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Abstract

The frequency-dependent loss due to twist disclinations is studied by treating the disclination as a damped oscillating heter-
ogeneous string. The damping parameter is found to vary along the disclination line asz2 while the decrement has a resonant
type behavior similar to that for dislocations. The internal friction is predicted to be proportional to the fourth power of discli-
nation length, which can be tested in experiments with rotationally disordered crystals. 2001 Elsevier Science B.V. All rights
reserved.

PACS: 61.72.Lk; 62.40.+i; 61.72.Hh

1. Introduction

As is well known, acoustic wave traveling through
the matter is partially absorbed. In dislocated crystals,
an important source of dissipation is the motion of dis-
locations (forced by external stress) which is opposed
by some damping mechanism. In particular, as it was
experimentally found in [1], at low temperatures the
vibrating pinned dislocations are the dominant source
of scattering. The theory of mechanical damping due
to dislocations was developed in [2]. This theory is
based on the string model for a dislocation and pro-
vides a quantitative interpretation of the dislocation-
induced loss. Among other characteristics, the explicit
form of the decrement has been found. It should be
noted that the vibrating string model proved successful
in the description of the contribution of mobile dislo-
cations to the specific heat of crystals [3], in analysis of
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phonon scattering [4], and in interpretation of the low-
temperature thermal conductivity in dislocated crys-
tals [5]. The basic characteristics of the string model
are the line tension, the effective mass and the damp-
ing parameter. For dislocations they have been calcu-
lated in [6], and within a more general approach in [7].

Recently, we have suggested the string model for vi-
brating pinned twist disclinations [8]. In particular, we
have shown that twist disclination can be represented
as a heterogeneous string and found a contribution of
mobile twist disclinations to the specific heat of crys-
tals. In this Letter we extend the model to take into
account the damping. For this purpose we determine
the damping constant and formulate the equation of
motion. Finally, we calculate the disclination-induced
decrement.

2. The general scheme

By analogy with dislocations, we will study the ef-
fect of pinned disclinations on the energy lost by the
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stress wave traveling through a crystal in the frame-
work of the vibrating string model. The basic char-
acteristic is the logarithmic decrementQ−1 which is
generally defined by

(1)Q−1 = ∆W

2W̄
,

where∆W is the energy lost per cycle and̄W is the
total vibrational energy of a specimen. For a linear de-
fect,∆W = P̄ T , whereT is a period and

(2)P̄ =
∑
n

1

T

T∫
0

L∫
−L

Re(Fi)Re
(
ε̇ni

)
dl dt

determines the mean energy (in a unit time) lost to
friction. HereFi is the Peach–Koehler force acting
on unit length of the disclination line due to external
stress field,εi is the displacement of the disclination in
the glide plane, and the sum over all normal modes is
assumed. The total vibrational energy stored per cycle
reads

(3)W̄ = σ 2
a

2µ
,

whereσa is the amplitude of applied stress wave and
µ is the shear modulus. To findεi , one has to study the
equation of motion of the disclination. Recently, we
have shown that twist disclination can be represented
as a string with the understanding that this is aheter-
ogeneous string [8]. Let us treat the disclination as a
damped oscillating string. The position of the discli-
nation in the glide plane isε(z, t). In this case, the
equation of motion is written as

(4)

m
∂2ε(z, t)

∂t2
= ∂

∂z

(
T
∂ε(z, t)

∂z

)
−B

∂ε(z, t)

∂t
+Fi,

wherem is the mass of twist disclination,T is the line
tension, andB is the damping parameter. All these pa-
rameters are determined per unit length of the discli-
nation line and can generally bez-dependent.

