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1 Introduction

Topology and geometry have many applications in the modern condensed
matter physics (see, e.g., the books [1, 2]) . The purpose of this brief review
is to present some bright examples of using topology and geometry in a study
of a new interesting class of carbon materials — carbon nanoparticles. The
discovery of these cage-like molecules has attracted considerable attention of
both experimentalists and theorists due to unique physical properties that are
directly related to their exotic geometry. Moreover, there is reason to believe
that an infinite variety of both carbon-based and some other materials with
particular nanoscale shapes and forms can be produced, therefore increasing
the significance of geometrical methods [3] in theoretical studies.

An additional interest to carbon nanoparticles originates from the fact
that the exotic geometry is accompanied by topological defects. Notice that
topologically nontrivial objects play the important role in various physically
interesting systems. It will suffice to mention the 't Hooft-Polyakov mono-
pole in the non-Abelian Higgs model, instantons in quantum chromodynam-
ics, solitons in the Skyrme model, Nielsen-Olesen magnetic vortices in the
Abelian Higgs model, etc. (see, e.g., [4]). Notice that similar objects are known
in condensed matter physics as well. For instance, vortices in liquids and lig-
uid crystals, solitons in low-dimensional systems (e.g., in magnetics, linear
polymers, and organic molecules) as well as the famous Abrikosov magnetic
vortices in superconductors are the matter of common knowledge. Mathe-
matically, all these objects appear in the framework of nonlinear models as
partial solutions of strongly nonlinear equations. An important point is that
all the solutions are topologically stable and belong to nontrivial homotopic
sectors.

It should be noted that elastic media also leave room for topological de-
fects known as dislocations and disclinations. Disclinations in liquid crystals
are one of the best-studied cases. In particular, the known exact "hedgehog’
solution has been obtained within the continuum model of nematics. It is
interesting that a hedgehog-like solution was also found for a point 47 discli-
nation within the framework of the gauge model [5]. An important advantage
of the gauge model follows from the fact that it is similar to the known field
theory models, first of all to the non-Abelian and Abelian Higgs models, where
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topological objects are studied well. Taking into account this similarity, two
exact static solutions for linear disclinations have been found [6, 7, 8].

It is now well understood that the modern problems of condensed matter
physics call for using of new theoretical methods. As we show here, a theo-
retical description of variously shaped carbon nanocrystals requires involving
of differential geometry, topology, and gauge theory. These methods are not
typical for condensed matter theory though widely used in the field theory
and gravity.

2 Geometry and Topology of Carbon Nanoparticles

The high flexibility of carbon allows producing variously shaped carbon
nanostructures: fullerenes, nanotubes, nanohorns, cones, toroids, graphitic
onions, etc. In some sense, the carbon nanoparticles mediate between the
molecular and bulk phases and can be considered as a third form of car-
bon along with diamond and graphite. Historically, the fullerenes Cgo (nick-
named also as Buckminsterfullerene or 'bucky ball’) were first discovered in
1985 [9]. They are tiny molecular cages of carbon having 60 atoms and mak-
ing up the mathematical shape called a truncated icosahedron (12 pentagons
and 20 hexagons). Although the amount of Cgo actually being produced in
the experiment was very small, right away these curious molecules attracted
attention of theorists. In 1990, the adaptation of arc technique for carbon
rods gives a possibility to make Cgg in gram quantities [10]. Since then, in
the process of graphite vaporization there were produced variously shaped
fullerene molecules. The more spherical of them are the Cgg molecule and its
generalizations like Cayq9 and Cs49 molecules. Others are either slightly (like
the Crg (see Fig. 1)) or remarkably deformed.

Fig. 1. The fullerene Cgo (on the left) and C7o molecules

Soon after the fullerenes, other interesting carbon structures were discov-
ered. First of all, carbon nanotubes of different diameters and helicity [11]
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were produced. It turns out that single-walled carbon nanotubes can be
twisted, flattened, and bent around to form sharp corners. These distortions
do not cause them to break (see Fig. 2). The mechanical, magnetic, and espe-
cially electronic properties of carbon nanotubes are found to be very specific
(see, e.g., [12]). For example, the nanotube can be either metallic or semicon-
ducting depending on its diameter and helicity (see discussion below).

Fig. 2. Carbon nanotubes

Carbon ’onions’ have also been found and they can be considered as car-
bon cages one inside the other [13]. The tubes and onions are likely to be
composed of hexagonal and pentagonal carbon rings just like the fullerenes.
However, the structures having heptagonal rings are also possible. There has
been much progress in recent years in producing toroids [14], cones [15, 16]
(see Figs. 3,4), nanohorns [17], boxes [18], and helically coiled graphite [19].

