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Abstract
A gauge-theory approach to describe Dirac fermions on a disclinated flexible membrane beyond
the inextensional limit is formulated. The elastic membrane is considered as an embedding of a
2D surface into R3. The disclination is incorporated through an SO(2) gauge vortex located at
the origin, which results in a metric with a conical singularity. A smoothing of the conical
singularity is accounted for by replacing a disclinated rigid plane membrane with a hyperboloid
of near-zero curvature pierced at the tip by the SO(2) vortex. The embedding parameters are
chosen to match the solution to the von Karman equations. A homogeneous part of that solution
is shown to stabilize the theory. The modification of the Landau states and density of electronic
states of the graphene membrane due to elasticity is discussed.

1. Introduction

It is now generally accepted that the low-lying electronic states
in graphene can be accurately described by two-dimensional
massless Dirac fermions on a plane [1]. In experiments,
multiform graphene structures were observed, thus stimulating
studies of Dirac fermions on curved graphene sheets (see,
e.g., [2, 3]). This problem is markedly complicated when
the curvature itself is generated by topological defects like
disclinations. Indeed, a disclination is known in elasticity
theory as a line defect which can be produced by a ‘cut-and-
glue’ Volterra process, namely by inserting or removing a
wedge of material with the subsequent gluing of the dihedral
sides. This immediately generates additional large elastic
strains inside the crystal. For flexible membranes, however,
there is a chance to screen out the strain field by buckling into
a cone. The problem thus reduces to coupling Dirac spinors to
a topologically nontrivial curved background.

The topological lattice defects in graphene are pentagons
that are equivalent to wedge disclinations. The first
experimental observation of a pentagon at the apex of a
cone was provided by An et al in [4]. They used the
scanning tunnelling microscope to study the structure of a

conical protuberance and found five bright spots at the apex
of the nanocone. This was the first clear evidence that the
pentagon is located at the apex. The bright spots indicate
also that there is an enhanced charge density localized at each
carbon atom in the pentagon, which implies an increase in the
electronic density of states (DOS). This finding was confirmed
by the numerical tight-binding calculations for nanocones with
different numbers of pentagons at the apex [5]. Explicit
manifestations of the topological effects in the electronic
properties of disclinated rigid graphene surfaces have been
discussed at length in the literature [6–15].

However, disclinations are the sources of long-range
elastic stresses which also modify the electronic states. The
strain-induced effects in the electronic structure of graphene
are now a topic of intense research in strain engineering
to produce the basic elements for all-graphene electronics.
In particular, designed strains can generate electron beam
collimation, confined states, quantum wires [16] as well as
energy gaps and a zero-field quantum Hall effect [17] in
graphene. To incorporate internal stresses due to topological
defects one is supposed to go beyond the inextensional
limit. The study of electronic properties of disclinated
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flexible membranes beyond the inextensional limit is thus of
importance to address this new field of research.

According to the Volterra process disclination can be
considered as a conical singularity, like strings in cosmology.
The relevant background is the curved spacetime where all the
curvature is concentrated at the apex of the cone. The metric in
the cylindrical coordinates is written as

ds2 = dt2 + dz2 + dr 2 + α2r 2 dϕ2. (1)

Here the parameter α is related to the angular sector that is
removed or inserted to form the defect. In this case, any
attempt to build a closed loop around the disclination line
will result in a closure failure. The deficit angle is equal to
2πα with α = 1 − ν, where ν is the Frank index, the basic
topological characteristic of the disclination. The positive sign
of ν corresponds to the removing of a sector. In this case the
space has positive curvature. Correspondingly, for negative ν
one has a cone of negative curvature. Eventually, the problem
reduces to a Dirac equation in the curved spacetime. By the
change r → rα/α the metric (1) can be brought into the form

ds2 = dt2 + dz2 + r 2(α−1)(dr 2 + r 2 dϕ2) (2)

which describes a featureless cosmic string located at the
origin.

In spite of the elegant form of this approach, there is
still an important open question concerning the so-called
core region of the defect. To the best of our knowledge,
this problem was, for the first time, raised in cosmological
models [18, 19] where long-range effects of cosmic string
cores were studied. In the geometric theory of defects, an
influence of a disclination core on the localization of electrons
and holes was investigated in [20]. In both cases, the tip of the
conical singularity is replaced by a smooth cap while at large
distances a typical cone with the deficit angle 2πα emerges.
In cosmological models the curvature of an infinite string is
confined within a cylinder of a small radius a (the core radius)
which possesses a direct physical meaning: the string has a
characteristic core radius given by a ≈ 1/M , where M is
a mass scale at which the string is formed. Accordingly, the
relevant 2D piece of the metric can be taken in the form

ds2 = P2(r/a) dr 2 + α2r 2 dϕ2, (3)

where the range of the angular coordinate is ϕ ∈ [0, 2π)
and P(r/a) is a smooth monotonic function satisfying the
conditions

lim
r/a→0

P(r/a) = ν, P(r/a) = 1, r > a. (4)

For example, in [20] the so-called flower-pot model was
considered when the curvature of the disclinated media is
concentrated on a ring of radius a, which results in the
formation of a ‘seam’ on the cylinder.

This approach is of interest in the description of linear
defects with a certain interior structure (finite thickness of a
string). However, the situation is more subtle for a disclination
on an elastic 2D surface, e.g. on a graphene sheet. The

specificity of elastic membranes lies in that they may change
both their intrinsic and extrinsic geometries due to stretching
and bending of the membranes, respectively. This occurs
because a flexible membrane can relieve the internal strain by
buckling out of the plane into a cone. In the inextensional limit
of the infinite rigidity, the stretching energy of a membrane of
the radius R is proportional to the system size, R2, whereas a
buckled membrane has the energy proportional to log R. In
this case a creation of a disclination by using the ‘cut-and-
glue’ process results in a true cone. This corresponds to a
point-like disclination defect. In reality, however, a membrane
possesses finite elasticity, so that one needs to go beyond the
inextensional-limit approximation.

