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The graphitic wormhole is in the focus of physical interest because of its interesting properties which can
remotely resemble the concept of the space wormhole. Apart from the usual applications of the carbon nano-
structures like the electronic computer devices, it seems to be a good material for the accumulation of the electric
charge and different kinds of molecules, e.g., the hydrogen molecules, which enables using this material for the
storage of the new kinds of fuel. Here, we present the geometric and electronic structure and calculate the zero
modes of this material and its possibly significant derivate, the perturbed wormhole. Next, the influence of some
additional factors on the electronic structure like the changes of the Fermi velocity close to the wormhole bridge
as well as the spin-orbit interaction will be investigated. On this basis, we predict the massive chiral fermions in
the connecting wormhole nanotube.
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1. INTRODUCTION
During the last years, investigation of nanostructures experi-
ences great development. They are good materials for construct-
ing computer electronic devices, but their unique chemical and
mechanical properties promise a wide application in many mutu-
ally different branches. The hexagonal carbon lattice structure
and its variations are responsible for all of these extraordinary
phenomena.

In the passed years, the basic forms of the nanostructures
were investigated: the fullerene, graphene, nanotubes, nanohorns,
nanocones, nanowires, etc. Now, the steps are implemented for
the preparation of more complicated forms like the wormhole1�2

and for the description of the electronic peculiarities of this type
of structure. Due to the repulsion forces between the carbon
atoms on the different graphene sheets, it seemed to be very dif-
ficult to pursue this problem on a different than the theoretical
basis. However, the progress of the laboratory methods promises
to get good results in this field. The presence of the wormholes
in the synthesized structures could be proven by the detection
of the zero energy modes of the fermions in the places of the
wormhole bridges.

The electronic properties of the nanostructures are among oth-
ers determined by their geometry, which is given by the presence
of the defects.3�4 However, the deformation of the molecules can

∗Author to whom correspondence should be addressed.

also be achieved mechanically or by the thermal influence. In the
case of the former we speak about the so-called “straintronics”—
the origin of the electronic structure comes from the mechanical
strain affecting the molecule. This is exactly a new window to the
world of nanostructures and devices similarly as was “spintron-
ics” a decade ago. Moreover, Klein tunneling and cone transport
in AA-stacked bilayer graphene give raise to the possibility of
cone-tronic devices based on AA-stacked BLG.5

In the case of the wormhole, the geometry can also cause a
shift of the Fermi energy at different distances from the worm-
hole center, which could direct the electron flux to this cen-
ter, and in this way, the electric charge could be accumulated.
The extraordinary deformation of the wormhole structures could
highly influence the character of the Fermi velocity, relativistic
effects could appear in these conditions. First of all, it could
significantly change the mass of fermions which are usually con-
sidered to be massless. Another effect which could significantly
influence the character of fermions is the spin-orbit coupling or
interaction (SOC) for the fermions located in the carbon nano-
tube. We will show that the strength of this interaction strongly
depends on the radius of the nanotube, it should be inversely pro-
portional to this radius. As a result, the chiral (massive) fermions
should be detected around the wormhole bridge.
This paper is an extension of work.6 Here, we investigate the

graphitic wormhole: we calculate its electronic structure and zero
modes and look through the corrections coming from the rela-
tivistic effects and the spin-orbit interaction. Similar calculations
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of the electronic structure and the zero modes will be carried
out for the perturbed wormhole. Furthermore, we will predict the
effect of the graphene blackhole for this case.

2. CONTINUUM GAUGE FIELD-THEORY
The electronic structure can be characterized by the local density
of states (LDoS) which gives the number of the electronic states
per unit interval of energies and per the unit area of the molecu-
lar surface. The reason is an intuitive assumption that there exists
a direct connection between this quantity and the electronic con-
ductivity. For its calculation, in the case of the wormhole and the
perturbed wormhole, we use the continuum gauge field-theory.