In dislocation theory, there are known several damp-
ing mechanisms (see, e.g., [9]). Following Eshelby
[10], we suppose here that the damping constant is en-
tirely due to the re-radiation damping mechanism. In
particular, this is true for insulators at low tempera-
tures. In this case,

(5)B = D̄
/�v2,

whereD is the rate of radiation per unit length of the
defect line andv is the velocity of a disclination. In
accordance with [10], the rate of radiation is

(6)N̄ =
∫

fi u̇i dV,

where elastic displacementsui are caused by fictitious
forcesfi . As is known [11], fictitious forcesfi are
determined by

(7)fj = −cijklδe
pl
kl,i,

wherecijkl are the elastic modulus andδepl
kl,i is the

plastic part of the strain tensor. For sliding disclina-
tions, one has

(8)δe
pl
kl =

1

2

([ �Ω �R]
k

[ �δx �τ ]
l
+ [ �Ω �R]

l

[ �δx �τ]
k

)
δ
(�ξ)

,

where �Ω is the Frank vector,�R = �r − �r0 is a vector
from any point on the axis of rotation to pointP , �δx
describes the displacement of the disclination line and
δ(�ξ) is the two-dimensional delta-function. Accord-
ingly, the displacement fields can be obtained by using
the dynamic Green’s function

(9)un(�r, t) = −
∫

cijklGjn,iδe
pl
kl dV

′,

whereGij is the Green’s tensor function. Explicitly
(see [10]),

(10)Gjn = χ,jn + δjn+

with

(11)+ = eiω(t−R/ct )

4πµR
,

(12)χ = c2
t

ω2

eiω(t−R/ct)

4πµR
− c2

t

ω2

eiω(t−R/cl)

4πµR
.

Herect andcl are the velocities of transverse and lon-
gitudinal sound waves, respectively,R = |�r − �r ′|, and
ω is the frequency. Taken together, these formulas al-
low us to solve the problem in a self-consistent way.

3. Damping parameter B

Let us calculate the damping parameterB. For this
purpose, we consider the motion of the rectilinear twist
disclination with a fixed axis of rotation. Let the discli-
nation line be oriented along thez-axis and the axis of
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rotation along they-axis. In this case, the Frank vector
�Ω = (0,Ω,0) and the unit tangent vector to the defect

line �τ = (0,0,1). The condition for conservative mo-
tion of a linear defect is generally written asdV = 0
(no vacancies are created or absorbed). It was shown in
[12] that the conservative motion of disclinations must
be normal to[[ �Ω �R]�τ ]. This enables one to define a
disclination glide surface as the surface of revolution
around the axis�Ω containing the disclination line. In
our case, this is thexz plane. We suggest that the mo-
tion of disclination line in thex direction is oscillatory,
�δx = (ε,0,0) with ε(z) = ε0 exp(ı(kz + ωt)). Then

the displacement fields in Eq. (9) can be written as (see
also Refs. [11,13])

(13)

un(�r, t) = µΩε0e
iωt

∞∫
−∞

(Gyn,x +Gxn,y)e
ikz′

z′ dz′.

Here Eq. (8) is taken into account. By using of Eq. (10)
one finally obtains

ux(�r, t) = Ωzε0e
i(kz+ωt)

2π

×
[

2y

a2

(
c2
t P

2
t

ω2 K2(Pta)− c2
t P

2
l

ω2 K2(Pla)

)

− 2x2y

a3

(
c2
t P

3
t

ω2 K3(Pta)− c2
t P

3
l

ω2 K3(Pla)

)

− PtK1(Pta)
y

a

]

+ ikyΩε0e
i(kz+ωt)

2π

×
[

2

a

(
c2
t Pt

ω2 K1(Pta)− c2
t Pl

ω2 K1(Pla)

)

− 2x2

a2

(
c2
t P

2
t

ω2 K2(Pta)− c2
t P

2
l

ω2 K2(Pla)

)

(14)−K0(Pta)

]
,

uy(�r, t) = Ωzε0e
i(kz+ωt)

2π

×
[

2x

a2

(
c2
t P

2
t

ω2
K2(Pta)− c2

t P
2
l

ω2
K2(Pla)

)

− 2y2x

a3

(
c2
t P

3
t

ω2 K3(Pta)− c2
t P

3
l

ω2 K3(Pla)

)

− PtK1(Pta)
x

a

]

+ ikxΩε0e
i(kz+ωt)

2π

×
[

2

a

(
c2
t Pt

ω2
K1(Pta)− c2

t Pl

ω2
K1(Pla)

