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Abstract

The electronic spectra of single wall and also double wall carbon nan-
otubes using tight binding approximation are investigated. We focus on
the double wall zig-zag and armchair nanotubes. The influence of nan-
otube curvature on the electronic spectra is also treated. The impact of the
external magnetic field on the spectral characteristic of double wall nan-
otubes is computed. The strong changes of the electronic spectra caused
by the different geometry of the zig-zag and armchair nanotubes have
strong impact on their character of conductivity. We found the big change
of the electronic spectra for the double walled carbon nanotubes due to
the external magnetic field. The difference in the Fermi energy between
outer and inner nanotube for double wall carbon nanotubes was found
which originate from the different hybridization of π orbital. The spectral
characteristics are very different for the double wall zig-zag and armchair
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nanotubes. The electronic states of finite length zig-zag single wall car-
bon nanotubes were treated. The analytical solutions for the electronic
spectra in finite length zig-zag nanotubes were derived. It was shown that
the static magnetic field in such systems can change the number of the
edge states and also split the degeneracy of the edge states. The results of
our calculations are presented analytically as well as numerically.
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1. Introduction

Carbon based materials has attracted scientific interest in recent years from both
an experimental [1] and a theoretical viewpoint [2]. Among them carbon nan-
otubes are very interesting because of their unique mechanical and electronic
properties. A single-wall carbon nanotube can be described as a graphene sheet
rolled into a cylindrical shape so that the structure is one-dimensional with axial
symmetry and in general exhibiting a spiral conformation called chirality. The
electronic states of carbon nanotubes are classified by the chiral vector that as-
signs the diameter and chirality of the nanotubes. The primary symmetry classi-
fication of carbon nanotubes is either achiral or chiral. Achiral carbon nanotubes
are defined by a carbon nanotube whose mirror images have an identical struc-
ture to the original one. There are only two cases of achiral nanotubes, armchair
and zig-zag nanotubes. The names of armchair and zig-zag nanotubes arise
from the shape of the cross-section ring at the edge of the nanotubes. Chiral
nanotubes exhibit spiral symmetry whose mirror image cannot be superposed
onto the original one. There is a variety of geometries in carbon nanotubes
where the diameter, chirality and cap structures are different. The electronic
structure of carbon nanotubes is derived by a simple tight-binding calculation
for the π-electrons of carbon atoms. Of special interest is the prediction that
the calculated electronic structure of a carbon nanotube can be either metallic
or semiconducting, depending on its diameter and chirality. The energy gap for
a semiconductor nanotube is inversely proportional to its diameter. The energy
bands consist of a set of one-dimensional energy dispersion relations which are
cross sections of those for two-dimensional graphite. To obtain explicit expres-
sions for the dispersion relations, the simplest cases to consider are the nan-
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otubes having the highest symmetry, e.g. highly symmetric achiral nanotubes.
The miniaturization of the graphene-based electronic devices needs clarification
of the effect of edges on the electronic structure of nanometer sized carbon based
structures. There are two basic edge shapes which determine the properties of
graphen ribbons. It was shown that ribbons with zig-zag edges posses localized
edge states. In the ribbons with armchair edges such states do not exist [3].
The synthesis of double wall carbon nanotubes (DWCNT) has been reported
recently [4, 5]. Their electronic structure was investigated by the local density
approximation [6, 7, 8, 9, 10] and the tight-binding model [11, 12, 13, 14]. A
similar method can be used to investigate the electronic spectra of the fullerene
molecules [15, 16]. We are interested in the zigzag and armchair DWCNT’s
with a small radius. In these DWCNT’s the difference of the Fermi levels of
individual nanotubes has to be taken into account. We focus on (9, 0)− (18, 0)
zig-zag tubules and (5, 5)−(10, 10) armchair tubules. They are the best matched
double layer tubules. We are also interested about the length effect in the case
of zig-zag single wall carbon nanotubes (SWCNT) which posses the edge states
similar to zig-zag nanoribbons.

2. (9, 0)−(18, 0) zigzag tubules in a static magnetic field

We investigate the zigzag nanotubes in a static magnetic field B⃗ parallel to the
nanotube axis. We assume Hamiltonian for an electron in a potential V (r) and
in the magnetic field in the form

H =
1

2m

(
p⃗− e

c
A⃗

)2

+ V (1)

Potential V (r) reflects the structure of the crystal lattice such as the symmetry
and periodicity properties. Here this potential describes the structure of zig-
zag DWCNT. Vector potential A⃗ in the Landau gauge can be expressed in the
form [17]

A⃗ = (
Φ

L
, 0), (2)

where Φ = Bπr2 is the magnetic flux penetrating the cross section of carbon
nanotube and L = 2πr is a circumference of the nanotube (r-nanotube radius).
Here coordinate x is in the circumferential direction and coordinate y denotes
the direction parallel to nanotube axis. To describe the parameters which char-
acterize the zig-zag tubules, we start from the graphene layer [18] where we
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can define the vectors connecting the nearest neighbor carbon atoms for zig-zag
nanotubes in the form:

−→τ1 = a(0;
1√
3
), (3)

−→τ2 = a(
1

2
;− 1

2
√
3
), (4)

−→τ3 = a(−1

2
;− 1

2
√
3
). (5)

Figure 1. The outer shell part of the unit cell in the case of zigzag nanotubes.

The distance between atoms in the unit cell is d = |−→τi | = a√
3
. Following

the scheme in Figs. 1,2 [19] we want to find the solution to the double-layer
graphene tubules in the form:

ψ(−→r ) = ψout(−→r ) + ψin(−→r ), (6)

where

ψout(−→r ) = CA1ψA1 + CA2ψA2 + CB1ψB1 + CB2ψB2

+CA‘
1
ψA‘

1
+ CA‘

2
ψA‘

2
+ CB‘

1
ψB‘

1
+ CB‘

2
ψB‘

2
, (7)
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Figure 2. The inner shell part of the unit cell in the case of zig-zag nanotubes.

and
ψin(−→r ) = CAψA + CBψB + CA‘ψA‘ + CB‘ψB‘ . (8)

We want to find the solution to the above problem in the form of the Bloch
function

ψα(
−→
k ,−→r ) = (9)

=
1√
M

∑
n

exp

(
i
−→
k (−→rn +

−→
d α) + i

e

ch̄
G(−→rn +

−→
d α)