In the continuum gauge field-theory, we consider the contin-
uum approach of the carbon lattice.7 So at each point of the
molecular surface we take into the account the influence of differ-
ent gauge fields and we insert them into the Dirac-like equation
for the electron. It has the form

ivF �
����+��− ia� − iaW

� − iA��� = E� (1)

in which the different terms have the meaning of different kinds
of properties. The matrices �	 which represent the 
 matrices,
which are used for the 4-component case, have the form of the
Pauli matrices. The Fermi velocity vF , the spin connection

�� = 1

8
�	�

� ��	���� (2)

and the covariant derivative 
� = �� +�� are connected with
the metric. Next, the gauge fields a��a

W
� ensure the continuation

of the wave function with respect to the angular coordinate, and
they are caused by the presence of the defects and by the rota-
tional symmetry, respectively. The gauge field A� characterizes
the possible magnetic field.

The wave function has two components:

� =
(
�A

�B

)
(3)

where A, B correspond to inequivalent sublattices of the hexag-
onal plane. The solution is found by using the substitution

� =
(
�A

�B

)
= 1

4
√
g��

(
uj���e

i�j

vj ���e
i��j+1�

)
� j = 0�±1� � � � (4)

so

��uj√
g��

− j̃√
g��

uj = Evj � − ��vj√
g��

− j̃√
g��

vj = Euj (5)

where

j̃ = j+1/2−a� −aW
� −A� (6)

g�� , g�� are the metric coefficients and j is the angular momen-
tum. Then, if u�v are the normalized solutions, the local density
of states can be calculated as

LDoS�E��0�= u2�E��0�+v2�E��0� (7)

3. THE GRAPHITIC WORMHOLE
The wormhole (Fig. 1) is usually understood as a form which
arises when two graphene sheets are connected together with
the help of the connecting nanotube.1�2 This can be achieved by
the supply of 2 sets of 6 heptagonal defects onto both sides of
the given nanotube. Of course, this brings the restrictions on the
form of the nanotube—the chirality must be �6n�6n� armchair or
�6n�0� zig–zag. Furthermore, because of the physical limitations,
the radius of the nanotube must be much larger than its length.

The metric tensor of the wormhole has the form

g�� =�2�r±�

(
1 0

0 r2±

)

��r±�= �a/r±�
2��a− r±�+��r± −a�

(8)

where � is the Heaviside step function, r−, r+ are the polar coor-
dinates corresponding to the lower and upper graphene sheet,
respectively and a=√

r−r+ is the radius of the wormhole.

3.1. Electronic Structure
Now the solution of the Dirac equation will be found for the
case of the wormhole. In this case, we use the form of the metric
used in (8). Next, the effective flux caused by the presence of the
defects is included in the gauge field a� and for the particular
polar components it has the values

a� = 3
2
� ar = 0 (9)

for these two possibilities: the first corresponds to the case when
the chiral vector has the form �6n�6n�, the second corresponds
to the case when the chiral vector has the form �6n�0� with
n divisible by 3. In the case of the chiral vector of the form
�6n�0�, where n is not divisible by 3, the components of the
corresponding gauge field have the form

a� = 1

2
� ar = 0 (10)

Regarding that the components of the spin connection are

�� =− i

2
�3

(
r
�′�r�
��r�

+1
)
� �r = 0 (11)

Fig. 1. Wormhole structure.
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and after the substitution into (1) we get the equation

ivF �
����+��∓ ia���

± = ��± (12)

where each sign corresponds to a different Dirac point. Con-
cretely,

−ivF

(
�r +

1

r
i�� ∓

a�

r
+ 1

2r

)
�±
B = ��±

A

−ivF

(
�r −

1

r
i�� ±

a�

r
+ 1

2r

)
�±
A = ��±

B

(13)

for r ≥ a and

ivF

( r
a

)2(
�r −

1

r
i�� ±

a�

r
− 1

2r

)
�±
B = ��±

A

ivF

( r
a

)2(
�r + 1

r
i�� ∓

a�

r
− 1

2r

)
�±
A = ��±

B

(14)

for 0< r ≤ a. For r ≥ a, the solution is

�± =
(
�±
A �r���

�±
B �r���

)
= c1

(
Jn∓a�−1/2�kr�

−isgn�Jn∓a�+1/2�kr�

)

+c2

(
Yn∓a�−1/2�kr�

−isgn�Yn∓a�+1/2�kr�

)
(15)

where Jn�x� and Yn�x� are the Bessel functions and the energy
�=±vF k. The local density of states for different values of the
component of the gauge field a� is seen in Figure 2.