Fig. 3. Torus

One can expect that even more exotic configurations can be produced
in experiment (see, e.g., Fig. 5). Indeed, theoretically the closed (without
dangling bonds) fullerenes and nanotubes exhibiting high topologies (from
genus 5 to genus 21) were suggested in [20]. This follows from the known
Euler’s theorem that relates the number of vertices, edges and faces of an
object. For the hexagonal carbon lattice it can be written in the form [20]

2ng +n5 —ny — 2ng... :Z(G—x)nz =x=12(1-y), (1)

where n, is the number of polygons having z sides, x is the Euler character-
istic which is a geometrical invariant related to the topology of the structure,



Fig. 4. Nanocones containing one (left) and two (right) pentagons at the apex

and g is the genus or a number of handles of an arrangement. So, for a sphere
g = 0, a torus has g = 1 while for two ’sticked’ torii in Fig. 5 one has g = 2.
According to (1) there is no contribution to the Gaussian curvature for z = 6.
This means that two-dimensional carbon lattice consisting only of hexagons is
flat. On the contrary, to obtain a nontrivial shape one has to introduce some
additional polygons. For example, in order to make a fullerene with genus
zero we need additionally twelve pentagons. In general, the Euler’s theorem
allows to determine all the possible graphitic structures. As was mentioned
in [20], in accordance with (1) the complex structures with no pentagons (no
positive Gaussian curvature) can be constructed if the genus is increased. In
particular, an existence of the new stable family of fullerene-like structures
(holey-balls and holey-tubes) which have high genus and no pentagonal rings
was predicted in [20].

Fig. 5. Exotic configurations

By their nature, pentagons (as well as other polygons with z # 6) in
a graphite sheet are topological defects. In particular, fivefold coordinated
particles are orientational 60° disclination defects in the otherwise sixfold
coordinated triangular lattice. This can be understood by realizing that a
pentagon can be inserted in the hexagonal lattice by a cut-and-glue procedure
typical for disclination defects. Namely, one has to cut out a 60° sector from a
graphene (a single layer of graphite) sheet and then glue together the two cut
sides of the sheet. Moreover, if the departure from the flat surface is allowed,
a cone whose apex angle is directly related to the disclination angle will be
generated. Pentagonal defects in cones can therefore be considered as apical
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disclinations, and the opening angle is directly connected to the Frank index
of the disclination. A cone’s apex may consist of a combination of ring defects.
Because of the symmetry of the graphite sheet, only five types of cones can
be created from a continuous sheet of graphite. The total disclinations of all
these cones are multiplies of 60°, corresponding to the presence of a given
number (n) of pentagons at the apices. It is important to mention that carbon
nanocones with the cone angles of 19°, 39°, 60°, 85°, and 113° have been
observed in a carbon sample [16]. Notice that these angles might correspond
to 300°, 240°, 180°, 120°, and 60° disclinations in graphite, respectively.
Disks (n=0) and one-open-end nanotubes (n=6) have also been observed in
the same sample [16]. This case was theoretically studied in [21, 22, 23].
At the same time, cones with apex angles of 30°, 50°, and 70° have also
been found [24, 20]. These angles are forbidden within the above scenario.
In [24, 25] the appearance of such cones was explained in terms of an open
cone model. Another possibility gives a creation of partial disclinations. As
is known, a finite graphite sheet with disclinations will be buckled to screen
its energy [26]. In this case, one of the allowed geometries is the hyperboloid.

It should be noted that the presence of topological defects in the elastic
medium changes the topology of space, a simple connected region becomes
multiply connected whenever there are defects. As a result, the physical char-
acteristics of quantum particles moving in defect medium can be modified in
comparison with the defect free case. Indeed, the Aharonov-Bohm-like (AB-
like) effect in dislocated crystals (called ’phase-dismatching’) was predicted
in [30]. It was found that the Schrédinger equation for a tight-binding electron
is reduced to the AB-like equation in the presence of a screw dislocation (see
also [31, 32]). In experiment, the effects of Berry’s geometrical phase were
established in analyzing the high-energy electron diffraction from a screw
dislocation [33].

Among other effects it is necessary to note the prediction of the AB-
like electron scattering due to disclinations [6, 34], an electron localization
near topological defects [35, 36] as well as a formation of the polaron-type
states near dislocations [37]. Notice that a possibility of the solid state re-
alization of the AB effect was earlier suggested in metals [27, 28] and in
dielectrics [29]. It has been shown that the AB effect results in oscillations of
physical characteristics (transport properties, magnetic susceptibility) with
a certain fundamental period &y = hc/ne where n = 1 for pure metals and
n = 2 for disordered metals and dielectrics.

One would expect some new physical phenomena arising from nontrivial
topology of carbon nanoparticles. It is interesting to note in this connection
that an important role of topology has recently been discovered in experi-
ments with niobium and selenium. In particular, a Mdbius strip (see Fig. 6)
of single microcrystals NbSez has been produced by twisting a ribbon of ma-
terial through 180° and joining its two ends, resulting in a distinct one-sided
topology [38]. In a sense, these crystals can be considered as global disclina-
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tions. It was established that the electronic properties of the Mdbius crystals
are modified in comparison with the ring configuration. Namely, the temper-
ature of charge-density-wave phase transition was observed to be 4K lower
than this in the ring. There is reason to believe that this effect is pure topo-
logical in its origin. Evidently, topologically nontrivial crystal forms offer a
new route to study topological effects in solid state physics.

Fig. 6. Mobius stripe (left) and a more exotic configuration

3 Electronic Properties

Among the most unique features of carbon nanoparticles are their electronic
properties. Electronic states in nanotubes, fullerenes, nanocones, nanohorns
as well as in other carbon configurations are the subject of an increasing
number of experimental and theoretical studies. They already find a use for
the development of modern nanoscale electronic devices: flat panel displays,
nano-switches, molecular memory devices, transistors, electron field emitters,
etc. It has been predicted and later observed in experiment that bending
or stretching a nanotube change its band structure changing therefore the
electrical properties: stretched nanotubes become either more or less conduc-
tive. Moreover, a nanotube’s chiral angle (the angle between the axis of its
hexagonal pattern and the axis of the tube) determines whether the tube is
metallic or semiconducting (see, e.g., [12]). This finding could allow to build
nanotube-based transducers sensitive to tiny forces.

