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Abstract. The electronic structure of the zig-zag bilayer strip is analyzed. The electronic spectra of the
bilayer strip is computed. The dependence of the edge state band flatness on the bilayer width is found.
The density of states at the Fermi level is analytically computed. It is shown that it has the singularity
which depends on the width of the bilayer strip. There is also asymmetry in the density of states below
and above the Fermi energy.

1 Introduction

Carbon atoms can create a variety of forms such as
graphite, diamond, carbon fibers, fullerenes and carbon
nanotubes. A carbon nanotube can be described as a
graphene sheet rolled into a cylindrical shape so that
the structure is one-dimensional with axial symmetry and
in general exhibiting a spiral conformation called chiral-
ity. They are interesting because of their unique mechan-
ical and electronic properties [1]. From the pioneering
works [2–4], the electronic properties of graphite have at-
tracted interest because of unconventional physical prop-
erties of a graphite layer. The development in the fab-
rication of the single layers of graphite (graphene) [5]
caused a striking level of interest in the investigation of
the carbon compositions. In addition to the closed car-
bon molecules [6], systems with boundaries also show in-
teresting features. The nanographite zig-zag ribbon pos-
sesses localized edge states near the Fermi level. States like
that are absent for ribbons with armchair edges [7]. The
graphite sheet is a zero-gap semiconductor with the den-
sity of states (DOS) vanishing at the Fermi level, the edge
states of the zig-zag ribbons produce a peak in the DOS at
the Fermi level. Both the carbon nanotubes and graphite
layers have the edge states because of their boundary. The
existence of edge states for arbitrarily oriented graphene
ribbons with a large class of edge shapes was investigated
in reference [8] where a new geometrical understanding of
edge state was proposed. The low-energy electronic states
of bilayer graphene at its edges and their topological prop-
erties was investigate in references [9,10]. There was shown
that contribution of edge modes to the linear conduc-
tance may dominate over the bulk modes. The topolog-
ical nature of edge states is also studied in reference [11].
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Fig. 1. Structure of finite-width graphene bilayer.

The presence of the edge state results in the relatively im-
portant contribution to the density of states (DOS) near
the Fermi energy. It was found [12,13] that the HOMO-
LUMO (highest occupied molecular orbital and lowest un-
occupied molecular orbital, respectively) gap is inversely
proportional to the length of the zig-zag carbon nanotube
segment. The zig-zag ribbons have partly flat bands at
the Fermi level [7,14]. In the presented paper, we focus on
the computation of the electronic spectra of the zig-zag
bilayer strip and also on the computation of the DOS of
the edge states near the Fermi level.

2 Theory

Firstly, we describe the model for the zig-zag bilayer strip.
We will study the edge and size effects using the tight-
binding model for this strip shown in Figure 1.
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The π electronic structures are calculated from the
tight-binding Hamiltonian

H =
∑

i

εi|ϕu
i 〉〈ϕu

i | +
∑

i,j

γij

(|ϕu
i 〉〈ϕu

j | + h.c
)

+
∑

i

ε̃i|ϕd
i 〉〈ϕd

i | +
∑
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γ̃ij

(|ϕd
i 〉〈ϕd

j | + h.c
)

+
∑
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Wln

(|ϕd
l 〉〈ϕu

n| + h.c
)
, (1)

εi and ε̃i are the site energies of the upside and down
layer; |ϕu

i 〉, |ϕd
i 〉 are the π orbitals on site i at the upside

and down layer; γij , γ̃ij are the intralayer hopping inte-
grals;Wij are the interlayer hoping integrals which depend
on the distance dij and angle θij between the πi and πj

orbitals.
To describe the parameter which characterizes the zig-

zag bilayer strip, we start from the graphene layer where
we can define the vectors connecting the nearest neighbor
carbon atoms in the form:
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The distance between atoms in the unit cell is d =
|−→τi | = a√

3
. We want to find a solution to the double-layer

graphene strip in the form:

ψ(−→r ) = ψu(−→r ) + ψd(−→r ) (3)

where

ψu(−→r ) =
M+1∑

i=0

(CAiψAi + CBiψBi), (4)

and

ψd(−→r ) =
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(
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i
ψA′

i
+ CB′

i
ψB′

i

)
. (5)

Here M describes the width of the graphene bilayer. We
want to find a solution to the above equation in the form
of the Bloch function

ψα(
−→
k ,−→r ) =

1√
N

∑

n

ei
−→
k ·−→rn |ϕ(−→r −−→r n)〉, (6)

where α denotes A or B atoms. Here
−→
k = (k, 0), −→rn is the

position of a unit cell and N is the number of unit cells;
|ϕ(r)〉 is a π orbital. We denote

εi = Δ =
〈
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〉
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(
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i
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ε̃i = −Δ =
〈
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〉

=
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′
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Now we define the hopping integrals within each layer as
γij = γ̃ij = γ0. We take into account only the interaction
between nearest-neighbors also in the case of interlayer
interaction

〈
ϕ (r −Ai) |H |ϕ

(
r −B

′
i

)〉
= γ1. (9)

We neglect the terms corresponding to the hopping be-
tween atoms B

′
i and atoms Bi with the hopping energy γ4

and the terms γ3, corresponding to the hopping between
atoms A

′
i and atoms Bi−1.

In confining the structure along the width, the edge
states are induced by terminating the width dimension
with zig-zag shaped edges. The presence of edges in the
bilayer strip changes the dimensionality of the system from
a two-dimensional to a one-dimensional system. The elec-
tronic spectrum of the zig-zag bilayer strip can be de-
scribed by the following system of equations:

(E −Δ)CAm = −γ0CBm−1 − gkCBm − γ1CB′
m
, (10)

(E +Δ)CBm = −γ0CAm+1 − gkCAm , (11)

(E +Δ)CA′
m

= −γ0CB′
m−1

− gkCB′
m
, (12)

(E −Δ)CB′
m

= −γ0CA′
m+1

− gkCA′
m
− γ1CAm , (13)

where
gk = 2γ0 cos(ka/2). (14)

Here m = 1, . . . ,M , are site indices. We assume that the
A0 and BM+1 sites are missing. So we have the bound-
ary condition CA0 = CBM+1 = CA′

0
= CB′

M+1
= 0. The

solution is assumed to be [15]:

CAm = Aeipm +Be−ipm, (15)

CBm = Ceipm +De−ipm. (16)

Here A,B,C and D are the coefficients which have to be
determined, and p is the transverse wave number. From
the boundary condition we have

CA0 = A+B = 0, (17)

CBM+1 = Ceip(M+1) +De−ip(M+1) = 0. (18)

And so

CAm = A
(
eipm − e−ipm

)
, (19)

CBm = C
(
eipm − z2e−ipm

)
, (20)

where z = eip(M+1). And similarly,

CA′
m

= A′ (eipm − e−ipm
)
, (21)

CB′
m

= C′ (eipm − z2e−ipm
)
. (22)
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Substituting equations (19)–(22) into equations (10)–(13)
we obtain the energy spectrum

E1,2 =
γ1

2
±

√
γ2
0 + 2γ0gk cos(p) + g2

k +
(γ1

2
+Δ

)2

, (23)
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k +
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2
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,

(24)
and the equation which gives the transverse wave number
p is

sin [pM ] +
gk

γ0
sin [p(M + 1)] = 0. (25)

For M � 1 equation (25) can be written as

sin [pM ] = 0. (26)

The solution is given by

p =
2π
M
l. (27)

So for wide enough bilayer the real solution of equa-
tion (25) can be expressed in the form given by equa-
tion (27). Substituting this solution into equations (23),
(24) we get the energy spectrum of extended states of fi-
nite bilayer where electrons are delocalized in contrary to
the edge states where electrons are localized at the edges
of the bilayer. The spectrum of these extended states are
similar to the spectrum of infinite bilayer with periodic
boundary conditions along the y axis.