)
|φ(−→r −−→r n −−→

d α)⟩,

where α denotes A or B atoms. Here
−→
d α are the coordinate of the α atom in

the unit cell and −→rn is a position of a unit cell, M is the number of the unit cell;
|φ(r⃗)⟩ is a π orbital which is generally different for the outer and inner shell.
G(R⃗) is the phase factor associated with the magnetic field and is expressed by
[20]

G(R⃗) =

∫ r⃗

R⃗
A⃗(x⃗).dx⃗ =

∫ 1

0
(r⃗ − R⃗).A⃗(R⃗+ λ(r⃗ − R⃗))dλ (10)

Employing Eq.(2), we get

G(R⃗) =

∫ 1

0
(r⃗ − R⃗).(

Φ

L
, 0)dλ = (x−X)

Φ

L
(11)
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We denote

ϵ = ⟨φout(r⃗− A⃗i)|H|φout(r⃗− A⃗i)⟩ = ⟨φout(r⃗− B⃗i)|H|φout(r⃗− B⃗i)⟩, (12)

ϵ̃ = ⟨φin(r⃗ − A⃗i)|H|φin(r⃗ − A⃗i)⟩ = ⟨φin(r⃗ − B⃗i)|H|φin(r⃗ − B⃗i)⟩. (13)

Now we define the intratube hopping integrals

⟨φout(r⃗ − A⃗1)|H|φout(r⃗ − B⃗1)⟩ = γ0, (14)

⟨φout(r⃗ − A⃗1)|H|φout(r⃗ − B⃗2)⟩ = ⟨φout(r⃗ − A⃗1)|H|φout(r⃗ − B⃗‘
2)⟩ = γ0β,

(15)
and

⟨φin(r⃗ − A⃗)|H|φin(r⃗ − B⃗)⟩ = γ0, (16)

⟨φin(r⃗ − A⃗)|H|φin(r⃗ − B⃗′)⟩ = γ0β̃, (17)

and the intertube hopping integrals

⟨φout(r⃗ − R⃗i)|H|φin(r⃗ − R⃗j)⟩ =Wij , (18)

where γ0 is the hopping integral in the graphene and β(β̃) is a part which de-
pends on the surface curvature and will be computed later. ϵ and ϵ̃ are Fermi
energies of the outer and inner nanotubes; |φout(r⃗ − R⃗i)⟩, |φin(r⃗ − R⃗j)⟩ are π
orbitals on site i at the outer and on site j at the inner tubes; Wij are the inter-
tube hopping integrals which depend on the distance dij and angle θij between
the πi and πj orbitals (see [21, 22, 23] for details).

Wij =
γ0
8

cos(θij)e
(ξ−dij)/δ, (19)

where θij is an angle between the i-th atom of the inner shell and the j-th atom
of the outer shell, dij is the interatom distance and ξ is the intertube distance.
The characteristic length δ = 0.45Å. So in the tight-binding approximation
we get the systems of equations as shown in Appendix A. Firstly, we solve the
equations in Appendix A assuming that Wij is the perturbation. So we can
decouple these 12 equations. We get 8 equations for the outer shell and 4 for
the inner shell. If we express the state of the outer shell (Eq.7) in the form
ψout = (CA1 , CB1 , CA2 , CB2 , CA‘

1
, CB‘

1
, CA‘

2
, CB‘

2
), we get the solutions to

the outer shell in the form
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E1,2(k) = (20)

ϵ±γ0

(
1 + 4β cos

(
mπ

N
+

Φ

NΦ0

)
cos

√
3ka

2
+ 4β2 cos2

(
mπ

N
+

Φ

NΦ0

)) 1
2

,

ψ1,2 =
1√
8

(
1;±e−iφ1 ; 1;±e−iφ1 , 1;±e−iφ1 ; 1;±e−iφ1

)
(21)

E3,4(k) = (22)

ϵ±γ0

(
1− 4β cos

(
mπ

N
+

Φ

NΦ0

)
cos

√
3ka

2
+ 4β2 cos2

(
mπ

N
+

Φ

NΦ0

)) 1
2

,

ψ3,4 =
1√
8

(
1;±e−iφ2 ;−1;∓e−iφ2 , 1;±e−iφ2 ;−1;∓e−iφ2

)
(23)

E5,6(k) = (24)

ϵ±γ0

(
1 + 4β sin

(
mπ

N
+

Φ

NΦ0

)
cos

√
3ka

2
+ 4β2 sin2

(
mπ

N
+

Φ

NΦ0

)) 1
2

,

ψ5,6 =
1√
8

(
1;±e−iφ3 ;−i;∓ie−iφ3 ,−1;∓e−iφ3 ; i;±ie−iφ3

)
(25)

E7,8(k) = (26)

ϵ±γ0

(
1− 4β sin

(
mπ

N
+

Φ

NΦ0

)
cos

√
3ka

2
+ 4β2 sin2

(
mπ

N
+

Φ

NΦ0

)) 1
2

,

ψ7,8 =
1√
8

(
1;±e−iφ4 ; i;±ie−iφ4 ,−1;∓e−iφ4 ;−i;∓ie−iφ4

)
(27)

where, for instance,

eiφ1 =
e
i ka√

3 + 2β cos
(
mπ
N + Φ

NΦ0

)
e
−i ka

2
√

3(
1 + 4β cos

(
mπ
N + Φ

NΦ0

)
cos

√
3ka
2 + 4β2 cos2

(
mπ
N + Φ

NΦ0

)) 1
2

,

(28)
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and Φ0 = ch̄/e is a flux quantum, m = 0, 1, ..N − 1. Similar results for
the electronic spectra in the case of inner nanotubes were found in the form
(ψin = (CA, CB, CA‘ , CB‘))

E9,10(k) = (29)

ϵ̃±γ0

(
1 + 4β̃ cos

(
mπ

N
+

Φ

2NΦ0

)
cos

√
3ka

2
+ 4β̃2 cos2

(
mπ

N
+

Φ

2NΦ0

)) 1
2

,

ψ9,10 =
1√
4

(
1;±e−iφ5 ; 1;±e−iφ5

)
(30)

E11,12(k) = (31)

ϵ̃±γ0

(
1− 4β̃ cos

(
mπ

N
+

Φ

2NΦ0

)
cos

√
3ka

2
+ 4β̃2 cos2

(
mπ

N
+

Φ

2NΦ0

)) 1
2

,

ψ11,12 =
1√
4

(
1;±e−iφ6 ;−1;∓e−iφ6

)
. (32)

Since the radii of the outer and inner nanotubes are different, β ̸= β̃. Here
ky = k and − π√