In Figure 3, we can see the local density of states at different
distances from the wormhole bridge.

3.2. Zero Modes
The zero modes solve the Dirac equation for the zero energy. If
we choose the component �±

A of the solution to be equal to zero,
we get from (13), (14)(

�r −
1
r
i�� ∓

a�

r
+ 1

2r

)
�±
B = 0 (16)

Fig. 2. Local density of states on the bridge of the graphitic wormhole for
different values of a� .

Fig. 3. Local density of states at the distances twice and five times the
radius of the wormhole from the wormhole bridge.

for r ≥ a and (
�r − 1

r
i�� ±

a�

r
− 1

2r

)
�±
B = 0 (17)

for 0< r ≤ a. For �−
B and the value a� = 3/2, it has the solution

�−
B �r��� ∼ r−n−2ein� (18)

for r ≥ a and
�−
B �r��� ∼ r−n+2ein� (19)

for 0 < r ≤ a. It is both strictly normalizable only for n = 0, so
this is the only solution. In a similar way, we can calculate the
zero modes for the component �+

B . We get analogical solution
for �±

A if we choose the component �±
B of the solution to be

equal to zero.
For the value a� = 1/2, possible solutions are not strictly nor-

malizable. So the zero modes exist only for the case of the con-
necting nanotube being armchair or zig–zag with the chiral vector
�6n�0�, n divisible by 3. In other cases, the zero modes do not
exist.
Figure 4(a) shows very big localization of the LDoS near Fermi

energy on the bridge of the wormhole (in comparison with the
LDoS of the plane graphene). This big localization or singular-
ity for zero mode solutions could be experimentally observed.
In Figure 4(b), the comparison of the zero modes of the worm-
hole and the graphene is plotted.
Recently, in work8 some peculiarities in the bilayer graphene

were analytically predicted. A possible indication of the worm-
hole could be found in Refs. [9, 10], where a new type of zero
modes is investigated. These zero modes could be the zero modes
studied in this subsection applied to the case of the smallest
wormhole.

3.3. Case of Massive Fermions
In the continuum gauge field-theory, we suppose that the
fermions appearing in the Dirac equation have the zero mass, or
more precisely, the mass is very small in comparison with the
energy. But it was shown in Refs. [11, 12] that the Fermi veloc-
ity changes and needs to be renormalized due to the elasticity
and the deformations in graphene. In the investigated case of the
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(a)

(b)

Fig. 4. Comparison of the properties of the wormhole and the plane
graphene: (a) local density of states, (b) zero modes.

graphitic wormhole, which is very specific because of the big
deformations, the velocity of the fermions close to the wormhole
bridge could achieve such values that the relativistic effects can
appear or break off the symmetry.13 The result is that the mass of
fermions would be non-negligible. (The same situation is also for
the graphene bilayer where especially massive particles are pre-
dicted, see Refs. [14, 15].) Moreover, the radius of the wormhole
and its bridge is very small in comparison with the size of the
upper and the lower graphene sheet, and by folding the sheet into
a tube they acquire nonzero effective mass as they move along
the tube axis. This change of the space topology of graphene
from 2D to 1D space compactification is similar to the string
theory compactification. It means that we can image a wormhole
connecting nanotubes as the 1D object.

This indicates a necessity to incorporate a term containing the
value of the mass into the Dirac equation (1). For the purpose
of the derivation of the possible solution of this question, we go
through the system of Eq. (5), which can be transformed into the
differential equation of the second order(

���− 1
2g��

��g��+ j̃

2

√
g��

g3��
��g��− j̃2

g��

g��
+E2g��

)
uj =0 (20)

For the purpose of simplification, we will suppose the cylindrical
geometry, i.e., the radius vector of the point at the surface will

have the form
�R= �R cos��R sin���� (21)

where R is the radius of the cylinder. In this case, the form of
Eq. (20) will be changed into(

��� +E2− j̃2

R2

)
uj = 0 (22)

The solution of this equation has the form Ref. [16]

uj���= Aek� +Be−k� (23)

where

k =
√

j̃2

R2
−E2 (24)