Interesting changes in the electronic properties arise from topological de-
fects. The peculiar electronic states due to topological defects have been
observed in different kinds of carbon nanoparticles by scanning tunneling
microscopy (STM). For example, STM images with five-fold symmetry (due
to pentagons in the hexagonal graphitic network) have been obtained in the
Ceo fullerene molecule [39]. The peculiar electronic properties at the ends of
carbon nanotubes (which include several pentagons) have been probed exper-
imentally in [40, 41]. Recently, the electronic structure of a single disclination
has been revealed on an atomic scale by STM [42] where the enhanced charge
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density at the disclination, which was located at the apex of the conical pro-
tuberance of the graphitic particle, has been experimentally clarified.

The problem of peculiar electronic states near the pentagons in curved
graphite nanoparticles was the subject of intensive theoretical studies in
fullerenes [43, 44], nanotubes [45], nanohorns [46], and cones [21, 47]. In
particular, an analysis within the effective-mass theory has shown that a
specific /3 x v/3 superstructure induced by pentagon defects can appear in
nanocones [48]. This prediction has been experimentally verified in [42]. A
recent study [23] within both tight-binding and ab initio calculations shows
a presence of sharp resonant states in the region close to the Fermi energy.
The strength and the position of these states with respect to the Fermi level
was found to depend sensitively on the number and the relative positions of
the pentagons constituting the conical tip. In particular, a prominent peak
which appears just above the Fermi level was found for the nanocone with
three symmetrical pentagons (which corresponds to a 60° opening angle or,
equivalently, to 180° disclination). A similar result has been recently obtained
in the framework of the gauge-theory approach [47]. Notice also that localized
cap states in nanotubes have been recently studied in [49].

It is interesting to note that the problem of specific electronic states at the
Fermi level due to disclinations is similar to that of the fermion zero modes
for planar systems in a magnetic field. Generally, zero modes for fermions in
topologically nontrivial manifolds have been of current interest both in the
field theory and condensed matter physics. As was revealed, they play a ma-
jor role in getting some insight into understanding anomalies [50] and charge
fractionalization that results in unconventional charge-spin relations (e.g. the
paramagnetism of charged fermions) [51] with some important implications
for physics of superfluid helium (see, e.g., review [52]). 3D space-time Dirac
equation for massless fermions in the presence of the magnetic field was found
to yield N — 1 zero modes in the N-vortex background field [53]. As it was
shown in [44], the problem of the local electronic structure of fullerene is
closely related to Jackiw’s analysis [53]. An importance of the fermion zero
modes was also discussed in the context of the high-temperature chiral su-
perconductors [54, 55, 56].

3.1 Theory: Basic Assumptions

Investigation of the electronic structure requires formulating a theoretical
model describing electrons on arbitrary curved surfaces with disclinations
taken into account. An important ingradient of this model can be provided
by the self-consistent effective-mass theory describing the electron dynamics
in the vicinity of an impurity in graphite intercalation compounds [57]. The
most important fact found in [57] is that the electronic spectrum of a single
graphite plane linearized around the corners of the hexagonal Brillouin zone
coincides with that of the Dirac equation in (2+1) dimensions. This finding
stimulated formulation of some field-theory models for Dirac fermions on
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hexatic surfaces to describe electronic structure of variously shaped carbon
materials: fullerenes [44], nanotubes [45, 49], and cones [21, 22].

The effective-mass theory for a two-dimensional graphite lattice is equiv-
alent to the k - p expansion of the graphite energy bands about the K point
in the Brillouin zone when the intercalant potential is equal to zero. In fact,
there are two kinds of sublattice points in a unit cell (two degenerate Bloch
eigenstates at K) and the electron wave function can therefore be approxi-
mated by

U(k,r) = fi(k)e™ WP (K, 1) + fo(k)e™ 05 (K, r)

where k = K + k. Keeping the terms of the order of x in the Schrodinger
equation results in a secular equation for the amplitudes fi 2(k), which after
diagonalization finally yields the two-dimensional Dirac equation (see, for
details, Ref. [57])

M Oup(r) = Ey(r). ()

Here v are the Dirac matrices that in 2D reduce to the conventional Pauli
matrices, the energy E is measured relative to the Fermi energy, and the two-
component wave function v represents two graphite sublattices. As mentioned
in [57], the k - p approximation essentially amounts to replacing the graphite
bands by conical dispersions at the Fermi energy.

For our purpose, we need a generalization of (2) incorporating both a
disclination field and a nontrivial background geometry. A possible descrip-
tion of disclinations on arbitrary two-dimensional elastic surfaces is offered by
the gauge approach [58]. In accordance with the basic assumption of this ap-
proach, disclinations can be incorporated in the elasticity theory Lagrangian
by introducing a compensating U (1) gauge fields W,,. It is important that the
gauge model admits exact vortex-like solutions for wedge disclinations [58]
thus representing a disclination as a vortex of elastic medium. The physical
meaning of the gauge field is that the elastic flux due to rotational defect (that
is directly connected with the Frank vector (see the next section)) is com-
pletely determined by the circulation of the W, field around the disclination
line. In the gauge theory context, the disclination field can be straightfor-
wardly incorporated in (2) by the standard substitution 9, = 9, — iWW,,.