)

− 2y2

a2

(
c2
t P

2
t

ω2 K2(Pta)− c2
t P

2
l

ω2 K2(Pla)

)

(15)−K0(Pta)

]
,

uz(�r, t) = Ωε0e
i(kz+ωt)

2π

×
[

2xy

a2 (1+ ikz)

×
(
c2
t P

2
t

ω2
K2(Pta)− c2

t P
2
l

ω2
K2(Pla)

)]

− k2Ωε0e
i(kz+ωt)

π

xy

a

(16)×
(
c2
t Pt

ω2
K1(Pta)− c2

t Pl

ω2
K1(Pla)

)
,

where Kn(x) are the McDonalds functions,a2 =
x2 + y2, P 2

t = k2 −ω2/c2
t , P 2

l = k2 −ω2/c2
l . We will

consider the regionk < ω/cl . In this case, the fol-
lowing known relation must be used:inKn(ix) =
(−iπ/2)H 2

n (x), whereH 2
n (x) is the Hankel function.

Forka � 1 one obtains

ux(�r, t) = −Ωzε0c
2
t ω

2 coskzsinωt

16

(17)×
(

1

c4
t

+ 1

c4
l

− 2k2

c2
l ω

2

)
y,

uy(�r, t) = −Ωzε0c
2
t ω

2 coskzsinωt

16

(18)×
(

1

c4
t

+ 1

c4
l

− 2k2

c2
l ω

2

)
x.

It is not necessary to presentuz since it does not en-
ter N̄ . Indeed, this fact follows directly from Eq. (16)
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and the explicit form of the force in Eq. (7) which is
written out as

fj = cij12
[
Ωzε(z, t)δ

(�ξ)]
,i

(19)− cij32
[
Ωxε(z, t)δ

(�ξ)]
,i
.

Substituting Eqs. (17)–(19) into Eq. (6) one finally ob-
tains

(20)

D̄ =
∫

(fxu̇x + fyu̇y) dx dy

= µΩ2z2ε2
0c

2
t ω

3 cos2 kz

16

(
1

c4
t

+ 1

c4
l

− 2k2

c2
l ω

2

)
,

(21)�v2 = ε2
0ω

2 cos2 kz

2
.

In accordance with Eq. (5) the damping parameterB

takes the form

(22)B = µΩ2z2c2
t ω

8

(
1

c4
t

+ 1

c4
l

− 2k2

c2
l ω

2

)
.

Notice that this result is similar to that for an edge dis-
location [10] with the exception of the factorΩz in-
stead of the Burgers vectorb. At first glance, this is
the well-known in disclination theory replacement. It
leads, however, to the principally new physical situa-
tion when the damping parameter becomesz-depend-
ent. This is important in analysis of the equation of
motion.

4. Equation of motion and decrement

Let us consider the equation of motion (4). The
Peach–Koehler force is written as [11,14]

(23)Fr = εrakτau
P
i σik,

whereσik is the strain tensor,εrak is the fully antisym-
metric tensor,�τ is the unit tangent vector to the defect
line, anduPi = �u+ − �u− = [ �Ω �R] describes the jump
in displacement at pointP due to a disclination. Thus,
we obtain

F1 = −Ω(zσ12 − xσ32),

F2 = −Ω(xσ31 − zσ11),

(24)F3 = 0.

We consider twist disclination moving in the glide
planexz. In this case, only the componentF1 will be
incorporated in Eq. (4). Thus, the equation of motion
takes the form

m(z)
∂2ε(z, t)

∂t2
= ∂

∂z

(
T (z)

∂ε(z, t)

∂z

)
−B(z)

∂ε(z, t)

∂t

(25)−Ω(zσ12 − xσ32).

For free motion the last two terms in Eq. (25) are dis-
carded. This problem was studied in [8]. In particu-
lar, there were estimated the linear tension and the
mass of twist disclination in the formm(z) = αz2,
T (z) = m(z)v2, whereα = ρΩ2/2. Let us rewrite
Eq. (22) asB = βz2 with

β = µΩ2c2
t ω

8

(
1

c4
t

+ 1

c4
l

− 2K2

c2
l ω

2

)
,

and introduce the parameter

γ = β

α
= c4

t ω

4

(
1

c4
t

+ 1

c4
l

− 2K2

c2
l ω

2

)
.