From Ref. [17] follows that a similar form has the dispersion
relation associated with the massive 1D Dirac equation:

k=√
M2−E2 (25)

where M is the mass of the corresponding fermion. It is proven
in Ref. [16] that indeed, for a suitable choice of the parameters,
the 2D massless case is analogous to the 1D massive case. This
serves as an impulse to rewrite Eq. (20) in the form

(
��� −

1
2g��

��g�� +
j̃

2

√
g��

g3��
��g��

− j̃2
g��

g��
+ �E2−M2�g��

)
uj = 0 (26)

where M is the mass of the corresponding fermion. Then, for dif-
ferent values of M , we can find the corrections of the LDoS for
the graphitic wormhole. For different distances from the worm-
hole bridge, we can see these corrections in Figure 5. We predict
that these massive particles arising in the wormhole nanotubes
could create energy bulks on the wormhole bridge and near the
wormhole bridge which should be experimentally measured by
the STM or Raman spectroscopy.18 Another possibility to iden-
tify the wormhole structure comes from the fact that the mas-
sive particles could create strain solitons and topological defects
on the bridge of the bilayer graphene which should propagate
throughout the graphene sheet. These are almost macroscopic
effects and should be caught by the experimentalists.19

3.4. Spin-Orbit Coupling in the Wormhole
Connecting Nanotube

An important measurable quantity in the carbon nanostructures
(including the nanotubular part of the graphitic wormhole) is
the spin-orbit coupling (SOC).20�21 Considering this influence,
the 2-component Dirac equation is changed into the usual
4-component form. As a consequence, the chiral fermions should
be detected close to the wormhole bridge. We will show that the
smaller is the radius of the wormhole bridge, the stronger this
effect should be.

We have 2 sources of the SOC: the first, the interatomic one
that preserves the z-component of the spin and the second, the so-
called Rashba-type coming from the external electric field, which
conserves the z-component of the angular momentum Jz. In both
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Fig. 5. Comparison of LDoS for different masses of fermions at different distances d from the wormhole bridge.

cases, the strength of the SOC is influenced by the nonzero cur-
vature. Here, we will be interested in the first, interatomic source
of the SOC.

Considering the SOC we can write the Dirac equation for the
nanotube in the form

Ĥ

(
F K
A

F K
B

)
=
(

0 f̂

f̂ † 0

)(
F K
A

F K
B

)
= E

(
F K
A

F K
B

)
(27)

where

F K
A =

(
F K
A�↑

F K
A�↓

)
� F K

B =
(
F K
B�↑

F K
B�↓

)
(28)

The expression f̂ has the form

f̂ = 
�k̂x− ik̂y�+ i
�
 ′

4R
�̂x��r�−

2�
p
R

�̂y (29)

where

k̂x =−i
�

R��
� k̂y =−i

�

�y
� �̂x��r�= �̂x cos�− �̂z sin � (30)

Next,


 =−
√
3
2

aV �
pp� 
 ′ = −

√
3
2

a�V �
pp −V �

pp�

p = 1− 3
 ′

8


(31)

a being the length of the atomic bond, V �
pp�V

�
pp are the hopping

integrals for the � and � bond, respectively.
For the interatomic source of the SOC we have

�= �

3���

� �= i
3�

4m2c2
�xl�

�V

�x
p̂y −

�V

�y
p̂x�yl
 (32)

with the difference of the energies of the relevant � and �

orbitals
��� = ��2p −��2p (33)

xl and yl are the local coordinates. By applying the transforma-
tion

Ĥ ′ = Û Ĥ Û−1 (34)

with

Û =

⎛
⎜⎜⎜⎝
exp

(
i�̂y

�

2

)
0

0 exp
(
i�̂y

�

2

)
⎞
⎟⎟⎟⎠ (35)

the transformed Hamiltonian Ĥ ′ will has the form

Ĥ ′ = Ĥkin+ ĤSOC (36)

Ĥkin =−i


(
�yId2⊗ ŝy + 1

R
��Id2⊗ ŝx

)
(37)

ĤSOC = �y�̂x ⊗ ŝy −�x�̂y ⊗ ŝx (38)
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where ĤSOC corresponds to the spin-orbit coupling. The operators
ŝx�y�z are the Pauli matrices, which transform the wave function
of the A sublattice into the wave function of the B sublattice and
vice versa.