Within the linear approximation to gauge theory of disclinations (which
amounts to the conventional elasticity theory with linear defects), the basic
field equation that describes the U(1) gauge field in a curved background is
given by

D, F* =0, Fr=ogrwk - okwn, (3)

where covariant derivative D,, := 9, + I, involves the Levi-Civita (torsion-
free, metric compatible) connection

1w (O | Ogu O
Iy = ()X = 5g ( Ir 4 Ol _ g“*) : (4)

2 oz+* Oz ox!
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with g, being the metric tensor on a Riemannian surface X with local coor-

dinates z* = (z!, 2?). For a single disclination on an arbitrary elastic surface,

a singular solution to (3) is found to be [58]

W = —ve*"*D,\G(z,y), (5)

where
DuD”G(wl,wQ) = 27r52($1,$2)/\/§, (6)
with e, = \/geur being the fully antisymmetric tensor on X, €15 = —e€g; =

1. Tt should be mentioned that eqs. (3-6) self-consistently describe a defect
located on an arbitrary surface [58].

To describe fermions in a curved background, we need a set of orthonormal
frames {e,} which yield the same metric, g,,, related to each other by the
local SO(2) rotation,

ea e, = Aes, A € 50(2).

It then follows that g,, = el‘je{f&ag where e# is the zweibein, with the ortho-
normal frame indices being a, § = {1, 2}, and coordinate indices u, v = {1, 2}.
As usual, to ensure that physical observables are independent of a particular
choice of the zweinbein fields, a local so(2) valued gauge field w, must be
introduced. The gauge field of the local Lorentz group is known as the spin
connection. For the theory to be self-consistent, the zweibein fields must be
chosen to be covariantly constant [59]:

,Dlies = aues - Fl;\,,6§ + (wu)gef = Ov
which determines the spin connection coefficients explicitly
(wu)* = ey Dye™. (7)

Finally, the Dirac equation (2) on a surface X in the presence of the U(1)
external gauge field W, is written as

ivte(V, —iW, ) = Ey, (8)
where V,, = 0, + (2, with

1
2 = 5% 17 75] ©)

being the spin connection term in the spinor representation.

Notice that the general analytical solution to (8) is known only for chosen
geometries. One of them is the cone [21, 22]. For the sphere and the hyper-
boloid, which are of interest here, there were used some approximations. In
particular, asymptotic solutions at small r (which allow us to study electronic
states near the disclination line) were considered in [47]. For this reason, the
numerical calculations for all three geometries were performed in [60]. The
results of both analytical and numerical studies will be presented in the next
section.
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4 Spherical Molecules

4.1 The Model

To describe a sphere, we employ the polar projective coordinates ' = r, 22 =
p; 0 <r < o0,0 < < 2m with R being the radius of the sphere. In these
coordinates, the metric tensor becomes

Grr = 4R4/(R2 + 72)21 g</7</7 = 4R4T2/(R2 + T2)27 g“ﬂ = gWT = O’ (10)

so that
Vg = /det|lguw]| = 4R4r/(R2 +7r2)%

Nonvanishing connection coefficients (4) take the form

2 .2 2 .2
e oo 1R o
rr R?2 472’ vy R2 472’ T R2 492’

and the general representation for the zweibeins is found to be

e', =€, =2R*cosp/(R*> +17), ¢!, = —€’, = —2R*sin o/ (R* +17),

which in view of (7) gives

wiQ = w21 = O, wif = —w?pl = 2’[‘2/(R2 + T2) =: 2w. (].].)

The following solution to (5) and (6) can be easily found
G=logr; W,=0, W,=v, r#0.

Locally, it describes a topological vortex on the Euclidean plane, which con-
firms the observation that disclinations can be viewed as vortices in elastic
media. Notice that the elastic flux is actually characterized by the Frank vec-
tor w, |w| = 27v with v being the Frank index. The elastic flow through a
surface on the sphere is given by the circular integral

1
%%Wd’f':l/.

Generally, there are no restrictions on the value of the winding number v
apart from v > —1 for topological reasons. This means that the elastic flux
is ’classical’ in its origin; i.e., there is no quantization (in contrast to the
magnetic vortex). However, if we take into account the symmetry group of
the underlying crystal lattice, the possible values of v become ’'quantized’
in accordance with the group structure (e.g., v = 1/6,1/3,1/2,... for the
hexagonal lattice). It is interesting to note that in some physically interesting
applications vortices with the fractional winding number have already been
considered (see, e.g., the discussion in [54]). Notice also that a detailed theory
of magnetic vortices on a sphere has been presented in [61].
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In 2D, the Dirac matrices can be chosen as the Pauli matrices: v! =
—02%,74% = ¢! and (9) reduces to

2, = iwo®. (12)

As a result, the Dirac operator D= iv*e(V, +iW,) on the two-sphere
becomes

3 r? 4+ R? 0 emi¥ (=0, + Lt 4 @)

. .
2R? | et (9, 4 et _ @) 0 (13)

For massless fermions o3 serves as a conjugation matrix, and the energy
eigenmodes are symmetric with respect to E = 0 (63 = ¢¥_g). The gener-
ator of the local Lorentz transformations A2 € SO(2) takes the form —id,,

whereas the generator of the Dirac spinor transformations p(A) is

i 1
o= — = _¢o°.
12 4[’71,’72] 20

The total angular momentum of the 2D Dirac system is therefore given by

1
L. =—id, + 503,

which commutes with the operator (13). Consequently, the eigenfunctions are
classified with respect to the eigenvalues of J, = j +1/2, j = 0,£1,£2, ...,
and are to be taken in the form

v= (m%?&ﬁn) : (14)

As is follows from (13) the spin connection term can be taken into account
by redefining the wave function as

Y =9V R +1r2, (15)

which reduces eigenvalue problem (8) to

where E = 2R2E/(R? + 12).

