connections between these different fields
of research.

We would like to transfer modern physics ideas into the neighboring field called econophysics. The physical statistical
viewpoint has proved to be fruitful, namely in the description of systems where many-body effects dominate. However, the
standard, accepted by physicists, bottom-up approaches are cumbersome or outright impossible to follow the behavior of
complex economic systems, where autonomous models encounter intrinsic variability.

The modern digital economy is founded on data. Our primary motivation comes from the actual physical concepts
[12,13]; however, our realization differs from the original attempts in various significant details. Similarly as with most
scientific problems, the representation of data is the key to efficient and effective solutions. The string theory development
over the past 25 years has achieved a high degree of popularity among physicists [14].

The underlying link between our approach and string theory may be seen in switching from a local to a non-local form
of data description. This line passes from the single price to the multivalued collection, especially the string of prices from
the temporal neighborhood, which we term here as the string map. It is the relationship between more intuitive geometric
methods and financial data. Here we work on the concept that is based on projection data into higher dimensional vectors
in the sense of the works [15,16].

The present work exploits time series which can build the family of string-motivated models of boundary-respecting
maps. The purpose of the present data-driven study is to develop statistical techniques for the analysis of these objects and
moreover for the utilization of such string models onto the forex market. Both of the string prediction models in this paper
are built on the physical principle of the invariance in time series of the forex market. Founding of a stationary state in the
time series of the market was studied in Ref. [17].

2. Definition of the strings

By applying standard methodologies of detrending we suggest to convert the original series of quotations of the mean
currency exchange rate p(τ ) onto a series of returns defined by

p(τ + h) − p(τ )

p(τ + h)
, (1)

where h denotes a tick lag between currency quotes p(τ ) and p(τ + h), τ is the index of the quote. The mean p(τ ) =

(pask(τ ) + pbid(τ ))/2 is calculated from pask(τ ) and pbid(τ ).
In the spirit of string theory it would be better to start with the 1-end-point open string map

P (1)(τ , h) =
p(τ + h) − p(τ )

p(τ + h)
, h ∈ ⟨0, ls⟩ (2)

where the superscript (1) refers to the number of endpoints.
The variable hmay be interpreted as a variable which extends along the extra dimension limited by the string size ls. For

the natural definitions of the string to be fulfilled the boundary condition

P (1)(τ , 0) = 0, (3)

holds for any tick coordinate τ . We want to highlight the effects of rare events. For this purpose, we introduce a power-law
Q-deformed model

P (1)
q (τ , h) =


1 −


p(τ )

p(τ + h)

Q
, Q > 0. (4)
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The 1-end-point string has defined the origin, but it reflects the linear trend in p(·) at the scale ls. Therefore, the 1-end-point
string map P (1)

q (·) may be understood as a Q-deformed generalization of the currency returns.
The situation with a long-term trend is partially corrected by fixing P (2)

q (τ , h) at h = ls. The open string with two end
points is introduced via the nonlinear map which combines information about trends of p at two sequential segments

P (2)
q (τ , h) =


1 −


p(τ )

p(τ + h)

Q
1 −


p(τ + h)
p(τ + ls)

Q
, h ∈ ⟨0, ls⟩. (5)

The map is suggested to include boundary conditions of Dirichlet type

P (2)
q (τ , 0) = Pq(τ , ls) = 0, at all ticks τ . (6)

In particular, the sign of P (2)
q (τ , h) comprises information about the behavior differences of p(·) at three quotes (τ , τ +

h, τ + ls).
Nowwe define partially compactified strings. In the frame of string theory, compactification attempts to ensure compat-

ibility of the universe based on the four observable dimensions with twenty-six dimensions found in the theoretical model
systems. From the standpoint of the problems considered here, compactification may be viewed as an act of information
reduction of the original signal data, whichmakes the transformed signal periodic. Of course, it is not very favorable to close
strings by the complete periodization of real input signals. Partial closure would bemore interesting. This uses pre-mapping

p̃(τ ) =
1
Nm

Nm−1
m=0

p(τ + lsm), (7)

where the input of any open string (see e.g. Eqs. (2), and (5)) is made up partially compact.
Thus, data from the interval ⟨τ , τ + ls(Nm − 1)⟩ are being pressed to occupy ‘‘little space’’ h ∈ ⟨0, ls⟩. We see that as Nm

increases, deviations of p̃ from the periodic signal become less pronounced. The corresponding statistical characteristics of
all the strings and branes described abovewere displayed in detail in Ref. [11]. The predictionmodels presented in the paper
were tested on the tick by tick one year data of EUR/USD major currency pair from the ICAP market maker. More precisely,
we selected the period from October 2009 to September 2010.