In our model, the SOC is induced by the curvature and is
described with the aid of two strength parameters �x and �y

which have, in the case of the single wall carbon nanotube with
different magnitude, the form

�x = 


R

(
1
2
+2�p

)
� �y =−�
 ′

4R
(39)

Here, ��y � � ��x� and for R→ 0, both strengths go to infinity, as
we required.

So reminding the results of the previous section, the chi-
ral massive fermions should be detected around the wormhole
bridge. The presented strength constants �x��y for the SOC as
well as the Dirac-like Eq. (26) for the massive fermions have not
yet been published anywhere.

More complicated forms can arise: the nanotube in the worm-
hole center can be perturbed. Then, the geometry of the corre-
sponding graphene sheets will be curved and this brings a sig-
nificant change of the physical properties. We speak about the
perturbed wormhole.

4. CASE OF PERTURBED WORMHOLE
The wormhole is composed of 2 different kinds of nano-
structures: the graphene and the nanotube. These two parts are
connected with the help of 12 heptagonal defects. However, we
can ask a question what happens if the number of the defects
varies between 0 and 12. Then, the cases of 0 defects (the nano-
tube) and 12 defects (the wormhole) will be the limiting possi-
bilities. The structure that arises in other cases will be called the
perturbed wormhole.

Possible forms of the perturbed wormhole (with the defects
located in the middle) can be seen in Figure 6. Due to symmetry
preservation, we consider only the even numbers of the defects,
i.e., 2, 4, 6, 8 or 10. The defects can be located in the middle
as well as at the edge of the connecting structure—in the for-
mer, we can say that the hight of the connecting nanotube is
negligible (similarly to the case of the above draught structure
of the wormhole containing 12 defects). We will be concerned
with the case when the defects are located at the edge of the con-
necting nanotube. For this case, the composition of the perturbed
wormhole is depicted in Figure 7: it consists of the unperturbed
connecting nanotube and 2 perturbed graphene sheets. The met-
ric of the sheets does not depend on the length of the nanotube.

Fig. 6. Different forms of the perturbed wormhole: (a) 2 defects, (b) 4 defects, (c) 6 defects, (d) 8 defects, (e) 10 defects.

Fig. 7. The composition of the perturbed wormhole.

That is why we will investigate the electronic structure of the
sheets separately.

The metric of the sheets can be draught by the radius vector

−→
R �z��� =

(
a
√
1+�z2 cos��a

√
1+�z2 sin��z

)
(40)

where � is a positive real parameter; its value is derived from
the number of the defects of the wormhole. In the case of N = 2
defects, we can say that the value of this parameter is negli-
gible, so � � 1. Then, the nonzero components of the metric
are

gzz = 1+ a2�2z2

1+�z2
∼ 1+a2�2z2� g�� = a2�1+�z2� (41)

Next, we include into the calculations the nonzero components
of the gauge fields:

a� = N/4� aW
� =−�2m+n�/3 (42)

where �n�m� is the chiral vector of the middle part of the con-
necting nanostructure. Then, regarding the form of the spin con-
nection and by substitution in (1) we get the solution

�A�z�= C�1D�1
���z��ein� +C�2D�2

�i��z��ein� (43)

�B�z�= C�1

E

(
�zD�1

���z��− j̃D�1
���z��

a

(
1− 1

2
�2z2

))
e−in�

+ C�2

E

(
�zD�2

�i��z��− j̃D�2
�i��z��

a

×
(
1− 1

2
�2z2

))
e−in� (44)
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where

�1 = i
a2�−4a2E2+4ia

√�j̃+4j̃2

8a
√�j̃

�2 =−i
a2�−4a2E2−4ia

√�j̃+4j̃2

8a
√�j̃

(45)

��z� = �−��1/4

⎛
⎝√ a

2j̃
+
√

2j̃

a
z

⎞
⎠ (46)

D���� being the parabolic cylinder function. The functions C�1 =
C�1�E�, C�2 = C�2�E� serve as the normalization constants. We
see the graph of the local density of states in Figure 8.

In the case of more than 2 defects, the value of � is non-
negligible and we can get only numerical approximation of the
LDoS. The derivation of the value of the parameter � follows
from Figure 9.