3a
< k < π√

3a
is the first Brillouin zone. As we have a

curved surface, the local normals on the neighboring sites are no longer perfectly
aligned and this misorientation also changes the transfer integral. The change
can be calculated using the curvature tensor bαβ [24]. The result is

δta
t

= −1

2
bγβb

γ
ατ

β
a τ

α
a , (33)

where the only nonzero term is bxxbxx = 1/R2. So we have

δt1
t

= 0, (34)

δt2
t

= −1

2
bxxb

x
x(τ

x
2 )

2 = − 1

2R2
(τx2 )

2, (35)

δt3
t

= −1

2
bxxb

x
x(τ

x
3 )

2 = − 1

2R2
(τx3 )

2. (36)

With using the unit vectors we have (τx2 )
2=(τx3 )

2=a2

4 . We found the radius of
the inner nanotube from the expression 2πR = Na. The nonzero terms are
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δt2
t = δt3

t = 1
2(

π
N )2. The same holds for the outer nanotube. The parameters β,

β̃ can be expressed in the form

β̃ = 1− δt2
t

= 1− 1

2
(
π

9
)2 (37)

and
β = 1− δt2

t
= 1− 1

2
(
π

18
)2. (38)

Now we need the values ϵ and ϵ̃ which are different because the inner and outer
shell radii are different. Firstly we need to calculate the dependence of the π
orbital on the radius of the curvature. It was done in [25] to the lowest order in
a/R

|π⟩ ≈ a

2
√
6R

|s⟩+ a

4
√
3R

|py⟩+ |pz⟩, (39)

and so we get

ε = ⟨π|H|π⟩ ≈ a2

24R2
⟨s|H|s⟩+ a2

48R2
⟨py|H|py⟩+ ⟨pz|H|pz⟩. (40)

Due to a/2R = π/N ,(N = 9) we have

ϵ̃ =
1

6

π2

N2
⟨s|H|s⟩+ 1

12

π2

N2
⟨py|H|py⟩+ ⟨pz|H|pz⟩, (41)

and

ϵ =
1

24

π2

N2
⟨s|H|s⟩+ 1

48

π2

N2
⟨py|H|py⟩+ ⟨pz|H|pz⟩. (42)

In the case m = 3 when we do not take into account the magnetic field (B = 0)
we find

E3,4(k) = ϵ± γ0(1− 2β cos

√
3ka

2
+ β2)

1
2 , (43)

E11,12(k) = ϵ̃± γ0(1− 2β̃ cos

√
3ka

2
+ β̃2)

1
2 , (44)

where k = 0 is a Fermi point for both the inner and outer nanotubes in the case
β = β̃ = 1. Nanotubes have no gap and have a semiconductor character. If we
impose a curvature correction, we get a gap

Eg = 2γ0(1− β) = γ0

(
π

2N

)2

=
γ0
4

(
a

2R

)2

, (45)
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for the outer nanotube and

Eg = 2γ0(1− β̃) = γ0

(
π

N

)2

=
γ0
4

(
a

R

)2

, (46)

for the inner nanotube. HereR is the radius of the inner tube and 2R is the radius
of the outer tube. So we get the same gap as was computed in [26] where the
rehybridized orbital method was used. For γ0 ≈ 3 eV we get Eg ≈ 0.365 eV
for the inner tube and Eg ≈ 0.091 eV for the outer tube. Now if the static
magnetic field is imposed we get

Eg = 2γ0|1− 2β cos (π/3 + Φ/NΦ0) | (47)

for the outer nanotube and

Eg = 2γ0|1− 2β̃ cos (π/3 + Φ/2NΦ0) | (48)

for the inner nanotube. We can see that the magnetic field is changing the energy
gap between valence and conductance band and the change is different for the
inner and the outer tube.

Now we want to estimate the difference between ”Fermi levels” of the inner
and the outer shell. We have [27]

⟨s|H|s⟩ ≈ −12eV, (49)

⟨py|H|py⟩ ≈ −4eV, (50)

and the difference is

ϵ−ϵ̃ = 1

6

((
π

2N

)2

−
(
π

N

)2
)
⟨s|H|s⟩+ 1

12

((
π

2N

)2

−
(
π

N

)2
)
⟨py|H|py⟩.

(51)
From the expression above we finally get the value for the energy gap

ϵ− ϵ̃ ≈ 0.21eV. (52)

Now we use the eigenstates ψi to find the solution when the interaction between
shells is imposed. We assume the symmetric geometry of zig-zag DWCNT.
It means that the atoms A,A1 and B,B1 are directly one above another in the
neighboring shells [13]. We take into account only the interactions

WA,A1 =WB,B1 =
γ0
8
. (53)
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We look for solution in the form

Ψ =
12∑
i=1

ζiψi. (54)

We have secular equations

12∑
j=1

⟨ψi|H|ψj⟩ζj = Ẽζi, (55)

where
⟨ψi|H|ψj⟩ = δijEi, (56)

for diagonal matrix elements i, j = 1, ...8 and i, j = 9, ...12, and the interac-
tion between shells (non diagonal matrix elements) is described by the terms
⟨ψi|H|ψj⟩ for i = 1, ...8 ; j = 9, ...12 and vice versa. We have, for instance,

⟨ψ9|H|ψ1⟩ =
1

4
√
2

γ0
8

(
1 + ei(φ5−φ1)

)
, (57)

⟨ψ9|H|ψ2⟩ =
1

4
√
2

γ0
8

(
1− ei(φ5−φ1)

)
. (58)

We get the eigenvalues Ẽi with eigenvectors which can be expressed in the form

Ψi =
12∑
j=1

ζi,jψj . (59)

The eigenvalues of Eq.(56) for some values of
√
3ka/2 near the point k = 0 are

depicted in Fig.(3) whereEc andEv are conductive and valence band. When the
static magnetic field is applying, the energy gap between valence and conductive
band is significantly changing(see Figs.(4,5)). So the magnetic field influence
the opto-electronic characteristics of this type of DWCNT’s.

