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Abstract. The electronic structure in the vicinity of the 1-heptagonal and 1-pentagonal defects in the
carbon graphene plane is investigated for the case of hyperboloidal geometry. Using a continuum gauge
field-theory model, the local density of states around the Fermi energy is calculated for both cases. In this
model, the disclination is represented by a SO(2) gauge vortex and the corresponding metrics follows from
the elasticity properties of the graphene membrane. To enhance the interval of energies, a self-consistent
perturbation scheme is used. The Landau states are investigated and compared with the predicted values.
A discussion on the influence of the Zeeman effect is included.

1 Introduction

Nanostructured carbon materials are materials with a spe-
cial geometrical structure of their molecules which we call
carbon nanoparticles. This geometrical structure is accom-
panied by the topological defects in a hexagonal planar
lattice called graphene.

There are many variously-shaped carbon nanostruc-
tures known. The most famous is fullerene, which has the
structure of a soccer ball and can be approximated as a
sphere. It is composed of 60 carbon atoms which create
20 hexagons and 12 pentagons [1,2]. However other struc-
tures also exist, for example nanocones, nanotoroids, nan-
otubes, nanohorns etc. A wide variety of electronic prop-
erties of these structures have been studied. Some of these
properties are given by magnetic properties [3,4], optical
absorption spectra or electronic properties of nanotube
caps [5]. They suggest a potential use in nanoscale devices
like quantum wires, nonlinear electronic elements, transis-
tors, molecular memory devices or electron field emitters.
From a theoretical point of view, it was predicted and
experimentally verified by scanning tunneling microscopy
that metallic or semiconducting properties of carbon nan-
otubes depend on whether or not the difference n−m of
the components of the chiral vector (n,m) is a multiple of
3 [6–8].

In most cases, the defects in graphene originate from
the presence of the pentagons for the positive curva-
ture and the heptagons for the negative curvature [9].
More complicated structures can arise when two variously-
shaped parts of nanoparticles are connected by a region
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with pentagon-heptagon pairs. It seems that the best ap-
proximation for pentagonal and heptagonal areas is hy-
perboloid – positively curved for pentagons and negatively
curved for heptagons [10].

The electronic properties of these structures can be
explored by solving the Dirac equation at a curved sur-
face [11]. In this paper, after introducing the compu-
tational formalism, some geometrical properties of the
defects are investigated. After doing this, we study the
Gaussian curvature of the surface. With the help of the
Dirac equation, the local density of states (LDoS) for
disclinated areas near the Fermi level (close to the zero
energy) is then calculated for both pentagonal and hep-
tagonal defects. It will be influenced by a uniform mag-
netic field. Then we compare the electronic properties of
both the models and, finally, we examine the correspond-
ing Landau states, the influence of the Zeeman effect on
them and compare them with the approximate formulae
from earlier works. The model described in [10] is used. In
this model, the aforementioned hyperboloidal geometry is
considered.

2 Basic formalism

First, we introduce the Dirac equation in (2 + 1) dimen-
sions. It has the form:

iγαeμ
α[∇μ − iaμ − iAμ]ψ = Eψ. (1)

The wave function ψ, the so-called bispinor, is composed
of two parts:

ψ =
(
ψA

ψB

)
, (2)
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each corresponding to different sublattices of the curved
graphene sheet. The gauge field aμ, μ = ξ, ϕ arises from
spin rotation invariance for atoms of different sublattices
A and B in the Brillouin zone [12].

The zweibein eα stands for incorporating fermions on
the curved 2D surface and it has to yield the same values
of observed quantities for different choices related by the
local SO(2) rotations:

eα → e′α = Λβ
αeβ, Λβ

α ∈ SO(2). (3)

For this purpose, a covariantly-constant local gauge field
ωμ is incorporated [13]:

∂μe
α
ν − Γ ρ

μνe
α
ρ + (ωμ)α

βe
β
ν = 0, (4)

where Γμ is the Levi-Civita connection coming from the
metrics gμν (see below). Then ωμ is called the spin con-
nection. Next, the covariant derivative ∇μ is defined as:

∇μ = ∂μ +Ωμ, (5)

where
Ωμ =

1
8
ωαβ

μ [γα, γβ ] (6)

denotes the spin connection in the spinor representation.
The Dirac matrices γα can be replaced in two dimensions
by the Pauli matrices σα:

γ1 = −σ2, γ2 = σ1. (7)

Aμ is the vector potential arising from the external mag-
netic field.