In the middle section, the upper branch of the graphene sheet
converges to the line z= x · tan	, where we can suppose that the
angle 	 depends on the number of the defects N linearly, i.e.,
	 = �/2−N · ��/24�. (In this case, 	 = �/2 corresponds to 0
defects and 	 = 0 corresponds to 12 defects.) Simultaneously,
from (40) follows that asymptotically we have

−→
R �z→����→ �a

√�zcos��a
√�z sin��z� (47)

from which follows

z= x · tan	= �a
√��−1x (48)

so

�= 1

a2 tan2 	
= 1

a2 tan2��/2−N · ��/24��
(49)

In Figure 10, we see the comparison of the LDoS for different
kinds of the perturbed wormhole. From the plots follows that the
intensity is rising with the increasing number of the defects and
it is closer and closer approaching the results in Figure 2, where
the case of 12 defects is shown. The localized states for zero
energy is also in coincidence with the results presented for the
bilayer and trilayer in Refs. [9, 10].

Fig. 8. Local density of states on the bridge of the graphitic perturbed
wormhole.

Fig. 9. Derivation of the � parameter.

In Figure 11, the LDoS of zero modes is shown for a varying
distance from the wormhole bridge in the units of the radius a of
the wormhole center. It was also acquired in the numerical way.
For the unperturbed case (0 defects), the resulting plot resembles
a line. In Ref. [22], the exponential solution is found for this
case but with a very slow increase, so, this could be that case. It
is also seen from the plot that for the increasing number of the
defects the solution is approaching expressions (18), (19) for the
zero modes of the unperturbed wormhole.
Of course, the massive fermions could also appear in the

case of the perturbed wormhole. We will not perform a detailed
derivation of the electronic structure for the case of this even-
tuality and we will only note that the corrections to the LDoS
would be an analogy of the corrections shown in Figure 5.
Graphene Blackhole. In Ref. [23], the effects accompanying

the deformation of the graphene and the consequent change of
the distance of the carbon atoms in the layer are draught. It
causes the rotation of the pz orbitals and rehybridization of the
� and � orbitals. This procedure leads to the creation of the
p–n junctions similarly to the case of a transistor. This effect
changes the Fermi level which is rising in the far areas from the
wormhole center. As a result, the electron flux is directed from
these areas to the middle where the electric charge is accumu-
lated. In the case of the deformed wormhole we speak about the
so-called graphene blackhole. The form of the nanotube in the
middle plays a big role for this purpose. It cannot be unperturbed
because in such a case the effect of the blackhole would be dis-
rupted. It can be ensured only in the case when the nanotubu-
lar neck is tapering in the direction to its center, because this
ensures the decrease of the Fermi level.24–27 The related effects
appearing on the nanostructures are also described in Ref. [28].
Here, the special relativistic-like properties of the Beltrami pseu-
dosphere naturally point to quantum field theory in curved space.
It predicts the finite temperature local density of states that is a
realization of the Hawking-Unruh effect.
The effect of the graphene blackhole could eventually dis-

appear in the presence of the external magnetic (electric) field
which would cause the transfer of the charge from one of the
wormhole sheets to another through the center. This serves as
an important model for further investigations of the electron flux
in the presence of the defects. In Ref. [29], some investigations

7
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Fig. 10. Comparison of LDoS for different numbers of the defects in the perturbed wormhole at different distances d from the wormhole bridge.

were carried out for the above mentioned wormhole with 12 hep-
tagonal defects. Possible investigations in the case of the next
deformations could contribute to the applications in the cosmo-
logical models.

4.1. The Smallest Wormhole
For the purpose of the synthesis of the simplest forms of the
graphene (perturbed or unperturbed) wormhole, we establish the

Fig. 11. Zero modes of the perturbed wormhole for different numbers of
the defects.

model of the smallest wormhole where DFT and Ab-initio com-
putations could be developed. Possible examples of these sim-
plest forms are shown in Figure 12. Let us notice that in the
connection points of the monolayers, the sp2 hybridization is bro-
ken and it is replaced by the sp3 hybridization but we still could
detect the zero modes as the results of the sp2 hybridization on
the wormhole bridge. We can also imagine the presented struc-
tures in the way that the middle part is contained in the upper or
the lower monolayer and both monolayers are connected through
this part.