As is known, the classical theory of elasticity introduces
a characteristic velocity, but does not lead to a characteristic
length. In defect theory the length scale is introduced
phenomenologically through the core radius of the defect
which appears as an external parameter. Accordingly, there is
no room within the linear theory of elasticity for the description
of the core region. In the rotationally symmetric case it
represents a small disc with a certain radius r0. Physically, the
parameter r0 comes into play through the boundary conditions
imposed on the stress tensor to ensure that the internal strain
inside a membrane be kept finite to prevent it from falling apart.
It is this quantity r0 that sets a relevant short-range length scale
in the present problem (similar to a for cosmic strings).

In this paper, we attempt a variant of the self-consistent
gauge-theory approach to account for both the smoothed apex
and the topological characteristic of the disclination defect.
To take into account finite elasticity, we go beyond the
inextensional-limit approximation. In doing so, we invoke
both the linear elasticity theory as well as a phenomenological
approach to account for the elastic deformations. Dynamical
variables in our theory are the embeddings of a 2D elastic
surface into R3. Parameters of the embedding appear as the
matter fields interacting with an external gauge potential that
describes a disclination. Within the linear scheme the model
recovers the von Karman equations for membranes with a
disclination-induced source generated by the gauge field. We
explicitly show that the elastic deformations emerge due to
the defect. We compute the effective metric generated by
the disclination. That metric is determined by the external
gauge field and the dynamical embeddings. It contributes to a
topologically nontrivial part of the spin connection that couples
Dirac fermions to a 2D disclinated elastic manifold.

This paper is organized as follows. Section 2 contains a
brief account of a gauge-theory approach to describe fermions
on a disclinated surface in the inextensional limit. To take
into account elastic deformations, a dynamical theory beyond
the inextensional-limit approximation is presented in section 3.
Within that theory Dirac fermions couple to the underlying
effective metric generated by the disclination defect in the
presence of elasticity. In section 4 the derived approach is
specified to study electronic properties of disclinated graphene.

2. Infinite rigidity

In the present section we show that a disclination on a 2D
manifold can be thought of as arising due to an explicit
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breaking of the local rotational symmetry. This breaking can
be enforced by a topologically nontrivial external gauge field
that carries the disclination ‘charge’, ν. To set the stage, we
begin with a brief discussion of the case of an infinitely rigid
membrane free to buckle into a cone in R3. This corresponds
to the inextensional limit to be discussed from the elasticity
theory point of view in section 3. Here we just show that the
conical-type singularity generated by the vortex results in a
topological nontrivial contribution to the spin connection for
Dirac fermions. Our discussion essentially follows that of
our earlier short communication [21], except that it is now
extended to include a disclination dipole as well.

2.1. Disclination versus gauge field

Let xa be a set of local coordinates on a Riemannian surface
�0. (Indices a, b, c, . . . = 1, 2 are tangential to �0, whereas
i, j, k, . . . = 1, 2, 3 run over the basis of R3.) To describe
this we find it convenient to introduce an embedding �0 →
R3 that can be realized in terms of an R3-valued function
Ri
(0)(x

1, x2). As the point (x1, x2) is varied, the vector �R(0)
sweeps the surface �0. This is nothing other than a familiar
two-parametric representation of surfaces in R3. In what
follows the function Ri

(0)(x
1, x2) is chosen to specify an initial

configuration �0. Representation for the induced metrics
follows immediately:

g(0)ab ≡ (g�0)ab = ∂a �R(0) · ∂b �R(0). (5)

Equation (5) is invariant under global SO(3) rotations
of the vector �R(0). To incorporate disclinations one should
promote this invariance to a local one. To this end, consider
the R3

(0)-bundle over �0 with the structure group SO(3). The

so(3)-valued 1-form ( �W (0)
a · �L) dxa serves as a connection 1-

form in the R3
(0)-bundle space over �0, with �W (0)

a being the
gauge potentials. Here Li ∈ so(3) are the generators of the
group. By replacing in (5) ordinary derivatives ∂a �R(0) by the
covariant ones ∇a �R(0) = ∂a �R(0) + [ �W (0)

a , �R(0)], one arrives
at the locally SO(3)-invariant representation for the induced
metric:

gab = g(0)ab (
�W (0)) = ∇a �R(0) · ∇b �R(0) = ∂a �R(0) · ∂b �R(0)

+ ∂a �R(0)[ �W (0)
b , �R(0)] + ∂b �R(0)[ �W (0)

a , �R(0)]
+ ( �W (0)

a
�W (0)

b ) �R2
(0) − ( �W (0)

a
�R(0))( �W (0)

b
�R(0)). (6)

Topological disclinations can then be considered as arising due
to explicit breaking of the local rotational symmetry by a fixed
topologically nontrivial gauge potential that generates a new
metric as follows from equation (6). From now on a metric
induced due to either the gauge field or elastic deformations
will be denoted by gab to reserve the symbol g(0)ab for the metric
tensor on the undisturbed surface, �0.

In the general case, a non-Abelian gauge field �W (0)

emerges to describe a disclinated surface. However, throughout
this paper we are primarily interested in the case �0 = R2

so that only the z component of the gauge field matters. To
illustrate this, consider a disclination defect placed at the origin
of a plane that can be bent but cannot be stretched. We have
�0 = R2, so that (x1 = x, x2 = y) ∈ R2. In this case

W (0)i=1,2
μ = 0 and W (0)i=3

μ = W (0)
μ . A singular vortex-like

potential

W (0)
x = νy/r 2, W (0)

y = −νx/r 2,

r =
√

x2 + y2 �= 0
(7)

is supposed to describe a topological disclination with a
strength ν located at �r = 0. This potential locally is a pure
gauge:

W (0)
a (�r) = −ν∂a tan−1 y

x
.

However, for any counter C encircling the origin one has
∮

C
W (0)

a dxa = −2πν �= 0. (8)

Since the counter integral in equation (8) is a gauge-invariant
quantity, the field W (0)

μ cannot be gauged away to zero due to
the topological obstruction. This is why that field is referred
to as a topologically nontrivial one. A physically observable
quantity associated with that gauge field is a nonzero flux,
� = −2πν, through an area bounded by the counter C .
It does not depend on small continuous deformations of that
area. This flux instead characterizes the gauge potential
globally: it determines the first Chern characteristic class
the gauge potential W (0) belongs to. An electron encircling
the origin naturally acquires a topological phase associated
with that nontrivial flux: the Aharonov–Bohm phase, which
distinguishes the gauge potential W (0) from a trivial one.