3. Correlation function as invariant

The meaning of invariant is that something does not change under transformation, such as some equations from one
reference frame to another. Wewant to extend this idea also on the finance market, find some invariants in the finance data
and utilize this as the prediction for the following prices. Unfortunately this model is able to define only one step prediction,
see the definition below.

We suppose the invariant is in a form of correlation function

C(t,l0) =

h=l
h=l0

wh


1 −

pt−h

pt−1−h


1 −

pt−1−h

pt−2−h


, (8)

with

wh =
e−h/λ

l
h′=0

e−h′/λ

, (9)

including dependence on the time scale parameters l, l0 and λ. The relative weights satisfy automatically
l

h=0 wh = 1.
A correlation function is a statistical correlation between random variables at two different points, in our case the strings

in time series. For simplicity as an example we used only one point strings equation (4) with parameter Q = 1. Ordinary the
correlation function is defined as C(τ , l0) = ⟨P1(τ , l0)P1(τ +1, l0)⟩. We suppose the invariant in the form of the correlation
function

C(τ , l0) =

h=l
h=l0

W (h)

1 −

p(τ − h)
p(τ − 1 − h)


1 −

p(τ − 1 − h)
p(τ − 2 − h)


, (10)

with weightW (h) defined above. We assume the condition of the invariance between close strings in τ and at the next step
τ + 1 in time series (It is the exact meaning of the one step prediction) in the form

C(τ , l0) = C(τ + 1, l0). (11)
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Now we want to find the exact expression for the one step prediction p(τ + 1). Therefore we evaluate one step correlation
invariant equation (11) with initial condition l0 = 0

W (0)

1 −

p(τ )

p(τ − 1)


1 −

p(τ − 1)
p(τ − 2)


= W (0)


1 −

p(τ + 1)
p(τ )


1 −

p(τ )

p(τ − 1)


+W (1)


1 −

p(τ )

p(τ − 1)


1 −

p(τ − 1)
p(τ − 2)


, (12)

which can be rewritten in the more compact form

C(τ , 0) = W (0)

1 −

p(τ + 1)
p(τ )


1 −

p(τ )

p(τ − 1)


+ C(τ + 1, 1) (13)

and 
1 −

p(τ + 1)
p(τ )


=

C(τ , 0) − C(τ + 1, 1)

W (0)

1 −

p(τ )

p(τ−1)

 . (14)

We finally obtain the prediction

p(τ + 1) = p(τ )

1 +
C(t + 1, 1) − C(t, 0)

W (0)

1 −

p(τ )

p(τ−1)


 , (15)

valid for p(τ ) ≠ p(τ −1). These are general definitions for the one step prediction correlation invariants. In the next section
similar equations can be found also for 2-end-point and 1-end-point mixed string models with Q > 0.

3.1. Prediction model based on the string invariants (PMBSI)

Nowwewant to take the above-mentioned ideas onto the stringmaps of finance data.Wewould like to utilize the power
of the nonlinear string maps of finance data and establish some prediction models to predict the behavior of the market
similarly as in the works [18–20]. We suggest the method where one string is continuously deformed into the other. We
analyze 1-end-point and 2-end-point mixed string models. The family of invariants is written using the parameterization

C(τ , Λ) = (1 − η1)(1 − η2)

Λ
h=0

W (h) (16)

×


1 −


p(τ )

p(τ + h)

Q 
1 −


p(τ + h)
p(τ + ls)

Q
+ η1(1 − η2)

Λ
h=0

W (h)


1 −


p(τ )

p(τ + h)

Q

+ η2

Λ
h=0

W (h)


1 −


p(τ + h)
p(τ + ls)

Q
, (17)

where η1 ∈ (−1, 1), η2 ∈ (−1, 1) are variables (variables which we may call homotopy parameters), Q is a real valued
parameter, and the weightW (h) is chosen in the bimodal single parameter form

W (h) =


1 − W0, h ≤ ls/2,
W0, h > ls/2.

