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Abstract
We propose a model to analyse the experimental data for thermal conductivity
of single-grain i-AlPdMn quasicrystals. The interpretation is based on the
picture in which disclination pairs of wedge type are the main source of
phonon scattering at low temperatures. The scattering of phonons due to strain
fields of these dipoles is considered. Our numerical calculations show that
experimentally observed thermal conductivity in a wide temperature range can
be well fitted by a combination of wedge disclination dipole scattering and
quasi-umklapp scattering processes.

1. Introduction

Quasicrystals are solids with long-range quasiperiodic translation order and long-range
orientational order [1–3]. Nevertheless, despite the high structural order of quasicrystals
their transport properties resemble those of disordered materials [4]. In particular, it is
established that icosahedral quasicrystals appear to have a glass-like thermal conductivity [5, 6].
Most of the early studies described the low-temperature thermal conductivity (below 1 K) of
quasicrystals in the framework of the tunnelling states model (TLS) [5, 7]. If the appearance of
the tunnelling states in amorphous materials can be explained by the presence of disorder, the
physical nature of their existence in quasicrystals is not yet understood. Conceivably, tunnelling
states can be induced by some particular type of disorder (e.g., phason disorder [8–10]). At
present, in some works the low-temperature thermal conductivity of i-YMgZn and i-AlPdMn
icosahedral quasicrystals has been considered without tunnelling states [11, 12]. The good fit
for low and intermediate temperatures was reached with the assumption that the total relaxation
rate is a combination of Casimir, stacking fault and quasi-umklapp scattering processes.

In this paper, we suggest an alternative mechanism of phonon scattering based on the
concept of the rotational linear defects (namely disclinations) to explain the glass-like thermal
conductivity of i-AlPdMn quasicrystals observed in [5]. These defects in real i-AlPdMn
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quasicrystals can appear as a result of icosahedra and icosidodecahedra close packing in three-
dimensional space that leads to the frustration of local angular dependences between different
neighbourhoods [13, 14]. As is known, direct observation of disclinations is problematic [15],
as distinguished from dislocations, but their presence was confirmed in numerical simulations.
In [16], it was shown numerically that the local topological frustration (i.e. local deviation
from ideal icosahedral packing) associated with four- and six-fold disclinations is the reason
for localized modes in quasicrystals. Disclinations have been discussed in the context of
correlation between short-range icosahedral order in liquids and long-range icosahedral order
in quasicrystals [17]. Recently, in [18], a local atomic structure of Mg25Y11Zn64 icosahedral
quasicrystals has been studied on the basis of synchrotron powder diffraction data and the real-
space pair distribution function. Frank–Kasper polyhedra [19] with coordination numbers
different from 12 were found. This type of polyhedron has been described in the literature as
containing disclinations [15].

2. Model

To obtain the low-temperature quadratic law of thermal conductivity of i-AlPdMn observed
in [5] we should suppose in our scheme that local strains over a quasilattice correspond to the
wedge disclinations combined in dipole configurations. For particular dipole configurations
(biaxial dipoles), as was shown in [20], the phonon mean free path is proportional to the inverse
value of the wavevector in the long-wavelength limit that leads to T 2-dependence of thermal
conductivity at low temperatures. In [21], the wedge disclination dipole (WDD) model has
been successfully applied to fit the experimental thermal conductivity of dielectric glasses
over a wide temperature range. The effect of other disclination defects (e.g. twist disclination
dipoles, wedge disclination loop) on thermal transport has been analysed as well, and no
glass-like thermal conductivity was found (see e.g. [22]).

In our picture we assume that biaxial WDDs are distributed in the XY -plane and their lines
are oriented along the Z -axis. It should be mentioned that a chaotic distribution of disclination
lines only modifies the absolute value of the phonon mean free path in calculations (see
e.g. [23]). Supposing also that clusters contain disclinations, we take a distance between two
disclinations (2L, the dipole separation) equal to the inter-cluster size. We consider WDDs
where the axes of rotation are not shifted relative to disclination lines (biaxial WDDs). If the
dipole arm is oriented along the x-axis, an effective perturbation energy due to the strain field
caused by a single WDD is (see e.g., [21])

U(x, y) = h̄qvsγ�(1 − 2σ)

4π(1 − σ)
ln

(x + L)2 + y2

(x − L)2 + y2
, (1)

where q is the phonon wavevector, vs is the sound velocity, γ is the Grüneisen constant, � is the
axial vector (Frank vector) directed along the disclination line, and σ is the Poisson constant.

For the chosen geometry, in view of equation (1) the problem of scattering reduces to the
two-dimensional case as for an edge dislocation [24]. Then, a mean free path arising due to the
phonon scattering by static strain fields of WDDs within the generally accepted deformation
potential approach is given by

l−1
D (q) = 2A2(�L)2ndisq

(
J 2

0 (2q L) + J 2
1 (2q L) − 1

2q L
J0(2q L)J1(2q L)

)
, (2)

where A = γ (1 − 2σ)/(1 − σ), ndis is the areal density of WDD, and Jn(t) are Bessel
functions. Notice also that to get equation (2) we considered the elastic scattering of phonons
with wavevector q within the Born approximation. Taking 2L equal to 10 Å (the inter-Mackay
icosahedron distance for i-AlPdMn [25–27]) and the specimen size from [5], we estimate the
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order of the WDD areal density value, ndis ∼ 1013 cm−2. In equation (2) the Frank vector �

is considered as a varying parameter.
The total mean free path is written as

l(ω) = (l−1
D (ω) + l−1

qu (ω))−1 + lmin. (3)

