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The influence of the static magnetic field on the edge states of finite zig-zag nanotubes has been explored
theoretically by the tight-binding approximation. It was found that the magnetic field removes the
degeneracy of the energy levels of the edge states. Investigation of the formation of new edge states by
the magnetic field indicated the dependence of the number of these states on the length of a nanotube.
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1. Introduction

Carbon nanotubes are extensively studied experimentally and
theoretically because of their unusual electronic properties. A car-
bon nanotube can be viewed as a graphene sheet rolled into a
cylindrical shape so that the structure is one-dimensional with ax-
ial symmetry and in general exhibits a spiral conformation called
chirality. Nanotubes show unique mechanical and electronic prop-
erties [1]. Properties of the finite-length nanotubes are strongly
influenced by the types of edges. From the category of edges the
most intensively studied are the zig-zag and armchair types. For
the nanographite ribbons with the zig-zag edge the presence of
localized states near the Fermi level was already shown. However,
similar states were absent in ribbons with armchair edges [2].

The graphite sheet is considered as a zero-gap semiconductor
with the density of states (DOS) vanishing at the Fermi level. In
contrast, the edge states of the zig-zag ribbons produce a peak
in the DOS at the Fermi level. The finite nanotubes with the
edges bring about the change of the dimensionality of the sys-
tem from one to zero dimensional system, as it is in the case of
fullerenes [3]. The existence of edge states for arbitrarily oriented
graphene ribbons with a large class of edge shapes was already in-
vestigated [4]. From these studies new geometrical understanding
of the edge state has emerged. The relation of the edge states to
the topological nature of nanotubes was also found [5]. In addition,
the presence of the edge state results in the relatively important
contribution to the density of states (DOS) near the Fermi en-
ergy [6]. Apparently, the length of single-wall carbon nanotubes [7]
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affects the edge states. In short nanotubes the edge states could
play an important role by contribution to conductivity. Specifi-
cally, it was found [8] that the HOMO-LUMO (highest occupied
molecular orbital and lowest unoccupied molecular orbital,respec-
tively) gap is inversely proportional to the length of the zig-zag
carbon nanotube segment. Another factor showing the potential-
ity of controlling the electronic properties of a carbon nanotube is
an external magnetic field [9]. To explore this possibility, we have
also conducted in this Letter a theoretically study of the electronic
properties of finite-length carbon nanotubes under the influence of
the magnetic field.

2. Theory

_ We investigate the zigzag nanotubes in the static magnetic field
B parallel to the nanotube axis. We assume Hamiltonian for an
electron in a potential V (r) and in the magnetic field in the form

1 >
H=—(p—eA?+V. 1
2m(p eA)” + (1)

The potential V (r) reflects the structure of the crystal lattice such
as the symmetry and periodicity properties. Here this potential de-
scribes the structure of the zig-zag single wall carbon nanotube.
The vector potential A in the Landau gauge can be expressed in
the form [1]

- (D

where @ = Brrr? is the magnetic flux penetrating the cross sec-
tion of the carbon nanotube, and L = 2xr is a circumference of
the nanotube (r-nanotube radius). Here the coordinate x is in the
circumferential direction, and the coordinate y denotes the di-
rection parallel to the nanotube axis. To describe the parameters
which characterize the zig-zag tubules, we start from the graphene



M. Pudlak, R. Pincak / Physics Letters A 377 (2013) 2384-2387 2385

Fig. 1. Structure of the finite-length open ended single wall carbon nanotube with
the zig-zag edges. A unit cell for the width M =4 which creates a nanotube is
depicted.

layer [10] where we can define the vectors connecting the nearest
neighbor carbon atoms for the zig-zag nanotubes in the form:

?1’=a<0; %)

?_a<1._L)

2= 2» 2\/§ )

a=a<—1;—L), 3)
2" 23

where a =0.246 nm is the lattice constant. The finite length open
ended zig-zag carbon nanotubes can be assumed to be rolled from
the finite length zig-zag graphene nanoribbons [2]. In confining the
structure along the length, the edge states are induced by termi-
nating the length dimension with the zig-zag shaped edges. We
will study the edge and size effects using the tight-binding model
for the carbon nanotube shown in Fig. 1. We want to find the so-
lution to the above problem in the form of the Bloch function

M
Y (T) = (Cava, + Coiyy ¥Biy) (4)

i=0

Yo (R, T) = %M ;exp(iﬁ(ﬁ: +da)+ i%c(ﬁ +2a)>

X !(0(? _?n __d)oz)>y (5)

where o« denotes A or B atoms. Here _d)a are the coordinates of the
o atom in the unit cell and 7, is a position of a unit cell, M is the
number of the unit cell; |¢(F)) is a 7 orbital which is generally
different for the outer and inner shell; G(R) is the phase factor
associated with the magnetic field and is expressed by [11]