The metric gμν of the 2D surface comes from following
parametrisation, with the help of two parameters ξ, ϕ:

(ξ, ϕ) → −→
R = (x(ξ, ϕ), y(ξ, ϕ), z(ξ, ϕ)), (8)

where
0 ≤ ξ <∞, 0 ≤ ϕ < 2π. (9)

The 4 components of the metric are defined as:

gμν = ∂μ
−→
R∂ν

−→
R. (10)

The hyperboloid geometry which we use has, for both
heptagons and pentagons, very similar but not identical
parametrisation. We consider it in separate chapters. Gen-
erally, the non-diagonal components of the metric are:

gξϕ = gϕξ = 0. (11)

For the zweibeins and the diagonal components of the met-
ric the following relationships hold:

e1ξ =
√
gξξ cosϕ, e1ϕ = −√

gϕϕ sinϕ, (12)

e2ξ =
√
gξξ sinϕ, e2ϕ =

√
gϕϕ cosϕ, (13)

and for the spin connection coefficients ωμ:

de1 = −ω12∧e2, de2 = −ω21∧e1, ω12 = −ω21,
(14)

so:

ω12
ϕ = −ω21

ϕ = 1 − ∂ξ
√
gϕϕ√
gξξ

= 2ω, (15)

ω12
ξ = ω21

ξ = 0. (16)

Then the coefficients Ωμ are:

Ωξ = 0, Ωϕ = iωσ3. (17)

If we write the wave function in the form(
ψA

ψB

)
=

1
4
√
gϕϕ

(
ũ(ξ)eiϕj

ṽ(ξ)eiϕ(j+1)

)
,

j = 0,±1, . . . (18)

and substituting (18) into (1) we obtain

∂ξũ− (j + 1/2 − aϕ +Aϕ)
√
gξξ

gϕϕ
ũ = E

√
gξξ ṽ, (19)

−∂ξṽ − (j + 1/2 − aϕ +Aϕ)
√
gξξ

gϕϕ
ṽ = E

√
gξξũ. (20)

3 Geometrical properties

To find the solution of (19), (20), an understanding of the
influence of the defects on the components of the metric
gμν is needed. It is characterised by the Frank index ν
which depends on the number of defects.

The gauge fields ωμ, aμ in (1) are a consequence of
the curvature of the molecule and of the geometrical ar-
rangement of the C-atoms in the molecule, respectively.
Without these gauge fields, the Hamiltonian in (1) would
have the form:

H0 = iγαeμ
α[∂μ − iAμ] (21)

and the corresponding wave function we denote ψ0. Then:

ψ(r, ϕ) = exp(iΩ1(r, ϕ)) exp(iΩ2(r, ϕ))ψ0(r, ϕ), (22)

where Ω1, Ω2 are functions, their form following from the
boundary conditions. Ω1 stands for spin rotations, Ω2

stands for frame rotations. Because:

H0ψ0 = Eψ0 (23)

and, at the same time:

Hψ = Eψ, (24)

it follows that:

H = exp(iΩ1) exp(iΩ2)H0 exp(−iΩ2) exp(−iΩ1). (25)

Then [8] aμ, ωμ have the form:

aμ = i exp(iΩ1)∂μ exp(−iΩ1) = ∂μΩ1, (26)
ωμ = −i exp(iΩ2)∂μ exp(−iΩ2) = −∂μΩ2. (27)
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A more detailed derivation of Ω1, Ω2 can be found
in [8,14]. Because this work is more oriented on the geo-
metrical structure, we will not follow up the derivation of
the form of aμ, and the form of ωμ presented in (15), (16)
will be used.

It is possible to try to approximate the considered ge-
ometry by the metric of the cone [8]. However, this ap-
proach does not correspond to the real situation because
of the point-like apex. Here we propose a method to avoid
this problem.