The above formula has been widely used in literature [28, 29] to fit thermal conductivity with
glass-like behaviour. lqu is the mean free path due to quasi-umklapp processes (see [4]). To
fit the experimentally observed thermal conductivity [5] for i-AlPdMn quasicrystals, we use a
weaker temperature dependence for lqu than that proposed in [4],where lqu ∝ ω2T 4. According
to [30] it takes the form

l−1
qu (ω) = B

ω2

vs
T 2, (4)

where B is the fitting constant. The last term in equation (3) describes the least possible mean
free path of propagating acoustic phonons. The experimental evidence for the lmin introduction
in equation (3) follows from inelastic neutron scattering experiments in [25]. It was found that
unbroadened acoustic modes can exist only when wavevectors q � 0.35 Å−1 that gives the
value of the least mean free path lmin ∼ 18 Å.

To calculate the temperature dependence of thermal conductivity with the mean free path
given by equation (3) we use the following kinetic formula written in the dimensionless form

κ = k4
BT 3

2π2h̄3v2
s

∫ �/T

0
x4ex(ex − 1)−2l(x) dx, (5)

where kB and h̄ are Boltzmann’s and reduced Planck constants, � is the Debye temperature,
and x = h̄ω/kBT .

3. Results

Figure 1 shows the experimental data for thermal conductivity over a wide temperature range
of the i-AlPdMn sample from [5] together with theoretical curve. It is seen from the plot
that there is a good agreement between the fitting curve and experimental data for T below
approximately 10 K where κ ∼ T 2. In our scheme, the main contribution to κ(T ) at lowest
T is due to the phonon scattering by strain fields of a biaxial WDD. The best fit was found
in calculations with Frank vector � ≈ 5◦. One can obtain from equation (2), lD ∼ ω−1 at
λ > 2L, which leads to the observed κ ∼ T 2 at low temperatures.

For λ < 2L, lD → constant, and the crossover to κ ∼ T 3 takes place at T ∗ � h̄vs/2LkB =
25–30 K, if only the WDD source of scattering (2) is present instead of (3). The formula for T ∗
can be derived from the condition λ ∼ 2L using the dominant phonon approximation [21]. This
crossover, however, is absent on the plot because of the dominating quasi-umklapp processes
at these temperatures.

In the shallow maximum region for the temperature range 4 K � T � 40 K a qualitative
fit between calculated and experimental κ(T ) is seen in figure 1. This is the result of a
combination of two scattering processes in the calculations: scattering due to biaxial WDD
and quasi-umklapp scattering. We found in calculations that the value of κ(T ) in the region
of the maximum (near 10 K) becomes higher if the stronger T -dependence of lqu is used in
equation (4) (e.g. lqu ∼ T 4).

In our previous work [21] we investigated amorphous SiO2 compounds where a plateau-
like region is present as well. The good fit for κ(T ) was obtained by combining the biaxial
WDD scatterer with the Rayleigh-type source of scattering. The mechanism proposed here
leads to the strong decrease of l(ω) (plateau-like regime) at higher frequencies. As a result,
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Figure 1. Quasilattice thermal conductivity versus temperature for the i-AlPdMn sample (dark
squares) experimentally observed in [5]. The solid line is a fit according to equations (3) and (5) with
fitting parameters � = 5◦, B = 4 × 10−18 s K−2, lmin = 10 Å, using the following experimental
values: ndis = 6 × 1013 cm−2, � = 380 K, vs = 4 × 105 cm s−1, 2L = 10 Å. The data for
amorphous SiO2 (dark circles) are taken from [31].

(This figure is in colour only in the electronic version)

the plateau region of the quasilattice κ exists at higher temperatures than the constant κ of
amorphous SiO2 from [31]. In addition, the absolute value of the quasilattice κ in the T -
independent region exceeds the corresponding value for SiO2 with the same fixed parameters
related to biaxial WDDs. This result is in agreement with that obtained in [5].

At temperatures above T ≈ 50 K the experimental κ(T ) in figure 1 is slightly increased.
The physical reason for this increase is, evidently, in opening of a new heat-carrying channel,
e.g. the clustron hopping mechanism proposed in [26]. In our model this rise of κ is the result
of formal lmin introduction (see details above in text). Interestingly enough, as was mentioned
above, the average value of the dipole separation 2L has the same meaning as lmin (∼10 Å).
Thus, 2L, or in other words, the local region of distortion between two adjoining icosahedral
clusters, can serve as a parameter of phonon localization. An inter-cluster size as the possible
origin of localization of the modes has been considered in [25].

In conclusion, a new view has been suggested to explain the experimentally observed
thermal conductivity of icosahedral i-AlPdMn quasicrystals. Our mechanism implies that
disclinations combined in dipole configurations are responsible for the phonon scattering at
very low temperatures. At low and intermediate temperatures a good agreement between
our model and experimental data was reached by a combination of disclination dipole and
quasi-umklapp scattering mechanisms.
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[29] Jäckle 1977 The Physics of Non-Crystalline Solids ed G H Frischat, p 568
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