1
c(fa)=fA(7<).d?<=/(‘r’—R).Z\(Tzﬂ(?—k))dx. (6)
R 0

R

Employing Eq. (2) we get

> 1 L = ()] (e
G(R)=/(r_R)'<T’O>d’\=(X_X)T' (7)
0
We denote
€ =(p( — AD|H|pG — A)) = (9 F — B |H|pG — By)). (8)

Now we define the hopping integrals
(0 — A)|H|p@ — B)) = yoB,
(0@ — AD[H|p@ — Bi1)) = yo. 9)

The electronic spectrum of finite zig-zag single wall carbon
nanotubes can be described by the following system of equations:

GCAm+HAmBm+1CBm+1+HAmBmCBm=ECAm7 (10)

€Cp,, + HpAy 1Capy + HByanCan = ECB,ys (11)

where

HapBpmst = Y0s (12)

H b ﬁmﬂcos(ﬂ 42 ) (13)
N 2N®g

here @g=h/e,n=0,...,N—1, B=1— 1(%)? for the (N,0) zig-
zag nanotube [12] and yp (3 eV) is the nearest neighbor hopping
integral in the flat graphene. The site index m=1,..., M, where
M describes the length of the nanotube. So we have

ECay + ¥0CByyy + 08nChy =0, (14)
EC, + ¥0Can_, + Y0&nCayp =0, (15)
where E =€ — E and

nm ] nt NB
gn:2,8cos<W+M> :ZﬂCOS<W+B_1> (16)

where B = 4h/ea?. We assume that the Ay and By sites are
missing. So we have the boundary condition Cs, = Cg,,,, =0 [13].
The solutions of Eqs. (14) and (15) in two cases (cases I and II) are
found. The solution is assumed to be (case I)

Ca, = AeP™ 4 Be™P™, (17)
Cp, = CeP™ 4 De~"P™, (18)

Here A, B, C and D are the coefficients which have to be deter-
mined and p is the wave number in the direction of the nanotube
axis. From the boundary condition we have

Cay=A+B=0, (19)
CBM+1 — Ceip(M+]) + Defip(MJrl) —=0. (20)
And so

Can = A(eP™ — ™M), (21)
Cp,, = C(e™ — Z2e~P™) (22)

where z = elP™M+1)_ sybstituting Eqs. (21) and (22) into Eqgs. (14)
and (15) we obtain

E-(eipm _ zzefipm)c
+ 7/0[(‘_31'13(17171) _ efip(mfl)) + gn(eipm _ efipm)]A =0, (23)
VO[(eiP(TTH-l) _ ZZe—ip(m-H)) + gn (eipm _ Z2e—ipm)]c

+E(e?™ —e"PM)A=0. (24)
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This homogenous system of equations has a solution only if the
following condition is fulfilled:

[E-z _ J/02(6—1'17 + gn)(eip 4 gn)]eZipm
+22[E2 = y2 (e + gn) (€” + gn) Je 2P
—EX(2 4+ 1) + 12 (gn +eP)’ + 2y (g +eP) =0, (25)

And so the coefficient of the e*2P™ terms and the constant term
have to be equal to zero. Thus, we obtain the energy spectrum

E:6+syo\/l +2g, cos(p) + g2. (26)

Here, s = +1, s=+1 (s = —1) corresponds to the conductance
(valence) energy band. The condition for the longitudinal wave
number p is

E2(Z2+1)=yd(gn + e’Ap)2 + 22y (gn + e*"p)z. (27)

Substituting Eq. (26) into Eq. (27) we obtain the equation which
gives the longitudinal wave number p.

sin[pM] + gu sin[p(M + 1)] = 0. (28)

The longitudinal wave number depends on the transverse wave
number n, the length M of the nanotube, the static magnetic field
B and also on the parameter 8 which depends on the nanotube
curvature. For N > 1 Eq. (28) can be written as

sin[pM] = 0. (29)

The real solution for p is given by
2m
=—1 30
P= (30)

Substituting this solution into Eq. (26) we get the energy spectrum
of delocalized electrons (bulk states). The spectrum is similar to
that of the infinite zig-zag nanotube with the periodic boundary
condition along the y-axis. There is another possibility to solve
Egs. (14), (15). We assume the solution in the form (case II)

Cap = (—=1)™(AeP™ + Be~P™), (31)
Cp,, = (=)™ (Ce'P™ + De~ ™). (32)
This possibility gives

E=E+S)/0\/1 — 2gy cos(p) + g7 (33)

and the equation for the longitudinal wave number

sin[pM] — gu sin[p(M + 1)] = 0. (34)

Now we are interested in the edge state of the zig-zag nanotube.
This solution can be obtained in the form p = +in [14]. We get
the following equation for n:

sinh[nM] = gn sinh[n(M +1)] = 0. (35)
The — (+) sign is for the case I (II), respectively. The edge state
can exist when the condition

|&nl < (36)