3.1 Heptagonal defects

In the case of negative curvature and associated heptag-
onal defects, the parametrisation (8) for the case of the
hyperboloid is:

(ξ, ϕ) → (a cosh ξ cosϕ, a cosh ξ sinϕ, c sinh ξ), (28)

where a and c are some dimensionless parameters. The
corresponding diagonal components of the metric are:

gξξ = a2 sinh2 ξ + c2 cosh2 ξ, gϕϕ = a2 cosh2 ξ (29)

and the nonzero spin connection term:

ω12
ϕ = 1 − a sinh ξ√

gξξ
. (30)

The defect arises by the so-called cut and glue procedure
– we cut a line in the graphene plane, add a 60◦ area and
glue the resulting borders [8]. The geometrical properties
of the new surface can be described with the help of the
gauge potentials

−→
W

(0)
μ , which change the initial compo-

nents of the metric (now denoted g(0)
μν ) [15]:

g(0)
μν → gμν = ∇μ

−→
R (0) · ∇ν

−→
R (0), (31)

where:

∇μ
−→
R (0) = ∂μ

−→
R (0) +

[−→
W (0)

μ ,
−→
R (0)

]
. (32)

Then

gμν = ∂μ
−→
R (0) · ∂ν

−→
R (0) + ∂μ

−→
R (0)

[−→
W (0)

ν ,
−→
R (0)

]

+ ∂ν
−→
R (0)

[−→
W (0)

μ ,
−→
R (0)

]
+

(−→
W (0)

μ

−→
W (0)

ν

)−→
R 2

(0)

−
(−→
W (0)

μ

−→
R (0)

) (−→
W (0)

ν

−→
R (0)

)
(33)

and the components of the metric and the spin connection
term will be changed such that:

gξξ = a2 sinh2 ξ + c2 cosh2 ξ, gϕϕ = a2α2 cosh2 ξ, (34)

ω12
ϕ = 1 − aα sinh ξ√

gξξ
, α = 1 + ν, (35)

where ν = N/6 is called the Frank index and N is the
number of heptagons in the defect. In this paper, we take

N = 1. Let us stress that as the number of defects in-
creases, the geometrical structure becomes more compli-
cated and we have to take into account additional assump-
tions [8,16].

We can encircle the origin of the defect (ξ = 0) by a
closed loop Cε and integrate over it. The result is:∮

Cε

d−→s = 2πν. (36)

No transformation of variables can change this value. If
the values of the gauge field

−→
W

(0)
μ are:

W (0)i=1,2
μ = 0, W (0)i=3

μ = W (0)
μ , (37)

where:

W (0)
x = −νy/r2, W (0)

y = νx/r2, r =
√
x2 + y2,

(38)
then: ∮

Cε

d−→s = 2πν =
∮

Cε

W (0)
μ dxμ, (39)

so
−→
W

(0)
μ serves as a vortex-like potential with a nonzero

flux. This flux should be eliminated by the corresponding
integral over the spin connection, so we must get:

lim
ε→0

∮
Cε

ω12
ϕ dϕ = −2πν. (40)

Substituting (35) into the appropriate integral, the re-
quired result is readily obtained.

For our purpose, the gauge field aϕ = N/4. In the
general case, aϕ depends on two constants N and M
as aϕ = N/4 + M/3, where M = −1, 0, 1 for an even
number of defects and M = 0 for an odd number of de-
fects [8,10,12].

If the magnetic field is chosen in such a way that
−→
A =

B(y,−x, 0)/2, then:

Aϕ = −Φ cosh2 ξ, Aξ = 0, (41)

where:
Φ =

1
2
a2Φ0B, Φ0 =

e

�c
. (42)

The geometric units are used, i.e. e = � = c = 1.