(18)

We plan to express p(τ + ls) in terms of the auxiliary variables

A1(Λ) = (1 − η1)(1 − η2)

Λ
h=0

W (h)


1 −


p(τ )

p(τ + h)

Q
, (19)

A2(Λ) = −(1 − η1)(1 − η2)

Λ
h=0

W (h)


1 −


p(τ )

p(τ + h)

Q
pQ (τ + h), (20)

A3(Λ) = η1(1 − η2)

Λ
h=0

W (h)


1 −


p(τ )

p(τ + h)

Q
, (21)

A4(Λ) = η2

Λ
h=0

W (h), (22)
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Fig. 1. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on trades for one year period.

A5(Λ) = −η2

Λ
h=0

W (h) pQ (τ + h). (23)

Thus the expected prediction form reads

p̂(τ0 + lpr) =


A2(Λ) + A5(Λ)

C(τ0 − ls, Λ) − A1(Λ) − A3(Λ) − A4(Λ)

1/Q
, (24)

where we use the notation τ = τ0 + lpr − ls. The derivation is based on the invariance

C(τ , ls − lpr) = C(τ − lpr, ls − lpr), Λ = ls − lpr, (25)

where lpr denotes the prediction scale.
The model was tested for various sets of parameters ls, lpr, η1, η2,Q and the new parameter ϵ which is defined as

ϵ =
C(τ , ls − lpr) − C(τ − lpr, ls − lpr)

 (26)

and describes the level of invariance in real data. The best prediction (the best means that the model has the best ability to
estimate the right price) is obtained by using the following values of parameters

ls = 900,
lpr = 1,
η1 = 0,
η2 = 0,
Q = 6,

ϵ = 10−10. (27)

The graphical descriptions of prediction behavior of themodel with andwithout transaction costs on the EUR/USD currency
rate of the forex market are described in Figs. 1–4. During a one year period the model lost around 20% of the initial money.
It executed 1983 trades (Fig. 1) where only 10 were suggested by the model (and earned money) and the rest of them were
random (which can be clearly seen in Figs. 3, and 4). The problem of this model is its prediction length (the parameter lpr),
in this case it is one tick ahead. The price was predicted correctly in 48.57% of all cases (16201 in one year) and from these
48.57% or numerally 7869 cases only 0.13% or numerally 10 were suitable for trading. This small percentage is caused by the
fact that the price does not change too often one tick ahead. One could try to raise the prediction length to findmore suitable
cases for trading. This is only partly successful because the rising parameter lpr induces a loss of the prediction strength of
the model. For example when lpr = 2 (two ticks ahead) the prediction strength decreases from around 50% to 15%.

The problem is that the invariant equation (10) is fulfilled only on the very short period of the time series due to the
very chaotic nature of financial data behavior. Therefore the PMBSI is effective only on the one step prediction where there
is very low probability that time series change significantly. The situation, however, is different for more steps prediction
where there is, on the contrary, a very high probability of big changes in time series to occur, and the following predictions
have rather small efficiency in such cases. The only way how to establish better prediction also for more steps prediction is
to choose the right weights equation (9). The right and optimized weights should considerably extend the interval where
Eq. (10) is fulfilled. Therefore it is also our task in future work.
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Fig. 2. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on days for one year period.

Fig. 3. The profit of the model on the EUR/USD currency rate without transaction costs included dependence on trades for one year period.