1
1+1/M

is fulfilled. The energy spectrum of a state like this is given as

Eno(®) = € + 570,/ 1 F gn cosh() + g2. (37)

For big enough M the solution of Eq. (35) can be expressed in the
form [14]

1-¢2

n= In Ch + OMF1 (38)
Cn

where 1/c; = |gp|. From Eq. (38) we have

1+c§_(c§—1)2

coshn~ 39
"7 20 T o 9
and so
2 -1
Ens(@)~e +5V0W (40)
n

for the solutions near the Fermi energy €. We can see that for
the long enough zig-zag nanotube the band gap becomes small.
It means that we get an energy level which is located in the for-
bidden energy zone of the infinite zig-zag nanotube with periodic
boundary conditions and is localized near the edges of the finite
nanotube.

So we have the HOMO (highest occupied molecular orbital)-
LUMO (lowest unoccupied molecular orbital) gap for finite zig-zag
nanotube in the form

2. —1
Eg=2%0 m(II\)/;JrZ

max
where cpqx is the maximal entity from c,. As ¢, > 1, the bigger M
the smaller the HOMO-LUMO gap. The parameter M defines the
length of the nanotubes and so the HOMO-LUMO gap is inversely
proportional to the length of the zig-zag carbon nanotube. A simi-
lar result was found numerically in [8].

We would like to start with an analysis of the finite (12, 0)
zig-zag nanotubes. In the case I with the value n =5, the calcu-
lated energy levels of the edge states are equal to those derived in
the case II for n = 7. If we assume € =0 (Fermi energy) we ob-
tain Es 7 +(0) = +2.19 meV for the of M = 10. Application of the
static magnetic field splits the energy levels. Under the influence
of the field we have Es 4 (1.5®¢) ==+0.17 meV and E7 4+ (1.5%¢) =
+14.3 meV. However, this B = 1.4 x 10°> T magnetic field is be-
yond the experimentally attainable values. Obviously less strong
and accessible fields will cause smaller splitting. Other aspects of
the presence of the static magnetic field is a change of the number
of edge states [15-17]. The formation of new edge states by the
magnetic field shows the dependence on the length of a nanotube.
This phenomenon was investigated for the (12,0) zig-zag nan-
otube (Fig. 2). Particularly, the minimal length of L (L = +~/3Ma/2)
for the (12, 0) zig-zag nanotube when the new edge state at n =4
appears with the magnetic field B =0 is 6.3 nm. In contrast, un-
der the same external conditions having the 5.7 nm long zig-zag
nanotube (M = 27) there is no generation of a new edge state.
Yet, imposing the magnetic field 20 T will produce the edge state
which is not accessible by the fields 15 T and smaller at this length
of the nanotube. Interesting, the magnetic field can also reduce the
number of the edge states. In the case of the 6.2 nm long (12, 0)
zig-zag nanotube at n = 8 the edge-state is present. Yet, the ap-
plication of the magnetic field of 20 T causes the disappearance
of this state. In contrary to the bulk state, where the magnetic
field can close the band gap [9], the HOMO-LUMO gap of the edge
states can only be reduced by the application of the field. The de-
pendence of energy levels on the magnetic field for the edge states
is described by the following expression:

(41)

Ens(B) =~ Ens(0)
2
1+ 2B8MN (cos> N—1M£) 42
><<+/3 (cos*(nr /N) )(c%—l) B, (42)

here B; ~2.73 x 10° T and the parameter c, is taken with B = 0.
In derivation of this relation the effect of B, experimentally ac-
cessible magnetic field, was treated as perturbation. The magnetic
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Fig. 2. The minimal length of the (12, 0) zig-zag nanotube as a function of magnetic
fields. The length L = +/3Ma/2.

field influence is determined by both the diameter of the nanotube
(parameter N) and the length of the nanotube (parameter M).

3. Conclusion

The present work investigates both the influence of the static
magnetic field and the presence of boundaries on the electronic
properties of carbon nanotubes. In theoretical analysis the influ-
ence of a curvature of the surface of the nanotube on the HOMO-
LUMO gap was taken into account. In the case of the finite length
zig-zag nanotube, the presence of the edge state results in the gap
which is inversely proportional to the length of the zig-zag nan-
otube. The value of this gap can be smaller in comparison to the
gap that is observed after the inclusion of the curvature of the
metallic nanotube into the calculation. The results clearly indicate
that the presence of the edge states varies the electronic proper-
ties of the zig-zag nanotubes. Moreover, the number of these edge
states is affected by the static magnetic field. Our work shows that

these transitions of the edge states, predicted only for the nan-
otubes with a larger diameter and length in the previous works,
also occur in smaller nanotubes. Additionally, we have observed
for the long enough finite nanotubes that the energy spectrum of
bulk states is very similar to the spectrum of the nanotube with
the periodic boundary condition. However generally, the applica-
tion of the magnetic field removes the degeneracy of the energy
levels of the nanotube.
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