In the polar coordinates (r, ϕ) ∈ R2 a plane can be
regarded as an embedding:

(r, ϕ) → (r cos ϕ, r sin ϕ, 0),

0 < r < ∞, 0 � ϕ < 2π.

The gauge potential takes the form

W (0)
r = 0, W (0)

ϕ = −ν. (9)

The components of the induced metric (6) can be easily read
off:

grr = 1, gϕϕ = α2r 2, grϕ = gϕr = 0. (10)

Evidently, this is a metric of a cone (cf (1)) which at ν = 0
goes over to a flat one.

In the general case the potential

W (0);(ν1,...,νN )
a (�r) = −

N∑

i

ν(i)
εab(�r − �ri)

b

|�r − �ri |2 , (11)

where a, b = x, y, is supposed to describe N disclination
defects with the strengths ν(i) located at the points with the
coordinates �ri , i = 1, . . . , N . To specify a case, important in
applications,, of the disclination dipole located on the x axis,
we put �r1 = (−L, 0), �r2 = (L, 0) and ν(1) = −ν(2) = ν. The
above equation then yields

W (0)
x = ν

4xyL

r 2+r 2−
, W (0)

y = ν
2L(y2 − x2 + L2)

r 2+r 2−
, (12)

3
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where r 2± = (x ± L)2 + y2. Substituting this expression in
equation (6) one can in principle compute the induced metric.
To illustrate this, we work out an explicit representation of the
metric induced by a disclination dipole in the asymptotic region
L/r 
 1. Far away from the dipole equation (12) reduces in
the polar coordinates to

W (0)
ϕ = −2νε cosϕ + O(ε2),

W (0)
r = 2νε

r
sinϕ + O(ε2)/r, ε := L/r 
 1.

(13)

Our representation of the induced metric (6) then gives

grr = 1 + O(ε2), gϕϕ = r 2(1 − 4νε cos ϕ + O(ε2)),

grϕ = gϕr = 2νεr sinϕ + rO(ε2).

(14)
This metric describes the asymptotic representation of the line
element for a screw dislocation (see, e.g., [22]), with the
Burgers vector by = −4πνL being perpendicular to the defect
region. The gauge-theory approach is thus seen to recover
a well-known result: at large distances from the defect a
disclination dipole can be thought of as a screw dislocation.

2.2. Incorporating fermions

Let us now move on to a problem of coupling fermions
to a given disclination. As is known, the topologically
nontrivial gauge field reasserts itself in the Dirac equation as
a topologically nontrivial piece of the spin connection [23].
That part of the connection carries a topologically nontrivial
flux that does not depend on smooth continuous changes
of the underlying metric due to small elastic deformations.
To incorporate fermions on the 2D background (�0 = R2, �r �=
0; g(0)ab (W

(0))) we need a set of orthonormal frames {eα(W (0))}
which yield the same metric, g(0)ab (W

(0)), related to each other
by the local SO(2) rotation:

eα → e′
α = �β

αeβ, �β
α ∈ SO(2).

It then follows that gab = eαa eβb δαβ , where ea
α is the

zweinbein, with the orthonormal frame indices being α, β =
{1, 2}, and coordinate indices a, b = {1, 2} (from now on we
drop an explicit W dependence of the metric). As usual, to
ensure that physically observed values are independent of a
particular choice of the zweinbein fields, a local so(2)-valued
gauge field ωμ is to be introduced. The gauge field of the local
SO(2) group is referred to as a spin connection. For the theory
to be self-consistent, zweinbein fields must be chosen to be
covariantly constant [24]:

∂aeαb − �c
abeαc + (ωa)

α
βeβb = 0,

which determines the spin connection coefficients explicitly:

(ωa)
αβ = eαb Daeβb, Da = ∂a + �a, (15)

with �a being the Levi-Civita connection. The Dirac equation
on a surface (�0, g(0)ab (W )) is written as

iγ αea
α(∂a +�a)ψ = Eψ, (16)

with
�a = 1

8ω
αβ
a [γα, γβ] (17)

being the spin connection in the spinor representation. In two
space dimensions, the Dirac matrices can be chosen to be the
Pauli matrices, γ1 = −σ2, γ2 = −σ1. In the case under
consideration equation (15) gives

ω12
r = ω21

r = 0, ω12
ϕ = −ω21

ϕ = 1 − α. (18)

Hence, a topologically nontrivial gauge field (9) results in a
conical singularity of the spin connection. The flux

∮

C
ω12
ϕ dϕ = 2πν �= 0

represents a ‘net’ effect produced by a disclination on the
moving electrons. We thus show that the gauge-field approach
in the inextensional limit exactly coincides with the standard
‘cut-and-glue’ procedure.

However, a cone with a point-like apex is a mathematical
abstraction since in a real situation the media has a finite
stiffness, which would inevitably result in a certain smearing
of a conical singularity. Therefore, a proper description of the
disclination implies a smooth deformation of the metric and, at
the same time, one has to preserve a conical behaviour far away
from the origin. Although such a surface can effectively be
approximated by a hyperboloid, we show now that one cannot
incorporate finite elasticity into the theory by simply replacing
a cone by a smooth surface that asymptotically approaches a
cone far away from the origin. This would simply eliminate
the defect.

To illustrate this, consider an upper half of a hyperboloid
as an embedding:

(ξ, ϕ) → (a sinh ξ cosϕ, a sinh ξ sinϕ, c cosh ξ),

0 � ξ < ∞, 0 � ϕ < 2π.
(19)

The components of the induced metric can be written as

gξξ = a2 cosh2 ξ + c2 sinh2 ξ, gϕϕ = a2 sinh2 ξ,

gϕξ = gξϕ = 0,
(20)

which in view of (15) gives for the spin connection coefficients

ω12
ξ = ω21

ξ = 0,

ω12
ϕ = −ω21

ϕ =
[

1 − a cosh ξ√
gξξ

]
=: ω(ξ).