3.2. Experimental setup

The experiments were performed on two time series. The first series represented artificial data namely a single period of
a sinusoid sampled by 51 regularly spaced samples. The second time series represented proprietary financial data sampled
daily over a period of 1295days. The performance of PMBSIwas compared to SVMand to naive forecast. Therewere two error
measures used, mean absolute error (MAE) and symmetric mean absolute percentage error (SMAPE) defined as follows:

MAE =
1
n

n
t=1

|At − Ft |, (28)

SMAPE =
100
n

n
t=1

|At − Ft |
0.5(|At | + |Ft |)

, (29)

where n is the number of samples, At is the actual value and Ft is the forecast value. Each time series was divided into
three subsets: training, evaluation and validation data. The time ordering of the data was maintained; the least recent data
were used for training, while the more recent data were used to evaluate the performance of the particular model with
the given parameters’ setting. The best performing model on the evaluation set (in terms of MAE) was chosen and made
to forecast for the validation data (the most recent) that were never used in the model optimization process. Experimental
results on the evaluation and validation data are presented below. The parameters of the models were optimized by trying
all combinations of parameters sampled from given rangeswith a sufficient sampling rate. Naturally, this process is slow but
it enabled us to get an image of the shape of the error surface corresponding to the given settings of parameters and ensured
that local minima are explored. The above approach was used for both PMBSI and SVM. The SVMmodels were constructed
so that the present value and a certain number of the consecutive past values comprised the input to the model. The input
vector corresponds to what will be referred to here as the time window with the length ltw (representing the equivalent of
the length of the string map ls by PMBSI).
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Fig. 4. The profit of the model on the EUR/USD currency rate without transaction costs included dependence on days for one year period.

Fig. 5. MAE corresponding to various settings of ls and Q on the financial data. The red dot is the global minimum of MAE. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Comparison

There was a preliminary experimental analysis performed of the PMBSI method. The goal was to evaluate the prediction
accuracy, generalization performance, convenience of the method in terms of the operator’ effort needed to prepare a
working model, computational time and other aspects of the PMBSI method that may have become obvious during the
practical deployment. SVM was chosen as a benchmark. The experimental data comprised two sets: artificial data (a single
period of a sinusoid) and real world data (financial, price development). We will provide a brief conclusion of the analysis
here. Each time series was divided into three subsets for training, testing and validation. The results were calculated on the
validation sets that have been entirely absent in the process of optimization of parameters.

The PMBSI predictor does not undergo a training process that is typical for ANN and SVM where a number of free
parameters must be set (synaptic weights by ANN, α coefficients by SVM). PMBSI features a similar set of weights (W )
but often very small and calculated analytically. The parameters to be optimized are only four: ls,Q , η1, η2. This, clearly, is
an advantage. On the other hand the optimal setting of the parameters is not easy to find as there are many local minima
on the error surface. In this analysis the optimal setting was found by testing all combinations of parameters from given
ranges. Fig. 5 shows the Mean Absolute Error (MAE) of the 5-steps ahead forecast of the financial time series corresponding
to various settings of ls and Q (η1, η2 = 0). But the figure makes it also obvious that PMBSI’s performance is approximately
the same for a wide range of settings on this data.

For PMBSI towork the elements of time seriesmust be non-zero, otherwise themethodwill return not a number forecasts
only. The input time series must then be modified by adding a constant and the forecast by subtracting the same constant.
Even so the algorithm returned a not a number forecast in approx. 20% of the cases on the financial data. In such cases
the last valid forecast was used. Due to reasons that are presently being evaluated the accuracy of PMBSI is matching and
even outperforming SVM for single step predictions but rapidly deteriorates for predictions of more steps ahead. Iterated
prediction of several steps ahead using the single step PMBSI predictor improves the accuracy significantly. The sinusoid
used for experiments was sampled by 51 points, the positive part of the wave was used for optimization of the parameters
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Table 1
Experimental results on artificial time series.

Method lpr MAE eval MAE valid SMAPE valid

PMBSI 1 0.000973 0.002968 8.838798
2 0.006947 0.034032 14.745538
3 0.015995 0.161837 54.303315

Iterated PMBSI 1 – – –
2 0.003436 0.011583 10.879313
3 0.008015 0.028096 14.047025

SVM 1 0.011831 0.007723 10.060302
2 0.012350 0.007703 10.711573
3 0.012412 0.007322 11.551324

Naive forecast 1 – 0.077947 25.345352
2 – 0.147725 34.918149
3 – 0.207250 41.972591

Table 2
Optimal PMBSI parameters.

lpr ls Q η1 η2

1 2 0.30 0.80 −0.20
2 5 0.10 0.80 −0.60
3 8 0.10 0.80 −0.60

and the rest for validation (approx. 50–50 division). Fig. 6 shows the comparison of iterated versus the direct prediction
using PMBSI. Table 1 shows the experimental results. The results of the best performing models are highlighted.