4.2 Extended Electron States

Let us consider an approximate solution to (16). The point is that, because
we are mainly interested in electronic states near the disclination line, we can
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restrict our consideration to the case of small r. In this case, a solution to
(16) (with (15) taken into account) is found to be

(U) :A( Jn(2Er) ) (17
v +J5(2Er)

where n = £(j —v), 7 = £(j — v + 1), and A is a normalization factor.
Therefore, there are two independent solutions with 7(7j) > 0 and 7(77) < 0.
Notice that respective signs + in (17) correspond to states with £ > 0 and
E < 0. As already noted, o® serves as the conjugation matrix for massless
fermions, and the energy eigenmodes are symmetric with respect to £ = 0.

One can therefore consider either case, for instance, £ > 0.
The important restrictions come from the normalization condition

/(|u|2 + o]?)y/Gda' da? = 1. (18)

From (17), it follows that A? ~ E. On the other hand, the integrand in
(18) must be nonsingular at small Er. This imposes a restriction on possible
values of j. Namely, for 7,7 > 0 one obtains j — v > —1/2, and for 5,7 < 0
one has j — v < —1/2. As is seen, possible values of j do not overlap at any
v.

In the vicinity of a pentagon, the electron wave function reads

1/2
(“) ~ <E ! MM’) . (19)
v E1/2+npn
In particular, in the leading order, one obtains ¥ ~ VE, ¥ ~ EY/37r=1/6 and
W ~ E'/Sr=1/3 for v = 0, 1/6, 1/3, respectively. Because the local density of
states diverges as r — 0, it is more appropriate to consider the total density
of states on a patch 0 < r < § for small §, rather than the local quantities.
For this, the electron density should be integrated over a small disk |r| < §

(recall that 7, ¢ are stereographically projected coordinates on the sphere).
The result is

(Ed)s, v=0;
(E6)?/35, v =1/6,5/6;
(E§)'/36, v =1/3,2/3;
4, v=1/2

D(E,d) x (20)

For the defect free case (v = 0) we obtain the well-known behavior of
the total DOS in the § disk given by D(E,§) ~ E§* (in accordance with
the previous analysis [57]). For v = 1/6,1/3,2/3,5/6, the low-energy total
DOS has a cusp which drops to zero at the Fermi energy. Most intriguing
is the case where v = 1/2 and a region of a nonzero DOS across the Fermi
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level is formed. This implies local metallization of graphite in the presence
of 180° disclination. In the fullerene molecule, however, there are twelve 60°
disclinations, and therefore, the case v = 1/6 is actually realized.

4.3 Numerical Results

The numerical calculations for the case of sphere were presented in a recent
paper [60]. As a starting point, the analytical asymptotic solutions found
in the previous section are considered. The initial value of the parameter r
is defined as r = 10~*. It is worth noting that the choice of the boundary
conditions does not influence the behavior of the calculated wave functions
and only the starting point depends on it. A dimensionless substitution z =
Er is used. The normalized numerical solutions to (16) are given in Fig. 7. The
parameters are chosen to be £ = 0.01 and R = 1. Notice that here we present

Fig. 7. The solutions v'(z), 4’ (z) for different n.

the solutions for dotted values v'(= ©) and u'(= @). The local DOS is shown
schematically in Figs. 8,9 for different n. Notice that the Fig. 9 describes
also the dependence of the local DOS on a position of the maximum value
of integrand in (18)(which actually characterizes the numerically calculated
localization point of an electron).

Lbos.
Lbos
Lbos.

Lbos
<

Fig. 8. Schematic densities of states near the Fermi energy in the case of sphere.
Here and below § = 0.1. Notice that in fact the choice of the value of &

does not influence the characteristic behavior of LDOS. As is seen, the DOS
has a cusp which drops to zero at the Fermi energy. The case n = 3 becomes
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Posi tion

LDCs

Fig. 9. 3d schematic plotting of the DOS near the Fermi energy for n = 0,1,2
(going from the front side to the back side).

distinguished. Let us emphasize once more that in the fullerene molecule
there are twelve 60° disclinations, so that the case n = 1 is actually realized.

4.4 Zero-energy Modes

An interesting issue to be addressed is the existence of zero-energy modes.
For the two-sphere, this problem can be solved exactly (see [53, 44]). Namely,
for E =0, (16) reduces to

Byiig — U - Y o = 0,
—0,0 — Uﬂni_'j)@o = 0. (21)

One can construct self-conjugate solutions (¢’) and (5(1) ) where
Gg = Ari™Y, To = Ar~ v+, (22)

The normalization condition

/ bo? /gdrdip = 1 (23)

yields
o0 4R4T2l
2 _
27TA ) m’f‘d’f‘ =1 (24)
where | = j — v for ug and | = —(j — v + 1) for vy. Finally, 42 =
sin 77j/4n? R2(47) for ug and A% = — sin7n/4n>R2(=") for vy, respectively.