(21)

The spin connection in the spinor SO(2) representation
becomes

�ϕ = iωσ3. (22)

Since ω(ξ) goes to zero as ξ → 0 a circulation of that field
over a loop encircling the origin gives a flux which tends to
zero as the counter shrinks to zero:

lim
ε→0

∮

Cε

ω12
ϕ dϕ = 0,

where Cε stands for a closed counter which encloses a small
area ∼ε2 around the origin. This equation implies that

4
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there is no topologically nontrivial part in the flux. It is
therefore clear that one should work out some other way to
explicitly accommodate elastic deformations in the ‘cut-and-
glue’ procedure that would preserve a conical singularity at the
origin.

3. Finite rigidity

In the present section we formulate the linear elasticity theory
in terms of the embeddings, which proves convenient to
incorporate defects. We thus arrive at the von Karman
equations to describe elastic disclinated media away from the
limit of infinite rigidity. Our consideration allows us then
to introduce an important notion of the defect core radius,
r0. We assume that the linear theory works well in the
region r � r0 whereas it breaks down within the core, at
r < r0. We then briefly discuss the phenomenological
approach discussed earlier to effectively account for the elastic
properties of disclinated membranes [21]. Matching the linear
von Karman theory at the boundary point r = r0 with
the phenomenological approach enables us to represent the
phenomenological parameters in terms of the elasticity and
bending constants.

3.1. Elastic surface

Let us start by discussing the elastic properties of a 2D
manifold in the absence of defects. Under elastic deformations
a surface �0 evolves into some other Riemannian surface �,
which can be thought of as a diffeomorphic map, φ:�0 →
�. Again, we find it convenient to introduce the embedding
� → R3 that can be realized in terms of a R3-valued function
Ri (x1, x2), the point being that [25]

�R(x) := φ∗ �R(0) = �R(0)[φ(x)], (23)

where φ∗ is a pullback of φ:�0 → �. The induced metrics
becomes

gab ≡ (φ∗g�)ab = (g�)cd
∂φc

∂xa
· ∂φ

d

∂xb

= ∂ �R
∂φc

· ∂ �R
∂φd

∂φc

∂xa
· ∂φ

d

∂xb
= ∂a �R · ∂b �R, (24)

where the set {φa} stands for local coordinates on�. The strain
tensor is then determined to be

Eab = gab − g(0)ab .

The properties of a fluctuating elastic surface are encoded
in the action

F = Fel + Ffl, (25)

where Fel describes the elastic properties of the media, whereas
Ffl stands for the Helfrich–Canham action to describe the
energy of a free fluctuating surface. Explicitly the stretching
energy is taken to be quadratic in the strain:

Fel = − 1
8

∫

�0

dx1 dx2
√

g(0){λ(tr E)2 + 2μ tr E2}, (26)

where tr E = gab
(0)Eab, g(0) = det ‖g(0)ab ‖ and summation over

repeated indices is assumed. Here λ and μ are the 2D Lame
coefficients. The stress tensor is then introduced to be

σab = 2μEab + λ tr Eδab. (27)

The Helfrich–Canham bending energy of a membrane
depends on its mean curvature H and Gaussian curvature
K [26, 27]:

Ffl = κ

2

∫

�0

√
g(0) dx1 dx2 H 2 + κG

2

∫

�0

√
g(0) dx1 dx2 K

(28)
where κ is a bare bending rigidity and κG is a Gaussian rigidity.
H = gab

(0)Kab is the mean (extrinsic) curvature and K =
det gab

(0)Kbc is referred to as the Gaussian (intrinsic) curvature.
Here

Kab = �N · Da Db �R (29)

is the curvature tensor and �N is the unit normal to the surface:

�N = [∂1 �R, ∂2 �R]
|[∂1 �R, ∂2 �R]| .

The covariant derivative

Da := ∂a + �a

includes the Levi-Civita connection �a .

3.2. Disclinations in flexible membranes

To incorporate disclinations originally distributed on �0 one
needs to make in equation (24) the substitution

∂a �R(0) → ∇a �R(0) = ∂a �R(0) + [ �W (0)
a , �R(0)].

As a result, the metric g(0)ab goes over to gab given by
equation (6). To derive equations of motion that follow
from Hamilton’s principle of least action, δF = 0, we first
need to specify the embedding Ri (x1, x2). In plane elasticity
theory, an elastic deformation is represented by a displacement
vector ux(x, y), uy(x, y). If a membrane is allowed to buckle
out of the plane, we must add an extra function f (x, y) to
describe the ‘deflection’. We thus choose the embedding in
the following way:

�R(x1, x2) = �R(0) + �U , (30)

where �R(0) = (x, y, 0) and �U = (ux , uy, f (x, y)) is a
displacement of the (x, y, 0) point under deformation. In
the linear approximation we may omit the terms quadratic in
displacements ua as well as in the source strength ν. The strain
tensor then becomes

Eab = ∂aub + ∂bua + ∂a f ∂b f − εαa W (0)
b Rα(0)

− εαb W (0)
a Rα(0) + O(u2, u∂ f,W 2). (31)

Introducing the Airy stress function χ

σab = εacεbd∂c∂dχ,

5
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one eventually gets the following equations of motion:

κ�2 f = (∂2
yχ)(∂

2
x f )+ (∂2

xχ)(∂
2
y f )− 2(∂x∂yχ)(∂x∂y f ),

K −1
0 �2χ = (∂x∂y f )2 − (∂2

x f )(∂2
y f )− εab∂a W (0)

b ,

(32)
where K0 = 4μ(λ+μ)/(λ+ 2μ) is the 2D Young’s modulus.

A single disclination located at the origin of a plane is
described by the potential (7). This results in

−εab∂a W (0)
b = ν � log r = 2πνδ(�r ),

so that equations (32) are exactly the von Karman equations
for a defect in a flexible membrane [28]. Note, however, that
the source term does not appear in (32) ad hoc but is rather
generated by the gauge field due to a disclination. In the case
N disclinations with strengths νi , i = 1, 2, . . . , N are located
at points �ri one should use the gauge potential (11). The source
term in equations (32) is then computed to be

−εab∂aW (ν1,...,νN )

b = 2π
N∑

i

νiδ(�r − �ri ).