3. (5, 5)− (10, 10) armchair tubules

We can make similar calculations of electronic spectra also in the case of arm-
chair double-layer nanotubes. The system is characterized by the same type
of Hamiltonian as in the previous section. Now the potential V (r) reflects the
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Figure 3. Spectra of zig-zag DWCNT with the intertube interactions.
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Figure 4. Spectra of zig-zag DWCNT with the intertube interactions when the
static magnetic field Φ = 0.5Φ0 is applied.

structure of armchair DWCNT. We can define the vectors connecting the nearest
neighbor carbon atoms for armchair nanotubes in the form:

−→τ1 = a(
1√
3
; 0), (60)

−→τ2 = a(− 1

2
√
3
;−1

2
), (61)

−→τ3 = a(− 1

2
√
3
;
1

2
). (62)

The distance between atoms in the unit cell is also |−→τi | = a√
3
. Now we define

the intratube hopping integrals

⟨φout(r −A1)|H|φout(r −B1)⟩ = γ0α, (63)
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Figure 5. Spectra of zig-zag DWCNT with the intertube interactions when the
static magnetic field Φ = 1Φ0 is applied.

Figure 6. The outer shell part of the unit cell in the case of armchair nanotubes.

⟨φout(r −A1)|H|φout(r −B‘
2)⟩ = γ0β, (64)

and
⟨φin(r −A)|H|φin(r −B)⟩ = γ0α̃, (65)

⟨φin(r −A)|H|φin(r −B
′
)⟩ = γ0β̃, (66)

where γ0 is the hopping integral in the graphene and α(α̃), β(β̃) are parameters
which describe the dependence of hopping integrals on the surface curvature.
From Figures 6 and 7 we get the system of equations as described in Appendix
B. At the beginning we neglect the intertube interactions in the equations de-
scribed in Appendix B. We get a set of equations which can be decoupled. One
set for the outer shell and the other for the inner shell. The electronic spectra
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Figure 7. The inner shell part of the unit cell in the case of armchair nanotubes.

and eigenstate for the outer shell can be expressed in the form

E1,2(k) = ϵ± γ0

(
α2 + 4αβ cos

(
mπ

5
+

Φ

5Φ0

)
cos

ka

2
+ 4β2 cos2

ka

2

) 1
2

,

(67)

ψ1,2 =
1√
8

(
1;±e−iφ1 ; 1;±e−iφ1 , 1;±e−iφ1 ; 1;±e−iφ1

)
(68)

E3,4(k) = ϵ± γ0

(
α2 − 4αβ cos

(
mπ

5
+

Φ

5Φ0

)
cos

ka

2
+ 4β2 cos2

ka

2

) 1
2

,

(69)

ψ3,4 =
1√
8

(
1;±e−iφ2 ;−1;∓e−iφ2 , 1;±e−iφ2 ;−1;∓e−iφ2

)
(70)

E5,6(k) = ϵ± γ0

(
α2 + 4αβ sin

(
mπ

5
+

Φ

5Φ0

)
cos

ka

2
+ 4β2 cos2

ka

2

) 1
2

,

(71)

ψ5,6 =
1√
8

(
1;±e−iφ3 ;−i;∓ie−iφ3 ,−1;∓e−iφ3 ; i;±ie−iφ3

)
(72)

E7,8(k) = ϵ± γ0

(
α2 − 4αβ sin

(
mπ

5
+

Φ

5Φ0

)
cos

ka

2
+ 4β2 cos2

ka

2

) 1
2

,

(73)

ψ7,8 =
1√
8

(
1;±e−iφ4 ; i;±ie−iφ4 ,−1;∓e−iφ4 ;−i;∓ie−iφ4

)
. (74)
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The electronic spectra for the inner nanotubes was found in the form

E9,10(k) = ϵ̃± γ0

(
α̃2 + 4α̃β̃ cos

(
mπ

5
+

Φ

10Φ0

)
cos

ka

2
+ 4β̃2 cos2

ka

2

) 1
2

,

(75)

ψ9,10 =
1√
4

(
1;±e−iφ5 ; 1;±e−iφ5

)
(76)

E11,12(k) = ϵ̃±γ0
(
α̃2 − 4α̃β̃ cos

(
mπ

5
+

Φ

10Φ0

)
cos

ka

2
+ 4β̃2 cos2

ka

2

) 1
2

,

(77)

ψ11,12 =
1√
4

(
1;±e−iφ6 ;−1;∓e−iφ6

)
. (78)

From the boundary condition kxL = 2πm, L = N3d where d = a/
√
3 is the

nearest neighbor bond length we get kx = 2πm
3dN = 2πm√

3Na
, m = 0, 1, ...N − 1;

3d is the length of the unit cell in the x-direction. Here ky = k and −π
a <

k < π
a is the first Brillouin zone. In this case, we assume that N = 5 for the

above spectrum. The value for the parameter α̃ and β̃ can be found from the
expressions α̃=1 − 1

2bxxb
x
x(τ

x
1 )

2=1- 1
2R2

a2

3 and β̃=1 − 1
2bxxb

x
x(τ

x
2 )

2=1- 1
2R2

a2

12 .
The radius for the inner, outer nanotube can be found from the expressions
2πR = N3d =

√
3Na, 2πR = N6d, respectively. Now we make a correction

of transfer integral caused by the curvature of nanotubes

β̃ = 1− 1

2
(
π

3N
)2; β = 1− 1

8
(
π

3N
)2, (79)

α̃ = 1− 2(
π

3N
)2; α = 1− 1

2
(
π

3N
)2. (80)

The π orbital can be expressed in the form

|π⟩ ≈
√
2d

4R
|s⟩+ d

4R
|px⟩+ |pz⟩. (81)

Due to 3dN = 2πR we get

|π⟩ ≈
√
2π

6N
|s⟩+ π

6N
|px⟩+ |pz⟩, (82)

and so

ε = ⟨π|H|π⟩ ≈ 1

18

(
π

N

)2

⟨s|H|s⟩+ 1

36

(
π

N

)2

⟨px|H|px⟩+ ⟨pz|H|pz⟩.
(83)
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From this expression we derive, if N = 5,

ϵ̃ =
1

18

(
π

N

)2

⟨s|H|s⟩+ 1

36

(
π

N

)2

⟨px|H|px⟩+ ⟨pz|H|pz⟩, (84)

and

ϵ =
1

18

(
π

2N

)2

⟨s|H|s⟩+ 1

36

(
π

2N

)2

⟨px|H|px⟩+ ⟨pz|H|pz⟩. (85)

The energy levels E3,4 and E11,12 define the Fermi point for m = 0 in the case
without magnetic field. We have

E3,4(k) = ϵ± γ0|α− 2β cos
ka

2
|, (86)