Notice that the restriction —1 < j — v < 0 serves to avoid divergence in (23).
In the defect free case (v = 0), this yields no zero modes on a sphere. Notice
that this agrees with a general observation that the Dirac operator can have
no zero modes on a manifold with an everywhere positive Ricci scalar curva-
ture R. Indeed, one easily obtains D? = A+TR /4, where the Laplace-Beltrami
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operator A has nonnegative eigenvalues. For the two-sphere R = 1/R?, and
therefore, D2 > 0.

For v = 1/6, which is of our interest here, the only possible value of
jis j = 0, so that ug ~ 7~/ and vy ~ /% near the disclination line.
Thus, our analysis shows that two normalizable zero modes can exist on a
sphere in the presence of a disclination vortex. Let us note that this conclusion
agrees with [43] (where different continuum model was formulated) and differs
from [53, 44] where either ug or vy were found to be normalizable. The reason
is that in [53, 44] the external gauge field was assumed to be well behaved at
the origin whereas here singular solutions are also admitted.

The total density of states on a patch 0 < r < § becomes

63, v =1/6,5/6;
D(8) x { 6*/3 v =1/3,2/3; (25)
o0, v=1/2;

As is seen, this behavior differs from (20) thus allowing to recognize the
zero-eigenvalue states in experiment.

5 Nanocones

5.1 The Model
In the polar coordinates (r,¢) € R? a cone can be regarded as an embedding
(r,p) = (arcosyp, arsing, cr), 0<r<1,0<p < 2m,

with a and ¢ being the cone parameters. From this, the components of the
induced metric can be easily read off:

Grr = a? + 02; oo = az"'?; 9ro = Gor = 0. (26)

The opening angle of a cone, 6, is determined by sin(8/2) = a/va? + 2.
Because the cone itself appears when one or more sectors are removed from
graphene, all possible angles are divisible by 7 /3. Therefore, the Frank index
of the apical disclination can be specified by v = 1 — sin(/2). At v = 0 one
gets a flat graphene sheet (6 = 7). For convenience, we introduce a parameter
& =1+c?/a?, so that sin(8/2) = 1//€and 1//E =1 —v.

Nonvanishing connection coefficients (4) are now given by
r;,=-r/¢§ If, =I5 =1/

The general representation for the zweibeins is found to be

1 _ 1 . 2 _ . 2 _
e, =a\/{cosy, e,=—arsing, e,=a\/Esing, e, =arcosp,
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which in view of (7) gives

w2 =w? =0, w}f = —wil =1-1/\/ = 2w. (27)

The external gauge potential is then found to be W, = 0, W, = v, and the
Dirac operator on the cone takes the form

b 0 e i (= o + L0, + v +w))
el ( a‘erCQ + L (i0y + v — w)) 0
Making the substitution

,(/) = @Ta, a = \/Ew’
one reduces the eigenvalue problem (8) to

Ol — ﬁ(j —v)i = Ev,

T
—8, — g(j +1-v)i = Ei, (28)

where E = /€a E.

5.2 Electron States

Unlike the previous case of the two-spere, the cone is essentially a flat man-
ifold (the scalar curvature R = 0 everywhere on the cone, except for the
origin), and as a result, (28) allows an exact solution. Namely, the general
solution to (28) is found to be [22]

- (fim)

where n = £(\/&(j —v +1/2) —1/2), and 77 = £(\/&(j — v + 1/2) + 1/2).
As earlier, we consider the case where E > 0. Normalization condition (18)
takes the form

2m\/Ea’ A2 /Ol(t]g(Er) + J,%(Er))rdr =1 (30)

The normalization factor can be extracted from the asymptotic formula for
Bessel functions at large arguments. Indeed, in our case, 7 — 7 = 1 so that
J2 + J2 — 2/mEr for Er > 1. Substituting this in (30) yields A> = E/4a.
Clearly, (30) must be nonsingular at small r. This imposes a restriction on
possible values of j. Namely, for 7,7 > 0 one gets j > —1 (i.e., j =0,1,2...)
while for n,77 < O one has j < —2v (j = -1,-2,... at v<1/2).
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We are interested in the electron states near the apex of a cone. As it
follows directly from (29), for small 7 the wave functions behave as

U EY/2tnpn,
(’U) ~ <E1/2+771“77 > ’ (31)
In the leading order, one obtains
@ ~ E(l—?l/)/?(l—u)r—u/(l—u).
In particular, we obtain ¥ ~ VE, ¥ ~ E2/5r=1/5 and & ~ EY4~1/2 for

v =20, 1/6, 1/3, respectively.
Finally, the total density of states on the patch 0 < r < ¢ is found to be

EO20)/0-) 5042/ 55,
D(E,6) {E(l‘2")/(1—")6(2—3”)/(1‘”), 0.7 < 0. (32)

It should be stressed that, according to (32), a specific behavior of D(E, §)
occurs only for v = 1/2 where D ~ E%J. This agrees with a finding in [23],
where the prominent peak just above the Fermi level was found for the
nanocone with three symmetric pentagons (180° disclination). In the leading
order, it follows from (32) that

E§?, v=0;

EA58%/5 v = 1/6;
EYV2§3/2 y =1/3;
0, v=1/2

D(E,5) x (33)

As is seen, the extended states with a nonzero density of states at Er appear
only at v =1/2.