3 Edge states of graphene bilayer

Now we are interested in the edge state of the graphene
bilayer. This solution can be obtained in the form p =
π + iη [16]. We get the following equation for η:

sinh [ηM ] − gk

γ0
sinh [η(M + 1)] = 0. (28)

The edge state can exist when the condition

|2 cos (ka/2) | < 1
1 + 1/M

(29)

is fulfilled. The energy spectrum of a state like that is
given as:
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For big enough M the solution of equation (28) can be
expressed in the form [16]:

η = ln

[
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k

]
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where 1/ck = |2 cos
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2

) |. From equation (32) we have
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and so
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Now we assume, similarly as in reference [17], that
γ1 > 2Δ and also it is assumed that the width of the
graphene bilayer is big enough and the following condi-
tion is fulfilled:

γ1 � γ2
0

(
c2k − 1

)2

c2M+4
k

. (36)

The bands are given by

E1(k) = γ1 +Δ+
γ2
0
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(
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, (37)
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0
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γ2
0

γ1 − 2Δ

(
c2k − 1

)2

c2M+4
k

, (39)

E4(k) = −γ1 +Δ− γ2
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)2
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k

. (40)

We are interested in the E2(E3) band which is the valence
(conductance) band of the edge states. The minimum of
the E2 band is

E2, min = −Δ− 2
e2M

γ2
0

γ1 + 2Δ
, (41)

where it was used that ex = (1+x/M)M for M → ∞ and
also equation (29). We found E2, max = −Δ. Similarly for
the E3 band

E3, max = −Δ+
2

e2M

γ2
0

γ1 − 2Δ
, (42)

and E3, min = −Δ. We can see that the width of the band
is inversely proportional to the width of the bilayer.

The density of states can be expressed in the form

N(E) =
L

2π
1

dE
dk

, (43)

where L is the length of the bilayer in the x direction. We
get the density of the state in the region E3, min −E3, max

in the vicinity of the energy E = −Δ in the form

N(E) =
L

2πaM (E +Δ)
2M+1
2M+2 (γ2

0/(γ1 − 2Δ))1/2(M+1)
.

(44)
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Fig. 2. Ñ(E) = (2πa/L)N(E) dependance on E (eV) in the
vicinity of −Δ. The following parameters were used: γ0 = 3 eV,
γ1 = 0.35 eV, Δ = 0.01 eV.

The density of the state in the region E2, min −E2, max in
the vicinity of the energy E = −Δ has the form

N(E) =
L

2πaM (−E −Δ)
2M+1
2M+2 (γ2

0/(γ1 + 2Δ))1/2(M+1)
.

(45)
Both these densities of the states have a singularity at the
energy E = −Δ (Fig. 2). The strength of the singularity
depends also on the width of the bilayer. The width of the
bilayer is characterized by the parameter M . The density
of the state of the E4(k)(E1(k)) band is the same as the
E3(k)(E2(k)) band.

4 Conclusion

In the presented paper the electronic spectra of the
zig-zag bilayer strip were studied analytically. In contrast
to the work [18], the spectral characteristics of the edge
states are shown in more details. We get for big enough M
that the electronic spectra of the extended states of the
graphene bilayer strip are similar to the spectra of the
graphene bilayer with the periodic boundary condition.
Because of the boundary we also get edge states. It was
shown that the width of the edge state band is inversely
proportional to the width of the bilayer strip which is
characterized by the parameter M . So for big enough M
we get partly flat bands of the edge states. The density
of states at the Fermi level has a singularity which
also depends on the width of the bilayer strip. There
is asymmetry in the DOS at the Fermi energy, similarly to

the electron-hole asymmetry in the bilayer graphene [19].
This asymmetry is caused by the parameter Δ which de-
scribes the difference in the site energy of the atoms at
the sites Ai, B

′
i and the atoms at the sites Bi, A

′
i.
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