In this case, Eq. (25) takes the form

(26)

z2∂
2ε

∂z2
+ 2z

∂ε

∂z
− z2

v2

∂2ε

∂t2
− z2γ

v2

∂ε

∂t
− Ωzσ12

v2α
= 0.

Notice that we omit here the term withσ32 which is
responsible for the force along the disclination line.
We consider a periodic stress wave in the form

(27)σ12 = σ0e
−iωt =

∑
n

σn sin(knz)e
−iωt ,

whereσ0 is the shear stress component ofσa resolved
in thexz glide plane andσn = 4σ0/πn is the Fourier
coefficient. The exact solution to Eq. (26) for thenth
normal mode is found to be

(28)εn(z, t) = Cn

knz
sin(knz)e−iωt

with

Cn = knΩσn

α

1

(iγω +ω2 − k2
nv

2)
.

The last step is to substitute Eqs. (24) and (28) into
Eq. (2). We obtain

(29)P̄ =
∑
n

Ω2γω2σ 2
nL

2α(γ 2ω2 + (ω2 − k2v2)2)
.
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Then, the loss per cycle takes the form

(30)∆WL =
∑
n

πΩ2γωσ 2
nL

α(γ 2ω2 + (ω2 − k2
nv

2)2)
,

and, finally, the internal friction is found to be

Q−1 = ∆W

2W
= N∆WL

2W

= 8Ω2q2γωµΛ

πα

(31)×
∑
n

1

n2(γ 2ω2 + (ω2 − k2
nv

2)2)
,

whereΛ = 2NL/V is the density of disclinations and
q = σ0/σa is the resolved shear stress orientation fac-
tor (cf., e.g., [5]).

The main contribution to the internal friction comes
from the first term of series in Eq. (31). In this case,
one has

(32)Q−1 = 8Ω2q2γωµΛ

πα

1

(γ 2ω2 + (ω2 −ω2
1)

2)
,

whereω2
1 = k2

1v
2 = π2v2/L2. As is seen from Eq. (32)

there is a close agreement between dislocation and
disclination-induced contribution to the internal fric-
tion (cf. Ref. [2]). Indeed, in both cases the decre-
ment has a resonance-like behavior. For small damp-
ing (ω1 � γ ), the decrement is linear for frequencies
below the resonant frequency, passes through a max-
imum, and then decreases likeω−3. For large damp-
ing (ω1 � γ ), the linear inω behavior goes to a
maximum value which occurs at an earlier frequency
than the resonant frequency. It then decreases likeω−1

through the resonant frequency range and finally de-
creases likeω−3. It is interesting to note that both
the decrement and the resonant frequency are indepen-
dent fromΩ . This is directly seen from Eq. (31) since
α ∼ Ω2. For dislocations the decrement does not de-
pend on the Burgers vector as well. The maximum loss
occurs atω = ω1 for small damping and atω = ω2

1/γ

for large damping. Finally, near the resonant frequency
the loss is inversely proportional to the damping.

5. Conclusion

In this Letter we have calculated the frequency-
dependent loss due to vibrating twist disclinations
within the heterogeneous string model. We have found
that the decrement is similar to that for dislocations.
In particular, the decrement in Eq. (31) has a reso-
nance type character and is proportional to the fourth
power of the disclination length. An important conclu-
sion can be made that the individual (local) properties
of linear defects get lost within the string model (see
also our previous Letter [8]). Namely, the main physi-
cal characteristics (heat capacity, internal friction) are
found to be determined only by some general para-
meters of linear defects (the length of the defect line,
the density of defects) and elastic body (the density
of the solid, sound velocities, the shear modulus). It is
known [15] that the experimental study of internal fric-
tion phenomena serves as an indirect method to detect
dislocations in crystals. As it follows from our consid-
eration, the same method can be used for detecting of
disclinations in rotationally disordered materials.
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