The optimal ltw for SVM was 3 for all predictions. Table 2 shows the optimal settings found for PMBSI. For lpr = 1 when
PMBSI outperformed linear SVM the optimal length of the string map was shorter than the optimal time window for SVM;
in the remaining cases it was significantly longer.

5. Prediction model based on the deviations from the closed string/pattern form (PMBCS)

For the next trading strategy we want to define some real values of the string sequences. Therefore we define the
momentum which acquired values from the interval (0, 1). The momentum M is not strictly invariant as in the previous
model of the time series in its basic definition. It is a trading strategy to find such a place in the forex time seriesmarketwhere
M is exactly invariant or almost invariant and we can predict increasing or decreasing of prices with higher efficiency. For
example our predictor somewhere in the time series has 55% efficiency to predict themovement of price but in the invariant
place of our trading strategy where Eqs. (26), and (30) are almost invariant the efficiency of our predictor increased to 80%.
Therefore the idea to find the invariant in time series plays a crucial role in our trading strategy but one still needs to find
an appropriate expression for such a prediction.

To study the deviations from the benchmark string sequence we define momentum as

M(ls,m;Q ,ϕ) =


1

ls + 1

ls
h=0

p(τ + h) − pmin(τ )

pmax(τ ) − pmin(τ )
−

1
2


1 + cos


2πmh
ls + 1

+ ϕ

Q
1/Q

(30)

where

pstand(τ ; h; ls) =
p(τ + h) − pmin(τ ; ls)
pmax(τ ; ls) − pmin(τ ; ls)

, pstand ∈ (0, 1),

and

pmax(τ ; h; ls) = max
h∈{0,1,2,...,ls}

p(τ + h), pmin(τ ; h; ls) = min
h∈{0,1,2,...,ls}

p(τ + h),

and ϕ is a phase of periodic function. The momentum defined above takes the values from the interval M(ls,m;Q ,ϕ) ∈ (0, 1).
The periodic function cos(ϕ̃) in the definition of Eq. (30) could be substituted by other types of mathematical functions. The
results with different kinds of functions could be different.

5.1. Elementary trading strategy based on the probability density function of M

The purpose is to take advantage of it whenever the market conditions are favorable. As in the previous model we are
detrending forex data into the one dimensional topological object ‘‘strings’’ with different parameters. The trading strategy is
based on the description of rate curve intervals by one value called themoment of the string. Thesemoments are statistically
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Fig. 6. Iterated and direct prediction using PMBSI on artificial data.

processed and some interesting values of moments are found. The values directly affect the opening and closing of trade
positions. The algorithm works in two complementary phases. The first phase consists of looking for ‘‘good’’ values of
moments followed by the second phasewhich uses results from the first phase and opening/closing of trade positions occur.
Simultaneously the first phase is looking for new ‘‘good’’ values of moments.

Risk ismoderated by a number of allowed trades that the algorithm can open during a certain period. Also it ismoderated
by two parameters which affect the selection of suitable moments for trading. The maximum number of trades is 10/h.
The algorithm is tested on various periods of historical data. The number and period of simultaneously opened trades are
monitored all the time.

The first set of parameters describes the moment (simple scalar function of several variables from the interval (0, 1)).
The first set consists of these parameters: length of moment string (number of ticks or time period), quotient or exponent
of moment, frequency of moment function, and phase shift of moment function. The second set of parameters controls
trading strategy and consists of these variables: maximum number of simultaneously opened trades, skewness of moments
distribution and Sharpe ratio of closed trades. As soon as the algorithm calculates the value of the moment and finds out
that the value is ‘‘good’’, then it immediately carries out an appropriate command.

The risk of the algorithm is governed by the second set of parameters and can vary from zero (low risk but also low or
zero number of trades) to the boundary values controlled by themodel parameters. These boundary values are unlimited but
could be easily affected by the skewness and Sharpe ratio. These parameters can limit loss to a certain value with accuracy
±2% but also limit overall profit significantly if low risk is desired.