For some of the DFT and Ab-initio computations on graphene
see, e.g., Refs. [30, 31]. The geometry in the case of the smallest
wormhole may be equivalent to the geometry of the catenoid:32�33

it is

ds2 = ���± ±1�2 +1�2

4��± ±1�4
�d�±�2+ 1

4

(
��± ±1�2 +1

�± ±1

)2

�d��2 (50)

where

�+ = e�+ −1� �+ > 0� �− = −�e−�− −1�� �− < 0 (51)

Then, using the coordinate � , the metric tensor could be written
as

g�� = cosh2 �±

(
1 0

0 1

)
(52)

and the radius vector has the form

�R��±���= �cosh �± cos��cosh �± sin���±� (53)
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Fig. 12. Drafts of different kinds of the smallest wormhole.

The coordinates �+��− play a similar role as the polar coordi-
nates r+� r− in the case of the unperturbed wormhole. With the
help of these coordinates, one covers the entire manifold with two
coordinate patches. One patch covers the region � > 0 and the
other one � < 0, the upper and lower graphene layer, respectively.
The coordinates should in particular result in a metric which is
reminiscent of polar coordinates at infinity and gives rise to the
Bessel equation in the asymptotic region on the catenoid which
is exactly the solution of the zero modes for the non-perturbed
wormhole bridge. With such new coordinates we can find zero
mode solutions separately on two bridges of the graphene bilayer
wormhole.

The zero modes are the solution of the system of equations
which we get using (5):

��uj√
g��

− j̃√
g��

uj = 0� − ��vj√
g��

− j̃√
g��

vj = 0 (54)

Since the metric coefficients in (52) have the same form for both
possibilities �+� �−, the variable � in the last system includes also
both possibilities. Using the substitution cosh � = r , the system
is transformed into

�ruj −
j̃√

r2−1
uj = 0� −�rvj −

j̃√
r2−1

vj = 0 (55)

and we get the solution

uj = �r+√
r2−1�j̃ � vj = �r−√

r2−1�j̃ (56)

and the LDoS has the form

LDoS�r�= C · 1
r

[
�r+

√
r2−1�j̃ + �r −

√
r2−1�j̃

]
(57)

Fig. 13. Zero modes for the smallest wormhole.

where C is the normalization constant. For the different numbers
of the defects, the dependence of zero modes on the distance
from the smallest wormhole center see Figure 13. Because of the
symmetry of the catenoid, we get an analogous solution we get
for � < 0.
If we compare the calculated zero modes for the smallest

wormhole with the zero modes for the perturbed wormhole in
Figure 11, we see a significant difference, but one of the fea-

Fig. 14. Doping the graphene bilayer with the reactive molecules.

Fig. 15. Fragment of pillared graphene.

9
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(a) (b)

Fig. 16. The configuration of the fullerene molecules between the graphene
layers in the process of the synthesis of the pillared graphene.

(a) (b)

Fig. 17. The extremal sizes of the ratio d/2a in the connecting nanotube:
(a) minimal, (b) the maximal.

tures is the same: the more defects we have, the more significant
the corresponding zero mode close to the wormhole bridge is.
We can suppose that the more the shape of the smallest worm-
hole approaches the shape of the perturbed wormhole, the better
agreement of both Figures we get.

5. SYNTHESIS OF THE DRAUGHT
MATERIALS

The ways how to synthesize the described material are still at the
theoretical stage. We predict that it could be manufactured from
the graphene bilayers whose properties are described, for exam-
ple, in Ref. [34 or 35]. We consider that the graphene monolayers
could be mechanically pressed against each other so that their
distance would be reduced below the value of the length of the
atomic bonds in the graphene. Under these conditions, the inter-
action between the valence electrons of the carbon atoms from
the opposite layers could achieve significant values, because it
would exceed the interaction between the neighbors in the hexag-
onal carbon structure. Furthermore, as we considered above, the
radius of the wormhole must be much smaller than the graphene
layers length, so the minimal distance between the monolayers is
very important. The structure of the wormhole could then arise
spontaneously. This should be a concrete task for future experi-
mental research. Next of the possibilities is doping the graphene
sheets with the reactive molecules (see Fig. 14) and then press-
ing the sheets against each other. The connections between the
sheets, which would be formed by the wormholes, would be cre-
ated by the mentioned molecules. The places where the worm-
holes would be present could be determined by the detection of
the zero modes.