The dynamically induced metric on � takes the form

gab = δab + ∂aub + ∂bua + ∂a f ∂b f. (33)

Both functions χ and f or, equivalently, ua and f contribute
to it. Besides, the function f (x, y) determines a shape of
the emergent surface. To see this, let us re-examine the case
of a disclination on a plane that can be bent but cannot be
stretched considered in section 2 (see equation (10)). Within
our approach it corresponds to the case of K0 → ∞. Since
there is no in-plane stretching one may put ua = 0 in
equations (32). The second von Karman equation takes the
form

(∂x∂y f )2 − (∂2
x f )(∂2

y f ) = −2πνδ(�r), (34)

whereas the induced metric becomes

gab = δab + ∂a f ∂b f. (35)

Equation (34) possesses an obvious solution f = ±√
2νr ,

which is a defining equation of a cone. The metric (35)
coincides with that given by equations (10) up to O(ν2) order
as it should in the linear approximation.

3.3. Solution to the von Karman equations

It is instructive to reveal a geometrical structure of
equation (34). The embedding (30) tells us that for an infinite
stiffness the structure of the surface� is entirely determined by
the function z = f (x, y). In particular, the Gaussian curvature
of the surface equals

K = (∂2
x f )(∂2

y f )− (∂x∂y f )2

(1 + (∂x f )2 + (∂y f )2)2
. (36)

It is clear that a general solution to equation (34) must scale as
f ∼ √

ν. In the linear approximation one can therefore drop

the f -dependent terms in the denominator in (36), whereupon
that equation takes the form

K = 2πνδ(�r). (37)

This means that all the curvature is located in this case at
the apex. Thus, to get the curvature spread over some finite
area one needs to take into consideration elastic properties of
a media. In other words, one needs to consider the whole set
of von Karman equations (32) at finite elasticity and bending
constants.

To this end, let us first rewrite the von Karman equations
in the dimensionless form. Under the substitutions χ →
χκ, �r → �rr0 and f → f r0, where r0 is a yet unspecified
parameter with the dimension of length, those equations
become

�2 f = (∂2
yχ)(∂

2
x f )+ (∂2

xχ)(∂
2
y f )− 2(∂x∂yχ)(∂x∂y f ),

ε�2χ = 2πνδ(�r)− K ,
(38)

where the parameter ε = κ/(K0r 2
0 ) and the Gaussian curvature

K = det(∂a∂b f ). All the functions as well as the coordinates
entering these equations are now dimensionless. Since in 2D
one gets [K 1/3

0 ] = [κ] = E , the parameter ε is dimensionless
as well. The inextensional limit amounts to that of ε → 0.
Let us denote the solutions to the von Karman equations in this
limit by f0 and χ0. The second line in equations (38) becomes

(∂2
x f0)(∂

2
y f0)− (∂x∂y f0)

2 = 2πνδ(�r )

which has an obvious solution f0 = ±√
2νr , which describes

as already mentioned a true cone. Inserting f0 into the first
equation of (38) gives

1 = (x2∂2
xx + y2∂2

yy + 2xy∂2
xy)χ0. (39)

This equation possesses an obvious inhomogeneous solution
χ0 = − log r discussed at length in [28]. However, there is
also a nontrivial solution of the corresponding homogeneous
equation missed in [28]. A general solution to equation (39)
must include a homogeneous term and is

χ0 = − log r + qr. (40)

Here q is an arbitrary constant. This becomes evident upon
rewriting equation (39) in the polar coordinates, 1 = r 2∂2

rrχ0.

The homogeneous part of the solution (40) turns out to be of
the utmost importance in stabilizing the theory and bringing
out the physical meaning of the parameter r0.

To see this, let us for a moment restore an explicit r0

dependence in equation (40):

χ0 = − log
r

r0
+ q

r

r0
. (41)

Consider an elastic thin disc of radius R with a disclination
sitting at the origin. Because of rotational symmetry

σrϕ = −∂r

(
1

r
∂ϕχ

)
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vanishes identically for (41). The radial component of the
strain tensor

σrr = 1

r
∂rχ + 1

r 2
∂2
ϕϕχ

yields, however

σrr = − 1

r 2
+ q

rr0
. (42)

It is clear that σrr (r = R) vanishes as R → ∞. It is
singular, however, at the origin. Moreover, if we ignored the
homogeneous solution in (42) we would run into a serious
problem. Namely, a typical way to remove the singularity is
to delete a small disc of material around the origin. It is easy
to see that for q = 0 the strain tensor σrr behaves like −1/r 2

at the boundary of the excised disc. This is clearly physically
unacceptable, which signals the instability of the theory (see
the discussion in [28]). It should be stressed that the general
solution (41) allows us to avoid this difficulty. To show this, let
us delete a small disc of radius r0 around the origin and require
that σrr (r = r0) = σ0. This yields q = 1 + σ0r 2

0 . If one
requires vanishing stresses at the inner boundary, one should
put σ0 = 0. Therefore, the parameter r0 characterizes the core
region of the disclination.

It is also important to note that the homogeneous term in
the solution (42) significantly affects the stretching energy of
the membrane:

Es = 1

2K0

∫

r>r0

d2�r (∇2χ)2. (43)

Since ∇2 log r = 2πδ(�r) the stretching energy (43) for the
stress function (42) with q = 0 becomes an identical zero.
This is exactly the conclusion reached in [28]. However, this is
not physically appropriate, since this result should follow only
in the limit K0 → ∞. If we instead compute (43) at q �= 0, we
will get

Es ∝ κ2q2

K0r 2
0

log
R

r0
= εκq2 log

R

r0
, (44)

which indeed vanishes as K0 → ∞. It should be stressed that
the same logarithmic behaviour has the bending energy, which
is written as [28]

Eb = 2πνκ log
R

r0
. (45)

At q ∼ 1 one has Es ∼ εEb as it should be at
small ε. Because of the fact that the entropy in the
Kosterlitz–Thouless argument also increases logarithmically,
this result provides an interesting possibility of disclination-
mediated phase transitions that might be realized in 2D elastic
membranes (see, e.g., [29]).