E11,12(k) = ϵ̃± γ0|α̃− 2β̃ cos
ka

2
|, (87)

and the Fermi point is defined by the equations

α̃− 2β̃ cos
ka

2
= 0, (88)

for the inner shell, and

α− 2β cos
ka

2
= 0, (89)

for the outer shell, respectively. By virtue of β ≥ α(β̃ ≥ α̃) the curvature
does not open a gap in the case of single nanotubes. When we impose the static
magnetic field, the above equation get a form

E3,4(k) = ϵ± γ0|α− 2β cos(Φ/5Φ0) cos
ka

2
|, (90)

E11,12(k) = ϵ̃± γ0|α̃− 2β̃ cos(Φ/10Φ0) cos
ka

2
| (91)

and the Fermi point is defined by the equations

α̃− 2β̃ cos(Φ/10Φ0) cos
ka

2
= 0, (92)

for the inner shell and

α− 2β cos(Φ/5Φ0) cos
ka

2
= 0, (93)
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for the outer shell. From Eq.(92) we get the following formula for the Fermi
wave vector kF of the armchair SWCNT:

kF =
2

a
arccos

1− 1
2

(
d
R

)2
2 cos

(
3dΦ

4πRΦ0

)(
1− 1

8

(
d
R

)2) . (94)

For a large radius the Fermi wave vector is located at kF (R → ∞) = 2π/3a.
As a diameter decreases, the position of kF shifts from kF (R → ∞) towards
the bigger wave vectors. Strong enough magnetic field can open the gap be-
tween valence and conductive bands. Using the values ⟨s|H|s⟩ ≈ −12eV and
⟨px|H|px⟩ ≈ −4eV in the following expression:

ϵ−ϵ̃ = 1

18

((
π

2N

)2

−
(
π

N

)2
)
⟨s|H|s⟩+ 1

36

((
π

2N

)2

−
(
π

N

)2
)
⟨px|H|px⟩,

(95)
we find

ϵ− ϵ̃ ≈ 0.23 eV. (96)

Now we use the eigenstates ψi to find the solution when the interaction between
shells is imposed. Similarly, as in the previous case, we look for the solution in
the form

Ψ =
12∑
i=1

ζiψi. (97)

We have secular equations

12∑
j=1

⟨ψi|H|ψj⟩ζj = Ẽζi, (98)

We take into account all intertube interactions between atoms which have a
distance dij less than 4.2Å similarly as in [22, 23]. We use the value ξ = 3.466
for the intertube distance in the numerical computations. We compute spectra
for symmetric geometry where the atoms B‘

2(A2) occupy a position directly
above A‘(B‘),respectively. We get the eigenvalues Ẽi with the eigenvectors
which can be expressed in the form

Ψi =
12∑
j=1

ζi,jψj . (99)
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The spectra for some values of ka/2 near the Fermi points of single nanotubes
are depicted in Figure 8. The point ka/2 = 1.086 is the Fermi point of the iso-
lated inner nanotube. The point ka/2 = 1.057 is the Fermi point of the isolated
outer nanotube. Approximately, from point ka/2 = 1.054 to point 1.095 the
Ẽ11 levels are below the Ẽ4 level. So in the armchair DWCNT the state Ψ11 is
occupied at these points. The state Ψ11 is some mixture of the states ψi. For
example, for the point ka/2 = 1.083 we have that the main part of Ψ11 is ψ11

which is π∗ state of the inner tube. We get that electrons which are localized in
the outer nanotubes in the case without interaction between shells (or in the case
of single nanotubes) are now localized in the inner nanotubes in the state which
is unoccupied in the single nanotubes. When the static magnetic field is applied
the character of conductivity is changing from semimetal to semiconductor (see
Figs.9,10).

1,02 1,04 1,06 1,08 1,10 1,12 1,14 1,16
-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

Ev
Ec

E

ka/2

Figure 8. Spectra of armchair DWCNT with the intertube interactions without
static magnetic field.

4. Edge States of Finite Length Zig-Zag Single Wall
Carbon Nanotubes

Finite length open ended zig-zag carbon nanotubes can be assumed to be rolled
from finite length zig-zag graphene nanoribbons [28]. In confining the structure
along the length, the edge states are induced by terminating the length dimen-
sion with zig-zag shaped edges. The presence of edges in nanotube change the
dimensionality of the system from one-dimensional to zero-dimensional system
as is for instance the fullerene molecule [29]. We will study the edge and size
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Figure 9. Spectra of armchair DWCNT with the intertube interactions when the
static magnetic field Φ = 0.5Φ0 is imposed.

Figure 10. Spectra of armchair DWCNT with the intertube interactions when
the static magnetic field Φ = 1Φ0 is imposed.

effects using the tight-binding model for carbon nanotube shown in Fig. 11.
The electronic spectrum of finite zig-zag single wall carbon nanotubes can be
described by the following system of equations

ϵCAm +HAmBm+1CBm+1 +HAmBmCBm = ECAm , (100)

ϵCBm +HBmAm−1CAm−1 +HBmAmCAm = ECBm , (101)

where

HAmBm+1 = γ0 exp

[
i

(
kx(−→τ1)x +

Φ(τ⃗1)x
LΦ0

)]
= γ0 (102)

HAmBm = (103)

γ0β

(
exp

[
i

(
kx(−→τ2)x +

Φ(τ⃗2)x
LΦ0

)]
+ exp

[
i

(
kx(−→τ3)x +

Φ(τ⃗3)x
LΦ0

)])
=
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Figure 11. Structure of finite-length open ended single wall carbon nanotube
with zig-zag edges. There is depicted a unit cell for width M = 4 which creates
a nanotube.