An arbitrage opportunity is taking advantage of the occurrence of a difference in distribution. Opportunity is measured
by Kullback–Leibler divergence

DKL =


j(bins)

pdf(M+(j)) log

pdf(M+(j))
pdf(M−(j))


(31)

where larger DKL means better opportunities (DKL > Dthreshold) e.g. when DKL > Dthreshold it means the buying of Euro against
USD could be more profitable. Statistical significance means the smaller the statistics accumulated into bins pdf(M+(j)),
pdf(M−(j)), the higher is the risk (M from the selected range should be widespread). The meaning of pdf in the definition of
equation above is the probability density function.

More generally we can construct the series of (ls + 1) price ticks [p(τ ), p(τ + 1), . . . , p(τ + ls)] which are transformed
into a single representative real valueM(τ + ls). Nearly stationary series ofM(τ + ls) yield statistics which can be split into:
branch whereM is linked with future uptrend/ downtrend and branch whereM is linked with future profit/ loss taking into
account transaction costs. Accumulation of pdf(M+−

long)means (profit+/ loss−) or pdf(M+−

short) (profit+/ loss−).M+ in Eq. (31)
describes when Eq. (30) brings profit andM− loss.

As in the previous section the model was again tested for various sets of free parameters ls, h,Q , ϕ. This model canmake
‘‘more-tick’’ predictions (in tests it varies from 100 to 5000 ticks). Therefore it is much more successful than the previous
model. It is able to make a final profit of around 160% but this huge profit precedes a fall of 140% of the initial state. It is
important to emphasize that all profits mentioned here and below are achieved by using leverage (borrowing money) from
1 to 10. The reason for leverage is the fact that the model could simultaneously open up to 10 positions (one position means
one trade i.e. one pair of buy–sell transactions). If one decides not to use any leverage the final profit decreases 10 times.
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Fig. 7. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on trades for one year period.

Fig. 8. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on days for one year period.

On the other hand, with using the leverage 1 to 20 the final profit doubles itself. Of course, the use of higher leverages is
riskier as dropdowns are also higher. There is, for example, in Fig. 7 a dropdown approx. 6% around 600 trades. With the use
of leverage 1 to 20 this dropdown rises to 12%.

128000 combinations of the model’s parameters have been calculated. Figs. 7–10 describe some interesting cases of the
prediction behavior of themodelwith the transaction cost included on the EUR/USD currency rate of the forexmarket. Figs. 7
and 8 describe the model (one set of parameters) under conditions that the fall down must not be higher than 5%. The best
profit achieved in this case is 12%.

In order to sort out the best combinations of parameters it is helpful to use the statistical quantity called the Sharpe ratio.
The Sharpe ratio is a measure of the excess return per unit of risk in a trading strategy and is defined as

S =
E(R − Rf )

σ
, (32)

where R is the asset return, Rf is the return on a benchmark asset (risk free), E(R − Rf ) is the mean value of the excess of
the asset return over the benchmark return, and σ is the standard deviation of the excess of the asset return. You mention
the Sharpe ratio. The values of the Sharpe ratio for the best fit are e.g. for Fig. 10 it is the value 1.896 and for Fig. 11 it is the
value 1.953, where as a reference profit we choose a bank with 5% profit.

Fig. 9 shows the case where the Sharpe ratio has the highest value from all sets of the calculated parameters. One year
profit is around 26% and the maximum loss is slightly over 5%. Fig. 10 describes the case requiring a high value of Sharpe
ratio and with the aim to gain profit of over 50%.

There exist sufficiently enough cases with high Sharpe ratio which leads to enhancement of the model to create a self-
education model. This enhancement takes some ticks of data, finds out the best case of parameters (high Sharpe ratio and
also high profit) and starts trading with these parameters for some period. Meanwhile, the trading with previously found
parameters model is looking for a new best combination of parameters. Fig. 11 describes this self-education model where
parameters are not chosen and the model itself finds the best one from the financial data and is subsequently looking for
the best values for the next trading strategy.
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Fig. 9. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on trades for one year period.

Fig. 10. The profit of the model on the EUR/USD currency rate with transaction costs included dependence on trades for one year period.