3.4. Phenomenological approach versus von Karman
equations

Let us now turn back to the dimensionless set of the von
Karman equations (38). We seek a general solution in the form

f =
∞∑

n=0

εn fn, χ =
∞∑

n=0

εnχn, (46)

where we have already found f0 and χ0. These series are
supposed to converge, provided the linear approximation is
valid. Inserting (46) back into (38) results in a set of self-
consistent coupled equations to determine step by step the
functions fn and χn . Technically, those equations for n �
1 turn out to be quite complicated. Their analysis will be
given elsewhere. To get some insight, we invoke instead a
sort of phenomenological approach to effectively incorporate
elasticity in the Dirac equation discussed earlier in [21]. We
match the information that follows from our approach with
that provided by the von Karman equations. This enables us to
explicitly determine the dependence of the phenomenological
parameters on the elasticity and bending constants to analyse
the electronic properties of elastic graphene.

To begin with, let us briefly recall the phenomenological
theory [21]. As was already mentioned, a rigid plane pierced
by a vortex results in a conical singularity. Let us now assume
that the membrane possesses a small finite elasticity. In that
case the vortex will produce the singularity at the origin as
before and, additionally, it causes the medium to respond by
smoothing the conical shape due to elasticity. We suggest that
both effects can be taken into account by placing the vortex on
the tip of a hyperboloid of a near-zero curvature. That sort of
hyperboloid is supposed to effectively emerge as a response of
the elastic plane to a disturbance caused by the defect at large
distances, r > r0. The parameters of the hyperboloid must
fulfil some natural requirements, to be formulated shortly. In
this way we arrive at the effective metric that takes into account
a response of the elastic media to the disturbance caused by the
defect.

Explicitly, we employ the embedding (19), with
dimensionless (scaled by r0) parameters a and c that appear
as the phenomenological parameters of the theory. The gauge
field (9) represents the vortex at the origin. It induces the
following metric:

gξξ = a2 cosh2 ξ + c2 sinh2 ξ,

gϕϕ = a2α2 sinh2 ξ, gϕξ = gξϕ = 0,
(47)

where α = 1 − ν and ν is the declination charge. At ν = 0
this metric reduces to that of a true hyperboloid given by (20).
Comparing the embedding (19) with equation (30) tells us
that c must scale as

√
ν, which seems natural: buckling is

induced by the source. Let us further suggest that the elasticity
coefficients are accumulated in parameter a, the inextensional
limit corresponding to a → ∞. In other words, we should get
that a → ∞ as K0 → ∞. Let us check these two assumptions
against the metric (47). We see that at ν = 0 it becomes

gξξ = a2 cosh2 ξ, gϕϕ = a2 sinh2 ξ,

gϕξ = gξϕ = 0.
(48)

Upon introducing a new variable r = a sinh ξ one gets

grr = gξξ (r)

(
∂ξ

∂r

)2

= 1, gϕϕ = r 2,

gϕr = grϕ = 0,

(49)
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which is nothing other than the metric of a plane. This result
is quite reasonable, since putting ν = 0 should result in the
trivial solution to the von Karman equations, f = χ = 0. In
the second case of interest, we have ν �= 0 and a � 1. With
the help of the above-mentioned change of variables, we get

grr = 1 +
(

c

a

)2 r 2

a2 + r 2
, gϕϕ = α2r 2,

gϕr = grϕ = 0.

(50)

We see that, for large enough a, which in view of our
assumption implies large K0, the elasticity properties come
into play through the single dimensionless parameter η =
c2/a2 
 1. In particular, in the inextensional limit a → ∞,
equation (50) reduces to the metric of a cone.

We now argue that the desired form of η follows directly
from the von Karman equations. To this end we suppose that
there exist two dimensionless functions χ̃ and f̃ = f0 + f̃
that fulfil equations (38) and at the same time account for
the embedding (19) as well as the metric (47). We have
explicitly singled out the f0 dependence to eliminate the δ-
function source. We are interested in the second ‘dynamical’
equation in equation (38). It takes the form

ε�2χ̃ = −K ( f0, f̃ ), r � 1. (51)

To proceed we simply replace the Gaussian curvature in this
equation with that of the hyperboloid:

K = c2

(a2 + r 2(1 + η))2
. (52)

We recall that the coordinate r as well as parameters a and b
are now dimensionless. Equating then both sides of (51) at the
core boundary r = 1 yields

η2 = kc2ε + O(ε2). (53)

In getting this we have assumed that a � 1. Here k =
�2χ̃ |r=1. To restore an explicit r0 dependence one needs to
make the substitution a → a/r0, c → c/r0. This yields

η2 = k(c/r0)
2ε. (54)

It seems reasonable to assume that c ∼ √
νr0, which finally

gives
η ∼ √

νε. (55)

Equation (55) qualitatively relates the characteristics of elastic
media to the parameters of the embedding. It must be stressed
that the smooth hyperboloid parametrized by equation (19) at
ν = 0 is not a surface that replaces a rigid cone for finite
elasticity. Only when that hyperboloid of near-zero curvature
is pierced by the gauge flux does the smoothed replacement of
the cone emerge. By construction a � r0 and c ∼ r0, which is
consistent with η 
 1. This takes care of a small stretching in
the system.

Turning back to fermions, we see that the metric (47)
generates the spin connection term:

ω12
ϕ = −ω21

ϕ =
[

1 − aα cosh ξ√
gξξ

]
= ωα(ξ). (56)

Since ωα(ξ) → 1 − α as ξ → 0, in contrast with (21) it
contains a topologically nontrivial part that gives rise to a fixed
flux:

lim
ε→0

∮

Cε

ω12
ϕ dϕ = 2πν.

We thus get the smoothed apex, the cone-like asymptotic at
large distances and the unremovable conical singularity at the
disclination line. It is known that in the case a spin connection
contains an SO(2) piece with nontrivial flux, that field cannot
be eliminated under any smooth deformation of the underlying
metric (see, e.g., [24]). Within our approach this simply means
that a nontrivial contribution to the spin connection which
comes from the topological gauge field survives any smooth
elastic deformations of the media.

4. Flexible graphene

In this section, we apply the developed approach to describe
the electronic properties of graphene with pentagonal defects.
Indeed, elastic characteristics of graphene are well fitted to
our theory. The estimated bending rigidity of graphene lies
in the range of 1–2 eV and anyway does not exceed the
value of 2.5 eV (see, e.g., [30–32]). At the same time, the
lower range value of K0r 2

0 is approximately given by 20 eV at
r0 = a0, with a0 being the interatomic spacing in a graphene
lattice [30]. Therefore, the parameter ε is estimated as ε �
0.1, thus justifying the applicability of the elasticity-induced
perturbation scheme to graphene.