3.2 Pentagonal defects

The case of positive curvature is described in more detail
in [10]. The parametrisation is changed into:

(ξ, ϕ) → (a sinh ξ cosϕ, a sinh ξ sinϕ, c cosh ξ), (43)

and the diagonal components of the metric are:

gξξ = a2 cosh2 ξ + c2 sinh2 ξ, gϕϕ = a2 sinh2 ξ. (44)

Introducing the gauge potentials
−→
W

(0)
μ as for the heptago-

nal defects, the component gϕϕ of the metric changes such
that:

gϕϕ = a2α2 sinh2 ξ, (45)
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where α = 1 − ν. This means that in the cut and glue
procedure, we cut a 60◦ area instead of inserting it. Then
the nonzero spin connection term is:

ω12
ϕ = 1 − aα cosh ξ√

gξξ
. (46)

The values of the gauge field and the magnetic field are
the same as in the previous case:

aϕ = N/4,
−→
A = B(y,−x, 0)/2, (47)

so that for the chosen parametrisation:

Aϕ = −Φ sinh2 ξ, Aξ = 0, (48)

where Φ is defined as in (42).

4 Curvature

The Gaussian curvature is defined as:

K =
(∂xxf)(∂yyf) − (∂xyf)2

(1 + (∂xf)2 + (∂yf)2)2
, (49)

where f means the z coordinate in (8) expressed with the
help of x and y, i.e. formally we take f(x, y) = z(ξ, ϕ).
According to our presumptions, this quantity should be
negative for heptagonal defects and positive for pentago-
nal defects.

4.1 Heptagonal defects

From a comparison of (8) and (28) it follows that:

x2 + y2

a2
− f(x, y)2

c2
= 1, (50)

so that:

f(x, y) =
c

a

√
x2 + y2 − a2 =

c

a

√
r2 − a2. (51)

After calculationg the derivatives ∂xxf , ∂yyf and ∂xyf we
get:

K = − c2

(r2(1 + η) − a2)2
, (52)

where we use the definition of η given in (58). It is clear
from this expression that the Gaussian curvature is nega-
tive for arbitrary values of r.

4.2 Pentagonal defects

For the parametrisation (43), we get:

f(x, y)2

c2
− x2 + y2

a2
= 1, (53)

so that:

f(x, y) =
c

a

√
x2 + y2 + a2 =

c

a

√
r2 + a2. (54)

Calculating the required derivatives and substituting them
into (49) yields:

K =
c2

(r2(1 + η) + a2)2
, (55)

which shows that the Gaussian curvature is strictly
positive in the case of pentagonal defects.

5 Solution of the Dirac equation

The solution of (19), (20) for heptagonal and pentagonal
defects in the case of hyperboloidal geometry is introduced
and the local density of states is calculated here. The linear
elasticity theory [15,17] is used. For the numerical calcu-
lations of LDoS, the method described in [18] is exploited.

5.1 Heptagonal defects

The form of (19), (20) will be:

∂ξũ− (j̃ − Φ̃ cosh2 ξ)
√

tanh2 ξ + ηũ = E
√
gξξṽ, (56)

−∂ξṽ − (j̃ − Φ̃ cosh2 ξ)
√

tanh2 ξ + ηṽ = E
√
gξξũ, (57)

where:

j̃ = (j + 1/2 − aϕ)/α, Φ̃ = Φ/α, η = c2/a2. (58)

The parameter η 	 1 is a dimensionless parameter which
describes the elasticity properties of the initial graphene
plane. Due to these properties, the defects can be inter-
preted as small perturbations in the graphene plane. In
the case of finite elasticity, we can use an approximation
η ∼ √

νε, where ε ≤ 0.1 [10]. In this way, the elasticity
is described by a small parameter ε. Its value is usually
taken between 0.01 and 0.1. If we perform some necessary
corrections to the gauge field ωμ, then as we take ε → 0
we obtain the metric of the cone.

Let us now suppose E = 0. This energy corresponds
to the so-called zero-energy mode which is appropriate for
the electron states at the Fermi level. Then, the solution
of (56), (57) is:

ũ0(ξ) = C(�(ξ) + k sinh ξ)kj̃− ηΦ̃
2k

(
cosh ξ

�(ξ) + sinh ξ

)j̃

× exp

(
− Φ̃�(ξ) sinh ξ

2

)
, (59)

ṽ0(ξ) = C′(�(ξ) + k sinh ξ)−kj̃+ ηΦ̃
2k

(
cosh ξ

�(ξ) + sinh ξ

)−j̃

× exp

(
Φ̃�(ξ) sinh ξ

2

)
, (60)
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where:

k =
√

1 + η, �(ξ) =
√
k2 cosh2 ξ − 1, (61)

and C, C′ are the normalisation constants.
For nonzero values of E the solution can be written as

in [18]:

ũ(ξ) = ũ0(ξ)U(ξ), ṽ(ξ) = ṽ0(ξ)V(ξ), (62)

where:

U(ξ) = U (0)(ξ) + εU (1)(ξ) + · · · + εnU (n)(ξ) (63)

and:

V(ξ) = V(0)(ξ) + εV(1)(ξ) + · · · + εnV(n)(ξ), (64)

ε = Ea
�vF

and we take � = vF = 1. Here n is an integer num-
ber and it is chosen according to the required precision.
After substituting this approximation into (56) and (57)
we get:

∂ξU = ε�(ξ)V ṽ0
ũ0
, ∂ξV = −ε�(ξ)U ũ0

ṽ0
. (65)

Putting U (0) = 1, V(0) = 0 and i = 0, 1, . . . , n − 1, the
solution can be found numerically to be:

U (i+1)(ξ) =

ξ∫
0

V(i)(ζ)Δ(ζ)
ṽ0(ζ)
ũ0(ζ)

dζ, (66)

V(i+1)(ξ) = −
ξ∫

0

U (i)(ζ)Δ(ζ)
ũ0(ζ)
ṽ0(ζ)

dζ. (67)

For a given ξ0, the local density of states is defined as:

LDoS(E) = ũ2(E, ξ0) + ṽ2(E, ξ0). (68)

To evaluate the local density of states, we have to calcu-
late the normalisation constants C,C′. They differ for dif-
ferent values of E. For unnormalised solutions ũ′(ξ), ṽ′(ξ)
of (56), (57) and each value of energy:

1/C2 = 1/C′2 =

ξmax∫
0

(ũ′(ξ)2 + ṽ′(ξ)2)dξ. (69)

Since for ξmax = ∞ the integral diverges, some finite value
of ξmax in some interval which is of particular interest is
needed. In this work, we take ξmax = 2.5 and ξmax = 2.
It follows from the parametrisation (28) that for the given
values of ξ, the corresponding distance is r = a cosh ξ,
which means that for a = 1 Å we have rmax = 6.13 Å,
or rmax = 3.76 Å. These values are of the same order as
the size of the Brillouin zone which is formed by the single
hexagons. Each atom in the hexagon lies at a distance
1.42 Å from its nearest neighbours [19,20]. This is the
main principle of the tight-binding approximation [21] in
which we only account for the influence of the nearest
neighbours.

5.2 Pentagonal defects

The form of (19), (20) is:

∂ξũ− (j̃ − Φ̃ sinh2 ξ)
√

coth2 ξ + ηũ = E
√
gξξṽ, (70)

−∂ξṽ − (j̃ − Φ̃ sinh2 ξ)
√

coth2 ξ + ηṽ = E
√
gξξũ. (71)

In the case E = 0, the corresponding solution is:

ũ0(ξ) = C(�(ξ) + k cosh ξ)kj̃+ ηΦ̃
2k

(
sinh ξ

�(ξ) + cosh ξ

)j̃

× exp

(
− Φ̃�(ξ) cosh ξ

2

)
, (72)

ṽ0(ξ) = C′(�(ξ) + k cosh ξ)−kj̃−ηΦ̃
2k

(
sinh ξ

�(ξ) + cosh ξ

)−j̃

× exp

(
Φ̃�(ξ) cosh ξ

2

)
, (73)

where:

k =
√

1 + η, �(ξ) =
√
k2 sinh2 ξ + 1. (74)

To calculate the solution for nonzero values of E and the
local density of states we use the same procedure as pre-
sented for the heptagonal defects.

5.3 Local density of states

In Figures 1–3, the LDoS as a function of energyE and the
parameter ξ is presented for hyperboloidal surfaces with
the defects formed by 1 polygon. In all of these figures, we
set j = 0 in (58) and ε = 0.01 in the expression for η. We
can see the evidence that for increasing B or ξmax, the
LDoS is decreasing and the decrease is faster for the pen-
tagonal defects. If we took larger ξmax, the LDoS would
go to zero with the exception of a small number of en-
ergies for which we would obtain plane waves. The larger
values of ξ are, however, unphysical because of the limited
interval of validity of the tight-binding approximation.