= 2γ0β cos

(
nπ

N
+

Φ

2NΦ0

)
,

where n = 0, ....N − 1, β = 1 − 1
2

(
π
N

)2 for (N, 0) zig-zag nanotube(see
Eq.(37))and site index m = 1, .....,M +1, where M describes the length of the
nanotube. So we have

ẼCAm + γ0CBm+1 + gnCBm = 0, (104)

ẼCBm + γ0CAm−1 + gnCAm = 0, (105)

where Ẽ = ϵ−E and gn = 2γ0β cos
(
nπ
N + Φ

2NΦ0

)
. We assume that theA0 and

BM+1 sites are missing. So we have the boundary conditionCA0 = CBM+1
= 0

[3]. The solution is assumed to be (case I)

CAm = Aeipm +Be−ipm (106)

CBm = Ceipm +De−ipm (107)

Here A,B,C and D are coefficients which have to be determined and p is the
wavenumber in the direction of nanotube axis. From the boundary condition,
we have

CA0 = A+B = 0 (108)
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CBM+1
= Ceip(M+1) +De−ip(M+1) = 0 (109)

And so
CAm = A(eipm − e−ipm) (110)

CBm = C(eipm − z2e−ipm) (111)

where z = eip(M+1). Substituting the Eqs.(110,111) into Eqs.(104,105) we
obtain

Ẽ
(
eipm − z2e−ipm

)
C (112)

+
[
γ0
(
eip(m−1) − e−ip(m−1)

)
+ gn

(
eipm − e−ipm

)]
A = 0[

γ0
(
eip(m+1) − z2e−ip(m+1)

)
+ gn

(
eipm − z2e−ipm

)]
C+ (113)

Ẽ
(
eipm − e−ipm

)
A = 0

This homogenous system of equations has a solution only if the following con-
dition is fulfilled[

Ẽ2 −
(
γ0e

−ip + gn
) (
γ0e

ip + gn
)]
e2ipm+

z2
[
Ẽ2 −

(
γ0e

−ip + gn
) (
γ0e

ip + gn
)]
e−2ipm− (114)

−Ẽ2(z2 + 1) +
(
gn + γ0e

ip
)2

+ z2
(
gn + γ0e

−ip
)2

= 0

And so the coefficient of e±2pm terms and the constant term have to be equal to
zero. Thus we obtain the energy spectrum

E = ϵ+ sγ0

√
1 + 4β cos

(
nπ

N
+

Φ

2NΦ0

)
cos(p) + 4β2 cos2

(
nπ

N
+

Φ

2NΦ0

)
(115)

Here, s = ±1, s = +1 (s = −1) corresponds to the conductance (valence)
energy band. The condition for longitudinal wavenumber p is

Ẽ2(z2 + 1) =
(
gn + γ0e

ip
)2

+ z2
(
gn + γ0e

−ip
)2

(116)

Substituting Eq.(115) into Eq.(116) we obtain the equation which gives the lon-
gitudinal wavenumber p.

sin [pM ] + 2β cos

(
nπ

N
+

Φ

2NΦ0

)
sin [p(M + 1)] = 0 (117)
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The longitudinal wavenumber depends on the transverse wavenumber n, on the
length M of the nanotube, on the static magnetic field B and also on the param-
eter β which depends on the nanotube curvature. For N ≫ 1 Eq.(117) can be
written as

sin [pM ] = 0 (118)

The solution is given by

p =
2π

M
l (119)

Substituting this solution into Eq.(115) we get the energy spectrum for infinite
zig-zag nanotube with the periodic boundary condition along the y-axis. There
is another possibility to solve Eqs.(104,105). We assume the solution in the
form (case II)

CAm = (−1)m
(
Aeipm +Be−ipm

)
(120)

CBm = (−1)m
(
Ceipm +De−ipm

)
(121)

This possibility gives

E = ϵ+ sγ0

√
1− 4β cos

(
nπ

N
+

Φ

2NΦ0

)
cos(p) + 4β2 cos2

(
nπ

N
+

Φ

2NΦ0

)
(122)

and the equation for longitudinal wavenumber

sin [pM ]− 2β cos

(
nπ

N
+

Φ

2NΦ0

)
sin [p(M + 1)] = 0 (123)

Now we are interested about the edge state of zig-zag nanotube. This solution
can be obtained in the form p = π + iη [30]. We get the following equation for
η:

sinh [ηM ]∓ 2β cos

(
nπ

N
+

Φ

2NΦ0

)
sinh [η(M + 1)] = 0 (124)

The −(+) sign is for the case I (II), respectively. The edge state can exist when
the condition

|2β cos
(
nπ

N
+

Φ

2NΦ0

)
| < 1

1 + 1/M
(125)

is fulfilled. The energy spectrum of such state is given as

En,s(Φ) = (126)
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ϵ+ sγ0

√
1∓ 4β cos

(
nπ

N
+

Φ

2NΦ0

)
cosh(η) + 4β2 cos2

(
nπ

N
+

Φ

2NΦ0

)
For big enough M the solution of Eq.(124) can be expressed in the form [30]

η = ln

[
cn +

1− c2n
c2M+1
n

]
(127)

where 1/cn = |2β cos
(
nπ
N + Φ

2NΦ0

)
|. From Eq.(127) we have

cosh η ≈ 1 + c2n
2cn

−
(
c2n − 1

)2
2c2M+3

n

(128)

and so

En,s(Φ) ≈ ϵ+ sγ0
c2n − 1

cM+2
n

(129)

for the solutions near the Fermi energy ϵ. We can see that for long enough
zig-zag nanotube the band gap becomes small. It means that we get energy
level which is located in forbidden energy zone of the infinite zig-zag nanotube
with periodic boundary conditions. So we have the HOMO (highest occupied
molecular orbital)-LUMO (lowest unoccupied molecular orbital) gap for finite
zig-zag nanotube in the form

Eg = 2γ0
c2max − 1

cM+2
max

(130)

where cmax is maximal entity from cn. The HOMO-LUMO gap is inversely
proportional to the length of the zig-zag carbon nanotube. The similar result
was found in the work [31]. Now for the sake of concreteness we focus on the
finite (9, 0) zig-zag nanotubes. In this case we get edge state for the value n = 4
in the case I and for the value n = 6 in the case II. Assuming ϵ = 0 we have
E4,5,±(0) = ±0.04meV for M = 10. The static magnetic field split the energy
levels. We have E4,±(0.5Φ0) = ±0.15meV and E5,±(0.5Φ0) = ±0.007meV .
The presence of static magnetic field can change the number of edge states.
Imposing the magnetic field Φ = 1Φ0 we create a new edge state in the case I
for n = 3 with energy E3,±(1Φ0) = ±161meV for M = 10 and ±31meV for
M = 20.
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5. Conclusion