To examine the electron states at the Fermi energy, one has to return to
(28) and set E = 0. The solution reads

ug = Ar_%":;\/g, vy = Br_%_f;\/g, (34)

where 3 = j — v+ 1/2. A simple analysis shows that for j = 0 both uy and
vp are normalizable on the cone of a finite size. Both solutions are singular.
For v = 1/6 one gets |ug|> ~ 7=1/%/a? and |vg|? ~ r~9/5/a>. For any other
j, either ug or vy is found to be normalizable and the solutions become
nonsingular. As before, for singular states one can consider the total DOS. Tt
is easy to find that D ~ 6/5 for ug and D ~ 6/ for vo. This result differs
from [48] where, although in a different framework, the states on a finite
cone with a single-pentagon defect have been found at the Fermi energy (these
states decay away from the apex as |1)|> ~ r~2/%). At the same time, our study
confirms the principal conclusion in [48, 62] that the states contributing to the
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nonzero DOS at the Fermi energy exhibit a power-law behavior for a single-
pentagon defect. Notice also that in monolayer graphite of infinite length
(a — o0) there are no zero-energy electronic states on a single disclination. It
should be emphasized that this conclusion agrees with the results of numerical
calculations [62] where the local density of states at the Fermi level was found
to be zero for five-membered rings (pentagons). Notice also that for v = 1/2,
D ~ § for both ug and vg.

5.3 Numerical Results

It is interesting to present the results of numerical calculations [60]. The
normalized numerical solutions to (28) for different n are shown in Fig. 10.
The parameters are chosen to be: E = 0.01,a = 1, and ¢ = 1. The ’total’ DOS
near the Fermi energy for the case of the cone is illustrated schematically in
Figs. 11.

Fig. 10. The solutions v(x), u(z) for different n.

Lbos
Loos.

Loos.

Fig. 11. Schematic densities of states near the Fermi energy in the case of cone.
One can see that the 'total’ DOS has a cusp which drops to zero at the

Fermi energy. It should be stressed that a specific behavior takes place only
for n = 3 where a nonzero DOS near the Fermi energy is found.
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6 Hyperboloid Geometry

6.1 The Model
The upper half of a hyperboloid can be regarded as the embedding
(x, ) = (asinh x cosp,asinh xsinp,c coshx), 0<x <00,0< ¢ < 2m,
From these, the components of the induced metric can be obtained as
gyy = @’ cosh® x + ?sinh® X,  g,p = a®sinh® X, gy = gye =0, (35)
which, for the nonvanishing connection coefficients, yields

(a® + ¢?)sinh 2y
20xx

a® sinh 2
29xx

I = . I3, =— , Iy, =Ty, =cothx.
(36)

In a rotating SO(2) frame, the zweibeins become

1 _ 2 . 1 _ . . 2 .
GX—,/gXXCOSQO,GX—‘/gXXSHlQO,ev——aSIDhXSID(p,ev—(LSlIthCOS(p,

(37)
which in view of (7) gives the spin connection coefficients
1 h
w)l(z _ wil =0, ""sloQ _ —wil =3 [1 _acos X] — W, (38)
Ixx
and therefore,
2, = iwo®. (39)

The external gauge potential in this case is found to be W,, =0, W, = v,
and the Dirac operator on the hyperboloid takes the form

. 0 e~ (_‘Z—XXX—}—“th(za +V+w))-| |
[ew (\/‘Z—X?—F asmhx(za +v-— )) 0 J
It can be verified that D = Dt.

The substitution ~
1 = 1+/sinh x

reduces the eigenvalue problem (8) to

Oyt — \/coth? x + b2 ji = Eb,
—0,0 — \/coth? x + b2 jo = Fi, (40)

where F = Vo B, b=c/a, and j =j —v+1/2.



20 Vladimir A. Osipov
6.2 Electron States

To study electronic states on the hyperboloid one has to analyze (40). As for
the sphere, let us consider the behavior of the electron states near the apex
which is the case of small y. One obtains

><Q:)
=3}
|
2
I
&=
Q
<

|
XQ')
<

|

> a S
<
I
&
Q
[~}
—~
N
[
SN—r

with the obvious solution

i = Av/EaxJj_,|(Eayx), o= A\ EaxJj ,1/(Eax),

As is seen, this is exactly the case of a sphere, which should not be surprising,
because these two manifolds are locally diffeomorphic. Evidently, the 'total’
(on the disk |r| < §) DOS is the same as on the sphere. However, for hy-
perboloid the problem is more intricate due to the requirement to fulfill the
normalization condition (see the numerical calculations below).

An interesting situation arises for the zero-energy solution. Let us consider
the zero-energy modes setting E = 0 in (41). The general solution is found
to be

o A — coshx]%

a(x) =4 [(k coshx + A) A7 coshy

s

(42)

o(x) = A [(k cosh y + A)** w]

A + cosh x

where k = V1402, A = \/1+ k2sinh? y. An important restriction comes
from the normalization condition which on a finite hyperboloid yields j >
—1/2 for u(x) and j < 1/2 for v(x). One can see that for —1/2 < j < 1/2
both u(x) and v(x) are normalizable simultaneously. For the zero-energy
mode, the total DOS on a finite hyperboloid is found to be the same as on
the sphere (see (25)).