The values we chose enable us to compare the LDoS
for both kinds of defects subject to a small perturbation,
where the difference between both approximations is not
too large. Here we chose ε = 0.01, but there are no signif-
icant changes for the LDoS if we let ε to grow up to 0.1,
as we can easily see from the graphs in Figures 4 and 5,
where we compare the LDoS for different values of the
magnetic field at a fixed distance for ε = 0.01 and 0.1.

6 Landau states

In [8,10], the Landau states for the researched defects are
calculated for the conical and hyperboloidal geometry for
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Fig. 1. LDoS as a function of E ∈ (−0.5, 0.5) and ξ ∈ (0, 2.5) for 1-heptagon defects (left part) and 1-pentagon defects (right
part) for B = 0; ε = 0.01.

Fig. 2. LDoS as a function of E ∈ (−0.5, 0.5) and ξ ∈ (0, 2.5) for 1-heptagon defects (left part) and 1-pentagon defects (right
part) for B = 0.5; ε = 0.01.

Fig. 3. LDoS as a function of E ∈ (−0.5, 0.5) and ξ ∈ (0, 2.5) for 1-heptagon defects (left part) and 1-pentagon defects (right
part) for B = 1; ε = 0.01.
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Fig. 4. LDoS as a function of E ∈ (−0.5, 0.5) for 1-heptagon defects (left part) and 1-pentagon defects (right part); various
values of B are used, ξ = 1.5, ξmax = 2; ε = 0.01.

Fig. 5. LDoS as a function of E ∈ (−0.5, 0.5) for 1-heptagon defects (left part) and 1-pentagon defects (right part); various
values of B are used, ξ = 1.5, ξmax = 2; ε = 0.1.

positive curvature. In the case of conical geometry, where
the corresponding parametrisation is:

(r, ϕ) → (r cosϕ, r sinϕ, cr) (75)

(c is an arbitrary constant) we have, according to [8], two
kinds of Landau states. We use the first equation in (14)
of [8] (1 defect) to define ν and distinguish the two cases.

The first case coincides with the Landau states of pla-
nar graphene [22]. It corresponds to ν ≥ 0 and we calculate
the energy levels according to (22) in [8].

The second case coincides with ν ≤ 0, the energy lev-
els are calculated according to (24) in [8] and the list of
these Landau states for different values of the magnetic
field is presented in Tables 1 and 2. In Tables 1 and 2, the

Table 1. Landau states for pentagonal defects for ν ≤ 0, |B| =
0.5 and j = − 1

2
.

n En

0 ±0.89, ±1.18

1 ±1.34, ±1.55

2 ±1.67, ±1.84

3 ±1.95, ±2.10

“+” sign corresponds to the K point and the “−” sign
corresponds to the K ′ point [14]. Because j = − 1

2 corre-
sponds [8] to j = 0 in (19), (20), we are looking for the
corresponding energy levels.
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Fig. 6. Landau states for heptagonal (left part) and pentagonal defects (right part) for various values of B; ξmax = 2, ξ = 2,
ε = 0.01.

Table 2. Landau states for pentagonal defects for ν ≤ 0, |B| =
1 and j = − 1

2
.

n En

0 ±1.25, ±1.66

1 ±1.89, ±2.19

2 ±2.35, ±2.59

3 ±2.75, ±2.96

Let us compare the Landau states for the hyper-
boloidal geometry with the values calculated for a cone
and graphene. For this purpose, we do an extension of the
interval of energies for which we calculate the LDoS. The
result is seen in Figure 6. We see that for pentagonal de-
fects, the values ±1.67 and ±2.19 from Tables 1 and 2 can
be found by this method. The reason for the presence or
absence of other peaks could be the incompleteness of the
list of Landau states for the hyperboloidal geometry and a
low magnitude of some peaks. It is also possible that some
of the Landau states characterising the conical and planar
geometries do not appear in the case of the hyperboloidal
geometry. For the negative curvature, the appropriate en-
ergy levels have similar positions but they are shifted to
the left.