In the present work we investigate the influence of static magnetic field and also
the presence of boundaries on the electronic properties of carbon nanotubes.
We treat the single wall and also the double wall nanotubes. The Fermi levels
of the individual nanotubes which create the double wall nanotubes are differ-
ent. This difference is very important in the double wall nanotubes with small
diameters. The interplay between energy difference of the Fermi levels of the
individual nanotubes and the energy gap between valence and conducting band
of individual nanotubes have a strong effect on the conductivity of double wall
nanotubes [32, 33, 34]. We take into account the influence of a curvature of the
surface on the matrix elements of the secular equation. The curvature of the
surface opens the gap in the case of metallic zig-zag SWCNT’s but does not
open the gap in the case of metallic armchair SWCNT’s. The Fermi level of the
outer shell is about 0.21eV higher than the Fermi level of the inner shell in the
case of (9, 0) − (18, 0) zig-zag DWCNT’s. In the case of zig-zag DWCNT’s,
the curvature does not shift the minimum of the conductance band and maxi-
mum of the valence band of the individual nanotubes. The result is that these
DWCNT’s are the semiconductor. The Fermi level of the outer shell is about
0.23eV higher than the Fermi level of the inner shell for (5, 5)− (10, 10) arm-
chair DWCNT’s. The result is that in the armchair DWCNT’s part of electrons
from the valence band of the outer shell comes to the conductance band of the
inner shell. The armchair DWCNT’s have a semimetallic character. The static
magnetic field changes the energy gap in the case of zig-zag carbon nanotubes
but does not change the character of the conductivity. The zig-zag DWCNT re-
mains the semiconductor also when the static magnetic field is applied. On the
other hand in the case of the armchair nanotube the static magnetic field changes
the character of the conductivity. The (5, 5) − (10, 10) armchair DWCNT is
semiconductor when enough strong static magnetic field is applied. The exis-
tence of the edge state in the case of finite length zig-zag nanotube results in
the HOMO-LUMO gap which is inversely proportional to the length of the zig-
zag nanotube. This gap can be smaller in comparison to the gap open by the
curvature in the case of metallic single wall zig-zag nanotubes when the peri-
odic boundary conditions are assumed. And so edge states change the electronic
properties of zig-zag nanotubes. By imposing the static magnetic field we can
change the number of the edge states. The magnetic field also split the energy
degeneracy of the edge states.
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6. Appendix A

In a tight-binding approximation for the case of zig-zag tubules we get the fol-
lowing systems of equations: for the outer shell

ϵCA1+HA1B2CB2+HA1B‘
2
CB‘

2
+HA1B1CB1+

∑
λ

WA1,λCλ = ECA1 , (131)

where HA1B2 = γ0β exp
[
i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
; HA1B‘

2
=

γ0β exp
[
i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)]
; HA1B1 = γ0 exp

[
i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
.

ϵCB1+HB1A1CA1+HB1A‘
2
CA‘

2
+HB1A2CA2+

∑
λ

WB1,λCλ = ECB1 , (132)

where HB1A1 = γ0 exp
[
−i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
; HB1A‘

2
=

γ0β exp
[
−i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
; HB1A2 = γ0β exp

[
−i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)]
.

ϵCA2+HA2B1CB1+HA2B2CB2+HA2B‘
1
CB‘

1
+
∑
λ

WA2,λCλ = ECA2 , (133)

where HA2B2 = γ0 exp
[
i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
; HA2B1 =

γ0β exp
[
i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)]
; HA2B‘

1
= γ0β exp

[
i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
.

ϵCB2+HB2A1CA1+HB2A‘
1
CA‘

1
+HB2A2CA2+

∑
λ

WB2,λCλ = ECB2 , (134)

where HB2A1 = γ0β exp
(
−i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

))
; HB2A‘

1
=

γ0β exp
[
−i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)]
; HB2A2 = γ0 exp

[
−i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
.

ϵCB‘
1
+HB‘

1A2
CA2+HB‘

1A
‘
2
CA‘

2
+HB‘

1A
‘
1
CA‘

1
+
∑
λ

W
B

′
1,λ
Cλ = ECB‘

1
, (135)

where HB‘
1A2

= γ0β exp
[
−i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
; HB‘

1A
‘
2

=

γ0β exp
[
−i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)]
; HB‘

1A
‘
1
= γ0 exp

[
−i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
.
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ϵCA‘
2
+HA‘

2B
‘
1
CB‘

1
+HA‘

2B
‘
2
CB‘

2
+HA‘

2B1
CB1+

∑
λ

W
A

′
2,λ
Cλ = ECA‘

2
, (136)

where HA‘
2B

‘
1

= γ0β exp
[
i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)]
; HA‘

2B
‘
2

=

γ0 exp
[
i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
; HA‘

2B1
= γ0β exp

[
i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
.

ϵCB‘
2
+HB‘

2A
‘
2
CA‘

2
+HB‘

2A
‘
1
CA‘

1
+HB‘

2A1
CA1+

∑
λ

WB‘
2,λ
Cλ = ECB‘

2
, (137)

where HB‘
2A

‘
2

= γ0 exp
[
−i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
; HB‘

2A
‘
1

=

γ0β exp
[
−i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
; HB‘

2A1
= γ0β exp

[
−i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)]
.

ϵCA‘
1
+HA‘

1B
‘
1
CB‘

1
+HA‘

1B2
CB2+HA‘

1B
‘
2
CB‘

2
+
∑
λ

WA‘
1,λ
Cλ = ECA‘

1
, (138)

where HA‘
1B

‘
1

= γ0 exp
[
i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
; HA‘

1B2
=

γ0β exp
[
i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)]
; HA‘

1B
‘
2

= γ0β exp
[
i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
.

Here λ denotes the atoms of the unitary cell localized on the inner shell. Now
we write down the equations for the inner shell in the case of zigzag nanotubes.

ϵ̃CA +HABCB +HAB‘CB‘ +
∑
λ

WA,λCλ = ECA, (139)

where HAB = γ0 exp
[
i
(−→
k .−→τ1 + Φ(τ⃗1)x

LΦ0

)]
;

HAB‘ = γ0β̃
(
exp

[
i
(−→
k .−→τ2 + Φ(τ⃗2)x

LΦ0

)]
+ exp

[
i
(−→
k .−→τ3 + Φ(τ⃗3)x

LΦ0

)])
.

ϵ̃CB +HBACA +HBA‘CA‘ +
∑
λ

WB,λCλ = ECB, (140)

where HBA = γ0 exp
[
−i
(−→
k .−→τ1 + Φ(τ⃗1)x

LΦ0

)]
;

HBA‘ = γ0β̃
(
exp

[
−i
(−→
k .−→τ2 + Φ(τ⃗2)x

LΦ0

)]
+ exp

[
−i
(−→
k .−→τ3 + Φ(τ⃗3)x

LΦ0

)])
.