4.1. Uniform magnetic field: Landau states

The Dirac equation on a surface � in the presence of the gauge
field ab and the external magnetic field with the vector potential
Ab is written as

iγ αeb
α[∇b − iab − iAb]ψ = Eψ, (57)

where ∇b = ∂b + �b. The effective Abelian gauge field
ab is responsible for valley mixing since K and K ′ points
become inequivalent in the presence of the pentagonal defect
(see, e.g., [1] for details). The energy in (57) is measured from
the Fermi level.

On a surface of the hyperboloid the Dirac operator is

D̂ =
(

0
eiϕ

( ∂ξ√
gξ ξ

+ 1
aα sinh ξ (i∂ϕ − 1

2ωα(ξ)+�ϕ)
)

e−iϕ
( − ∂ξ√

gξ ξ
+ 1

aα sinh ξ (i∂ϕ + 1
2ωα(ξ)+�ϕ)

)

0

)
, (58)

where
�ϕ = aϕ + Aϕ. (59)

It can be verified that D̂ = D̂†. The substitutions
(
ψA

ψB

)
= 1√

2π

(
u(ξ)ei jϕ

v(ξ)ei( j+1)ϕ

)
, j = 0,±1, . . . ,

(60)
and

ψ̃ = ψ
√

sinh ξ, (61)
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reduce the Dirac equation D̂ψ = Eψ to the form

∂ξ ũ − ( j + 1/2 − aϕ + Aϕ)

α

√
coth2 ξ + ηũ = Ẽ ṽ, (62)

−∂ξ ṽ − ( j + 1/2 − aϕ + Aϕ)

α

√
coth2 ξ + ηṽ = Ẽ ũ, (63)

where Ẽ = √
gξξ E . Explicitly, aϕ = ±(N/4 + M/3) for

an even number of pentagons and aϕ = ±N/4 for an odd
number of pentagons. Here N is the number of pentagonal
defects and M takes the values M = −1, 0, 1, depending
upon the arrangement of pentagons (see [33] for details). The
uniform external magnetic field B is chosen to be pointed in the
z direction so that �A = B(y,−x, 0)/2. In (ξ , ϕ) coordinates
the components of Ab are written as

Aϕ = −� sinh2 ξ; Aξ = 0, (64)

where � = ba2/2 and b = eB/h̄c. Let us start with the
analysis of the electron state at the Fermi level (the so-called
zero-energy mode). In this case, we put E = 0 in (62) and (63).
The exact solution is found to be

ũ0(ξ) = C(�+ k cosh ξ)k j̃+ η�̃

2k

(
�+ cosh ξ

sinh ξ

)− j̃

× exp

(
− �̃� cosh ξ

2

)
, (65)

ṽ0(ξ) = C ′(�+ k cosh ξ)−k j̃− η�

2k

(
�+ cosh ξ

sinh ξ

) j̃

× exp

(
�̃� cosh ξ

2

)
, (66)

where

k = √
1 + η; � = �(ξ) =

√
1 + k2 sinh2 ξ ,

j̃ = ( j + 1/2 − aϕ)/α, �̃ = �/α,

and C and C ′ are the normalization factors. Evidently, the
only component u0 becomes normalizable. In the inextensional
limit (η → 0) one obtains

u0(r) ∝ r j̃−1/2 exp

(
−br 2

4α

)
, (67)

where r = a sinh ξ . This result agrees with that of [33].
Let us consider the Landau states. To this end, we develop

the perturbation scheme using η ∼ νε as the perturbation
parameter. Indeed, according to (50) the hyperboloid can,
at small η, be considered as a local perturbation of the cone
metric. Notice that a similar procedure was used in the
description of electronic states in spheroidal fullerenes [34, 35]
where the spheroid was considered as a slightly elliptically
deformed sphere. At the same time, the Landau states on
the graphene cone were already studied in detail in [33].
Therefore, one can use the unperturbed solutions found there.

The Dirac operator is written as

D̂ = D̂0 + ηD̂1, (68)

where

D̂0 = iγ2
1

a cosh ξ

(
∂ξ + cosh ξ

2 sinh ξ

)
− γ1

a sinh ξ
( j̃ + �̃ sinh2 ξ)

is the Dirac operator on the true cone. It is important to
note here that generally the operator D̂1 is not Hermitian on
a cone and must be extended to a Hermitian one (see, e.g., the
discussion in [34, 35]). The result is

D̂1 = − γ1 sinh ξ

2a cosh2 ξ
( j̃ + �̃ sinh2 ξ).

It is convenient to square the Dirac operator:

D̂2 = D̂2
0 + η�̂, (69)

where �̂ = D̂0D̂1 + D̂1D̂0 and the quadratic in the η term is
omitted. Explicitly

�̂ = 1

a2 cosh2 ξ

[
( j̃ + �̃ sinh2 ξ)2 + σ3

2

(
j̃

(
2

cosh2 ξ
− 1

)

+ �̃ sinh2 ξ

(
2

cosh2 ξ
+ 1

))]
. (70)

For η = 0 both the unperturbed wavefunctions ψ jn and the
Landau energy levels were obtained in [33]. Two families of
solutions were found. We restrict our consideration here to the
first family where j̃ � 0. In this case, the energy of the so-
called bulk levels is [33] E0

n = ±√
2n, n = 0, 1, 2 . . ., where

the energy is measured in units of h̄vF/ lB with the magnetic
length lB = √

h̄c/eB.
Let us calculate the matrix element of the perturbation

� = 〈ψ jn|�̂|ψ jn〉. Our analysis shows that the perturbation
does not influence the zero-energy level in the first order
in η. Since the resulting expressions are rather involved,
we calculate the first energy level numerically. The first
Landau level is found to be slightly shifted due to the elastic
contribution:

Eη

n=1 � ±√
2 ± η

�

2
√

2
� ±√

2 ± 0.3η, η > 0, (71)

where the ± sign corresponds to the conduction and valence
band, respectively. Note that a similar shift of the first Landau
level follows for the second ( j̃ � 0) family of the solutions
referred to as the apical states [33].