The comparison of our results with the Landau states
as expected for multilayer graphene [23] is also interesting.
These results differ in that for zero-energy states (n = 0,
see [23]), there are nonzero Landau states with low magni-
tude. For higher n, the Landau states are calculated with
the help of the approximation formula (22) in [23], where

ΓB =
√

3
2Bγ0,N is the number of graphene layers, γ0 = 3,

γ1 = 0.4, γ2 = −0.02 and the next parameters are substi-
tuted according to the notation in that article. As we can
see in Tables 3–5, the results acquired using this formula
are higher in order than the Landau states calculated in
this paper for the hyperboloid geometry. Thus, the Landau
states for multilayer graphene and for the hyperboloid ge-
ometry presented in this paper are completely different.
The discrepancy may be explained by considering the in-
fluence of atoms in the neighbour and next-neighbour lay-

Table 3. Landau states for 3-layer planar graphene.

n En

|B| = 0.5 |B| = 1

0 ±16.87 ±33.75

1 ±29.23 ±58.46

2 ±41.33 ±82.67

Table 4. Landau states for 4-layer planar graphene.

n En

|B| = 0.5 |B| = 1

0 ±14.75 ±29.50

1 ±25.55 ±51.10

2 ±36.13 ±72.26

Table 5. Landau states for 5-layer planar graphene.

n En

|B| = 0.5 |B| = 1

0 ±13.78 ±27.56

1 ±23.87 ±47.73

2 ±33.75 ±67.50

ers in the multilayer graphene which do not exist in the
case of one-layer graphene.

6.1 Influence of Zeeman effect

The aim of this paper is to investigate the geometrical
properties and related gauge fields in the vicinity of the
heptagonal defects in a graphene layer. However we could
extend our research and consider, for example, the influ-
ence of the Zeeman effect. In this case, the Landau states
would be degenerate. For a graphene layer, the degener-
ation of the nth Landau state is described in [24]. The
spectrum then coincides with multiples of the eigenvalues
of the number operators, i.e.

√
2B

√
n,

√
2B

√
n+ 1 and

−√
2B

√
n,−√

2B
√
n+ 1, resp. for the K point, K ′ point,

respectively,where n = 0, 1, 2, . . . For higher values of n,
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Table 6. Shift of Landau states for pentagonal defects for
ν ≤ 0, |B| = 0.5 and j = − 1

2
.

n En

1. spin state 2. spin state

0 ±0.89, ±1.18 ±1.34, ±1.55

1 ±1.34, ±1.55 ±1.67, ±1.84

2 ±1.67, ±1.84 ±1.95, ±2.10

3 ±1.95, ±2.10 ±2.20, ±2.32

Table 7. Shift of Landau states for pentagonal defects for
ν ≤ 0, |B| = 1 and j = − 1

2
.

n En

1. spin state 2. spin state

0 ±1.25, ±1.66 ±1.89, ±2.19

1 ±1.89, ±2.19 ±2.35, ±2.59

2 ±2.35, ±2.59 ±2.75, ±2.96

3 ±2.75, ±2.96 ±3.10, ±3.29

the difference would be small, so it is useful to neglect
this effect in our calculations. Let us review the shift of
the Landau states in all of the cases presented above.

We have already described the situation for graphene.
Let us stress that in case of zero-energy modes, i.e. n = 0,
for the nonzero magnetic field the Landau state would also
be doubly- degenerate and the corresponding eigenvalues
would be 0,

√
2B, respectively.

Let us now reformulate the formula (24) in [8] for the
case when the aforementioned parameter ν ≤ 0. In ac-
cordance with the calculation of the Landau state shift
in graphene, we suppose that for the nth Landau state,
the shift would be represented by two states which we ob-
tain by the substitution of the values n and n + 1 into
the corresponding formula. So, the resulting values will
be similar to those presented in Tables 1 and 2. They are
presented in Tables 6 and 7 for comparison. The difference
of the presented splitted states is approximately the same
as in the graphene layer [22]. For higher values of n, this
difference vanishes.

The shift of the Landau states for the multilayer
graphene is described in [24].