ϵ̃CA‘ +HA‘BCB +HA‘B‘CB‘ +
∑
λ

WA‘,λCλ = ECA‘ , (141)
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where HA‘B‘ = γ0 exp
[
i
(−→
k .−→τ1 + Φ(τ⃗1)x

LΦ0

)]
;

HA‘B = γ0β̃
(
exp

[
i
(−→
k .−→τ2 + Φ(τ⃗2)x

LΦ0

)]
+ exp

[
i
(−→
k .−→τ3 + Φ(τ⃗3)x

LΦ0

)])
.

ϵ̃CB‘ +HB‘ACA +HB‘A‘CA‘ +
∑
λ

WB‘,λCλ = ECB‘ , (142)

where HB‘A‘ = γ0 exp
[
−i
(−→
k .−→τ1 + Φ(τ⃗1)x

LΦ0

)]
;

HB‘A = γ0β̃
(
exp

[
−i
(−→
k .−→τ2 + Φ(τ⃗2)x

LΦ0

)]
+ exp

[
−i
(−→
k .−→τ3 + Φ(τ⃗3)x

LΦ0

)])
and

λ denotes the atoms of the unitary cell localized on the outer shell.

7. Appendix B

In a tight-binding approximation for the case of armchair tubules we get the
following systems of equations: for the outer shell

ϵCA1 +HA1B1CB1 +HA1B‘
2
CB‘

2
+
∑
λ

WA1,λCλ = ECA1 , (143)

where HA1B1 = γ0α exp
[
i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
;

HA1B‘
2
= γ0β

(
exp

[
i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
+ exp

[
i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)])
.

ϵCB1 +HB1A1CA1 +HB1A2CA2 +
∑
λ

WB1,λCλ = ECB1 , (144)

where HB1A1 = γ0α exp
[
−i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
;

HB1A2 = γ0β
(
exp

[
−i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
+ exp

[
−i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)])
.

ϵCA2 +HA2B2CB2 +HA2B1CB1 +
∑
λ

WA2,λCλ = ECA2 , (145)

where HA2B2 = γ0α exp
[
i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
;

HA2B1 = γ0β
(
exp

[
i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
+ exp

[
i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)])
.

ϵCB2 +HB2A‘
1
CA‘

1
+HB2A2CA2 +

∑
λ

WB2,λCλ = ECB2 , (146)
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where HB2A2 = γ0α exp
[
−i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
;

HB2A‘
1
= γ0β

(
exp

[
−i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
+ exp

[
−i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)])
.

ϵCA‘
1
+HA‘

1B2
CB2 +HA‘

1B
‘
1
CB‘

1
+
∑
λ

WA‘
1,λ
Cλ = ECA‘

1
, (147)

where HA‘
1B

‘
1
= γ0α exp

[
i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
;

HA‘
1B2

= γ0β
(
exp

[
i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
+ exp

[
i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)])
.

ϵCB‘
1
+HB‘

1A
‘
1
CA‘

1
+HB‘

1A
‘
2
CA‘

2
+
∑
λ

WB‘
1,λ
Cλ = ECB‘

1
, (148)

where HB‘
1A

‘
1
= γ0α exp

[
−i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
;

HB‘
1A

‘
2
= γ0β

(
exp

[
−i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
+ exp

[
−i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)])
.

ϵCA‘
2
+HA‘

2B
‘
1
CB‘

1
+HA‘

2B
‘
2
CB‘

2
+
∑
λ

WB‘
2,λ
Cλ = ECB‘

2
, (149)

where HA‘
2B

‘
2
= γ0α exp

[
i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
;

HA‘
2B

‘
1
= γ0β

(
exp

[
i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
+ exp

[
i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)])
.

ϵCB‘
2
+HB‘

2A1
CA1 +HB‘

2A
‘
2
CA‘

2
+
∑
λ

WB‘
2,λ
Cλ = ECB‘

2
, (150)

where HB‘
2A

‘
2
= γ0α exp

[
−i
(−→
k .−→τ1 + 2Φ(τ⃗1)x

LΦ0

)]
;

HB‘
2A1

= γ0β
(
exp

[
−i
(−→
k .−→τ2 + 2Φ(τ⃗2)x

LΦ0

)]
+ exp

[
−i
(−→
k .−→τ3 + 2Φ(τ⃗3)x

LΦ0

)])
.

Here λ denotes the atoms of the unitary cell localized on the inner shell. The
equations for the inner shell can be expressed in the form:

ϵ̃CA +HAB‘CB‘ +HABCB +
∑
λ

WA,λCλ = ECA, (151)

where HAB = γ0α̃ exp
[
i
(−→
k .−→τ1 + Φ(τ⃗1)x

LΦ0

)]
;

HAB‘ = γ0β̃
(
exp

[
i
(−→
k .−→τ2 + Φ(τ⃗2)x

LΦ0

)]
+ exp

[
i
(−→
k .−→τ3 + Φ(τ⃗3)x

LΦ0

)])
.

ϵ̃CB +HBACA +HBA‘CA‘ +
∑
λ

WB,λCλ = ECB, (152)
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where HBA = γ0α̃ exp
[
−i
(−→
k .−→τ1 + Φ(τ⃗1)x

LΦ0

)]
;

HBA‘ = γ0β̃
(
exp

[
−i
(−→
k .−→τ2 + Φ(τ⃗2)x

LΦ0

)]
+ exp

[
−i
(−→
k .−→τ3 + Φ(τ⃗3)x

LΦ0

)])
.

ϵ̃CA‘ +HA‘BCB +HA‘B‘CB‘ +
∑
λ

WA‘,λCλ = ECA‘ , (153)

where HA‘B‘ = γ0α̃ exp
[
i
(−→
k .−→τ1 + Φ(τ⃗1)x

LΦ0

)]
;

HA‘B = γ0β̃
(
exp

[
i
(−→
k .−→τ2 + Φ(τ⃗2)x

LΦ0

)]
+ exp

[
i
(−→
k .−→τ3 + Φ(τ⃗3)x

LΦ0

)])
.

ϵ̃CB‘ +HB‘ACA +HB‘A‘CA‘ +
∑
λ

WB‘,λCλ = ECB‘ , (154)

where HB‘A‘ = γ0α̃ exp
[
−i
(−→
k .−→τ1 + Φ(τ⃗1)x

LΦ0

)]
;

HB‘A = γ0β̃
(
exp

[
−i
(−→
k .−→τ2 + Φ(τ⃗2)x

LΦ0

)]
+ exp

[
−i
(−→
k .−→τ3 + Φ(τ⃗3)x

LΦ0

)])
.

Here λ denotes the atoms of the unitary cell localized on the outer shell.
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