Although the local electronic structures are similar on the hyperboloid
and the sphere, there is a principal global distinction. In proving this, let
us consider an unbounded hyperboloid (full locus). In this case, one has to
take into account additional restrictions at the upper limit of the integral
n (18). One obtains —1/2 < j < —1/2k for u(x) and 1/2k < j < 1/2 for
v(x)- Thus, either u() or v(x) becomes normalizable on the hyperboloid of
infinite volume. One can see that as (¢/a) — 0 a normalizable solution does
not exist. In fact, under this condition the hyperboloid is changing over to a
plane. Consequently, our results are in accordance with the planar case. The
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total density of states on an infinite hyperboloid for a variety of defects is as
follows:

13 y = :cla
D) {6 ,v=1/6,5/6; c/a>/5/2 (43)

823, v =1/3,2/3; c/a > 2V/2.

Notice that normalizable zero-energy states do not exist for the defect
with v = 1/2 nor for the defect-free case v = 0. The most important conclu-
sion from our consideration is that there is a possibility for the true zero-mode
fermion state on the hyperboloid. As we have shown, the normalized zero-
mode states on both the sphere and the cone exist only for a finite system
size and disappear in the infinite-size limit. For an infinite hyperboloid, a nor-
malized zero-energy electron state can exist in the presence of a disclination
flux.

6.3 Numerical Results

The more clear difference comes from the numerical study. The results of
the numerical calculations are shown in Fig. 12 where the parameters are
chosen to be £ = 0.01, a = 1, and ¢ = 1. Notice that the starting point in
this case was chosen to be y = 0.01. As can be seen, for the hyperboloid the

: e =
4 — n= Hi
— Nn= n
2 [
ey 1)
ST ] (7_1‘8 y N

~o T | V! ', \

-2 N J y \ N,
N\ e\ /

_ N ! SR -4.\.1\11 y
4 Ny \\// 78
-6 -5

Fig. 12. Solutions v(y), u(y) for different n.

electron eigenfunctions behave similar to the sphere near the disclination line
and remarkably differ at large distances. In addition, there is a problem with
the normalization of the solution for hyperboloid. Actually, the integrand
is found to be constantly growing with increasing parameter y. Due to this
problem (coming from the hyperboloid geometry itself) it is impossible to
perform numerical calculations of the DOS.

To compare the behavior of the solutions u(u') for every kind of the
geometries the combined pictures are shown in Fig. 13 for n = 1,2. It can
be seen that the solutions for the sphere and the hyperboloid have a similar
behaviour near the disclination line at small z(y), as it was already discussed.
Let us note that the solution for u(u') is found to be of the decisive impor-
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n=1

Solutions u
Solutions u

x value x value

Fig. 13. The schematic pictures for u(z) for three geometries in the case of n = 1, 2.

tance in the final results for all three geometries, which is consistent with the
previous analytical results. The choice of the parameters (R, ¢,a) does not
influence the main characteristics of the calculated wave functions.

In summary, the numerical calculations confirm the finding that the pen-
tagonal defects in graphite nanoparticles markedly modify the low-energy
electronic structure. This is evident from both the exact form of wave func-
tions and the local density of electron states. As is seen from Fig. 9, in the
case of sphere the local DOS increases with a distance from the disclination
line for defects with n = 1,2. The low-energy total DOS has a characteristic
cusp at the Fermi energy for any number of pentagons except n = 3 where
the enhanced charge density at the Fermi energy is found.

7 Conclusion

There are many interesting applications of geometrical and topological meth-
ods to actual problems of modern condensed matter physics. As shown above,
the physics of carbon nanoparticles is one of the striking examples. The geom-
etry and topology is found to influence the main physical characteristics of
graphite nanoparticles, first of all, their electronic properties. The topological
defects (disclinations) appear as generic defects in closed carbon structures.
For 180° disclination (three pentagons), the electronic density of states is
found to be remarkably increased. Physically this means local metallization,
thus suggesting some important applications of nanocone-based structures in
microelectronic devices. First of all, such a remarkable increase of the DOS
must provoke the corresponding enhancement of the field emission current,
thereby decreasing the threshold voltage for emitted electrons. It should be
noted that this conclusion agrees well with the results in [23], where the
prominent peak appearing just above the Fermi level was established in
a nanocone with three pentagons at the apex. It was proposed that such
peculiar nanocones are good candidates for nanoprobes in scanning probe
microscopy and excellent candidates for field-emission devices. As was also
mentioned in [23], the nanocones with free pentagons at the tip have the
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highest probability of nucleation and are frequently observed [16]. It is ex-
pected that localized states at the Fermi level may give rise to materials with
novel electronic and magnetic properties.

It should be emphasized that a big variety of closed graphitic structures is
generally expected to be produced. Therefore, the theoretical study of various
topologically nontrivial objects as well as of topological defects in graphite
and other materials is of great importance. There is reason to believe that
an application of geometrical and topological methods to condensed matter
physics will result in considerable progress in the near future.

I would like to thank Profs. A.M. Kosevich, M.I. Monastyrskii, and B.
Zhilinskii for fruitful discussions during the workshop. The main results pre-
sented in this short review have been obtained in co-authorship with Drs. E.A.
Kochetov, M. Pudlak, and R. Pincak whom I am very grateful. This work has
been supported by the Science and Technology Department of Moscow region
and the Russian Foundation for Basic Research under grant No. 01-02-97021.
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