The case of the curved surface which arises as the result
of a small perturbation is more complicated. For fullerene,
for example, the calculation of the Landau states and their
shift can be seen in [25]. For a negatively curved hyper-
boloid, we would construct, in analogy with [10], a per-
turbation to the Dirac operator on the surface of a cone.
According to (1), (56) and (57), the Dirac operator for a
negatively curved hyperboloid is:

D = −σ2
∂ξ√
gξξ

+ σ1
∂ϕ√
gϕϕ

+
σ2√
gϕϕ

(
1
2
ω − aϕ −Aϕ

)

= −σ2
∂ξ√
gξξ

+ σ1
∂ϕ√
gϕϕ

+
σ2√
gϕϕ

×
(

1
2
− aα sinh ξ

2√gξξ
− aϕ −Aϕ

)
. (76)

Because:

gξξ = a2 sinh2 ξ + c2 cosh2 ξ = a2 sinh2 ξ(1 + η coth2 ξ),

gϕϕ = a2α2 cosh2 ξ, (77)

we can write, for small η:

1√
gξξ

=
1

a sinh ξ
√

1 + η coth2 ξ

∼ 1
a sinh ξ

(
1 − 1

2
η coth2 ξ

)
, (78)

and the Dirac operator becomes:

D = −σ2
∂ξ

a sinh ξ
+ σ1

∂ϕ

aα coshϕ

+
σ2

aα cosh ξ

(
1 − α

2
− aϕ −Aϕ

)

+ ησ2
cosh2 ξ

2a sinh2 ξ

(
∂ξ

sinh ξ
+

1
cosh ξ

)

= D0 + ηD1. (79)

Because we do not know the exact values of the Landau
states for a hyperboloidal surface, the appropriate calcu-
lations can not be performed. Otherwise, the procedure
would be the same as in [25].

7 Conclusion

We have studied the electronic structure of disclinated
graphene in the vicinity of heptagonal and pentagonal de-
fects depending on the kind of a curvature (negative or
positive). Hyperboloidal parametrisations (28), (43) were
assumed after rejection of the conical metric. The con-
tinuum field-theory gauge model was used, in which the
disclinations are incorporated using the vortex-like poten-
tial (37), (38) for the calculation of the components of the
metric. The arising fictitious flux was compensated for by
the gauge flux of spin connection field (15), (16). The po-
tential (37), (38) also results in the dependence of the
corresponding Dirac equation on the Frank index α which
includes the number of defects. The defects are involved
in (58) with the help of the parameter ε, which comes from
the elasticity properties of the graphene.

Next, we incorporated a uniform magnetic
field (41), (48) that can significantly influence the
LDoS. These were calculated from the solution of the
Dirac equation, which we obtained numerically with
the help of the extension of an analytical solution for
zero-energy modes (59), (60), (72), (73).

In all the presented figures, the behaviour of the LDoS
is compared for both kinds of defects. For very small values
of ε, this behaviour is similar for both kinds of defects, but
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it is more spread for heptagonal defects. We have found
that varying the value of ε does not significantly affect
LDoS. We also compared the resulting Landau states with
the theoretical prediction coming from the corresponding
values for a graphene plane and conical metric. We see that
the different geometrical structures influence the position
of the Landau states. Further influence comes from the
presence of the Zeeman couplings. They are not related
to the geometrical structure of defects, but we can see in
Tables 6 and 7 that the different splittings of the energy
levels in the n-th Landau state is non-negligible and we
will study this further in future research.

To conclude, the presented results have a large poten-
tial use for calculating the metallic properties of carbon
nanohorns which have widespread application in electronic
devices. Let us mention the significance of the zero-energy
modes. Generally, they appear as a solution for disclinated
graphene in the presence of a magnetic field [26] and they
play a key role in explanations of anomalies, paramag-
netism, high-temperature superconductance etc.

We have to stress that we assumed defects in which
only 1 heptagon or 1 pentagon appeared. For a higher
number of polygons in defects the calculation is more com-
plicated, especially for heptagons, because in contrast to
pentagonal defects problems with the geometrical inter-
pretation occur. It will be useful to perform calculations
for more complicated forms of defects in the future.
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