Fig. 11. The profit of the self education model on the EUR/USD currency rate with transaction costs included dependence on trades for one year period.

6. Conclusions

The model of strings allows one to manipulate with the information stored along several extra dimensions. We started
from the theory of the 1-end-point and2-end-point open string and continuedwith partially compactified strings that satisfy
the Dirichlet and Neumann boundary conditions.We have 5 free parameters in ourmodel.We have also tried out-of-sample
tests, however, only using small data samples. We have not encountered ‘‘overfitting’’ due to the fact that parameters are
stable enough within our string theory approach to produce profit even if we slightly change them. For all computations
in the second model we are taking bid–offer spreads into account. We are calculating with real values of bid–offer spreads
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from historical data and it is dependent on where we are simulating on Oanda or Icap etc. A number of trades per day varies
from 2 to 15 depending on fit strategy.

We have shown that string theory may motivate the adoption of the nonlinear techniques of data analysis with a
minimum impact of justification parameters. The numerical study revealed interesting fundamental statistical properties of
the maps from the data onto string-like objects. The main point here is that the string map gives a geometric interpretation
of the information value of the data. The results led us to believe that our ideas and methodology can contribute to the
solution of the problem of robust portfolio selection. The financial market invariants could be some other form of definition
of scaling laws found in Ref. [21].

We established two different string prediction models to predict the behavior of the forex financial market. The first
model PMBSI is based on the correlation function as an invariant and the second one PMBCS is an application based on
the deviations from the closed string/pattern form.We found the difference between these two approaches. The first model
cannot predict the behavior of the forexmarket with good efficiency in comparisonwith the second onewhich, moreover, is
able to make relevant profit per year. From the results described we can conclude that the invariant model as one step price
prediction is not sufficient for big dynamic changes of the current prices on the finance market. As can be seen in Figs. 3 and
4 when the transaction costs are switched off the model has some tendency to make a profit or at least preserve a fortune. It
means that it could also be useful for other kinds of data, where the dynamics of changes are slower, e.g. for energetic [22]
or seismographic data [23] with longer periods of changes. Finally the PBMSI in the form presented in this paper should be
applicable with good efficiency only to other kinds of data with smaller chaotic behavior in comparison with financial data.

Moreover PMBSI is a method under development. Unlike SVM or ANN, at this stage PMBSI does not require a training
process optimizing a large number of parameters. The experimental results indicate that PMBSI can match or outperform
SVM in one step ahead forecasts. Also, it has been shown that finding optimal settings for PMBSI may be difficult but the
method’s performance does not vary much for a wide range of different settings. Besides the further testing of PMBSI
we consider that fast methods for optimization of parameters must be developed. Because of the character of the error
surface we have chosen to use evolutionary optimization as the method of choice. After a fast and successful parameters’
optimization method is developed, optimization of the weighting parameters (Eqs. (9), and (14)) will be included into the
evolutionary process.

The profit per year from the second prediction model was obtained from approximately 15% andmore depending on the
parameter set from the data we have chosen. This model is established efficiently on the finance market and could be useful
to predict future prices for the trading strategy.

To summarize the second prediction algorithm we can conclude that we detrended forex data into the one dimensional
topological object ‘‘strings’’ with some special parameters. Trading strategy is based on a description of rate curve intervals
by one value called the moment of the string. These moments are statistically processed and some interesting values of
moments are found. These values directly affect the opening and closing of trade positions. Risk is moderated by the number
of allowed trades that the algorithm can open during some period.

Of course themodel still needs to be tested further.With the flow of new financial data themodel can bemore optimized
and also it could become resistant to a crisis. In the future research we would like to use evolutionary algorithms for the
better optimization of the model’s parameters. The presented models are universal and could also be used for predictions
of other kinds of stochastic data. The self-educated models presented in Fig. 11 are very useful because they are able to
find on their own the best parameter set from data in addition to data found in Eqs. (27), learn about the prices and utilize
these pieces of information for the next trading strategy. These models could also be very helpful for portfolio optimization
and financial risk management in the banking sector. Finally we very much hope that the presented approach will be very
interesting and useful for a broad spectrum of people working on the financial market.
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