6. CONCLUSIONS
The wormhole allotropes could be prepared by the procedure
which would be composed of two steps: first, doping the

graphene sheets by the reactive molecules and second, press-
ing these sheets against each other by achieving their connection
through the mentioned molecules. The graphitic wormhole could
also be created spontaneously in the bilayer graphene. The cre-
ated wormholes in the graphene structure could then be indicated
by the presence of the corresponding zero modes. We use the
continuum gauge field-theory for their calculation. It was shown
in the calculations of the LDoS for the perturbed wormhole that
the closer the number of the defects to the border values 0 a 12
is, the more the LDoS coincides with the calculations carried out
for these 2 values, as can be verified by the comparison with
Refs. [1 and 22].

Next possibilities as to identify the wormhole structure in
the graphene bilayer is via spin-orbit interaction or coupling
(SOC) in connecting nanotubes.36 The SOC in graphene could be
induced as well by the nonzero curvature.37–40 In the case of the
perturbed wormhole with negative curvature the chiral fermions
penetrating through the connecting nanotube in the wormhole
structure could be created. The higher this effect is, the lower
the radius of the connecting wormhole is. Moreover, the chiral
fermions should prefer permanently only one direction of the
massive or massless fermionic current,41 e.g., from the upper
graphene sheet to the lower in the graphene bilayer through the
connecting nanotube depending on the wormhole curvature. This
permanently oriented flow could be detected by the experimental
observations.

There is also a real possibility that the wormhole bridge could
serve as some trap for quantum dots42 or some hydrogen impuri-
ties in graphene.43 The wormhole bridge for their special massive
chiral fermions could also absorb very effectively all incident
light of a specific wavelength coming from any direction, simi-
larly described in Ref. [42].

More complicated wormhole structures can be established.
One of them is the pillared graphene (Fig. 15). This kind of
nanostructures will have a wide application in the branch of stor-
age of the hydrogen fuel.44 Initially, the carbon nanotubes were
considered as a suitable candidate, but for different reasons, e.g.,
the insufficiently large molecular surface area, it was shown that
these structures are not suitable and the pillared graphene could
be much better for this purpose. One of the possible methods
of the synthesis of this kind of nanostructure was described in
Ref. [45]. Here the procedure is suggested in which the layer of
the fullerene molecules is inserted between the graphene sheets
and the reactive molecules are put to the attachment points. Then,
the required chemical structure is achieved via the thermal and
radiative processes.

The density of the fullerene molecules in the corresponding
layer could influence the size of the connecting nanotubes in
the pillared graphene. This can be seen in Figure 16(a). There,
the particular fullerene layers, which deform the graphene layers,
fit to each other tightly. This is only the schematic sketch, the
deformation of the graphene layers by the fullerene molecules is
shown in Figure 16(b). Each of the connecting nanotubes arises
in the place of the contact points. The ratio of the hight and
the width of the connecting nanotube has the value between 2
extremal values whose origin is illustrated in Figure (17). It is
possible to easily derive that in the case (a), this ratio has the
value 1/

√
3
�= 0�577 and in the case (b) the ratio is

√
3/2

�= 0�866.
So, in the general case, we have for the size of the connecting
nanotube,

0�577 ≤ d/2a ≤ 0�866 (58)
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Finally, the question arises if we could design condensed-
matter systems to test the supposedly non-testable predictions of
string theory too? Another question to ask, though, is whether
what we think of as the fundamental laws of physics, such as
quantum field theory, themselves emerge from some complex
inner structure that remains inaccessible to us.

Recently, it was found in work46 that the electron induced
rippling in the graphene must be unstable towards a buckling
transition that is the analogue of Higgs condensation, showing
another way to employ graphene as a test ground of fundamental
concepts in theoretical physics. The graphitic wormhole structure
for their extreme curvature and a very thin connecting nanotube is
the best candidate for such experiments to test also string theory
as high energy physics peculiarities.

Summarize, the presented paper is a real connection between
nanoscale physics, condensed matter physics, chemical physics,
computational physics, relativistic physics and experimental
physics. We hope that it reflects a lot of main ideas of the 21st
century of scientific research. Similar topics are described for
example in the Refs. [47–54].
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