In graphene there are many allowed transitions due to the
presence of two electron bands, the conduction and the valence
band, and the transitions have the energies

�
ξ

n+1,n = h̄vF

lB

[√
2(n + 1)− ξ

√
2n

]
, (72)

where ξ = ± denote the intraband and interband transitions,
respectively [36]. As is seen from equation (71) the transition
between the ground energy level and the first one in the
presence of elasticity is modified to become

�1,0 = h̄vF

lB

[√
2 + 0.3η

]
. (73)

The experimentally observed cyclotron resonance-like and
electron–positron-like transitions are in good agreement with

9
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the theoretical expectations of a single-particle model of Dirac
fermions in graphene [37]. They produce a very accurate value
for vF , the velocity of electrons in graphene. In our case,
the Fermi velocity becomes slightly renormalized due to the
elasticity effects induced by the phenomenological parameter
η:�vF/vF = 0.3η/

√
2. Therefore, it would be interesting to

perform analogous experiments with graphite cones instead of
graphene to determine the modification of vF .

4.2. Zero magnetic field: electronic density of states

Let us consider now the case of zero magnetic field, B = 0.
This markedly changes the situation with the zero-mode states.
Indeed, in the absence of the cutoff exponent in (65) and (66)
the normalization conditions are found to be −1/2 < j̃ <
−1/2k for u0(ξ) and 1/2k < j̃ < 1/2 for v0(ξ). As a result,
at small η, which is of interest here, there are no normalized
solutions. This means that smoothing has no marked effect
on the existence of zero modes. As stated above, one of the
modes (either ũ(ξ) or ṽ(ξ)) becomes in the presence of the
uniform magnetic field directed along the z axis normalized
and there exists a true zero mode. Therefore, one can expect a
‘switching-like’ effect driven by the magnetic field.

An interesting question is how a hyperboloid geometry
influences the density of states near the Fermi energy in the
vicinity of the pentagonal defects. We will be interested in
the DOS in a small ring 0 < r � δ around the defects.
First, we need to find corrections to the wavefunctions for
the hyperboloid geometry. Following the perturbation scheme
with η being a small parameter, one can write ψn = ψ0

n +
ψ
η
n + · · · with ψ0

n being the solutions for η = 0 which
are the ordinary Bessel functions (see [8]). Here ψ

η
n ∝∑

m �mnψ
0
m/�k is a perturbative part with �k = π/R. The

matrix element of the perturbation is �mn = 〈ψ0
jm|�̂|ψ0

jn〉,
where the perturbation term takes the form

�̂ = j̃

a2 cosh2 ξ

[
j̃ + σ3

2

(
2

cosh2 ξ
− 1

)]
. (74)

Finally, the total DOS in the δ disc is found to be

D(E, δ, n) ∝ DOS0 + ηDOSη ∝ DOS0

(
1 + η| E

a
|δ2

)
,

η > 0, (75)

where
DOS0 ∝ |E |2n+1δ2(n+1),

coincides with the total DOS near the defects for graphitic
cones found in [8] and n = j̃ ± 1/2 is the index of the Bessel
function. The term

DOSη ∝ |E |2(n+1)δ2(n+2), (76)

comes from the elastic perturbation. Thus, we obtain an
increase of DOS in the vicinity of the defect due to the
finite elasticity. This behaviour can be explained by the
elasticity-induced contribution to the underlying metric which
markedly deviates from that of a true cone near the apex.
The modification of the DOS is more pronounced for more

flexible membranes. Notice that the bending rigidity of square
graphene is found to grow with size [31] while the Young’s
modulus depends on the temperature [32]. These findings
give a possibility of experimental studies on the influence
of elasticity on the electronic characteristics of disclinated
graphene. As a promising material, one can consider the
graphene monolayers obtained via chemical reduction of
graphene oxide which have excellent mechanical properties
including high bending flexibility and tensile strength [38].

5. Conclusion

In conclusion, we have presented an analytical approach
to describe Dirac fermions on a flexible disclinated surface
beyond the inextensional limit. The elastic membrane is
considered as an embedding of a 2D surface into R3. The
disclination is incorporated through a topologically nontrivial
SO(2) gauge field that generates a metric with a conical
singularity. A smoothing of the conical singularity is accounted
for by regarding the upper half of a disclinated two-sheet
hyperboloid as an elasticity-induced embedding. Parameters
of that embedding are chosen to match the solution to the von
Karman equations. Away from, but close to, the inextensional
limit, the Young’s modulus K0 and bending rigidity κ enter the
theory through a dimensionless parameter, ε = κ/(K0r 2

0 ) 

1, where r0 sets the relevant short-range scale: a radius of the
defect core.

We argue that the homogeneous part of the solution to
the von Karman equations for a disclinated membrane is of
the utmost importance in stabilizing the theory. This finding
allows us to avoid the evident problem with the core radius
mentioned in [28]. Surprisingly, the discovered homogeneous
part of the solution has been missed so far. We calculate the
stretching energy of the membrane to observe the logarithmic
behaviour with the membrane radius R similar to that of the
bending energy. For rigid enough membranes we work out
the self-consistent perturbation scheme, with ε being the small
parameter.

We apply a new approach to study the structure of the low
energy electronic states of flexible graphene with a topological
defect. We find a true zero-mode state in the presence of an
external uniform magnetic field. The finite elasticity results in
a smearing of the cone apex, thus modifying the cone metric.
The elasticity effects enter the observable quantities through
the elasticity-induced phenomenological parameter η ∼ √

νε.
Qualitatively, the first Landau level in the conduction band is
found to be shifted upwards, whereas the corresponding one in
the valence band is shifted downwards. The total DOS near the
tip is shown to increase due to elasticity.

From the experimental point of view, it would be
interesting to carry out experiments with elastic graphite cones
to determine the modification of vF due to elastic deformations
caused by a disclination defect. The elasticity effects are more
significant for more flexible materials. Therefore graphene-
based materials with excellent mechanical properties like those
recently obtained via chemical reduction of graphene oxide
in [38] would be of interest in these studies.
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